US20040045281A1 - Turbocharged engine with turbocharger compressor recirculation valve - Google Patents
Turbocharged engine with turbocharger compressor recirculation valve Download PDFInfo
- Publication number
- US20040045281A1 US20040045281A1 US10/241,929 US24192902A US2004045281A1 US 20040045281 A1 US20040045281 A1 US 20040045281A1 US 24192902 A US24192902 A US 24192902A US 2004045281 A1 US2004045281 A1 US 2004045281A1
- Authority
- US
- United States
- Prior art keywords
- compressor
- air
- engine
- fluidly connected
- cylinders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to turbocharged internal combustion engines and more particularly to such an engine with an exhaust gas recirculation system and a turbocharger compressor recirculation valve to lower turbocharger compressor discharge pressure and thereby assist exhaust gas recirculation flow.
- EGR exhaust gas recirculation
- a turbocharger is used to increase engine performance.
- the exhaust gas to be recirculated is diverted upstream of the exhaust gas turbine associated with the turbocharger.
- VNT variable nozzle turbine
- the present invention provides an internal combustion engine having means to lower turbocharger compressor discharge and intake manifold pressure allowing an appropriate EGR flow rate to be more readily generated at lower turbocharger rotational speeds and reducing combustion peak firing pressure.
- the present invention also provides an intake air bypass that allows turbocharger compressor discharge air to be recirculated back into the turbocharger compressor inlet.
- a control valve may be provided to control bypass flow.
- the present invention optionally provides a pressure relief device for bypassing charge air back to the turbocharger compressor inlet as a function of engine operating conditions.
- the device is closed and EGR systems operate normally.
- the compressor discharge pressure will rise to the level of the pressure relief devices opening pressure, allowing charge air to be recirculated back to the turbocharger compressor inlet.
- This recirculated charge air allows the intake manifold pressure to remain low enough to cause the pressure difference between the turbine inlet and the intake manifold to be sufficiently large to allow the proper EGR flow.
- a more open VNT vane position allows the turbocharger to rotate at a lower speed which is beneficial to turbocharger durability.
- the lowering of the intake manifold results also in a decrease in the combustion peak firing pressure, which is beneficial to engine durability.
- an internal combustion engine in accordance with the invention includes a block having a plurality of cylinders.
- An intake manifold is fluidly connected to the block for supplying charge air to the cylinders.
- An exhaust manifold is fluidly connected to the plurality of cylinders for conducting exhaust gas away from the cylinders.
- a turbocharger including a turbine having an exhaust gas inlet is fluidly connected with the exhaust manifold.
- the turbocharger also includes a compressor having a compressor air inlet and air outlet. The compressor air outlet is fluidly connected to the intake manifold to pressurize the charge air during high power levels of engine operation.
- An EGR bypass is fluidly connected between the turbine exhaust gas inlet and the intake manifold to recirculate a portion of the exhaust gases to the cylinders.
- An intake air bypass is fluidly connected between the compressor air outlet and the compressor air inlet. The intake air bypass is adapted to recirculate a portion of compressor outlet air back to the compressor air inlet to reduce compressor outlet pressure and aid EGR flow through the EGR bypass to the cylinders during high power operation of the engine.
- the turbocharger includes a variable geometry turbine operable to raise engine exhaust pressure by restricting exhaust gas flow to the turbine.
- the intake air bypass includes a control valve operable to control bypass flow.
- the control valve may be a pressure relief valve that is opened by excess pressure from the compressor outlet. Alternatively the control valve may be operated by suitable engine control apparatus.
- the engine may include a charge air cooler fluidly connected between the compressor air outlet and the intake manifold for cooling compressed charge air prior to delivery into the cylinders.
- the intake air bypass may be fluidly connected with an outlet of the charge air cooler to provide cool air to the compressor inlet.
- the EGR bypass can be fluidly connected with the intake manifold after the connection of the intake air bypass with the compressor air outlet to avoid recirculating exhaust gas to the compressor air inlet.
- the EGR bypass may include a cooler to cool hot exhaust gas prior to entering the intake manifold.
- FIG. 1 is a perspective view of a turbocharged diesel internal combustion engine adapted to include an EGR system and a turbocharger compressor recirculation valve system in accordance with the present invention
- FIG. 2 is a schematic illustration of an internal combustion engine similar to that of FIG. 1 including an EGR system and a turbocharger compressor recirculation valve system; and
- FIG. 3 is a schematic view of one embodiment of the turbocharger compressor recirculation valve system in accordance with the present invention.
- FIGS. 1 and 2 there is shown a representative internal combustion engine 10 .
- Internal combustion engine 10 includes a block 12 having a plurality of cylinders 14 .
- An intake manifold 16 is fluidly connected to the block for supplying charge air to the cylinders 14 .
- An exhaust manifold 18 having a plurality of exhaust gas inlet ports 20 is fluidly connected to the plurality of cylinders 14 for conducting exhaust gases from the cylinders.
- Exhaust manifold 18 also has an exhaust gas outlet port 22 .
- a turbocharger 24 includes a turbine 26 and a compressor 28 .
- Turbine 26 is driven by exhaust gas received from exhaust manifold 18 .
- Turbine 26 in turn drives compressor 28 through a mechanical connection as is generally known.
- Turbine 26 includes an exhaust gas inlet 30 and an exhaust gas outlet 32 .
- Turbine exhaust gas inlet 30 is connected by a fluid conduit 34 to the manifold exhaust gas outlet port 22 .
- the turbine exhaust gas outlet 32 is connected to an exhaust system fluid conduit 36 .
- Turbine 26 may be a variable geometry turbine operable to raise engine exhaust pressure by restricting exhaust gas flow to the turbine.
- Compressor 28 includes a compressor air inlet 38 for receiving ambient air and a compressor air outlet 40 .
- Compressor air outlet 40 is connected by a fluid conduit 42 to an air intake port 44 of intake manifold 16 to pressurize the charge air during high power levels of engine operation.
- An air cooler 46 may be disposed in the air flow along conduit 42 to cool compressed charge air prior to delivery into the cylinders 14 .
- An EGR bypass 48 of known construction is fluidly connected between the turbine exhaust gas inlet 30 and intake manifold 16 to recirculate a portion of the exhaust gases to the cylinders 14 .
- EGR bypass 48 includes an EGR inlet 50 fluidly connected to fluid conduit 34 and an EGR outlet 52 fluidly connected to the air intake side of the intake manifold 16 .
- An air cooler 54 may be disposed in the air flow through EGR bypass 48 to cool hot exhaust gas prior to entering the intake manifold 16 .
- An intake air bypass 60 includes a fluid conduit 62 having a compressed charge air inlet 64 and a discharge outlet 66 fluidly connecting the compressor air outlet 40 with the compressor air inlet 38 .
- the compressed charge air inlet 64 is fluidly connected to the compressor air outlet along fluid conduit 42 and the discharge outlet 66 is fluidly connected to the compressor air inlet 38 .
- the intake air bypass 60 is adapted to recirculate a portion of compressor outlet air back to the compressor air inlet 38 to reduce compressor outlet pressure and aid EGR flow through the EGR bypass 48 to the cylinders 14 during high power operation of the engine 10 .
- the intake bypass charge air inlet 64 is connected downstream of air cooler 44 , if provided, to thereby provide cooled compressed air to the compressor air inlet 38 .
- the intake air bypass 60 includes a control valve 70 operable to control bypass flow.
- Control valve 70 may be a pressure relief valve that is opened by excess air pressure from the compressor outlet 40 .
- Control valve 70 may be a spring release valve or other known pressure release device.
- control valve 70 may be an operable pressure relief valve that may be operated by suitable engine control apparatus 74 that operates the control valve in response to defined, sensed engine operating parameters.
- fluid conduit 62 may be provided with a separate shutoff valve 76 (FIG. 3) to deactivate the compressor bypass system.
- the EGR bypass 48 is connected via EGR outlet 52 to the intake manifold 16 downstream or after the connection of the intake air bypass charge air inlet 64 to avoid recirculating exhaust gas to the compressor air inlet 38 .
- the intake air bypass 60 recirculates a portion of the compressed charge air back to the compressor air inlet 38 when the pressure of the charge air exceeds a specified predetermined pressure. Such recirculation lowers the intake manifold pressure to assure appropriate EGR flow rates at lower turbocharger rotational speeds and reduces combustion peak firing pressure.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Supercharger (AREA)
Abstract
An internal combustion engine includes a block having a plurality of cylinders. An intake manifold is fluidly connected to the block for supplying charge air to the cylinders. An exhaust manifold is fluidly connected to the plurality of cylinders for conducting exhaust gas away from the cylinders. A turbocharger including a turbine having an exhaust gas inlet is fluidly connected with the exhaust manifold. The turbocharger also includes a compressor having a compressor air inlet and air outlet. The compressor air outlet is fluidly connected to the intake manifold to pressurize the charge air during high power levels of engine operation. An EGR bypass is fluidly connected between the turbine exhaust gas inlet and the intake manifold to recirculate a portion of the exhaust gases to the cylinders. An intake air bypass is fluidly connected between the compressor air outlet and the compressor air inlet. The intake air bypass is adapted to recirculate a portion of compressor outlet air back to the compressor air inlet to reduce compressor outlet pressure and aid EGR flow through the EGR bypass to the cylinders during high power operation of the engine.
Description
- The present invention relates to turbocharged internal combustion engines and more particularly to such an engine with an exhaust gas recirculation system and a turbocharger compressor recirculation valve to lower turbocharger compressor discharge pressure and thereby assist exhaust gas recirculation flow.
- It is known in the art of controlling the generation of undesirable pollutant gases and particulate matter in the operation of internal combustion engines to use an exhaust gas recirculation (EGR) system. EGR systems recirculate exhaust gas into the engine intake air supply reducing the concentration of oxygen, which lowers the combustion temperature within the cylinder and slows the chemical reaction of a combustion process, decreasing the formation of nitrous oxides (NOx). Additionally unburned hydrocarbons contained in exhaust gas are re-introduced into the engine cylinders which further reduces the emission of undesirable hydrocarbons.
- In some internal combustion engines and particularly diesel engines a turbocharger is used to increase engine performance. Therein the exhaust gas to be recirculated is diverted upstream of the exhaust gas turbine associated with the turbocharger.
- In a high pressure system exhaust gas is pumped directly into the intake manifold. However, under lower speed and high torque conditions, the boost pressure is higher than the exhaust manifold pressure and recirculation of exhaust gases is not possible. A present method of generating EGR flow to correct this problem has been to use various devices such as back pressure valves or restrictive turbines such as a variable nozzle turbine (VNT).
- With a variable nozzle turbine its vanes are adjustably closable to restrict exhaust gas flow through the turbine. Thereby turbine inlet pressure is increased to a point where it exceeds the intake manifold pressure as generated by the turbocharger compressor. During the process the exhaust gas that does pass between the vanes of the turbine has a higher velocity, due to the reduced cross-sectional area between the vanes. This increased gas velocity, when it strikes the turbine wheel, causes higher wheel rotational speed. This higher speed on the compressor side causes increased boost or compressor discharge pressures. The overall impact, therefore, is that the very concept used to increase EGR flow by increasing the turbine inlet pressure, also increases the compressor discharge and intake manifold pressure, thereby hindering further increases in EGR flow.
- The result is that compressor discharge and intake manifold pressures become unacceptably high in the effort to generate higher EGR flow rates for reduced NOxemissions. These high intake manifold pressures tax the capability of the charge cooling system and associated ducting to withstand the higher pressures and contribute to unacceptably high combustion peak firing pressures. Another unwanted result is that the turbocharger rotation speeds can become unacceptably high during high load engine operation.
- The present invention provides an internal combustion engine having means to lower turbocharger compressor discharge and intake manifold pressure allowing an appropriate EGR flow rate to be more readily generated at lower turbocharger rotational speeds and reducing combustion peak firing pressure.
- The present invention also provides an intake air bypass that allows turbocharger compressor discharge air to be recirculated back into the turbocharger compressor inlet. A control valve may be provided to control bypass flow.
- The present invention optionally provides a pressure relief device for bypassing charge air back to the turbocharger compressor inlet as a function of engine operating conditions. At lower engine loads, the device is closed and EGR systems operate normally. At sufficiently high engine loads, the compressor discharge pressure will rise to the level of the pressure relief devices opening pressure, allowing charge air to be recirculated back to the turbocharger compressor inlet. This recirculated charge air allows the intake manifold pressure to remain low enough to cause the pressure difference between the turbine inlet and the intake manifold to be sufficiently large to allow the proper EGR flow.
- In engines using a variable nozzle turbine, a more open VNT vane position allows the turbocharger to rotate at a lower speed which is beneficial to turbocharger durability. The lowering of the intake manifold results also in a decrease in the combustion peak firing pressure, which is beneficial to engine durability.
- Accordingly an internal combustion engine in accordance with the invention includes a block having a plurality of cylinders. An intake manifold is fluidly connected to the block for supplying charge air to the cylinders. An exhaust manifold is fluidly connected to the plurality of cylinders for conducting exhaust gas away from the cylinders. A turbocharger including a turbine having an exhaust gas inlet is fluidly connected with the exhaust manifold. The turbocharger also includes a compressor having a compressor air inlet and air outlet. The compressor air outlet is fluidly connected to the intake manifold to pressurize the charge air during high power levels of engine operation.
- An EGR bypass is fluidly connected between the turbine exhaust gas inlet and the intake manifold to recirculate a portion of the exhaust gases to the cylinders. An intake air bypass is fluidly connected between the compressor air outlet and the compressor air inlet. The intake air bypass is adapted to recirculate a portion of compressor outlet air back to the compressor air inlet to reduce compressor outlet pressure and aid EGR flow through the EGR bypass to the cylinders during high power operation of the engine.
- In one embodiment of the invention the turbocharger includes a variable geometry turbine operable to raise engine exhaust pressure by restricting exhaust gas flow to the turbine. The intake air bypass includes a control valve operable to control bypass flow. The control valve may be a pressure relief valve that is opened by excess pressure from the compressor outlet. Alternatively the control valve may be operated by suitable engine control apparatus.
- The engine may include a charge air cooler fluidly connected between the compressor air outlet and the intake manifold for cooling compressed charge air prior to delivery into the cylinders. The intake air bypass may be fluidly connected with an outlet of the charge air cooler to provide cool air to the compressor inlet.
- The EGR bypass can be fluidly connected with the intake manifold after the connection of the intake air bypass with the compressor air outlet to avoid recirculating exhaust gas to the compressor air inlet.
- The EGR bypass may include a cooler to cool hot exhaust gas prior to entering the intake manifold.
- These and other features and advantages of the invention will be more fully understood from the following detailed description of the invention taken together with the accompanying drawings.
- In the drawings:
- FIG. 1 is a perspective view of a turbocharged diesel internal combustion engine adapted to include an EGR system and a turbocharger compressor recirculation valve system in accordance with the present invention;
- FIG. 2 is a schematic illustration of an internal combustion engine similar to that of FIG. 1 including an EGR system and a turbocharger compressor recirculation valve system; and
- FIG. 3 is a schematic view of one embodiment of the turbocharger compressor recirculation valve system in accordance with the present invention.
- Referring to FIGS. 1 and 2, there is shown a representative
internal combustion engine 10.Internal combustion engine 10 includes ablock 12 having a plurality ofcylinders 14. An intake manifold 16 is fluidly connected to the block for supplying charge air to thecylinders 14. Anexhaust manifold 18 having a plurality of exhaustgas inlet ports 20 is fluidly connected to the plurality ofcylinders 14 for conducting exhaust gases from the cylinders. Exhaust manifold 18 also has an exhaustgas outlet port 22. - A
turbocharger 24 includes aturbine 26 and acompressor 28. Turbine 26 is driven by exhaust gas received fromexhaust manifold 18. Turbine 26 in turn drivescompressor 28 through a mechanical connection as is generally known. Turbine 26 includes anexhaust gas inlet 30 and anexhaust gas outlet 32. Turbineexhaust gas inlet 30 is connected by afluid conduit 34 to the manifold exhaustgas outlet port 22. The turbineexhaust gas outlet 32 is connected to an exhaustsystem fluid conduit 36.Turbine 26 may be a variable geometry turbine operable to raise engine exhaust pressure by restricting exhaust gas flow to the turbine. -
Compressor 28 includes acompressor air inlet 38 for receiving ambient air and acompressor air outlet 40.Compressor air outlet 40 is connected by afluid conduit 42 to anair intake port 44 of intake manifold 16 to pressurize the charge air during high power levels of engine operation. Anair cooler 46 may be disposed in the air flow alongconduit 42 to cool compressed charge air prior to delivery into thecylinders 14. - An
EGR bypass 48 of known construction is fluidly connected between the turbineexhaust gas inlet 30 and intake manifold 16 to recirculate a portion of the exhaust gases to thecylinders 14.EGR bypass 48 includes anEGR inlet 50 fluidly connected tofluid conduit 34 and anEGR outlet 52 fluidly connected to the air intake side of the intake manifold 16. Anair cooler 54 may be disposed in the air flow throughEGR bypass 48 to cool hot exhaust gas prior to entering the intake manifold 16. - An
intake air bypass 60 includes afluid conduit 62 having a compressedcharge air inlet 64 and adischarge outlet 66 fluidly connecting thecompressor air outlet 40 with thecompressor air inlet 38. The compressedcharge air inlet 64 is fluidly connected to the compressor air outlet alongfluid conduit 42 and thedischarge outlet 66 is fluidly connected to thecompressor air inlet 38. - The
intake air bypass 60 is adapted to recirculate a portion of compressor outlet air back to thecompressor air inlet 38 to reduce compressor outlet pressure and aid EGR flow through theEGR bypass 48 to thecylinders 14 during high power operation of theengine 10. - Preferably the intake bypass
charge air inlet 64 is connected downstream ofair cooler 44, if provided, to thereby provide cooled compressed air to thecompressor air inlet 38. - With further reference to FIG. 2 and with reference to FIG. 3 in one embodiment of the invention, the
intake air bypass 60 includes acontrol valve 70 operable to control bypass flow.Control valve 70 may be a pressure relief valve that is opened by excess air pressure from thecompressor outlet 40.Control valve 70 may be a spring release valve or other known pressure release device. Alternatively,control valve 70 may be an operable pressure relief valve that may be operated by suitableengine control apparatus 74 that operates the control valve in response to defined, sensed engine operating parameters. If desiredfluid conduit 62 may be provided with a separate shutoff valve 76 (FIG. 3) to deactivate the compressor bypass system. - In a preferred embodiment of the invention, the
EGR bypass 48 is connected viaEGR outlet 52 to the intake manifold 16 downstream or after the connection of the intake air bypasscharge air inlet 64 to avoid recirculating exhaust gas to thecompressor air inlet 38. - In use, the
intake air bypass 60 recirculates a portion of the compressed charge air back to thecompressor air inlet 38 when the pressure of the charge air exceeds a specified predetermined pressure. Such recirculation lowers the intake manifold pressure to assure appropriate EGR flow rates at lower turbocharger rotational speeds and reduces combustion peak firing pressure. - Although the invention has been described by reference to a specific embodiment, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiment, but that it have the full scope defined by the language of the following claims.
Claims (9)
1. An internal combustion engine comprising:
a block including a plurality of cylinders;
an intake manifold fluidly connected to the block for supplying charge air to the cylinders;
an exhaust manifold fluidly connected to the plurality of cylinders for conducting exhaust gases from the cylinders;
a turbocharger including a turbine and a compressor;
the turbine having an exhaust gas inlet fluidly connected with the exhaust manifold;
the compressor having a compressor air inlet and air outlet,
the compressor air outlet being fluidly connected to the intake manifold to pressurize the charge air during high power levels of engine operation;
an EGR bypass fluidly connected between the turbine exhaust gas inlet and the intake manifold to recirculate a portion of the exhaust gases to the cylinders; and
an intake air bypass fluidly connecting the compressor air outlet with the compressor air inlet;
the intake air bypass being adapted to recirculate a portion of compressor outlet air back to the compressor air inlet to reduce compressor outlet pressure and aid EGR flow through the EGR bypass to the cylinders during high power operation of the engine.
2. The engine of claim 1 wherein the turbocharger includes a variable geometry turbine operable to raise engine exhaust pressure by restricting exhaust gas flow to the turbine.
3. The engine of claim 1 wherein the intake air bypass includes a control valve operable to control bypass flow.
4. The engine of claim 3 wherein the control valve is a pressure relief valve that is opened by excess pressure from the compressor outlet.
5. The engine of claim 3 wherein the control valve is operated by suitable engine control apparatus.
6. The engine of claim 1 including a charge air cooler fluidly connected between the compressor air outlet and the intake manifold for cooling compressed charge air prior to delivery into the cylinders.
7. The engine of claim 6 wherein the intake air bypass is fluidly connected with an outlet of the charge air cooler to provide cooled air to the compressor inlet.
8. The engine of claim 1 wherein the EGR bypass is fluidly connected with the intake manifold after the connection of the intake air bypass with the compressor air outlet to avoid recirculating exhaust gas to the compressor air inlet.
9. The engine of claim 1 wherein the EGR bypass includes a cooler to cool hot exhaust gas prior to entering the intake manifold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/241,929 US6701710B1 (en) | 2002-09-11 | 2002-09-11 | Turbocharged engine with turbocharger compressor recirculation valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/241,929 US6701710B1 (en) | 2002-09-11 | 2002-09-11 | Turbocharged engine with turbocharger compressor recirculation valve |
Publications (2)
Publication Number | Publication Date |
---|---|
US6701710B1 US6701710B1 (en) | 2004-03-09 |
US20040045281A1 true US20040045281A1 (en) | 2004-03-11 |
Family
ID=31887758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/241,929 Expired - Lifetime US6701710B1 (en) | 2002-09-11 | 2002-09-11 | Turbocharged engine with turbocharger compressor recirculation valve |
Country Status (1)
Country | Link |
---|---|
US (1) | US6701710B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2879235A1 (en) * | 2004-12-15 | 2006-06-16 | Renault Sas | INTERNAL COMBUSTION ENGINE WITH RECIRCULATION OF EXHAUST GASES AND EXHAUST AIR INJECTION |
US20080010975A1 (en) * | 2006-07-12 | 2008-01-17 | Cummins Filtration Inc. | Systems, apparatuses, and methods of determining plugging or deplugging of a diesel oxidation catalyst device |
FR2924472A1 (en) * | 2007-12-04 | 2009-06-05 | Renault Sas | Internal combustion engine i.e. supercharged engine, controlling method, involves taking portion of air in downstream of compressor to control exhaust gas recirculation rate by recirculation of quantity of air around compressor |
WO2011007303A1 (en) * | 2009-07-12 | 2011-01-20 | Lv Technologies Ltd | System and method for enhancing engine performance |
US20130206100A1 (en) * | 2012-02-14 | 2013-08-15 | Ford Global Technologies, Llc | Dilution of the gas in an intake manifold by water injection |
WO2021014838A1 (en) * | 2019-07-25 | 2021-01-28 | 川崎重工業株式会社 | Hydrogen gas-fueled engine |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4023428B2 (en) * | 2003-04-16 | 2007-12-19 | トヨタ自動車株式会社 | Control device for internal combustion engine having supercharger with electric motor |
DE10321572A1 (en) * | 2003-05-14 | 2004-12-02 | Daimlerchrysler Ag | Supercharging air compressor for internal combustion engine separates sub-stream of compressed air downstream of compressor wheel and passes via temperature reduction unit to produce cooling air |
US7007680B2 (en) * | 2003-08-07 | 2006-03-07 | Mack Trucks, Inc. | Cooler bypass valve system and method |
JP4381419B2 (en) * | 2004-07-30 | 2009-12-09 | 株式会社小松製作所 | Air supply control device for internal combustion engine |
CN101002015B (en) * | 2004-08-11 | 2011-08-31 | 株式会社小松制作所 | Open/close controller of intake and exhaust communication circuit |
US7080511B1 (en) * | 2005-01-12 | 2006-07-25 | Detroit Diesel Corporation | Method for controlling engine air/fuel ratio |
US7254948B2 (en) * | 2005-02-21 | 2007-08-14 | Cummins Inc. | Boost wastegate device for EGR assist |
US7010914B1 (en) | 2005-03-04 | 2006-03-14 | Southwest Research Institute | Method for controlling boost pressure in a turbocharged diesel engine |
DE102005054525A1 (en) * | 2005-11-14 | 2007-05-16 | Porsche Ag | Method and control unit for controlling a turbocharger with turbine-side boost pressure control and a recirculation valve |
CN101360896A (en) * | 2006-01-13 | 2009-02-04 | 马克卡车公司 | Air exhaust and intake temperature control |
US20090271094A1 (en) * | 2006-10-02 | 2009-10-29 | Mack Trucks, Inc. | Engine with charge air recirculation and method |
US7814752B2 (en) * | 2007-02-28 | 2010-10-19 | Caterpillar Inc | Decoupling control strategy for interrelated air system components |
US7281518B1 (en) | 2007-03-15 | 2007-10-16 | Detroit Diesel Corporation | Method and system of diesel engine setpoint compensation for transient operation of a heavy duty diesel engine |
US7614231B2 (en) * | 2007-04-09 | 2009-11-10 | Detroit Diesel Corporation | Method and system to operate diesel engine using real time six dimensional empirical diesel exhaust pressure model |
EP2156030A1 (en) * | 2007-05-14 | 2010-02-24 | Borgwarner Inc. | Method of controlling a turbocharger |
US8069651B2 (en) * | 2007-08-30 | 2011-12-06 | Caterpillar Inc. | Machine, engine system and operating method |
US8001778B2 (en) * | 2007-09-25 | 2011-08-23 | Ford Global Technologies, Llc | Turbocharged engine control operation with adjustable compressor bypass |
US8371120B2 (en) * | 2008-01-15 | 2013-02-12 | Southwest Research Institute | HCCI combustion timing control with decoupled control of in-cylinder air/EGR mass and oxygen concentration |
GB2475274B (en) * | 2009-11-12 | 2016-06-15 | Gm Global Tech Operations Llc | Device and method for compressor and charge air cooler protection in an internal combustion engine |
US8596065B2 (en) * | 2010-03-09 | 2013-12-03 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
US9291089B2 (en) * | 2012-08-31 | 2016-03-22 | Caterpillar Inc. | Turbocharger having compressor cooling arrangement and method |
US9174637B2 (en) * | 2013-08-13 | 2015-11-03 | Ford Global Technologies, Llc | Methods and systems for torque control |
DE102014220905B4 (en) | 2014-10-15 | 2020-04-16 | Ford Global Technologies, Llc | Internal combustion engine with exhaust gas turbocharging and exhaust gas recirculation |
US10100719B2 (en) * | 2016-07-18 | 2018-10-16 | Delphi Technologies Ip Limited | GDCI intake air temperature control system and method |
CN110249118B (en) | 2017-02-14 | 2022-01-25 | 卡明斯公司 | Compressor bypass flow arrangement |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3218156A1 (en) * | 1982-05-14 | 1983-11-17 | Daimler-Benz Ag, 7000 Stuttgart | Exhaust gas return in an internal combustion engine provided with an exhaust gas turbocharger |
US4702218A (en) * | 1984-07-24 | 1987-10-27 | Mazda Motor Corporation | Engine intake system having a pressure wave supercharger |
US4817387A (en) * | 1986-10-27 | 1989-04-04 | Hamilton C. Forman, Trustee | Turbocharger/supercharger control device |
US5526645A (en) * | 1995-07-26 | 1996-06-18 | Powerhouse Diesel Services, Inc. | Dual-fuel and spark ignited gas internal combustion engine excess air control system and method |
DE59608240D1 (en) * | 1995-08-04 | 2002-01-03 | Jenbacher Ag Jenbach | Device for regulating an engine size, in particular the power or the speed of an internal combustion engine |
JP3743195B2 (en) * | 1999-02-26 | 2006-02-08 | ふそうエンジニアリング株式会社 | Premixed compression ignition internal combustion engine |
JP2001329879A (en) * | 2000-05-24 | 2001-11-30 | Nissan Diesel Motor Co Ltd | Exhaust gas recirculation system for internal combustion engine |
AT412985B (en) * | 2000-10-12 | 2005-09-26 | Jenbacher Ag | Internal combustion engine |
-
2002
- 2002-09-11 US US10/241,929 patent/US6701710B1/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2879235A1 (en) * | 2004-12-15 | 2006-06-16 | Renault Sas | INTERNAL COMBUSTION ENGINE WITH RECIRCULATION OF EXHAUST GASES AND EXHAUST AIR INJECTION |
US20080010975A1 (en) * | 2006-07-12 | 2008-01-17 | Cummins Filtration Inc. | Systems, apparatuses, and methods of determining plugging or deplugging of a diesel oxidation catalyst device |
US7685814B2 (en) | 2006-07-12 | 2010-03-30 | Cummins Filtration, Inc. | Systems, apparatuses, and methods of determining plugging or deplugging of a diesel oxidation catalyst device |
FR2924472A1 (en) * | 2007-12-04 | 2009-06-05 | Renault Sas | Internal combustion engine i.e. supercharged engine, controlling method, involves taking portion of air in downstream of compressor to control exhaust gas recirculation rate by recirculation of quantity of air around compressor |
WO2011007303A1 (en) * | 2009-07-12 | 2011-01-20 | Lv Technologies Ltd | System and method for enhancing engine performance |
US20130206100A1 (en) * | 2012-02-14 | 2013-08-15 | Ford Global Technologies, Llc | Dilution of the gas in an intake manifold by water injection |
US9752497B2 (en) * | 2012-02-14 | 2017-09-05 | Ford Global Technologies, Llc | Dilution of the gas in an intake manifold by water injection |
WO2021014838A1 (en) * | 2019-07-25 | 2021-01-28 | 川崎重工業株式会社 | Hydrogen gas-fueled engine |
Also Published As
Publication number | Publication date |
---|---|
US6701710B1 (en) | 2004-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6701710B1 (en) | Turbocharged engine with turbocharger compressor recirculation valve | |
US6205785B1 (en) | Exhaust gas recirculation system | |
US6324847B1 (en) | Dual flow turbine housing for a turbocharger in a divided manifold exhaust system having E.G.R. flow | |
US6886544B1 (en) | Exhaust gas venturi injector for an exhaust gas recirculation system | |
JP4680472B2 (en) | Internal combustion engine-turbosupercharger unit for motor vehicles with turbine power control, in particular industrial vehicles | |
US20080216476A1 (en) | Turbocharged internal combustion engine with egr system having reverse flow | |
US6286312B1 (en) | Arrangement for a combustion engine | |
US8234864B2 (en) | Engine system having multi-stage turbocharging and exhaust gas recirculation | |
US7444815B2 (en) | EGR system for high EGR rates | |
US8161744B2 (en) | Internal combustion engine with turbocharger surge detection and control | |
AU5620500A (en) | Turbocharger incorporating an integral pump for exhaust gas recirculation | |
US7584748B2 (en) | Exhaust gas recirculation system for an internal combustion engine | |
US7448368B2 (en) | Exhaust gas recirculation system for an internal combustion engine | |
US7654086B2 (en) | Air induction system having bypass flow control | |
US8307646B2 (en) | System using supplemental compressor for EGR | |
JP2011069305A (en) | Internal combustion engine and method for controlling the same | |
KR100909737B1 (en) | Engine with internal EV system | |
US8938962B2 (en) | Exhaust system | |
JP2007515583A (en) | Exhaust pressure limiting device | |
KR101071873B1 (en) | Recirculating exhaust gas system using vortex tube | |
JP5679185B2 (en) | Control device for internal combustion engine | |
EP1674710B1 (en) | Method for recirculating exhaust gases in a turbocharged engine and the relative turbocharged engine | |
US20190186427A1 (en) | Engine system | |
CN113833586B (en) | Exhaust gas recirculation system and method thereof, automobile | |
US10890129B1 (en) | High pressure loop exhaust gas recirculation and twin scroll turbocharger flow control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DETROIT DIESEL CORPORATION, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AHRENS, WILLIAM K.;LEWALLEN, BRIAN A.;REEL/FRAME:013286/0708;SIGNING DATES FROM 20020725 TO 20020906 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |