US20030228037A1 - Image pickup apparatus and fingerprint recognition apparatus - Google Patents
Image pickup apparatus and fingerprint recognition apparatus Download PDFInfo
- Publication number
- US20030228037A1 US20030228037A1 US10/442,234 US44223403A US2003228037A1 US 20030228037 A1 US20030228037 A1 US 20030228037A1 US 44223403 A US44223403 A US 44223403A US 2003228037 A1 US2003228037 A1 US 2003228037A1
- Authority
- US
- United States
- Prior art keywords
- image pickup
- pickup element
- light
- pixel
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 13
- 238000003705 background correction Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000005286 illumination Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/14—Vascular patterns
- G06V40/145—Sensors therefor
Definitions
- the present invention relates to an image pickup apparatus and a fingerprint recognition apparatus, and in particular to an image pickup apparatus and a fingerprint recognition apparatus which have a light irradiation unit for irradiating light to a photographing object and an image pickup element for receiving reflected light or transmitted light from the photographing object and generating an electric signal corresponding to an amount of received light.
- Japanese Patent Application Laid-Open No. 5-81412 discloses one in which a microcomputer corrects a trapezoidal distortion of a fingerprint image for registration or collation according to a magnification representing a degree of distortion, which is determined from a trapezoidal distortion of a reference figure photographed image based upon a reference figure, and after setting this corrected fingerprint image as a registered fingerprint image or a collated fingerprint image, collates both the reference figure photographed image and the registered fingerprint image or the collated fingerprint image.
- 10-105708 discloses an image collation apparatus which is applied to, for example, a fingerprint collation apparatus and, when converting a video signal into a binarization signal based upon a predetermined threshold value to judge conformity or non-conformity between first and second images, corrects a signal level of this threshold value to correct unevenness of an amount of light in an optical system.
- An image pickup apparatus includes: light irradiation means that irradiates light on an object of image pickup; and an image pickup element that receives reflected light or transmitted light from the object of image pickup to generate an electric signal corresponding to an amount of received light, and is characterized in that a light receiving condition of a pixel of the image pickup element is changed such that shading of a signal from the image pickup element is corrected.
- the light receiving condition is determined by a pixel structure of the image pickup element, in particular, an area of an opening portion, a shape of a lens provided on the opening portion, or an impurity concentration in a photoelectric conversion region of the image pickup element.
- the light receiving condition is a storage time, during a driving of the image pickup element.
- the storage time is controlled by, for example, controlling the image pickup element with an electronic shutter.
- a fingerprint recognition apparatus includes, as fingerprint image input means, the above-mentioned image pickup apparatus of the present invention.
- a fingerprint recognition apparatus includes an image sensor that irradiates light on a finger and receives the light transmitted through or reflected on the finger to convert the received light into an image signal, in which image signal shading due to unevenness of luminance and an illumination environment of a light source or a shape and a position of a finger can be corrected by controlling a light-receiving condition (sensor pixel structure, storage time control, etc.) in one frame scanning.
- a light-receiving condition sensor pixel structure, storage time control, etc.
- a longitudinal direction of a finger is aligned with the vertical scanning direction of the sensor to take in a fingerprint image.
- an amount of light is reduced in a part closer to the central part.
- a pixel structure for example, areas (shapes) of opening portions of sensor pixels are changed, and openings are made larger toward the vicinity of the central part in the vertical scanning direction where an amount of light is reduced and made smaller in the vicinity of a peripheral part in the vertical scanning direction where an amount of light is large, whereby shading in the plane is corrected.
- an electronic shutter pulse is controlled such that the storage time is long in the central part and short in the peripheral part, whereby shading in the sensor vertical scanning direction is corrected.
- FIG. 1 is a diagram schematically showing a solid-state image pickup element used in a first embodiment
- FIG. 2 is an equivalent circuit diagram of one pixel of a pixel portion of an image pickup element used in the first embodiment
- FIG. 3 is a diagram schematically showing a solid-state image pickup element to be a comparative example in the first embodiment and also schematically showing a solid-state image pickup element of the present invention according to a second embodiment;
- FIG. 4A is a perspective view of a fingerprint image input device of a fingerprint recognition apparatus of the present invention.
- FIG. 4B is a plan view of a structure of the fingerprint image input device of the fingerprint recognition apparatus of the present invention and shows a shading tendency of a sensor signal in the case in which the present invention is not applied;
- FIG. 5 is a block diagram showing a structure of an image recognition apparatus having a fingerprint image input device used in the first embodiment
- FIG. 6 is a diagram schematically showing a solid-state image pickup element used in the second embodiment
- FIG. 7A is a partial schematic diagram of a solid-state image pickup element for explaining an operation of an electronic shutter pulse used in the second embodiment
- FIGS. 7B and 7C are timing charts for explaining the operation of the electronic shutter pulse used in the second embodiment
- FIG. 8 is a timing chart for explaining the operation of the electronic shutter pulse used in the second embodiment.
- FIG. 9 is an operation flowchart for performing shading correction used in the second embodiment.
- FIG. 4A is a perspective view of a fingerprint image input device of a fingerprint recognition apparatus of the present invention.
- FIG. 4B is a plan view of a structure of the fingerprint image input device of the fingerprint recognition apparatus of the present invention and shows a shading tendency of a sensor signal in the case in which the present invention is not applied.
- one LED 202 for illumination is arranged in the vicinity of a center on each side in a vertical scanning direction of a solid-state image pickup element 201 , such as a CMOS sensor, of a fingerprint image input device 200 .
- a finger 100 is placed on the solid-state image pickup element 201 , and light is irradiated on the finger 100 from the LEDs 202 .
- the irradiated light is transmitted through or scattered in the inside of the finger to be incident on the solid-state image pickup element 201 side.
- the solid-state image pickup element 201 aligns a longitudinal direction of the finger with the vertical scanning direction of the sensor to take in a fingerprint image.
- a central part in the vertical scanning direction and a horizontal scanning direction of the solid-state image pickup element since light is transmitted through or scattered in the arrangement of the LEDs 202 and the inside of the finger to be incident on the solid-state image pickup element side, an amount of light is reduced in a part closer to the central part.
- a signal level of a sensor signal also falls in the central part. That is, in the solid-state image pickup element of FIG.
- shading correction is performed by changing opening areas of pixels of the solid-state image pickup element 202 in accordance with the shading.
- FIG. 5 is a block diagram showing a structure of an image recognition apparatus having a fingerprint image input device.
- image data of a fingerprint image inputted from a picture image input unit 301 serving as the fingerprint image input device of FIGS. 4 A and 4 B is temporarily stored in a memory 302 .
- a unit extracting characteristic point 303 reads the picture image data from the memory 302 and processes it to extract a characteristic point, and stores the characteristic point in a unit storing characteristic data 304 as characteristic point data.
- the characteristic point data is represented by a coordinate position on rectangular coordinate axes in which an origin and coordinate axes of coordinates are determined arbitrarily every time the data is represented while keeping a scale of the coordinates identical (keeping a certain image of a fingerprint). Then, a distance between adjacent two characteristic points is calculated, which is simultaneously stored as characteristic point data.
- This characteristic point data and characteristic point data of a fingerprint image stored in the unit storing registered data 306 in advance are collated in a collating unit 307 .
- Authenticity of the characteristic data is displayed in a unit displaying authenticity 308 in a form of, for example, a graph.
- Reference numeral 305 denotes a control unit for sending a control signal to each unit.
- shading correction is performed by setting opening areas of pixels of the solid-state image pickup element in accordance with the shading.
- FIG. 1 is a diagram schematically showing a solid-state image pickup element used in this embodiment.
- FIG. 2 is an equivalent circuit diagram of one pixel of a pixel portion of the solid-state image pickup element.
- FIG. 3 is a diagram schematically showing a solid-state image pickup element to be a comparative example.
- the pixel portion is constituted by pixels arranged in a matrix.
- a vertical shift register (VSR) 15 is operated to send a control signal to the pixel portion through horizontal signal lines 12 , a charge signal from the pixel portion is transferred to a storage unit 13 via vertical output lines 11 , and a pixel signal is sequentially outputted by a horizontal shift register (HSR) 14 .
- the storage unit 13 stores a noise signal and a sensor signal in storage capacitors CTN and CTs, respectively, which are provided for each vertical output line 11 .
- FIG. 2 is an equivalent circuit diagram of one pixel.
- Reference symbol PD denotes a photodiode serving as a photoelectric conversion portion for converting an optical signal into a charge
- TX a transfer transistor for transferring a charge signal from the photodiode PD
- RES a reset transistor for resetting a charge in a read path of the charge signal
- SEL a selection transistor for selecting a signal read line
- SF a transistor for reading out the charge signal to the storage unit 13 with a source follower.
- a noise signal is read from the vertical output lines 11 in a state in which the transfer transistor TX is turned OFF and the reset transistor RES and the selection transistor SEL are turned ON.
- a sensor signal is read from the vertical output lines 11 after the noise signal is read in a state in which the transfer transistor TX is turned ON, the reset transistor RES is turned OFF, and the selection transistor SEL is turned ON. Then, a sensor signal having a noise component removed therefrom can be obtained by performing processing for subtracting the noise signal from the sensor signal.
- Opening shapes of pixels of the pixel portion shown in FIG. 1 are those of the case in which shading in the sensor horizontal scanning direction shown in FIG. 4B is corrected.
- opening areas of pixels 10 - 5 in a central part of the pixel portion are set large and opening areas of pixels 10 - 4 , 10 - 3 , 10 - 2 , and 10 - 1 are sequentially set such that the opening areas become smaller toward a peripheral part of the pixel portion.
- a left half of the pixel portion is shown in the case in which the opening areas of the pixels are made smaller from the central part to a left end side of the pixel portion.
- the opening areas of the pixels are made smaller from the central part to a right end side of the pixel portion in the same manner.
- the shading in the sensor vertical scanning direction shown in FIG. 4B can also be corrected by, in accordance with the shading, setting opening areas of pixels such that the opening areas of pixels in the central part of the pixel portion are large and become smaller toward the peripheral part thereof.
- shading correction can also be performed by changing a shape of a microlens provided on each pixel (opening portion) to change a light condensing ratio, or changing an impurity concentration in a photoelectric conversion region of a pixel to change photoelectric conversion efficiency in a photodiode portion.
- an amount of light is adjusted by changing a shape of a microlens.
- a curvature of the microlens is changed so as to increase (such that a curvature radius decreases) from a central part toward an end side of the microlens.
- a light condensing ratio can be changed by changing the curvature of the microlens so as to decrease (such that the curvature radius increases) from the central part toward the end side in accordance with shading.
- shading correction is performed by changing an opening shape of a pixel portion.
- shading correction is performed by controlling drive timing within a scanning time for one frame.
- control of storage time of a pixel portion is performed by an electronic shutter (rolling shutter).
- FIG. 6 is a diagram schematically showing a solid-state image pickup element used in this embodiment.
- One pixel of the pixel portion has the same pixel structure as that shown in FIG. 2.
- opening shapes of pixels of a pixel area 20 are uniform for all pixels.
- reference numeral 20 denotes a pixel area constituted by arranging a plurality of pixels; 21 , a first vertical scanning circuit (Vs ⁇ SR) such as a shift register for sequentially selecting pixel rows to be read; 22 , a second vertical scanning circuit (Vc ⁇ SR) such as a shift register for sequentially resetting pixel rows in order to start storage; 23 , an entire pixel reset switch (VR) for collectively resetting all pixels of the pixel area 20 ; 24 , a memory for storing a noise signal and a sensor signal from the pixel area 20 ; 25 , a horizontal scanning circuit for scanning the memory 24 for each pixel column in order to output the noise signal and the sensor signal from the memory 24 ; and 26 , a differential amplifier for subtracting the noise signal from the sensor signal to output an output signal Vout.
- Vs ⁇ SR vertical scanning circuit
- Vc ⁇ SR vertical scanning circuit
- VR entire pixel reset switch
- Time from reset of a pixel to output of a signal can be controlled by providing the first vertical scanning circuit (Vs ⁇ SR) 21 such as a shift register for sequentially selecting pixel rows to be read and the second vertical scanning circuit (Vc ⁇ SR) such as a shift register for sequentially resetting pixel rows in order to start storage, and changing start time for a reset operation and a reading operation.
- Vs ⁇ SR first vertical scanning circuit
- Vc ⁇ SR second vertical scanning circuit
- Each pulse name corresponds to the equivalent circuit diagram of the part of the pixel portion shown in FIG. 2.
- An interval between reset and reading of a pixel becomes the storage time. Therefore, as shown in FIG. 4B, since light is transmitted through the inside of a finger to be incident on a sensor side in a central part in the vertical scanning direction of the pixel portion, in the case in which an amount of light is smaller toward the central part, scanning is performed with the first vertical scanning circuit 21 and the second vertical scanning circuit 22 such that the interval between reset and reading of a pixel is increased in the central part and decreased in a peripheral part of the pixel portion.
- FIGS. 7A to 7 C show operations of an electronic shutter.
- Each pulse name corresponds to the equivalent circuit of a part of the pixel portion shown in FIG. 2.
- Vc ⁇ SR vertical scanning circuit
- FIG. 7C pixels are reset after pulses ⁇ RES and ⁇ TX are applied and noise read (N read) and signal read (S read) are performed in the same manner as the usual operation.
- N read noise read
- S read signal read
- the selection pulse ⁇ SEL is in a low level, a noise signal and a sensor signal are not outputted to the vertical output line from the pixels.
- the same line is selected by the first vertical scanning circuit (Vs ⁇ SR) 21 which performs scanning with a delay from the scanning performed by the second vertical scanning circuit 22 (in this case, this line becomes a read line).
- Vs ⁇ SR first vertical scanning circuit
- this line becomes a read line.
- pulses ⁇ RES and ⁇ TX are applied and noise read (N read) and signal read (S read) are performed by the usual operation.
- N read noise read
- S read signal read
- an S-N signal subjected to processing for subtracting the noise signal from the sensor signal is outputted from a differential amplifier.
- time from pixel reset in the shutter line operation to transfer in the read line operation becomes the storage time.
- the storage time can be varied by controlling an interval from the time when each horizontal line is selected as a shutter line until the time when it is selected as a read line.
- the shift register starts the second vertical scanning circuit (Vc ⁇ SR) 22 for performing a reset operation according to a start pulse VcST, and resets pixel rows sequentially according to a pulse ⁇ Vc.
- the shift register starts the first vertical scanning circuit (Vs ⁇ SR) 21 for performing a read operation according to a start pulse VsST to perform a read operation for each pixel row according to a pulse ⁇ Vs.
- hatched parts of the pulse ⁇ Vs in FIG. 8 indicate intervals in which storage time for other rows is intentionally made longer compared with an interval (storage time of a first row) between Vc 1 and Vs 1 .
- the interval is gradually increased from a start side in the vertical scanning direction toward a central part of the pixel portion and, on the contrary, the interval is made smaller from the central part toward a completion side in the vertical scanning direction.
- Storage time of each horizontal line is an interval from reset to reading, such as between Vc 1 and Vs 1 or Vc 2 and Vs 2 , and can be set such that a reset-reading interval in a pixel row in a peripheral part of the pixel portion is short and a reset-reading interval in a pixel row in the central part thereof is long.
- FIG. 9 shows an operation flowchart for performing the shading correction.
- a finger is placed on an image pickup element and the image pickup element is turned on (step S 1 ) to take in a fingerprint image once (step S 2 ).
- the image thus taken in is projected in the vertical direction to obtain data, based upon which change in amplitude of a luminance signal is calculated. (step S 3 ) and it is judged whether shading has occurred (step S 4 ).
- step S 5 the operation proceeds to the next step, and extraction of a characteristic point is performed (step S 6 ). Then, the operation advances to an authenticity operation, and an authenticity of a fingerprint, that is, whether or not authenticity of a subject has been verified is displayed (step S 7 ).
- the interval between reset and reading of a pixel is controlled such that the storage time is long in the central part and is short in the peripheral part, whereby shading in the sensor vertical scanning direction can be corrected.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Vascular Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Input (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Studio Devices (AREA)
- Image Analysis (AREA)
Abstract
An image pickup apparatus is provided which performs correction of shading without performing correction of an image signal with a complicated algorithm or a large-scale correction circuit. The image pickup apparatus includes light irradiation unit that irradiates light on an object of image pickup and an image pickup element that receives reflected light or transmitted light from the object of image pickup to generate an electric signal corresponding to an amount of received light, in which a light receiving condition of a pixel of the image pickup element is changed such that shading of a signal from the image pickup element is corrected. The light receiving condition is changed by changing areas of opening portions of pixels 10-1 to 10-5 of the image pickup element, a shape of a lens provided on the opening parts, or an impurity concentration in a photoelectric conversion region of the image pickup element, or changing storage time, storing being performed through driving of the image pickup element.
Description
- 1. Field of the Invention
- The present invention relates to an image pickup apparatus and a fingerprint recognition apparatus, and in particular to an image pickup apparatus and a fingerprint recognition apparatus which have a light irradiation unit for irradiating light to a photographing object and an image pickup element for receiving reflected light or transmitted light from the photographing object and generating an electric signal corresponding to an amount of received light.
- 2. Related Background Art
- Conventionally, as a fingerprint collation apparatus, for example, Japanese Patent Application Laid-Open No. 5-81412 discloses one in which a microcomputer corrects a trapezoidal distortion of a fingerprint image for registration or collation according to a magnification representing a degree of distortion, which is determined from a trapezoidal distortion of a reference figure photographed image based upon a reference figure, and after setting this corrected fingerprint image as a registered fingerprint image or a collated fingerprint image, collates both the reference figure photographed image and the registered fingerprint image or the collated fingerprint image. In addition, Japanese Patent Application Laid-Open No. 10-105708 discloses an image collation apparatus which is applied to, for example, a fingerprint collation apparatus and, when converting a video signal into a binarization signal based upon a predetermined threshold value to judge conformity or non-conformity between first and second images, corrects a signal level of this threshold value to correct unevenness of an amount of light in an optical system.
- However, there is a problem in that the above-mentioned fingerprint collation apparatus needs a complicated arithmetic circuit and a large-scale memory in order to perform data correction, which leads to lengthening of processing time and increase in costs.
- An image pickup apparatus according to the present invention includes: light irradiation means that irradiates light on an object of image pickup; and an image pickup element that receives reflected light or transmitted light from the object of image pickup to generate an electric signal corresponding to an amount of received light, and is characterized in that a light receiving condition of a pixel of the image pickup element is changed such that shading of a signal from the image pickup element is corrected.
- In the image pickup apparatus, it is desirable that the light receiving condition is determined by a pixel structure of the image pickup element, in particular, an area of an opening portion, a shape of a lens provided on the opening portion, or an impurity concentration in a photoelectric conversion region of the image pickup element.
- Further, it is desirable that the light receiving condition is a storage time, during a driving of the image pickup element. The storage time is controlled by, for example, controlling the image pickup element with an electronic shutter.
- A fingerprint recognition apparatus according to the present invention includes, as fingerprint image input means, the above-mentioned image pickup apparatus of the present invention.
- A fingerprint recognition apparatus according to the present invention includes an image sensor that irradiates light on a finger and receives the light transmitted through or reflected on the finger to convert the received light into an image signal, in which image signal shading due to unevenness of luminance and an illumination environment of a light source or a shape and a position of a finger can be corrected by controlling a light-receiving condition (sensor pixel structure, storage time control, etc.) in one frame scanning.
- For example, in a fingerprint recognition apparatus in which one LED for illumination is arranged in the vicinity of a center on each side in a vertical scanning direction of an image sensor, a longitudinal direction of a finger is aligned with the vertical scanning direction of the sensor to take in a fingerprint image. At this point, since light is transmitted through the inside of the finger to be incident on the sensor side in a central part in the vertical scanning direction, an amount of light is reduced in a part closer to the central part.
- Therefore, in a first preferred embodiment of the present invention, a pixel structure, for example, areas (shapes) of opening portions of sensor pixels are changed, and openings are made larger toward the vicinity of the central part in the vertical scanning direction where an amount of light is reduced and made smaller in the vicinity of a peripheral part in the vertical scanning direction where an amount of light is large, whereby shading in the plane is corrected.
- In addition, in a second preferred embodiment of the present invention, an electronic shutter pulse is controlled such that the storage time is long in the central part and short in the peripheral part, whereby shading in the sensor vertical scanning direction is corrected.
- In the accompanying drawings:
- FIG. 1 is a diagram schematically showing a solid-state image pickup element used in a first embodiment;
- FIG. 2 is an equivalent circuit diagram of one pixel of a pixel portion of an image pickup element used in the first embodiment;
- FIG. 3 is a diagram schematically showing a solid-state image pickup element to be a comparative example in the first embodiment and also schematically showing a solid-state image pickup element of the present invention according to a second embodiment;
- FIG. 4A is a perspective view of a fingerprint image input device of a fingerprint recognition apparatus of the present invention;
- FIG. 4B is a plan view of a structure of the fingerprint image input device of the fingerprint recognition apparatus of the present invention and shows a shading tendency of a sensor signal in the case in which the present invention is not applied;
- FIG. 5 is a block diagram showing a structure of an image recognition apparatus having a fingerprint image input device used in the first embodiment;
- FIG. 6 is a diagram schematically showing a solid-state image pickup element used in the second embodiment;
- FIG. 7A is a partial schematic diagram of a solid-state image pickup element for explaining an operation of an electronic shutter pulse used in the second embodiment;
- FIGS. 7B and 7C are timing charts for explaining the operation of the electronic shutter pulse used in the second embodiment;
- FIG. 8 is a timing chart for explaining the operation of the electronic shutter pulse used in the second embodiment; and
- FIG. 9 is an operation flowchart for performing shading correction used in the second embodiment.
- Embodiments of the present invention will be hereinafter described in detail with reference to the accompanying drawings.
- (First Embodiment)
- FIG. 4A is a perspective view of a fingerprint image input device of a fingerprint recognition apparatus of the present invention. FIG. 4B is a plan view of a structure of the fingerprint image input device of the fingerprint recognition apparatus of the present invention and shows a shading tendency of a sensor signal in the case in which the present invention is not applied.
- As shown in FIG. 4B, one
LED 202 for illumination is arranged in the vicinity of a center on each side in a vertical scanning direction of a solid-stateimage pickup element 201, such as a CMOS sensor, of a fingerprintimage input device 200. Afinger 100 is placed on the solid-stateimage pickup element 201, and light is irradiated on thefinger 100 from theLEDs 202. The irradiated light is transmitted through or scattered in the inside of the finger to be incident on the solid-stateimage pickup element 201 side. - Then, the solid-state
image pickup element 201 aligns a longitudinal direction of the finger with the vertical scanning direction of the sensor to take in a fingerprint image. At this point, in a central part in the vertical scanning direction and a horizontal scanning direction of the solid-state image pickup element, since light is transmitted through or scattered in the arrangement of theLEDs 202 and the inside of the finger to be incident on the solid-state image pickup element side, an amount of light is reduced in a part closer to the central part. When an image pickup element having a uniform opening shape of pixels as shown in FIG. 3 is used, a signal level of a sensor signal also falls in the central part. That is, in the solid-state image pickup element of FIG. 3, since opening shapes ofpixels 10 are uniform in the plane and opening areas are uniform for all the pixels, and a distribution of an amount of light is thinner in a part closer to the central part in the case in which this image pickup element is used for the fingerprint image input device of FIGS. 4A and 4B, an output of the sensor signal falls and shading of a pixel signal as shown in FIG. 4B occurs. - Distortion of an image signal due to a shape and a position of a finger, unevenness of luminance and an illumination environment of a light source, or the like is called shading. In this embodiment, as described later, shading correction is performed by changing opening areas of pixels of the solid-state
image pickup element 202 in accordance with the shading. - FIG. 5 is a block diagram showing a structure of an image recognition apparatus having a fingerprint image input device.
- As shown in FIG. 5, image data of a fingerprint image inputted from a picture
image input unit 301 serving as the fingerprint image input device of FIGS. 4A and 4B is temporarily stored in amemory 302. A unit extractingcharacteristic point 303 reads the picture image data from thememory 302 and processes it to extract a characteristic point, and stores the characteristic point in a unit storingcharacteristic data 304 as characteristic point data. The characteristic point data is represented by a coordinate position on rectangular coordinate axes in which an origin and coordinate axes of coordinates are determined arbitrarily every time the data is represented while keeping a scale of the coordinates identical (keeping a certain image of a fingerprint). Then, a distance between adjacent two characteristic points is calculated, which is simultaneously stored as characteristic point data. - This characteristic point data and characteristic point data of a fingerprint image stored in the unit storing registered
data 306 in advance are collated in a collatingunit 307. Authenticity of the characteristic data is displayed in aunit displaying authenticity 308 in a form of, for example, a graph.Reference numeral 305 denotes a control unit for sending a control signal to each unit. - If a fingerprint image taken in by the fingerprint image input device has shading as shown in FIG. 4B, it becomes difficult to extract a characteristic point, which causes a deficiency such as decrease in an authenticity ratio or malfunction.
- In this embodiment, shading correction is performed by setting opening areas of pixels of the solid-state image pickup element in accordance with the shading.
- FIG. 1 is a diagram schematically showing a solid-state image pickup element used in this embodiment. FIG. 2 is an equivalent circuit diagram of one pixel of a pixel portion of the solid-state image pickup element. FIG. 3 is a diagram schematically showing a solid-state image pickup element to be a comparative example.
- In this embodiment, as shown in FIG. 1, the pixel portion is constituted by pixels arranged in a matrix. A vertical shift register (VSR)15 is operated to send a control signal to the pixel portion through
horizontal signal lines 12, a charge signal from the pixel portion is transferred to astorage unit 13 viavertical output lines 11, and a pixel signal is sequentially outputted by a horizontal shift register (HSR) 14. Thestorage unit 13 stores a noise signal and a sensor signal in storage capacitors CTN and CTs, respectively, which are provided for eachvertical output line 11. - In addition, FIG. 2 is an equivalent circuit diagram of one pixel. Reference symbol PD denotes a photodiode serving as a photoelectric conversion portion for converting an optical signal into a charge; TX, a transfer transistor for transferring a charge signal from the photodiode PD; RES, a reset transistor for resetting a charge in a read path of the charge signal; SEL, a selection transistor for selecting a signal read line; and SF, a transistor for reading out the charge signal to the
storage unit 13 with a source follower. A noise signal is read from thevertical output lines 11 in a state in which the transfer transistor TX is turned OFF and the reset transistor RES and the selection transistor SEL are turned ON. A sensor signal is read from thevertical output lines 11 after the noise signal is read in a state in which the transfer transistor TX is turned ON, the reset transistor RES is turned OFF, and the selection transistor SEL is turned ON. Then, a sensor signal having a noise component removed therefrom can be obtained by performing processing for subtracting the noise signal from the sensor signal. - Opening shapes of pixels of the pixel portion shown in FIG. 1 are those of the case in which shading in the sensor horizontal scanning direction shown in FIG. 4B is corrected. In accordance with the shading, opening areas of pixels10-5 in a central part of the pixel portion are set large and opening areas of pixels 10-4, 10-3, 10-2, and 10-1 are sequentially set such that the opening areas become smaller toward a peripheral part of the pixel portion. In FIG. 1, a left half of the pixel portion is shown in the case in which the opening areas of the pixels are made smaller from the central part to a left end side of the pixel portion. In a right half of the pixel portion, the opening areas of the pixels are made smaller from the central part to a right end side of the pixel portion in the same manner. Note that the shading in the sensor vertical scanning direction shown in FIG. 4B can also be corrected by, in accordance with the shading, setting opening areas of pixels such that the opening areas of pixels in the central part of the pixel portion are large and become smaller toward the peripheral part thereof.
- In this way, nonuniformity of distribution of an amount of light due to a shape and a position of a finger, unevenness of luminance and an illumination environment of a light source, or the like can be adjusted by manipulating opening areas, and shading correction can be performed without involving complicated image pickup conditions, change of drive timing, and a correction algorithm.
- Although the opening areas of pixels of the pixel portion are changed in this embodiment, for example, shading correction can also be performed by changing a shape of a microlens provided on each pixel (opening portion) to change a light condensing ratio, or changing an impurity concentration in a photoelectric conversion region of a pixel to change photoelectric conversion efficiency in a photodiode portion.
- It is mentioned, for example, in FIG. 4 of Japanese Patent Application Laid-Open No. 6-140612 that an amount of light is adjusted by changing a shape of a microlens. In the figure, a curvature of the microlens is changed so as to increase (such that a curvature radius decreases) from a central part toward an end side of the microlens. In this embodiment, to the contrary, a light condensing ratio can be changed by changing the curvature of the microlens so as to decrease (such that the curvature radius increases) from the central part toward the end side in accordance with shading.
- (Second Embodiment)
- In the first embodiment, shading correction is performed by changing an opening shape of a pixel portion. In this embodiment, shading correction is performed by controlling drive timing within a scanning time for one frame.
- Here, control of storage time of a pixel portion is performed by an electronic shutter (rolling shutter).
- FIG. 6 is a diagram schematically showing a solid-state image pickup element used in this embodiment. One pixel of the pixel portion has the same pixel structure as that shown in FIG. 2. In addition, opening shapes of pixels of a
pixel area 20 are uniform for all pixels. - In FIG. 6,
reference numeral 20 denotes a pixel area constituted by arranging a plurality of pixels; 21, a first vertical scanning circuit (Vs·SR) such as a shift register for sequentially selecting pixel rows to be read; 22, a second vertical scanning circuit (Vc·SR) such as a shift register for sequentially resetting pixel rows in order to start storage; 23, an entire pixel reset switch (VR) for collectively resetting all pixels of thepixel area 20; 24, a memory for storing a noise signal and a sensor signal from thepixel area 20; 25, a horizontal scanning circuit for scanning thememory 24 for each pixel column in order to output the noise signal and the sensor signal from thememory 24; and 26, a differential amplifier for subtracting the noise signal from the sensor signal to output an output signal Vout. - Time from reset of a pixel to output of a signal, that is, storage time, can be controlled by providing the first vertical scanning circuit (Vs·SR)21 such as a shift register for sequentially selecting pixel rows to be read and the second vertical scanning circuit (Vc·SR) such as a shift register for sequentially resetting pixel rows in order to start storage, and changing start time for a reset operation and a reading operation. This is called a rolling shutter.
- Each pulse name corresponds to the equivalent circuit diagram of the part of the pixel portion shown in FIG. 2. An interval between reset and reading of a pixel becomes the storage time. Therefore, as shown in FIG. 4B, since light is transmitted through the inside of a finger to be incident on a sensor side in a central part in the vertical scanning direction of the pixel portion, in the case in which an amount of light is smaller toward the central part, scanning is performed with the first
vertical scanning circuit 21 and the secondvertical scanning circuit 22 such that the interval between reset and reading of a pixel is increased in the central part and decreased in a peripheral part of the pixel portion. - FIGS. 7A to7C show operations of an electronic shutter. Each pulse name corresponds to the equivalent circuit of a part of the pixel portion shown in FIG. 2. First, in a pixel portion of a line selected by the second vertical scanning circuit (Vc·SR) 22 shown in FIG. 7A (in this case, this line becomes a shutter line), as indicated by an operation pulse shown in FIG. 7C, pixels are reset after pulses φRES and φTX are applied and noise read (N read) and signal read (S read) are performed in the same manner as the usual operation. However, since the selection pulse φSEL is in a low level, a noise signal and a sensor signal are not outputted to the vertical output line from the pixels.
- Next, the same line is selected by the first vertical scanning circuit (Vs·SR)21 which performs scanning with a delay from the scanning performed by the second vertical scanning circuit 22 (in this case, this line becomes a read line). In a pixel portion of the selected line, as indicated by an operation pulse shown in FIG. 7B, pulses φRES and φTX are applied and noise read (N read) and signal read (S read) are performed by the usual operation. Here, since the selection pulse φSEL is in a high level, a noise signal N and a sensor signal S (including a noise component) are outputted to the vertical output line from the pixels, respectively. Finally, an S-N signal subjected to processing for subtracting the noise signal from the sensor signal is outputted from a differential amplifier.
- Therefore, time from pixel reset in the shutter line operation to transfer in the read line operation becomes the storage time. Thus, the storage time can be varied by controlling an interval from the time when each horizontal line is selected as a shutter line until the time when it is selected as a read line.
- Next, operations of the shift register to be the vertical scanning circuit will be described using FIG. 8.
- The shift register starts the second vertical scanning circuit (Vc·SR)22 for performing a reset operation according to a start pulse VcST, and resets pixel rows sequentially according to a pulse φVc. Next, with a delay from the start of the second vertical scanning circuit (Vc·SR) 22, the shift register starts the first vertical scanning circuit (Vs·SR) 21 for performing a read operation according to a start pulse VsST to perform a read operation for each pixel row according to a pulse φVs. In this case, hatched parts of the pulse φVs in FIG. 8 indicate intervals in which storage time for other rows is intentionally made longer compared with an interval (storage time of a first row) between Vc1 and Vs1.
- As shown in FIG. 8, the interval is gradually increased from a start side in the vertical scanning direction toward a central part of the pixel portion and, on the contrary, the interval is made smaller from the central part toward a completion side in the vertical scanning direction.
- Storage time of each horizontal line is an interval from reset to reading, such as between Vc1 and Vs1 or Vc2 and Vs2, and can be set such that a reset-reading interval in a pixel row in a peripheral part of the pixel portion is short and a reset-reading interval in a pixel row in the central part thereof is long.
- FIG. 9 shows an operation flowchart for performing the shading correction. First, it is detected that a finger is placed on an image pickup element and the image pickup element is turned on (step S1) to take in a fingerprint image once (step S2). The image thus taken in is projected in the vertical direction to obtain data, based upon which change in amplitude of a luminance signal is calculated. (step S3) and it is judged whether shading has occurred (step S4). Then, if it is judged that shading has occurred, vertical scanning is controlled such that an interval between reset and reading of a pixel is large in a part where a signal amplitude is small and the interval between reset and reading of a pixel is small in a part where the signal amplitude is large (step S5), and the fingerprint image is installed again (step S2). Upon taking in of an image of a level at which it is possible to determine that there is no shading, the operation proceeds to the next step, and extraction of a characteristic point is performed (step S6). Then, the operation advances to an authenticity operation, and an authenticity of a fingerprint, that is, whether or not authenticity of a subject has been verified is displayed (step S7).
- In this way, the interval between reset and reading of a pixel is controlled such that the storage time is long in the central part and is short in the peripheral part, whereby shading in the sensor vertical scanning direction can be corrected.
- In addition, it is also possible to combine the first embodiment and the second embodiment to correct shading in both the sensor horizontal scanning direction and the sensor vertical scanning direction, respectively, thereby obtaining a more optimized sensor signal.
- As described above in detail, according to the present invention, simplification of processing and reduction in costs can be realized without the need to perform correction of an image signal with a complicated algorithm or a large-scale correction circuit.
Claims (7)
1. An image-pickup apparatus comprising:
light irradiation means that irradiates light on an object of image pickup; and
an image pickup element that receives reflected light or transmitted light from the object of image pickup to generate an electric signal corresponding to an amount of received light,
wherein a light receiving condition of a pixel of the image pickup element is changed such that shading of a signal from the image pickup element is corrected.
2. An image pickup apparatus according to claim 1 ,
wherein the light receiving condition is determined by a pixel structure of the image pickup element.
3. An image pickup apparatus according to claim 2 ,
wherein the condition determined by the pixel structure is determined by an area of an opening portion or a shape of a lens provided on the opening portion.
4. An image pickup apparatus according to claim 1,
wherein the light receiving condition is a storage time during a driving of the image pickup element.
5. An image pickup apparatus according to claim 4 ,
wherein the storage time is controlled by controlling the image pickup element with an electronic shutter.
6. An image pickup apparatus according to claim 4 ,
wherein the storage time is controlled for each horizontal line of the image pickup element.
7. A fingerprint recognition apparatus comprising an image pickup apparatus according to any one of claims 1 to 6 as fingerprint image input means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/680,948 US7471811B2 (en) | 2002-06-11 | 2007-03-01 | Image pickup apparatus and fingerprint recognition apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170125A JP4208491B2 (en) | 2002-06-11 | 2002-06-11 | Imaging device and fingerprint recognition device |
JP170125/2002 | 2002-06-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/680,948 Division US7471811B2 (en) | 2002-06-11 | 2007-03-01 | Image pickup apparatus and fingerprint recognition apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030228037A1 true US20030228037A1 (en) | 2003-12-11 |
Family
ID=29706858
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/442,234 Abandoned US20030228037A1 (en) | 2002-06-11 | 2003-05-21 | Image pickup apparatus and fingerprint recognition apparatus |
US11/680,948 Expired - Fee Related US7471811B2 (en) | 2002-06-11 | 2007-03-01 | Image pickup apparatus and fingerprint recognition apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/680,948 Expired - Fee Related US7471811B2 (en) | 2002-06-11 | 2007-03-01 | Image pickup apparatus and fingerprint recognition apparatus |
Country Status (2)
Country | Link |
---|---|
US (2) | US20030228037A1 (en) |
JP (1) | JP4208491B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050232477A1 (en) * | 2004-03-08 | 2005-10-20 | Shinji Sugihara | Defect inspection apparatus and defect inspection method |
US20070285541A1 (en) * | 2006-06-01 | 2007-12-13 | Nec Electronics Corporation | Solid-state imaging apparatus, imaging method, and imaging system |
US20090195645A1 (en) * | 2006-05-25 | 2009-08-06 | I2Ic Corporation | System of displaying and capturing images using non-planar mirrors |
CN104951769A (en) * | 2015-07-02 | 2015-09-30 | 京东方科技集团股份有限公司 | Living body recognition device, living body recognition method and living body authentication system |
US20160217310A1 (en) * | 2015-01-23 | 2016-07-28 | Samsung Electronics Co., Ltd. | System and method for partial fingerprint enrollment and matching using small size fingerprint sensors |
CN108073425A (en) * | 2016-11-15 | 2018-05-25 | 南昌欧菲生物识别技术有限公司 | A kind of application program launching method and mobile terminal |
CN109389023A (en) * | 2017-08-11 | 2019-02-26 | 财团法人工业技术研究院 | Biometric identification device |
US10274612B2 (en) * | 2015-11-13 | 2019-04-30 | Canon Kabushiki Kaisha | Radiation imaging apparatus and photon counting method |
CN110097031A (en) * | 2019-05-14 | 2019-08-06 | 成都费恩格尔微电子技术有限公司 | The bearing calibration of optical fingerprint image and device under a kind of screen |
US20210351255A1 (en) * | 2019-07-03 | 2021-11-11 | Kunshan Go-Visionox Opto-Electronics Co., Ltd. | Array substrate, display panel and display apparatus |
US12150343B2 (en) * | 2019-07-03 | 2024-11-19 | Kunshan Go-Visionox Opto-Electronics Co., Ltd. | Array substrate, display panel and display apparatus |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4532968B2 (en) * | 2004-04-13 | 2010-08-25 | キヤノン株式会社 | Focus detection device |
JP4501627B2 (en) * | 2004-10-19 | 2010-07-14 | カシオ計算機株式会社 | Image collation device, image collation method, and image collation program |
JP4596988B2 (en) * | 2005-06-07 | 2010-12-15 | オリンパス株式会社 | Imaging device |
US7920200B2 (en) | 2005-06-07 | 2011-04-05 | Olympus Corporation | Image pickup device with two cylindrical lenses |
JP5352960B2 (en) * | 2006-04-27 | 2013-11-27 | セイコーエプソン株式会社 | Biometric information acquisition apparatus, biometric information acquisition method, and biometric authentication apparatus |
US7595926B2 (en) * | 2007-07-05 | 2009-09-29 | Qualcomm Mems Technologies, Inc. | Integrated IMODS and solar cells on a substrate |
JP4640415B2 (en) | 2008-01-18 | 2011-03-02 | ソニー株式会社 | Biometric authentication device |
JP4636140B2 (en) | 2008-08-25 | 2011-02-23 | ソニー株式会社 | Vein imaging device, vein imaging method, and vein authentication device |
CN107885002A (en) * | 2016-09-30 | 2018-04-06 | 北京小米移动软件有限公司 | Display panel, display device, the preparation method of array base palte and electronic equipment |
KR102502761B1 (en) * | 2017-07-05 | 2023-02-22 | 삼성디스플레이 주식회사 | Sensor pixel, fingerprint sensor, and method for driving the same |
CN108108717B (en) | 2018-01-03 | 2020-06-05 | 京东方科技集团股份有限公司 | Fingerprint identification panel, manufacturing method and driving method thereof and fingerprint identification device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4783836A (en) * | 1984-08-31 | 1988-11-08 | Fuji Xerox Co., Ltd. | Information reading apparatus |
US5233442A (en) * | 1989-06-07 | 1993-08-03 | Canon Kabushiki Kaisha | Photosensor and image reading device with improved correction means for signal correction and image reading method |
US5272548A (en) * | 1989-06-07 | 1993-12-21 | Canon Kabushiki Kaisha | Photosensor and image reading device with improved correction means for signal correction and image reading method |
US5317406A (en) * | 1990-11-07 | 1994-05-31 | Canon Kabushiki Kaisha | Image reading device and image information processing apparatus utilizing the same |
US5335094A (en) * | 1990-02-06 | 1994-08-02 | Canon Kabushiki Kaisha | Photoelectric converting device having matrix wiring and read-out of parallel signals as a serial signal |
US5587832A (en) * | 1993-10-20 | 1996-12-24 | Biophysica Technologies, Inc. | Spatially light modulated confocal microscope and method |
US5914485A (en) * | 1995-09-05 | 1999-06-22 | Canon Kabushiki Kaisha | Photoelectric converter having respective circuits provided on opposite sides thereof capable of scanning in like directions |
US6034406A (en) * | 1996-10-24 | 2000-03-07 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus having a shielding member between an arbitrary conversion element and a wavelength converter |
US6476867B1 (en) * | 1995-09-28 | 2002-11-05 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus, driving method and x-ray image pickup apparatus using the same |
US6671392B1 (en) * | 1998-12-25 | 2003-12-30 | Nippon Telegraph And Telephone Corporation | Fingerprint recognition apparatus and data processing method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4246568A (en) * | 1978-12-08 | 1981-01-20 | Peterson Vernon L | Apparatus and method of personal identification by fingerprint comparison |
JPS60103492A (en) * | 1983-11-09 | 1985-06-07 | Sumitomo Electric Ind Ltd | Character recognizing system |
JPH039660A (en) | 1989-06-06 | 1991-01-17 | Mitsubishi Electric Corp | Image reader |
JP2929802B2 (en) | 1991-09-20 | 1999-08-03 | 株式会社デンソー | Fingerprint matching system |
JPH06140612A (en) | 1992-10-28 | 1994-05-20 | Mitsubishi Electric Corp | Image pick-up element and image pick-up device |
US5521640A (en) * | 1994-10-31 | 1996-05-28 | At&T Global Information Solutions Company | Color image array scanner with high resolution monochrome mode |
US5881184A (en) * | 1996-05-22 | 1999-03-09 | Eastman Kodak Company | Active pixel sensor with single pixel reset |
JP3266807B2 (en) * | 1996-08-27 | 2002-03-18 | 旭光学工業株式会社 | Image reading device |
JPH10105708A (en) | 1996-09-25 | 1998-04-24 | Sony Corp | Image collation device |
JP4002655B2 (en) * | 1998-01-06 | 2007-11-07 | 株式会社日立製作所 | Pattern inspection method and apparatus |
JP4058789B2 (en) | 1998-02-24 | 2008-03-12 | ソニー株式会社 | Solid-state imaging device, driving method thereof, and camera |
US7016072B1 (en) * | 1998-07-22 | 2006-03-21 | Fuji Photo Film Co., Ltd. | Image reading method and image reading apparatus |
JP2003233805A (en) * | 2001-12-04 | 2003-08-22 | Canon Inc | Image input device |
JP4086523B2 (en) * | 2001-12-04 | 2008-05-14 | キヤノン株式会社 | Image reading apparatus, subject collation system, subject recognition system, and image reading method |
-
2002
- 2002-06-11 JP JP2002170125A patent/JP4208491B2/en not_active Expired - Fee Related
-
2003
- 2003-05-21 US US10/442,234 patent/US20030228037A1/en not_active Abandoned
-
2007
- 2007-03-01 US US11/680,948 patent/US7471811B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4783836A (en) * | 1984-08-31 | 1988-11-08 | Fuji Xerox Co., Ltd. | Information reading apparatus |
US5233442A (en) * | 1989-06-07 | 1993-08-03 | Canon Kabushiki Kaisha | Photosensor and image reading device with improved correction means for signal correction and image reading method |
US5272548A (en) * | 1989-06-07 | 1993-12-21 | Canon Kabushiki Kaisha | Photosensor and image reading device with improved correction means for signal correction and image reading method |
US5335094A (en) * | 1990-02-06 | 1994-08-02 | Canon Kabushiki Kaisha | Photoelectric converting device having matrix wiring and read-out of parallel signals as a serial signal |
US5317406A (en) * | 1990-11-07 | 1994-05-31 | Canon Kabushiki Kaisha | Image reading device and image information processing apparatus utilizing the same |
US5587832A (en) * | 1993-10-20 | 1996-12-24 | Biophysica Technologies, Inc. | Spatially light modulated confocal microscope and method |
US5914485A (en) * | 1995-09-05 | 1999-06-22 | Canon Kabushiki Kaisha | Photoelectric converter having respective circuits provided on opposite sides thereof capable of scanning in like directions |
US6297493B1 (en) * | 1995-09-05 | 2001-10-02 | Canon Kabushiki Kaisha | Photoelectric converter with a plurality of photoelectric conversion layers deposited in a predetermined orientation relative to one another |
US6476867B1 (en) * | 1995-09-28 | 2002-11-05 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus, driving method and x-ray image pickup apparatus using the same |
US6034406A (en) * | 1996-10-24 | 2000-03-07 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus having a shielding member between an arbitrary conversion element and a wavelength converter |
US6671392B1 (en) * | 1998-12-25 | 2003-12-30 | Nippon Telegraph And Telephone Corporation | Fingerprint recognition apparatus and data processing method |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7359546B2 (en) * | 2004-03-08 | 2008-04-15 | Kabushiki Kaisha Toshiba | Defect inspection apparatus and defect inspection method |
US20050232477A1 (en) * | 2004-03-08 | 2005-10-20 | Shinji Sugihara | Defect inspection apparatus and defect inspection method |
US20090195645A1 (en) * | 2006-05-25 | 2009-08-06 | I2Ic Corporation | System of displaying and capturing images using non-planar mirrors |
US20070285541A1 (en) * | 2006-06-01 | 2007-12-13 | Nec Electronics Corporation | Solid-state imaging apparatus, imaging method, and imaging system |
US8339486B2 (en) * | 2006-06-01 | 2012-12-25 | Renesas Electronics Corporation | Solid-state imaging apparatus, imaging method, and imaging system |
US8780237B2 (en) | 2006-06-01 | 2014-07-15 | Renesas Electronics Corporation | Solid-state imaging apparatus, imaging method, and imaging system |
US20160217310A1 (en) * | 2015-01-23 | 2016-07-28 | Samsung Electronics Co., Ltd. | System and method for partial fingerprint enrollment and matching using small size fingerprint sensors |
US9996728B2 (en) * | 2015-01-23 | 2018-06-12 | Samsung Electronics Co., Ltd. | System and method for partial fingerprint enrollment and matching using small size fingerprint sensors |
US10043087B2 (en) | 2015-07-02 | 2018-08-07 | Boe Technology Group Co., Ltd. | Living body identification device, living body identification method and living body authentication system |
CN104951769A (en) * | 2015-07-02 | 2015-09-30 | 京东方科技集团股份有限公司 | Living body recognition device, living body recognition method and living body authentication system |
US10274612B2 (en) * | 2015-11-13 | 2019-04-30 | Canon Kabushiki Kaisha | Radiation imaging apparatus and photon counting method |
CN108073425A (en) * | 2016-11-15 | 2018-05-25 | 南昌欧菲生物识别技术有限公司 | A kind of application program launching method and mobile terminal |
CN109389023A (en) * | 2017-08-11 | 2019-02-26 | 财团法人工业技术研究院 | Biometric identification device |
US10830926B2 (en) * | 2017-08-11 | 2020-11-10 | Industrial Technology Research Institute | Biometric device |
CN110097031A (en) * | 2019-05-14 | 2019-08-06 | 成都费恩格尔微电子技术有限公司 | The bearing calibration of optical fingerprint image and device under a kind of screen |
US20210351255A1 (en) * | 2019-07-03 | 2021-11-11 | Kunshan Go-Visionox Opto-Electronics Co., Ltd. | Array substrate, display panel and display apparatus |
US12150343B2 (en) * | 2019-07-03 | 2024-11-19 | Kunshan Go-Visionox Opto-Electronics Co., Ltd. | Array substrate, display panel and display apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20070147668A1 (en) | 2007-06-28 |
JP4208491B2 (en) | 2009-01-14 |
US7471811B2 (en) | 2008-12-30 |
JP2004013804A (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7471811B2 (en) | Image pickup apparatus and fingerprint recognition apparatus | |
US7884868B2 (en) | Image capturing element, image capturing apparatus, image capturing method, image capturing system, and image processing apparatus | |
KR100629280B1 (en) | Image pickup apparatus, fingerprint certification apparatus and image pickup method | |
US7567691B2 (en) | Image input apparatus, subject identification system, subject verification system and image input method | |
US20030086008A1 (en) | Image pick-up apparatus | |
US12107098B2 (en) | Image sensor, focus adjustment device, and imaging device | |
JP4434797B2 (en) | Imaging device and imaging apparatus | |
US6707955B1 (en) | Image sensing device, image processing apparatus and method, and memory medium | |
US8830384B2 (en) | Imaging device and imaging method | |
JP4125264B2 (en) | Image acquisition apparatus and image acquisition method | |
US7990439B2 (en) | Solid-state imaging apparatus having photoelectric conversion device | |
US20190141256A1 (en) | Solid-state image pickup element and electronic apparatus | |
US20080055437A1 (en) | Solid-state imaging device | |
JP2015148676A (en) | Imaging apparatus and method of controlling imaging apparatus | |
JP7492345B2 (en) | Image pickup device and control method thereof, and image pickup apparatus and control method thereof | |
US20070153116A1 (en) | Photographic device | |
US20050264663A1 (en) | Image pickup apparatus and image pickup method | |
JPH10336525A (en) | Device and method for solid-state image pickup device | |
JP2008172330A (en) | Solid-state imaging apparatus and imaging apparatus | |
JP3990059B2 (en) | Apparatus and method for correcting defective pixel of imaging device | |
JP2009141578A (en) | Driving method and signal processing method of solid-state imaging element, and imaging device | |
JP6929066B2 (en) | Imaging device and its control method, program, storage medium | |
JP2002051261A (en) | Device and method for reading image | |
JP2004206395A (en) | Image reader | |
JP2007104270A (en) | Signal processing unit, and digital camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CANON KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENDO, TOSHIAKI;REEL/FRAME:014099/0300 Effective date: 20030514 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |