[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20030221413A1 - Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust - Google Patents

Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust Download PDF

Info

Publication number
US20030221413A1
US20030221413A1 US10/159,369 US15936902A US2003221413A1 US 20030221413 A1 US20030221413 A1 US 20030221413A1 US 15936902 A US15936902 A US 15936902A US 2003221413 A1 US2003221413 A1 US 2003221413A1
Authority
US
United States
Prior art keywords
nox
exhaust
air
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/159,369
Other versions
US6895746B2 (en
Inventor
John Buglass
Francis Kocum
Ke Liu
Ronald Schoonebeek
Antonio Vincitore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/159,369 priority Critical patent/US6895746B2/en
Assigned to UTC FUEL CELLS, LLC reassignment UTC FUEL CELLS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHOONEBEEK, RONALD J., KOCUM, FRANCIS A., BUGLASS, JOHN G., LIU, KE, VINCITORE, ANTONIO M.
Priority to PCT/US2003/015162 priority patent/WO2003102390A1/en
Priority to DE60317360T priority patent/DE60317360T2/en
Priority to EP03728901A priority patent/EP1552119B1/en
Priority to JP2004509251A priority patent/JP2006511747A/en
Priority to AT03728901T priority patent/ATE377698T1/en
Priority to AU2003234560A priority patent/AU2003234560A1/en
Priority to EP07116633A priority patent/EP1860293A3/en
Publication of US20030221413A1 publication Critical patent/US20030221413A1/en
Publication of US6895746B2 publication Critical patent/US6895746B2/en
Application granted granted Critical
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHELL HYDROGEN LLC
Assigned to SHELL HYDROGEN LLC reassignment SHELL HYDROGEN LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HYDROGENSOURCE LLC
Assigned to SHELL HYDROGEN LLC reassignment SHELL HYDROGEN LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UTC FUEL CELLS, LLC
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHELL HYDROGEN LLC
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/22Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a condensation chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/12By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of absorption, adsorption or desorption of exhaust gas constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/22Water or humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to reducing oxides of nitrogen (NOx) in the exhaust of hydrocarbon-fueled, internal combustion engines and more particularly to using hydrogen generators, such as catalytic partial oxidizers (CPOx), non-catalytic (homogeneous) partial oxidizers (POx), or auto thermal reformers (ATR), to generate from engine fuel and exhaust, streams including hydrogen and carbon monoxide for use in NOx catalytic converters or NOx-reducing adsorption filters.
  • hydrogen generators such as catalytic partial oxidizers (CPOx), non-catalytic (homogeneous) partial oxidizers (POx), or auto thermal reformers (ATR)
  • Objects of the present invention include: improvement in the reduction of NOx to nitrogen and other harmless gases; achieving NOx reduction that meets EPA 2007 NOx emission requirements; and providing improved generation of hydrogen in and for an internal combustion engine exhaust emission reduction system.
  • moisture and possibly oxygen, derived from the exhaust of a hydrocarbon-fueled, internal combustion engine are processed along with fuel from the engine's fuel tank in a fuel processor, which may be a catalytic partial oxidation reformer, a non-catalytic (homogeneous) partial oxidation reformer, or an auto thermal reformer, to generate a stream of hydrogen and carbon monoxide which is used, either directly or following the reaction of NOx with other compounds, to eliminate NOx in the exhaust.
  • a fuel processor which may be a catalytic partial oxidation reformer, a non-catalytic (homogeneous) partial oxidation reformer, or an auto thermal reformer, to generate a stream of hydrogen and carbon monoxide which is used, either directly or following the reaction of NOx with other compounds, to eliminate NOx in the exhaust.
  • the hydrogen-rich stream may either (a) be mixed with the main exhaust stream for processing in a NOx-reducing catalytic converter, or (b) used to regenerate NOx traps following the formation of nitrogen-containing compounds by reaction of the exhaust with adsorbent in the NOx traps.
  • air is also fed, such as from ambient, to the fuel processor; steam is extracted from engine exhaust and from NOx trap effluent; air is humidified; and fuel is vaporized.
  • FIG. 1 is a simplified, stylized schematic illustration of an engine incorporating a first embodiment of the present invention.
  • FIG. 2 is a simplified, stylized schematic illustration of an engine incorporating a second embodiment of the present invention.
  • FIG. 3 is a simplified, stylized schematic illustration of an engine incorporating a third embodiment of the present invention.
  • FIG. 4 is a simplified, stylized schematic illustration of an engine incorporating a fourth embodiment of the present invention.
  • FIG. 5 is a simplified, stylized schematic illustration of an engine incorporating a fifth embodiment of the present invention.
  • FIG. 6 is a simplified, stylized schematic illustration of an engine incorporating a sixth embodiment of the present invention.
  • FIG. 7 is a simplified, stylized schematic illustration of an engine incorporating a seventh embodiment of the present invention.
  • an engine 9 has a conventional turbo compressor 10 feeding an air inlet line 11 , a hydrocarbon fuel tank 12 , and a fuel pump 13 .
  • the fuel may be diesel fuel, gasoline, natural gas, liquid petroleum gas, or propane.
  • the fuel is fed by a first line 17 to the engine for combustion with the air, and is fed by a second line 18 to a mixer 19 in a pipe 20 that feeds a small amount of exhaust from an exhaust pipe 21 to a hydrogen generator 22 .
  • the hydrogen generator 22 may be a catalytic partial oxidizer (CPOx), a non-catalytic (homogeneous) partial oxidizer, or an auto thermal reformer (ATR).
  • CPOx catalytic partial oxidizer
  • ATR auto thermal reformer
  • the hydrogen generator if it is a CPOx, foam monolith or other form of catalyst, which may comprise a group VIII metal, preferably nickel, cobalt, rhodium, iridium or platinum, convert fuel along with hydrocarbons, water and oxygen into a mix of hydrogen, CO and CO 2 .
  • This is provided through a conduit 26 to an NOx reducing catalytic converter 28 , the output of which is exhausted by a pipe 29 , typically to ambient.
  • the converter 28 is of the type commonly used in diesel engines. In normal operation, it is expected that the water content will vary between 2% and 9% and the oxygen content will vary between 5% and 17%. Using diesel fuel, it may require up to 7% of consumed fuel to clean up the exhaust, which is acceptable.
  • the invention will permit reducing the NOx to 0.20 grams/bhp/hr and non-methane hydrocarbons to 0.14 grams/bhp/hr.
  • air may be fed by a conduit 30 from the air inlet line 11 for mixture with the fuel in pipe 18 .
  • FIGS. 1 and 2 are rudimentary embodiments of the present invention.
  • the NOx is treated continuously in a known converter.
  • a more effective elimination of NOx comprises utilizing adsorption traps in alternating collection/regeneration cycles.
  • a pair of NOx adsorbent traps 35 , 36 are alternatively connected by corresponding valves 40 - 43 to either the conduit 26 with hydrogen-containing gas from the generator 22 , or to a pipe 48 containing engine exhaust.
  • the valves are controlled so that engine exhaust is allowed to flow in one of the traps 35 , 36 for a period of time which is less than the time necessary to saturate it with NOx, and then the valves are switched so that exhaust flows in the other NOx trap, while the first NOx trap is regenerated by the hydrogen and carbon monoxide from the generator 22 .
  • the NOx traps may, for example, contain barium carbonate (BaCO 3 ) as the adsorbent: when the diesel exhaust is adsorbed by the barium carbonate, a reaction generates barium nitrate.
  • BaCO 3 barium carbonate
  • FIG. 3 also illustrates that preferred embodiments of the invention may use a heat exchanger 50 to cause heat of the engine exhaust to vaporize the fuel in the line 18 before applying it to the reformer, which is particularly useful in the case of a CPOx oxidizer.
  • a CPOx oxidizer is preferred because it is very small and can run with low steam carbon ratios and high turndown ratios without soot or carbon formation.
  • diesel engine exhaust contains particulates (soot) and oxides of sulfur (SOx), which may deactivate the CPOx catalyst in a relatively short period of time. Therefore, a non-catalytic (homogeneous) partial oxidizer may be selected as the hydrogen generator 22 .
  • the percentage of hydrogen produced is only slightly less than that produced by a CPOx. It is easily started by employing a simple spark plug, as is known.
  • POX is cheaper than CPOx; control of the O 2 /C ratio is known (similar to engine O 2 /fuel ratio), and simpler; SOx and soot do not affect it; and there is no steam/C ratio problem.
  • air for oxygen
  • steam for steam
  • a water recovery unit 52 receives air from the air inlet 11 and a portion of the engine exhaust in a line 53 .
  • the WRU contains special materials that have a high degree of moisture diffusivity, one example of which is that sold under the tradename NAFION.
  • the WRU extracts moisture (steam) from the exhaust stream and imparts it into the air stream, thereby to provide both oxygen and steam to the generator 22 in greater concentration in the air stream than it appears in the exhaust stream itself.
  • the maximum temperature at which some material in the WRU will function is less than 250° C.
  • the engine exhaust is fed from the pipe 20 through two heat exchangers 55 , 56 to vaporize the fuel (as described hereinbefore) and to further heat the exhaust stream of the WRU 52 on a line 58 , before applying it to the generator 22 . Since the steam level in the exhaust is relatively low, on the order of between 2 and 6 mol %, recovering sufficient steam to feed the generator 22 requires cooling a sufficient portion of exhaust, which the heat exchangers 55 , 56 serve to do. However, further cooling can be achieved as illustrated in FIG. 5 by providing an additional heat exchanger 60 which receives all of the air in the air inlet line 11 to significantly cool the exhaust in the line 53 before it is applied to the water recovery unit 52 .
  • the effluent of the NOx traps 35 , 36 may be as high as 50% water (steam), since all of the hydrogen produced by the generator 22 is converted to water during the reducing reaction (the regeneration formula hereinbefore).
  • a WRU 63 receives air from the air inlet 11 and the effluent of whichever NOx trap 35 , 36 is being regenerated at any moment in time.
  • a pair of valves 64 , 65 work in conjunction with the valves 40 - 43 such that when the valves 40 , 42 are open the valve 64 will be open, and when the valves 41 , 42 are open, the valve 65 will be open.
  • the WRU 63 extracts water from the effluent which is picked up by the air.
  • the humidified air is passed through a heat exchanger 68 for application to the generator 22 with the vaporized fuel from the heat exchanger 50 .
  • heat from the exhaust of the engine is used to vaporize fuel in the heat exchanger 50 and to heat up humidified air from the air inlet 11 in the heat exchanger 68 as well as another, very small heat exchanger 71 .
  • the warm air from the heat exchanger 71 is brought to an air-bubbling humidifier 72 which is supplied water from a condenser 76 to humidify the warm air.
  • the humidified air is warmed further in the heat exchanger 68 before being mixed with the vaporized fuel from the heat exchanger 50 for application to the reformer.
  • the condenser 76 utilizes the full volume of air in the air inlet 11 to cool off the effluent from the NOx traps 35 , 36 thereby condensing the water therefrom. This water is then drained and fed over to the humidifier 72 , where it is taken up by the warm air from the heat exchanger 71 .
  • the invention does not require using oxygen taken from the engine exhaust.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Either (a) the exhaust (20) of an engine (9) and/or (b) inlet air (11) is sent to a hydrogen generator (22) along with diesel fuel (18) to produce hydrogen and carbon monoxide (26) for either (c) mixing with the mainstream of exhaust fed to a catalytic converter (28) or (d) regenerating a pair of NOx adsorption traps (35, 36), thereby reducing oxides of nitrogen (NOx) to provide system exhaust (29) which may have less than 0.20 grams/bhp/hr of NOx and 0.14 grams/bhp/hr of non-methane hydrocarbons. A water recovery unit (52, 63) may extract water from either the exhaust or the effluent of the NOx traps to humidify inlet air (11) for mixture with fuel. Inlet air (11) may be humidified in an air bubbling humidifier (72) that receives water from a condenser (76) that uses inlet air to cool NOx trap effluent.

Description

    TECHNICAL FIELD
  • This invention relates to reducing oxides of nitrogen (NOx) in the exhaust of hydrocarbon-fueled, internal combustion engines and more particularly to using hydrogen generators, such as catalytic partial oxidizers (CPOx), non-catalytic (homogeneous) partial oxidizers (POx), or auto thermal reformers (ATR), to generate from engine fuel and exhaust, streams including hydrogen and carbon monoxide for use in NOx catalytic converters or NOx-reducing adsorption filters. [0001]
  • BACKGROUND ART
  • The Environmental Protection Agency (EPA) has set, for 2007 and beyond, vehicle internal combustion engine emission requirements; one exemplary requirement for diesel engines, is NOx and non-methane hydrocarbons below 0.20 grams bhp-hr and 0.14 grams/bhp-hr, respectively. This contrasts with current standards of 4.0 grams/bhp-hr and 1.3 grams/bhp-hr, respectively. Thus, the catalytic converters must accomplish a significant reduction in NOx. There currently are no catalyst formulations which are able to adequately reach these restrictive standards; significant development will be required to reduce the cost and improve performance of new catalyst formulations. Apparatus that oxidizes engine fuel to provide a mix that enhances NOx reduction is disclosed in U.S. Pat. No. 5,412,946, in PCT published application WO 01/34950, and U.S. patent application Publication 2001/41153. [0002]
  • DISCLOSURE OF INVENTION
  • Objects of the present invention include: improvement in the reduction of NOx to nitrogen and other harmless gases; achieving NOx reduction that meets EPA 2007 NOx emission requirements; and providing improved generation of hydrogen in and for an internal combustion engine exhaust emission reduction system. [0003]
  • According to the present invention, moisture and possibly oxygen, derived from the exhaust of a hydrocarbon-fueled, internal combustion engine are processed along with fuel from the engine's fuel tank in a fuel processor, which may be a catalytic partial oxidation reformer, a non-catalytic (homogeneous) partial oxidation reformer, or an auto thermal reformer, to generate a stream of hydrogen and carbon monoxide which is used, either directly or following the reaction of NOx with other compounds, to eliminate NOx in the exhaust. For example, the hydrogen-rich stream may either (a) be mixed with the main exhaust stream for processing in a NOx-reducing catalytic converter, or (b) used to regenerate NOx traps following the formation of nitrogen-containing compounds by reaction of the exhaust with adsorbent in the NOx traps. In various embodiments of the invention, air is also fed, such as from ambient, to the fuel processor; steam is extracted from engine exhaust and from NOx trap effluent; air is humidified; and fuel is vaporized. [0004]
  • Other objects, features and advantages of the present invention will become more apparent in the light of the following detailed description of exemplary embodiments thereof, as illustrated in the accompanying drawing. [0005]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified, stylized schematic illustration of an engine incorporating a first embodiment of the present invention. [0006]
  • FIG. 2 is a simplified, stylized schematic illustration of an engine incorporating a second embodiment of the present invention. [0007]
  • FIG. 3 is a simplified, stylized schematic illustration of an engine incorporating a third embodiment of the present invention. [0008]
  • FIG. 4 is a simplified, stylized schematic illustration of an engine incorporating a fourth embodiment of the present invention. FIG. 5 is a simplified, stylized schematic illustration of an engine incorporating a fifth embodiment of the present invention. [0009]
  • FIG. 6 is a simplified, stylized schematic illustration of an engine incorporating a sixth embodiment of the present invention. [0010]
  • FIG. 7 is a simplified, stylized schematic illustration of an engine incorporating a seventh embodiment of the present invention.[0011]
  • MODE(S) FOR CARRYING OUT THE INVENTION
  • In FIG. 1, an engine [0012] 9 has a conventional turbo compressor 10 feeding an air inlet line 11, a hydrocarbon fuel tank 12, and a fuel pump 13. The fuel may be diesel fuel, gasoline, natural gas, liquid petroleum gas, or propane. The fuel is fed by a first line 17 to the engine for combustion with the air, and is fed by a second line 18 to a mixer 19 in a pipe 20 that feeds a small amount of exhaust from an exhaust pipe 21 to a hydrogen generator 22. The hydrogen generator 22 may be a catalytic partial oxidizer (CPOx), a non-catalytic (homogeneous) partial oxidizer, or an auto thermal reformer (ATR). Within the hydrogen generator, if it is a CPOx, foam monolith or other form of catalyst, which may comprise a group VIII metal, preferably nickel, cobalt, rhodium, iridium or platinum, convert fuel along with hydrocarbons, water and oxygen into a mix of hydrogen, CO and CO2. This is provided through a conduit 26 to an NOx reducing catalytic converter 28, the output of which is exhausted by a pipe 29, typically to ambient. The converter 28 is of the type commonly used in diesel engines. In normal operation, it is expected that the water content will vary between 2% and 9% and the oxygen content will vary between 5% and 17%. Using diesel fuel, it may require up to 7% of consumed fuel to clean up the exhaust, which is acceptable. In the converter 28, the exhaust—hydrogen, oxides of nitrogen, carbon monoxide and carbon dioxide—is converted to mainly nitrogen, water, and carbon dioxide, with traces of non-methane hydrocarbons and oxides of nitrogen. With proper adjustment for the particular engine and desired performance range (utilizing valves and possibly a controller responding to sensors, all known in the art), the invention will permit reducing the NOx to 0.20 grams/bhp/hr and non-methane hydrocarbons to 0.14 grams/bhp/hr.
  • In a second embodiment of the invention illustrated in FIG. 2, in any case where there is insufficient oxygen in the exhaust to produce the required amount of hydrogen in the [0013] generator 22, air may be fed by a conduit 30 from the air inlet line 11 for mixture with the fuel in pipe 18.
  • FIGS. 1 and 2 are rudimentary embodiments of the present invention. In FIGS. 1 and 2, the NOx is treated continuously in a known converter. In accordance with the invention, a more effective elimination of NOx comprises utilizing adsorption traps in alternating collection/regeneration cycles. [0014]
  • Referring to FIG. 3, a pair of NOx [0015] adsorbent traps 35, 36 are alternatively connected by corresponding valves 40-43 to either the conduit 26 with hydrogen-containing gas from the generator 22, or to a pipe 48 containing engine exhaust. The valves are controlled so that engine exhaust is allowed to flow in one of the traps 35, 36 for a period of time which is less than the time necessary to saturate it with NOx, and then the valves are switched so that exhaust flows in the other NOx trap, while the first NOx trap is regenerated by the hydrogen and carbon monoxide from the generator 22. In one cycle, the valves 40, 43 will be open and the valves 41 and 42 will be closed; in the next cycle, the valves 41 and 42 will be open and the valves 40 and 43 will be closed, and so forth. The NOx traps may, for example, contain barium carbonate (BaCO3) as the adsorbent: when the diesel exhaust is adsorbed by the barium carbonate, a reaction generates barium nitrate.
  • 2NOx+BaCO3→Ba(NO3)2+CO2
  • Then, during the regeneration cycle, the barium nitrate is converted back to barium carbonate, as follows: [0016]
  • 3H2+2CO+Ba(NO3)2→BaCO3+N2+3H2O+CO2
  • FIG. 3 also illustrates that preferred embodiments of the invention may use a [0017] heat exchanger 50 to cause heat of the engine exhaust to vaporize the fuel in the line 18 before applying it to the reformer, which is particularly useful in the case of a CPOx oxidizer.
  • A CPOx oxidizer is preferred because it is very small and can run with low steam carbon ratios and high turndown ratios without soot or carbon formation. However, diesel engine exhaust contains particulates (soot) and oxides of sulfur (SOx), which may deactivate the CPOx catalyst in a relatively short period of time. Therefore, a non-catalytic (homogeneous) partial oxidizer may be selected as the [0018] hydrogen generator 22. The percentage of hydrogen produced is only slightly less than that produced by a CPOx. It is easily started by employing a simple spark plug, as is known. Additionally, POX is cheaper than CPOx; control of the O2/C ratio is known (similar to engine O2/fuel ratio), and simpler; SOx and soot do not affect it; and there is no steam/C ratio problem.
  • In FIG. 4, air (for oxygen) is humidified (for steam) before being introduced into the [0019] generator 22. To achieve this, a water recovery unit (WRU) 52 receives air from the air inlet 11 and a portion of the engine exhaust in a line 53. The WRU contains special materials that have a high degree of moisture diffusivity, one example of which is that sold under the tradename NAFION. The WRU extracts moisture (steam) from the exhaust stream and imparts it into the air stream, thereby to provide both oxygen and steam to the generator 22 in greater concentration in the air stream than it appears in the exhaust stream itself. However, the maximum temperature at which some material in the WRU will function is less than 250° C. and the lower the temperature, the better the performance, whereas the temperature of diesel engine exhaust is in the range of 110° C.-290° C. The engine exhaust is fed from the pipe 20 through two heat exchangers 55, 56 to vaporize the fuel (as described hereinbefore) and to further heat the exhaust stream of the WRU 52 on a line 58, before applying it to the generator 22. Since the steam level in the exhaust is relatively low, on the order of between 2 and 6 mol %, recovering sufficient steam to feed the generator 22 requires cooling a sufficient portion of exhaust, which the heat exchangers 55, 56 serve to do. However, further cooling can be achieved as illustrated in FIG. 5 by providing an additional heat exchanger 60 which receives all of the air in the air inlet line 11 to significantly cool the exhaust in the line 53 before it is applied to the water recovery unit 52.
  • The effluent of the [0020] NOx traps 35, 36 may be as high as 50% water (steam), since all of the hydrogen produced by the generator 22 is converted to water during the reducing reaction (the regeneration formula hereinbefore). In FIG. 6, a WRU 63 receives air from the air inlet 11 and the effluent of whichever NOx trap 35, 36 is being regenerated at any moment in time. A pair of valves 64, 65 work in conjunction with the valves 40-43 such that when the valves 40, 42 are open the valve 64 will be open, and when the valves 41, 42 are open, the valve 65 will be open. The WRU 63 extracts water from the effluent which is picked up by the air. The humidified air is passed through a heat exchanger 68 for application to the generator 22 with the vaporized fuel from the heat exchanger 50.
  • In the embodiment of FIG. 7, heat from the exhaust of the engine is used to vaporize fuel in the [0021] heat exchanger 50 and to heat up humidified air from the air inlet 11 in the heat exchanger 68 as well as another, very small heat exchanger 71. The warm air from the heat exchanger 71 is brought to an air-bubbling humidifier 72 which is supplied water from a condenser 76 to humidify the warm air. Then, the humidified air is warmed further in the heat exchanger 68 before being mixed with the vaporized fuel from the heat exchanger 50 for application to the reformer. The condenser 76 utilizes the full volume of air in the air inlet 11 to cool off the effluent from the NOx traps 35, 36 thereby condensing the water therefrom. This water is then drained and fed over to the humidifier 72, where it is taken up by the warm air from the heat exchanger 71. Thus, as exemplified in the embodiments of FIGS. 5-7, the invention does not require using oxygen taken from the engine exhaust.
  • Thus, although the invention has been shown and described with respect to exemplary embodiments thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions and additions may be made therein and thereto, without departing from the spirit and scope of the invention.[0022]

Claims (27)

We claim:
1. A system for reducing oxides of nitrogen (NOx) in the exhaust of a hydrocarbon-fueled, internal combustion engine which operates with fuel from a source and which provides engine exhaust in an exhaust pipe and receives air from an air inlet, comprising:
a hydrogen generator having an inlet and an outlet for converting engine fuel, oxygen and moisture to hydrogen and carbon monoxide;
means for providing a mixture of fuel from said source with either (a) a portion of said engine exhaust or (b) air humidified with moisture derived from said engine exhaust to the inlet of said hydrogen generator, said hydrogen generator providing an outflow at its outlet including hydrogen and carbon dioxide; and
means for receiving said engine exhaust and said outflow for reducing the NOx in said engine exhaust to provide system exhaust with diminished NOx.
2. A system according to claim 1 wherein said output of said means for reducing NOx comprises no more than 0.4 grams/bhp/hr NOx.
3. A system according to claim 1 wherein said output of said means for reducing NOx comprises no more than 0.2 grams/bhp/hr NOx.
4. A system according to claim 1 wherein said means for providing a mixture includes a source of air and mixes engine fuel and air with said exhaust.
5. A system according to claim 1 further comprising:
a heat exchanger for vaporizing engine fuel before it is added into said mixture.
6. A system according to claim 1 wherein said mixture includes fuel and humidified air, and said air is humidified from exhaust by means of a water recovery unit.
7. A system according to claim 1 wherein said means for providing a mixture comprises a water recovery unit in which moisture, extracted from engine exhaust, humidifies air.
8. A system according to claim 7 further comprising:
a heat exchanger receiving humidified air out of said water recovery unit to cool engine exhaust input to said water recovery unit.
9. A system according to claim 7 further comprising:
a heat exchanger receiving engine inlet air to cool engine exhaust input to said water recovery unit.
10. A system according to claim 1 wherein said means for reducing the NOx comprises at least one NOx trap, each NOx trap alternately trapping NOx in said exhaust and being regenerated by said outflow.
11. A system according to claim 10 wherein said means for providing a mixture utilizes moisture extracted from the effluent of at least one said NOx trap to humidify said air.
12. A system according to claim 11 wherein said means for providing a mixture comprises a water recovery unit.
13. A system according to claim 11 wherein said means for providing a mixture comprises a condenser cooled by air from said air inlet and a humidifier receiving moisture from said condenser.
14. A system according to claim 1 wherein said hydrogen generator is selected from an auto-thermal reformer, a catalytic partial oxidizer and a non-catalytic partial oxidizer.
15. A system according to claim 1 wherein said means for providing a mixture comprises an air bubbling humidifier receiving moisture derived from engine exhaust.
16. A system according to claim 15 wherein said means for reducing NOx comprises a pair of NOx traps, and the effluent from said NOx traps is fed to a condenser, said effluent being cooled and the steam in said effluent being condensed in said condenser by said air inlet air, water produced in said condenser being provided to said humidifier.
17. Apparatus for diminishing oxides of nitrogen (NOx) in the exhaust of a system, said apparatus comprising:
a hydrocarbon-fueled engine that provides engine exhaust containing NOx;
means for generating hydrogen from a mixture of engine fuel and either a portion of said engine exhaust or air humidified with moisture derived from said engine exhaust, to provide a flow including hydrogen and carbon dioxide; and
means for using the flow of hydrogen and carbon dioxide for reducing NOx in said engine exhaust to provide system exhaust with diminished NOx.
18. A method of diminishing oxides of nitrogen (NOx) in the exhaust of a system including a hydrocarbon-fueled engine that provides engine exhaust containing NOx, said method comprising:
generating hydrogen from a mixture of engine fuel and either a portion of said engine exhaust or air humidified by moisture derived from said engine exhaust, to provide a flow including hydrogen and carbon dioxide; and
using the flow of hydrogen and carbon dioxide for reducing NOx in said engine exhaust to provide system exhaust with diminished NOx.
19. A method according to claim 18 wherein:
said generating step comprises reforming a mixture containing vaporized fuel.
20. A method according to claim 19 wherein:
said generating step comprises vaporizing fuel by heat exchange with said exhaust.
21. A method according to claim 18 wherein:
said generating step comprises reforming a mixture containing air humidified by moisture of said exhaust in a water recovery unit.
22. A method according to claim 21 wherein:
said generating step comprises the substep of cooling the exhaust before application thereof to said water recovery unit.
23. A method according to claim 18 wherein:
said step of reducing NOx employs at least one NOx trap, and said generating step comprises extracting said moisture from the effluent of at least one of said NOx traps and humidifying said air for said mixture therewith.
24. A method according to claim 23 wherein:
said humidifying substep comprises humidifying air in an air bubbling humidifier receiving said moisture extracted from said effluent.
25. A method according to claim 18 wherein:
said humidifying substep comprises humidifying air in a bubble humidifier receiving water.
26. A method according to claim 18 wherein:
said step of reducing NOx comprises applying said exhaust and said flow, contemporaneously, to a NOx reducing catalytic converter.
27. A system according to claim 18 wherein:
said step of reducing NOx comprises alternately applying said engine exhaust and said flow to at least one NOx trap, separately.
US10/159,369 2002-05-31 2002-05-31 Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust Expired - Fee Related US6895746B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/159,369 US6895746B2 (en) 2002-05-31 2002-05-31 Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust
AU2003234560A AU2003234560A1 (en) 2002-05-31 2003-05-13 Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust
DE60317360T DE60317360T2 (en) 2002-05-31 2003-05-13 REDUCING NITROGEN OXIDES USING MOTOR FUEL AND EXHAUST GENERATED HYDROGEN
EP03728901A EP1552119B1 (en) 2002-05-31 2003-05-13 Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust
JP2004509251A JP2006511747A (en) 2002-05-31 2003-05-13 Reduction of nitrogen oxides using hydrogen generated from engine fuel and exhaust
AT03728901T ATE377698T1 (en) 2002-05-31 2003-05-13 REDUCING NITROGEN OXIDES USING HYDROGEN PRODUCED FROM MOTOR FUEL AND EXHAUST
PCT/US2003/015162 WO2003102390A1 (en) 2002-05-31 2003-05-13 Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust
EP07116633A EP1860293A3 (en) 2002-05-31 2003-05-13 Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/159,369 US6895746B2 (en) 2002-05-31 2002-05-31 Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust

Publications (2)

Publication Number Publication Date
US20030221413A1 true US20030221413A1 (en) 2003-12-04
US6895746B2 US6895746B2 (en) 2005-05-24

Family

ID=29582882

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/159,369 Expired - Fee Related US6895746B2 (en) 2002-05-31 2002-05-31 Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust

Country Status (7)

Country Link
US (1) US6895746B2 (en)
EP (2) EP1860293A3 (en)
JP (1) JP2006511747A (en)
AT (1) ATE377698T1 (en)
AU (1) AU2003234560A1 (en)
DE (1) DE60317360T2 (en)
WO (1) WO2003102390A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030217729A1 (en) * 2002-03-08 2003-11-27 Andreas Kaupert Exhaust-gas purification installation and exhaust-gas purification method for purifying an exhaust gas from an internal combustion engine
US20050242588A1 (en) * 2004-04-30 2005-11-03 Washington Krik B Integrated fuel cell and additive gas supply system for a power generation system including a combustion engine
EP1612379A2 (en) * 2004-07-02 2006-01-04 J. Eberspächer GmbH & Co. KG Exhaust gas apparatus
US20060042565A1 (en) * 2004-08-26 2006-03-02 Eaton Corporation Integrated fuel injection system for on-board fuel reformer
US20060048502A1 (en) * 2004-07-29 2006-03-09 Washington Kirk B Integrated system for reducing fuel consumption and emissions in an internal combustion engine
US20060179822A1 (en) * 2005-02-14 2006-08-17 Dalla Betta Ralph A Systems and methods for reducing emissions of internal combustion engines using a fuel processor bypass
US20060218905A1 (en) * 2001-05-04 2006-10-05 Nco2 Company Llc Method and system for obtaining exhaust gas for use in augmenting crude oil production
WO2007059962A1 (en) * 2005-11-25 2007-05-31 Emcon Technologies Germany (Augsburg) Gmbh Module and method for producing a hydrogen-containing gas for regenerating a motor vehicle exhaust gas purification system
FR2913056A1 (en) * 2007-02-23 2008-08-29 Renault Sas Exhaust gas treating module purging method for e.g. diesel engine of motor vehicle, involves controlling reformer, engine and/or valve to purge nitrogen oxide trap or to modify values of operating parameters towards stored/determined range
FR2936275A3 (en) * 2008-09-25 2010-03-26 Renault Sas Exhaust line for internal combustion engine of motor vehicle, has reformer supplied with reducer and air, where air supplied to reformer is taken from intake manifold in air intake circuit by controlled air supply circuit
DE102016100284A1 (en) * 2016-01-11 2017-07-13 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust system for an internal combustion engine and method for operating an exhaust system
US11118490B2 (en) * 2020-01-24 2021-09-14 Caterpillar Inc. Machine system for co-production of electrical power and water and method of operating same
WO2023084015A3 (en) * 2021-11-12 2023-07-27 Keyou GmbH Method for operating an internal combustion engine, a system for carrying out the method and an internal combustion engine

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021048B2 (en) * 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
US6758035B2 (en) * 2002-09-18 2004-07-06 Arvin Technologies, Inc. Method and apparatus for purging SOX from a NOX trap
DE10251472A1 (en) * 2002-11-06 2004-05-19 Robert Bosch Gmbh Reduction of automotive nitrous oxide emissions during cold start comprises supplementary injection of ammonia from holding reservoir
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
US7409823B2 (en) * 2003-06-30 2008-08-12 Delphi Technologies, Inc. Method and apparatus for delivery of supplemental material to an exhaust gas feedstream with supplemental air assistance
US7601316B2 (en) * 2003-09-08 2009-10-13 Shell Oil Company Method of reducing NOx and particulates from internal combustion engines
US20050193724A1 (en) * 2004-02-27 2005-09-08 Southwest Research Institute Oxygen-enriched feedgas for reformer in emissions control system
JP4753407B2 (en) * 2004-03-25 2011-08-24 東京瓦斯株式会社 Power generation and power equipment
US20050274107A1 (en) * 2004-06-14 2005-12-15 Ke Liu Reforming unvaporized, atomized hydrocarbon fuel
US6955042B1 (en) * 2004-06-30 2005-10-18 Hydrogensource Llc CPO regenerated lean NOx trap with no moving parts
US20060042236A1 (en) * 2004-09-01 2006-03-02 Kabasin Daniel F Method and apparatus for controlling exhaust gas flow rate
US8136345B2 (en) * 2004-09-21 2012-03-20 Shell Oil Company Internal combustion engine exhaust treatment having a single valve directing exhaust to dual NOx traps
US7743602B2 (en) * 2005-06-21 2010-06-29 Exxonmobil Research And Engineering Co. Reformer assisted lean NOx catalyst aftertreatment system and method
US7803338B2 (en) * 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products
US20070033929A1 (en) * 2005-08-11 2007-02-15 Arvinmeritor Emissions Technologies Gmbh Apparatus with in situ fuel reformer and associated method
US7216481B2 (en) * 2005-09-23 2007-05-15 Delphi Technologies, Inc. Method and apparatus for regeneration of engine exhaust aftertreatment devices
US7712308B2 (en) * 2005-11-08 2010-05-11 Tenneco Automotive Operating Company Inc. Selective catalyst reduction of nitrogen oxides with hydrogen
US7767181B2 (en) * 2006-06-30 2010-08-03 Caterpillar Inc System and method for ammonia production
US8061120B2 (en) * 2007-07-30 2011-11-22 Herng Shinn Hwang Catalytic EGR oxidizer for IC engines and gas turbines
US20090173061A1 (en) * 2008-01-09 2009-07-09 General Electric Company OPTIMIZED REDUCTION OF NOx EMISSIONS FROM DIESEL ENGINES
DE102009016097A1 (en) * 2009-04-03 2010-10-07 Fev Motorentechnik Gmbh Exhaust system for internal combustion engine of vehicle, has heat exchanger whose face wall is in connection with conductor, where fluid steam is supplied by conductor for evaporation and catalytic endothermic process
JP5460184B2 (en) * 2009-08-28 2014-04-02 株式会社日本セラテック Support device
US10865709B2 (en) 2012-05-23 2020-12-15 Herng Shinn Hwang Flex-fuel hydrogen reformer for IC engines and gas turbines
CN105378241B (en) * 2013-06-28 2017-10-03 丰田自动车株式会社 The condensed water treating device of internal combustion engine
JP6528755B2 (en) * 2016-10-20 2019-06-12 トヨタ自動車株式会社 Exhaust purification system for internal combustion engine
US10626790B2 (en) 2016-11-16 2020-04-21 Herng Shinn Hwang Catalytic biogas combined heat and power generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092512A (en) * 1996-07-26 2000-07-25 Ford Global Technologies, Inc. Internal combustion engine
US6170259B1 (en) * 1997-10-29 2001-01-09 Daimlerchrysler Ag Emission control system for an internal-combustion engine
US6318306B1 (en) * 1999-04-06 2001-11-20 Nissan Motor Co., Ltd. Internal combustion engine equipped with fuel reforming system
US6357227B1 (en) * 1998-03-27 2002-03-19 Siemens Aktiengesellschaft System and method for reducing pollutants in the exhaust gas of an internal combustion engine
US6560958B1 (en) * 1998-10-29 2003-05-13 Massachusetts Institute Of Technology Emission abatement system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517244B1 (en) * 1971-05-26 1976-03-06
JPS60548B2 (en) * 1975-04-07 1985-01-08 株式会社豊田中央研究所 How to drive an internal combustion engine
JPS54113721A (en) * 1978-02-24 1979-09-05 Toyota Motor Corp Device for reforming exhaust gas from engine
JPH05106430A (en) * 1991-10-16 1993-04-27 Toyota Central Res & Dev Lab Inc Nitrogen oxide reducing device for internal combustion engine
JPH0913955A (en) * 1995-06-27 1997-01-14 Komatsu Ltd Exhaust gas purifying device for diesel engine
JPH10330101A (en) * 1997-05-27 1998-12-15 Sanyo Electric Co Ltd Hydrogen-manufacturing apparatus and method therefor
US6176078B1 (en) 1998-11-13 2001-01-23 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
AU1467201A (en) * 1999-11-10 2001-06-06 Engelhard Corporation Method and apparatus to provide reductant for NOx
JP3685052B2 (en) 2000-11-30 2005-08-17 日産自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092512A (en) * 1996-07-26 2000-07-25 Ford Global Technologies, Inc. Internal combustion engine
US6170259B1 (en) * 1997-10-29 2001-01-09 Daimlerchrysler Ag Emission control system for an internal-combustion engine
US6357227B1 (en) * 1998-03-27 2002-03-19 Siemens Aktiengesellschaft System and method for reducing pollutants in the exhaust gas of an internal combustion engine
US6560958B1 (en) * 1998-10-29 2003-05-13 Massachusetts Institute Of Technology Emission abatement system
US6318306B1 (en) * 1999-04-06 2001-11-20 Nissan Motor Co., Ltd. Internal combustion engine equipped with fuel reforming system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060218905A1 (en) * 2001-05-04 2006-10-05 Nco2 Company Llc Method and system for obtaining exhaust gas for use in augmenting crude oil production
US7765794B2 (en) 2001-05-04 2010-08-03 Nco2 Company Llc Method and system for obtaining exhaust gas for use in augmenting crude oil production
US6810658B2 (en) * 2002-03-08 2004-11-02 Daimlerchrysler Ag Exhaust-gas purification installation and exhaust-gas purification method for purifying an exhaust gas from an internal combustion engine
US20030217729A1 (en) * 2002-03-08 2003-11-27 Andreas Kaupert Exhaust-gas purification installation and exhaust-gas purification method for purifying an exhaust gas from an internal combustion engine
US20050242588A1 (en) * 2004-04-30 2005-11-03 Washington Krik B Integrated fuel cell and additive gas supply system for a power generation system including a combustion engine
EP1612379A2 (en) * 2004-07-02 2006-01-04 J. Eberspächer GmbH & Co. KG Exhaust gas apparatus
EP1612379A3 (en) * 2004-07-02 2006-10-18 J. Eberspächer GmbH & Co. KG Exhaust gas apparatus
US20060048502A1 (en) * 2004-07-29 2006-03-09 Washington Kirk B Integrated system for reducing fuel consumption and emissions in an internal combustion engine
US20060042565A1 (en) * 2004-08-26 2006-03-02 Eaton Corporation Integrated fuel injection system for on-board fuel reformer
US8006484B2 (en) 2005-02-14 2011-08-30 Eaton Corporation Systems and methods for reducing emissions of internal combustion engines using a fuel processor bypass
US20060179822A1 (en) * 2005-02-14 2006-08-17 Dalla Betta Ralph A Systems and methods for reducing emissions of internal combustion engines using a fuel processor bypass
WO2007059962A1 (en) * 2005-11-25 2007-05-31 Emcon Technologies Germany (Augsburg) Gmbh Module and method for producing a hydrogen-containing gas for regenerating a motor vehicle exhaust gas purification system
WO2007084182A2 (en) * 2006-01-18 2007-07-26 Nco2 Company Llc A method and system for obtaining exhaust gas for use in augmenting crude oil production
WO2007084182A3 (en) * 2006-01-18 2009-04-30 Nco2 Company Llc A method and system for obtaining exhaust gas for use in augmenting crude oil production
FR2913056A1 (en) * 2007-02-23 2008-08-29 Renault Sas Exhaust gas treating module purging method for e.g. diesel engine of motor vehicle, involves controlling reformer, engine and/or valve to purge nitrogen oxide trap or to modify values of operating parameters towards stored/determined range
WO2008113946A1 (en) * 2007-02-23 2008-09-25 Renault S.A.S Method for draining a nitrogen oxide trap by reformat injection and related method
FR2936275A3 (en) * 2008-09-25 2010-03-26 Renault Sas Exhaust line for internal combustion engine of motor vehicle, has reformer supplied with reducer and air, where air supplied to reformer is taken from intake manifold in air intake circuit by controlled air supply circuit
DE102016100284A1 (en) * 2016-01-11 2017-07-13 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust system for an internal combustion engine and method for operating an exhaust system
US10502111B2 (en) 2016-01-11 2019-12-10 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust system for an internal combustion engine and method for operating an exhaust system
US11118490B2 (en) * 2020-01-24 2021-09-14 Caterpillar Inc. Machine system for co-production of electrical power and water and method of operating same
WO2023084015A3 (en) * 2021-11-12 2023-07-27 Keyou GmbH Method for operating an internal combustion engine, a system for carrying out the method and an internal combustion engine

Also Published As

Publication number Publication date
ATE377698T1 (en) 2007-11-15
US6895746B2 (en) 2005-05-24
DE60317360D1 (en) 2007-12-20
JP2006511747A (en) 2006-04-06
EP1860293A2 (en) 2007-11-28
EP1860293A3 (en) 2007-12-05
EP1552119A4 (en) 2005-08-31
EP1552119A1 (en) 2005-07-13
WO2003102390A1 (en) 2003-12-11
AU2003234560A1 (en) 2003-12-19
EP1552119B1 (en) 2007-11-07
DE60317360T2 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US6895746B2 (en) Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust
US6976354B2 (en) Reducing oxides of nitrogen using reformate generated from engine fuel, water and/or air
US7386977B2 (en) Method and apparatus for regenerating NOx adsorbers
EP1409859B1 (en) Fuel supply system of an internal combustion engine
US20060063046A1 (en) Clean power system
US7059277B2 (en) Gas engine
WO2006118637A2 (en) Method and apparatus for supplying air to emission abatement device by use of turbocharger
JP2020196646A (en) Reforming system
KR101005742B1 (en) Nox Purification Device And Method Using Reformed Gas
JP4625449B2 (en) Method and apparatus for catalytic conversion of hydrocarbons to generate hydrogen rich gas
JP2021032230A (en) Internal combustion engine system
JP4278136B2 (en) Nitrogen oxide NOx treatment system and apparatus in exhaust gas of internal combustion engine
US20040200209A1 (en) Emissions reduction system and method
US20120297752A1 (en) Engine System With Exhaust-Cooled Fuel Processor
JP2004251196A (en) Apparatus for producing reformed gas, method for producing reformed gas employing this apparatus and exhaust emission control system
US7435275B2 (en) System and method of heating an exhaust treatment device
KR100245500B1 (en) Nox treatment device of diesel engine
KR20190003137A (en) Fuel reforming system
JP2022152172A (en) fuel synthesizer
KR100203763B1 (en) The device for fuel hydrogen seperating of nitrogen an oxide device in a diesel engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: UTC FUEL CELLS, LLC, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUGLASS, JOHN G.;KOCUM, FRANCIS A.;LIU, KE;AND OTHERS;REEL/FRAME:013510/0941;SIGNING DATES FROM 20021024 TO 20021104

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SHELL HYDROGEN LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HYDROGENSOURCE LLC;REEL/FRAME:018026/0331

Effective date: 20060331

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL HYDROGEN LLC;REEL/FRAME:017996/0629

Effective date: 20060622

AS Assignment

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL HYDROGEN LLC;REEL/FRAME:018961/0518

Effective date: 20070212

Owner name: SHELL HYDROGEN LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UTC FUEL CELLS, LLC;REEL/FRAME:018961/0516

Effective date: 20060814

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20130524