US20030214186A1 - Method and system for assisting the start-up of a motor vehicle - Google Patents
Method and system for assisting the start-up of a motor vehicle Download PDFInfo
- Publication number
- US20030214186A1 US20030214186A1 US10/464,283 US46428303A US2003214186A1 US 20030214186 A1 US20030214186 A1 US 20030214186A1 US 46428303 A US46428303 A US 46428303A US 2003214186 A1 US2003214186 A1 US 2003214186A1
- Authority
- US
- United States
- Prior art keywords
- motor vehicle
- current
- operating state
- engine torque
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 32
- 230000008859 change Effects 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 description 20
- 230000001174 ascending effect Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012208 gear oil Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
- B60T7/122—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger for locking of reverse movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2201/00—Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
- B60T2201/06—Hill holder; Start aid systems on inclined road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2230/00—Monitoring, detecting special vehicle behaviour; Counteracting thereof
- B60T2230/04—Jerk, soft-stop; Anti-jerk, reduction of pitch or nose-dive when braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
- B60W30/18118—Hill holding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S188/00—Brakes
- Y10S188/02—Hill holder
Definitions
- the present invention relates to a method and a system for assisting the start-up of a motor vehicle.
- the present invention relates to a method and a system which during start-up of a motor vehicle control braking equipment, which is activated in the stationary state of the motor vehicle, so as to assist and allow the start-up.
- the braking equipment or parts of the braking equipment of a motor vehicle are usually operated also in the stationary state of the motor vehicle in order to maintain the stationary state of the latter.
- a parking brake which is typically actuated by a vehicle driver, or of braking equipment which in a controlled manner generates braking forces required for the stationary state.
- a brake system comprises a valve, which is disposed between the master brake cylinder and the wheel brake cylinders and which is closed in the stationary state to maintain a brake-actuating pressure and opened to cancel the brake-actuating pressure and allow start-up of the motor vehicle.
- the engine torque defined by a vehicle driver is checked to see whether it corresponds to a starting torque required for start-up.
- the required starting torque is determined in dependence upon a current angle of inclination of the vehicle on an ascending gradient and upon the vehicle weight.
- Said procedure has the drawback that the current engine torque, even when it corresponds to the required starting torque, does not provide any reliable indication about whether the motor vehicle is actually in a driving state required for start-up. This-is the case, for example, when the clutch is actuated or no gear is selected. When in such cases the required starting torque is reached, the brake system is nevertheless deactivated with the result that an undesirable movement of the motor vehicle may occur.
- a general drawback of said start-up assistance is that the reduction—occasioned by opening of the valve—of braking forces summoned up in the stationary state is effected independently of the manner in which the motor vehicle is to be moved out of the stationary state. This may lead to uncomfortable, jerky start-up phases, during which it may be necessary for the driver to take additional measures to achieve start-up of the motor vehicle in a desired manner.
- the object of the present invention is to provide a method and a system for assisting the start-up of a motor vehicle having braking equipment activated in the stationary state, which method and system assist and render more comfortable the transitions from a stationary to a travelling state, wherein the previously described drawbacks of prior art are overcome.
- the invention provides a method of assisting the start-up of a motor vehicle, the braking equipment of which is activated in the stationary state in a controlled manner, automatically or by a vehicle driver and may be deactivated in a controllable manner without any activity on the part of the vehicle driver.
- parameters are determined, which characterize a motor vehicle operating state, in which the motor vehicle is to be moved from the stationary state. Determination of the so-called starting parameters is used to recognize a starting request, which is defined by a vehicle driver or, in the case of an automatic vehicle controller (“autopilot”), by a vehicle control system.
- the braking equipment and, in particular, parking brakes of the motor vehicle are subsequently controlled in such a way that the braking forces generated in the stationary state are reduced in order to allow the desired transition from the stationary state to a travelling state.
- parameters are defined, which define for the motor vehicle in the stationary state an operating state, which has to exist before the motor vehicle may be moved at all out of the stationary state.
- parameters characterizing current operating states of the motor vehicle are acquired in the stationary state in order to check whether the defined initial operating state exists. If this is the case, the starting parameters are determined.
- the initial operating state use may be made of parameters which indicate whether an ignition system of the motor vehicle is switched on, i.e. the vehicle engine has been started or is in a state enabling it to be started e.g. through actuation of an accelerator pedal or under the control of a vehicle controller, and/or the velocity of the motor vehicle is zero, and/or the braking equipment has been activated in such a way that it generates the braking forces needed for the stationary state existing at said time.
- an operating state of the motor vehicle in which a clutch or a clutch switch has been actuated.
- the actuation of the clutch is used for a motor vehicle having a conventional shift transmission, while the switching state of a clutch switch is taken as a basis for motor vehicles having automatic or semi-automatic transmissions.
- the starting parameters are preferably determined until at least one of the starting parameters characterizes an operating state, which differs from an operating state of the motor vehicle in the stationary state.
- the previously described starting parameters it is, for example, possible to recognize a starting request when the accelerator pedal has been actuated, the current engine speed is higher than the idling speed, the engine torque defined in response to the starting request is higher than the current engine torque and the current engine torque is higher the no-load engine torque.
- the current engine torque is compared with a combination (e.g. sum, product) of the defined no-load engine torque and a correction factor.
- the correction factor is used to take account of parameters, which may influence start-up phases for the motor vehicle, such as e.g. the vehicle weight. It may moreover be checked whether the engine torque and/or the desired engine torque are increasing. It may moreover be determined whether the current, time-averaged change of the engine torque during a defined period of time (e.g. 400 milliseconds) lies within a predefined range (e.g. 1%-60%).
- the inclination or changes of inclination of the motor vehicle may be acquired. If the current vehicle inclination has changed by a predetermined value (e.g. 5%) relative to the vehicle inclination in the stationary state or if changes of the vehicle inclination are detected, which do not occur in the stationary state, an operating state exists, which allows the motor vehicle to be actually movable out of the stationary state.
- a predetermined value e.g. 5%
- the procedure for the previously described determination of current opening states is based on a recognition of a reaction of the engine to the biting of the clutch (i.e. change of gradient of the engine speed curve) with a simultaneous increase of the engine torque and/or a recognition of movements of the motor vehicle in response to forces transmitted from the engine to the driving wheels (“dipping” of the motor vehicle).
- the braking equipment is preferably activated to reduce the braking forces generated in the stationary state when the parameters required for the initial operating state, the parameters required for recognition of the starting request and/or the parameters for the operating state allowing a transition from the stationary state to a travelling state exist over suitably defined periods of time.
- the brake system On the basis of the quantities acquired for the initial operating state, the starting request and the start-up operating state it is possible to control the brake system so as to reduce the braking forces, which are provided in the stationary state, in dependence upon one or more of said parameters. In said manner the reduction of the braking forces is adapted to the respective operating state of the motor vehicle and/or to the respective recognized starting request.
- the motor vehicle is controlled in such a manner that start-up takes place as jerk-free as possible and without increased strain on or damage of the braking equipment, in particular the brake linings.
- start-up takes place as jerk-free as possible and without increased strain on or damage of the braking equipment, in particular the brake linings.
- the control of the motor vehicle may during the control of the braking equipment for leaving the stationary state take place in dependence upon an operating state of the braking equipment in the stationary state, the detected startup parameters, the detected current operating state in the state of start-up, and a current operating state during the control of the braking equipment.
- the engine speed and/or the engine torque are controlled during the control of the operating states of the motor vehicle during start-up. It is possible in this case that the engine speed and/or the engine torque is/are reduced at least for a short period of time during start-up if the braking equipment still generates braking forces preventing an actual starting of the motor vehicle.
- the engine speed and/or engine torque can be increased, for example in response to the chronological order of the effective braking forces while controlling the braking equipment, so that the stationary state can be left.
- engine speed and/or engine torque can be controlled in such a manner that an undesired movement of the motor vehicle (rolling away) is prevented during control of the braking equipment.
- Increase of the engine speed and/or engine torque may be effected abruptly, linearly, in steps or according to another function that effects a start-up comfortable to the driver and avoids increased strain on or damages of the brake linings.
- the invention further provides a system for ass sting the start-up of a motor vehicle, which is held in the stationary state by braking equipment activated in said stationary state.
- the system according to the invention comprises a control device as well as a plurality of detection devices (sensors) for acquiring parameters, which characterize operating states of the motor vehicle, and an interface for controlling the braking equipment, wherein the control device is operated using one of the previously described methods.
- the invention provides a computer program product that comprises program code portions allowing it to carry out the above method steps.
- FIG. 1 a diagrammatic view of a system according to the invention for assisting the start-up of a motor vehicle
- FIG. 2 a flowchart of an embodiment of a method according to the invention for assisting startup
- FIG. 3 a flowchart of a further embodiment of a method according to the invention for assisting startup.
- the start-up assistance system 1 illustrated in FIG. 1 may be a separately constructed device of a motor vehicle, use at least partially already existent components of further systems of the motor vehicle or be encompassed by a system which provides further control and check functions for the motor vehicle.
- the start-up assistance system 1 comprises a control device 2 , which via an interface 4 controls braking equipment 6 of a motor vehicle.
- the control device 2 by means of a plurality of devices, which are described below, detects the current operating state of the motor vehicle and on the basis of data supplied by said devices determines an operating state for the motor vehicle, into which operating state the motor vehicle is to be brought under the control of a vehicle driver.
- a sensor device 8 is connected to an ignition system 10 of the motor vehicle, to sensors 12 for detecting open and closed positions of vehicle doors and to a safety device 14 , which is used to recognize the occupation of vehicle seats and current operating states of protection devices for vehicle occupants (e.g. airbags, seat belt systems)
- a safety device 14 which is used to recognize the occupation of vehicle seats and current operating states of protection devices for vehicle occupants (e.g. airbags, seat belt systems)
- a sensor device 16 for recognizing positions and/or movements of an accelerator pedal 18 is connected to the latter and, if provided, to an accelerator pedal switch 20 , which checks whether the vehicle driver is contacting or actuating the accelerator pedal 18 .
- a sensor device 22 is connected to a brake pedal 24 and, if provided, to a brake pedal switch 26 in order to determine positions and/or movements as well as actuation of the brake pedal 27 .
- a sensor device 28 By means of a sensor device 28 a current actuating state of a clutch pedal 30 and optionally of a clutch pedal switch 32 is detected.
- a sensor device 34 is connected to a transmission 36 .
- a sensor device 38 is used to acquire parameters which characterize the current operating state of an engine 40 .
- the control device 2 is further connected to a temperature sensor 42 for detecting the ambient temperature, a velocity sensor 44 for detecting the current vehicle velocity, a vehicle inclination sensor 46 for detecting the current inclination of the motor vehicle in longitudinal direction of the latter, sensors 48 for detecting the rotational speeds of one or more vehicle wheels, and a weight sensor 50 for detecting a current vehicle weight.
- the control device 2 moreover via a brake sensor device 52 detects the current operating state of the braking equipment 6 .
- the control device 2 receives data, which are provided by further components (not shown) of the motor vehicle and supply, in addition to the previously described performance quantities, further information about the state of the vehicle. Examples thereof are data, which characterize correct and/or defective operating states of a vehicle engine management system, an anti-skid system (ABS) and traction and stability control systems (e.g. ESP, ASR, ASD) and indicate the tyre air pressure of one or more tyres and available quantities of operating substances (e.g. gear oil, engine oil). It is further possible via the interface 54 to detect whether the motor vehicle is connected to a towed vehicle (e.g. a caravan) and to detect parameters characterizing the current operating state of the towed vehicle.
- a towed vehicle e.g. a caravan
- the start-up assistance system 1 is suitable for vehicles having conventional shift transmissions, automatic transmissions and semi-automatic transmissions. Given use of the system 1 in conjunction with an automatic or semiautomatic transmission, as opposed to use with a shift transmission, the sensor device 28 is connected to a clutch switch (not shown) instead of to the clutch pedal switch 32 . Connection of the sensor device 28 to a clutch pedal is not possible in said cases.
- the braking equipment 6 independently and automatically generates braking forces which are needed to keep the motor vehicle in the stationary state.
- step 1 it is checked whether the braking equipment 6 is generating braking forces to keep the motor vehicle in the stationary state. If it is ascertained here that the braking equipment 6 has not been activated, i.e. is not generating immobilizing braking forces, which is attributable e.g. to a defective operating state of the braking equipment 6 or manual deactivation of the braking equipment 6 by a vehicle driver, the steps described below for reducing braking forces generated by the braking equipment 6 are not necessary. Accordingly, at this point the method (the program flow) for control of the system 1 is terminated.
- the method likewise terminates if it is ascertained in step 2 that the ignition system 10 is not switched on, if in step 3 the velocity sensor 44 detects a vehicle velocity, or if it is ascertained in step 4 that the clutch pedal 30 and/or, if provided, the clutch pedal switch 32 has not been actuated.
- step 2 it is checked whether the ignition system 10 is switched on.
- the ignition system 10 may be checked whether the ignition system 10 has effected a start of the engine 40 , i.e. the engine 40 is running, Cr whether the ignition system 10 , e.g. because of a detected ignition key position, is in a state which allows starting of the engine 40 .
- the last case of checking the ignition system 10 is adequate particularly for motor vehicles, in which the engine 40 is automatically stopped in the stationary state and automatically started, e.g. through actuation of the accelerator pedal 18 , when the ignition key is in an appropriate position.
- step 4 If it is ascertained in steps 2 and 3 that the ignition system 10 is switched on and the motor vehicle has zero velocity, a check is made in step 4 for the actuation of a clutch (not shown) necessary for start-up of a motor vehicle having a shift transmission. If said check is likewise successfully concluded, the basic preconditions for control of the braking equipment 6 to assist start-up are met. In the steps described below, current operating states and operating states for the motor vehicle requested by the vehicle driver are determined in order to control the braking equipment 6 accordingly during start-up of the motor vehicle.
- step 5 the state of the accelerator pedal 18 and, if provided, of the accelerator pedal switch 20 is checked. If it is ascertained here that the accelerator pedal 18 has been moved out of its neutral position (and, optionally, the accelerator pedal switch 20 indicates an accelerator pedal operation), the control system moves on to step 6 . It is further provided that in step 5 the nature of the movement of the accelerator pedal out of its neutral position, i.e. the speed at which the accelerator pedal is moved out of the neutral position, is determined. Detection of the accelerator pedal movement, which characterizes the manner in which the vehicle driver would like to start, may then be used to control the reduction of the braking forces generated by the braking equipment 6 in the stationary state in a corresponding manner, provided further conditions described below are met. In the event of an unsuccessful check in step 5 , the control system goes back to step 1 .
- step 6 the transmission ratio of the transmission 36 is determined in order to ascertain its suitability for startup of the motor vehicle. Usually said check is successfully concluded when the transmission ratio of the transmission 36 indicates that first gear or reverse gear has been selected.
- a transmission ratio for second gear should also lead to a successful check because, particularly in the case of a road surface quality having low friction (e.g. snow-covered roads, black ice), second gear is frequently used for starting up.
- step 7 the current engine speed and the current engine torque are determined.
- the current engine speed is higher than the idling speed defined for the engine 40 , whether the current engine torque is higher than a defined engine torque during no-load operation, and whether the engine torque requested by the vehicle driver through actuation of the accelerator pedal 18 is equal to or greater than the current engine torque.
- the temperature sensor 42 detects the ambient temperature in order to take account of temperature-dependent influences upon the engine speed.
- the increase of the engine torque may also be determined in order to ascertain whether the increase is equal to or greater than zero.
- the engine torque increase may be used during the reduction of the immobilizing braking forces of the braking equipment 6 .
- step 8 the current engine torque is compared with a value, which reflects the engine torque defined for no-load operation and correction factors. During said comparison the current engine torque is checked to ascertain whether it is actually sufficient for start-up of the vehicle from the stationary state.
- the vehicle inclination sensor 46 determines whether the motor vehicle is situated on an ascending or descending gradient, wherein optionally by means of the weight sensor 50 the current vehicle weight and/or via the interface 52 the weight of a towed vehicle connected to the motor vehicle may be ascertained. On the basis of said information, the correction factors are calculated.
- step 9 it is determined whether the current engine torque or the engine torque requested by the vehicle driver is increasing.
- step 10 it is checked whether the clutch (not shown) of the motor vehicle is in a state which enables power transmission from the engine 40 to the wheels.
- a time-averaged increase of the engine torque is detected, wherein said check is concluded successfully when the average torque increase during a defined period of time (e.g. around 4 milliseconds) lies within a defined range, e.g. is between 1% and 60%.
- step 11 it is checked whether the inclination detected by the vehicle inclination sensor 46 has changed by a defined amount relative to the vehicle inclination existing after steps 4 to 7 (i.e. after recognition of the start-up request).
- the check in step 11 is successfully concluded when the inclination detected here has increased by 5% relative to the inclination of the motor vehicle upon recognition of the start-up request.
- step 11 instead of the inclination, the current change of inclination may be compared with changes of inclination in steps 4 to 7 .
- step 11 a “dipping” of the motor vehicle, which is typical of start-up, is determined.
- step 11 instead of replacing steps 8 , 9 and 10 , may be effected after said steps.
- step 12 further parameters/quantities may be acquired, which indicate whether the motor vehicle may or should actually be moved out of the stationary state.
- An obstacle to start-up of the motor vehicle is, for example, detection by the sensor device 22 of an actuation of the brake pedal 24 and/or of the brake pedal switch 26 .
- Data provided via the interface 54 may also reflect such operating states.
- the motor vehicle should not be started up if the engine management system, the anti-skid system or traction and stability control systems are not operating correctly, if one of the tyres has insufficient air pressure or no air pressure at all, if operating substances fall below the minimum quantities needed to operate the motor vehicle, and the like.
- the state of the sensors 12 for vehicle switches and of the safety device 14 may be checked, wherein a start-up is admissible when all doors are closed and the seat belt systems of the occupied seats are activated.
- start-up of the motor vehicle is desirable also with open vehicle doors when, for example, the driver door has been opened for manoeuvring into a parking space or bulky articles are transported with the boot lid open.
- the checking of seat belt systems may also lead to undesirable prevention of starting if, for example, an article is situated on a seat and activates the seat occupation recognition.
- step 12 A further factor to be considered in respect of step 12 is that the checks, which may be effected there, may be effected by other control and monitoring devices of the motor vehicle.
- step 13 via the interface 4 the braking equipment 6 is controlled by the control device 2 in such a way that the braking forces generated in the stationary state are reduced, advantageously in dependence upon parameters/quantities acquired in the preceding steps.
- steps 1 , 2 and 3 of FIG. 3 correspond to steps 1 , 2 and 3 according to FIG. 2.
- step 4 of FIG. 3 on the other hand, a clutch switch (not shown) is checked.
- Steps 5 , 6 and 7 for recognition of a start-up request of a vehicle driver correspond, here, to the steps 5 , 6 and 7 described in connection with a shift transmission.
- step 8 is implemented, which checks whether the current operating state of the engine 40 is actually capable of bringing the motor vehicle from a stationary state to a travelling state.
- step 8 of FIG. 3 corresponds to that of step 8 according to FIG. 2.
- step 11 is provided.
- step 12 may then be implemented.
- step 13 as described above, the braking equipment 6 is controlled so as to enable start-up of the motor vehicle, provided that the previously implemented steps have been successfully concluded.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
The present invention provides start-up assistance for a motor vehicle having braking equipment which, in the stationary state of the mo-or vehicle, automatically or under the control of a vehicle driver summons up braking forces needed for the stationary state. To assist start-up of the motor vehicle through a reduction of the braking forces generated in the stationary state, a start-up request of a vehicle driver is determined when defined conditions, which are to be met for start-up of the motor vehicle, exist in the stationary state. Once a start-up request has been recognized, the operating state of the motor vehicle is checked until an operating state required for start-up exists. Once such an operating state is reached, the braking equipment of the motor vehicle is controlled in such a way that its braking forces generated in the stationary state are reduced to allow start-up of the vehicle.
Description
- 1. Field of the Invention
- The present invention relates to a method and a system for assisting the start-up of a motor vehicle. In particular, the present invention relates to a method and a system which during start-up of a motor vehicle control braking equipment, which is activated in the stationary state of the motor vehicle, so as to assist and allow the start-up.
- 2. Background of the Invention
- The braking equipment or parts of the braking equipment of a motor vehicle are usually operated also in the stationary state of the motor vehicle in order to maintain the stationary state of the latter. Generally, for said purpose use is made of a parking brake, which is typically actuated by a vehicle driver, or of braking equipment which in a controlled manner generates braking forces required for the stationary state.
- To start up the motor vehicle, it is necessary to reduce the braking forces generated in the stationary state.
- 3. Prior Art
- In the case of conventional parking brakes (hand brakes) which are to be operated by a vehicle driver, it is necessary for the vehicle driver to take not only the measures required for starting up but also measures to release the parking brake.
- For assisting a vehicle driver during start-up of a motor vehicle it is known from DE-OS-24 20 252 to deactivate the parking brake of a motor vehicle in dependence upon a position of an accelerator pedal. In said case, the parking brake, which in the stationary state generates a permanently defined braking force, is deactivated to reduce the permanently defined braking force as soon as the accelerator pedal is actuated. This has the result that the parking brake is released even when an actuation of the accelerator pedal does not lead to an operating state of the motor vehicle which is necessary for start-up. This is the case, for example, when the vehicle is not started, the engine speed occasioned by the actuation of the accelerator pedal or the engine torque is insufficient to start the vehicle, and the like. Thus, said known parking brake may lead to an unwanted release or to a release of the parking brake which makes it necessary for the vehicle driver during start-up of the motor vehicle to take additional measures to avoid undesirable driving states.
- From DE 36 18 532 A1 start-up assistance for a motor vehicle on an ascending gradient is known. In said case, a brake system comprises a valve, which is disposed between the master brake cylinder and the wheel brake cylinders and which is closed in the stationary state to maintain a brake-actuating pressure and opened to cancel the brake-actuating pressure and allow start-up of the motor vehicle. When the motor vehicle is to be brought from the stationary state into a travelling state, the engine torque defined by a vehicle driver is checked to see whether it corresponds to a starting torque required for start-up. In said case, the required starting torque is determined in dependence upon a current angle of inclination of the vehicle on an ascending gradient and upon the vehicle weight. Said procedure has the drawback that the current engine torque, even when it corresponds to the required starting torque, does not provide any reliable indication about whether the motor vehicle is actually in a driving state required for start-up. This-is the case, for example, when the clutch is actuated or no gear is selected. When in such cases the required starting torque is reached, the brake system is nevertheless deactivated with the result that an undesirable movement of the motor vehicle may occur.
- In the case of said start-up assistance it is alternatively provided that torques acting upon driving wheels of the motor vehicle be detected. When torques acting upon the driving wheels are high enough to overcome the braking torques generated by the wheel brake cylinders and the backward rolling torque caused by an ascending gradient, the valve is opened to cancel the brake-actuating pressure generated in the stationary state. This has the drawback that, while the torques of the driving wheels needed to open the valve are sufficient to keep the vehicle stationary particularly on an ascending gradient, they are not high enough actually to bring the motor vehicle from the stationary state to a travelling state. A further drawback is that said procedure does not check whether the torques acting upon the driving wheels are generated by the engine or are attributable to other causes. Such situations where torques not generated by the engine act upon the driving wheels may arise, for example, when the motor vehicle situated on an ascending gradient is laden.
- A general drawback of said start-up assistance is that the reduction—occasioned by opening of the valve—of braking forces summoned up in the stationary state is effected independently of the manner in which the motor vehicle is to be moved out of the stationary state. This may lead to uncomfortable, jerky start-up phases, during which it may be necessary for the driver to take additional measures to achieve start-up of the motor vehicle in a desired manner.
- The object of the present invention is to provide a method and a system for assisting the start-up of a motor vehicle having braking equipment activated in the stationary state, which method and system assist and render more comfortable the transitions from a stationary to a travelling state, wherein the previously described drawbacks of prior art are overcome.
- To achieve said object, the invention provides a method of assisting the start-up of a motor vehicle, the braking equipment of which is activated in the stationary state in a controlled manner, automatically or by a vehicle driver and may be deactivated in a controllable manner without any activity on the part of the vehicle driver. In the method according to the invention parameters are determined, which characterize a motor vehicle operating state, in which the motor vehicle is to be moved from the stationary state. Determination of the so-called starting parameters is used to recognize a starting request, which is defined by a vehicle driver or, in the case of an automatic vehicle controller (“autopilot”), by a vehicle control system.
- Once a starting request has been recognized, current operating states of the motor vehicle are determined until an operating state is determined, which actually allows a transition from the stationary to a travelling state. In particular, during said process a check is made for the existence of an operating state, which is caused by an active connection between the vehicle engine and one or more driving wheels.
- The braking equipment and, in particular, parking brakes of the motor vehicle are subsequently controlled in such a way that the braking forces generated in the stationary state are reduced in order to allow the desired transition from the stationary state to a travelling state.
- Preferably parameters are defined, which define for the motor vehicle in the stationary state an operating state, which has to exist before the motor vehicle may be moved at all out of the stationary state. Prior to recognition of the starting request, parameters characterizing current operating states of the motor vehicle are acquired in the stationary state in order to check whether the defined initial operating state exists. If this is the case, the starting parameters are determined.
- For defining the initial operating state, use may be made of parameters which indicate whether an ignition system of the motor vehicle is switched on, i.e. the vehicle engine has been started or is in a state enabling it to be started e.g. through actuation of an accelerator pedal or under the control of a vehicle controller, and/or the velocity of the motor vehicle is zero, and/or the braking equipment has been activated in such a way that it generates the braking forces needed for the stationary state existing at said time.
- It is further provided that, as an initial operating state, an operating state of the motor vehicle is defined, in which a clutch or a clutch switch has been actuated. Generally, the actuation of the clutch is used for a motor vehicle having a conventional shift transmission, while the switching state of a clutch switch is taken as a basis for motor vehicles having automatic or semi-automatic transmissions.
- During determination of the starting parameters for recognizing the starting request, it is provided that a check is made to ascertain whether the accelerator pedal has been actuated, an accelerator switch, if provided, has been activated, movements of the accelerator pedal exist, the current rotational speed of the engine is higher than a rotational speed defined for idling of the engine, the desired engine torque, i.e. the engine torque defined in response to an actuation of the accelerator pedal, is higher than the current engine torque, the current engine torque is higher than an engine torque defined for no-load operation, and/or changes of the engine torque exist.
- The starting parameters are preferably determined until at least one of the starting parameters characterizes an operating state, which differs from an operating state of the motor vehicle in the stationary state. With regard to the previously described starting parameters it is, for example, possible to recognize a starting request when the accelerator pedal has been actuated, the current engine speed is higher than the idling speed, the engine torque defined in response to the starting request is higher than the current engine torque and the current engine torque is higher the no-load engine torque.
- To ascertain the existence of the operating state, in which the motor vehicle may actually be moved from the stationary state, it is provided that the current engine torque, changes of the engine torque and/or of the desired engine torque, and/or time-averaged changes of the engine torque are acquired. In said case, the current engine torque is compared with a combination (e.g. sum, product) of the defined no-load engine torque and a correction factor. The correction factor is used to take account of parameters, which may influence start-up phases for the motor vehicle, such as e.g. the vehicle weight. It may moreover be checked whether the engine torque and/or the desired engine torque are increasing. It may moreover be determined whether the current, time-averaged change of the engine torque during a defined period of time (e.g. 400 milliseconds) lies within a predefined range (e.g. 1%-60%).
- Alternatively or additionally, when determining the current operating states the inclination or changes of inclination of the motor vehicle may be acquired. If the current vehicle inclination has changed by a predetermined value (e.g. 5%) relative to the vehicle inclination in the stationary state or if changes of the vehicle inclination are detected, which do not occur in the stationary state, an operating state exists, which allows the motor vehicle to be actually movable out of the stationary state.
- The procedure for the previously described determination of current opening states is based on a recognition of a reaction of the engine to the biting of the clutch (i.e. change of gradient of the engine speed curve) with a simultaneous increase of the engine torque and/or a recognition of movements of the motor vehicle in response to forces transmitted from the engine to the driving wheels (“dipping” of the motor vehicle).
- The braking equipment is preferably activated to reduce the braking forces generated in the stationary state when the parameters required for the initial operating state, the parameters required for recognition of the starting request and/or the parameters for the operating state allowing a transition from the stationary state to a travelling state exist over suitably defined periods of time.
- On the basis of the quantities acquired for the initial operating state, the starting request and the start-up operating state it is possible to control the brake system so as to reduce the braking forces, which are provided in the stationary state, in dependence upon one or more of said parameters. In said manner the reduction of the braking forces is adapted to the respective operating state of the motor vehicle and/or to the respective recognized starting request.
- When controlling the braking equipment for leaving the stationary state it is further provided that the motor vehicle is controlled in such a manner that start-up takes place as jerk-free as possible and without increased strain on or damage of the braking equipment, in particular the brake linings. For controlling the operating states of the motor vehicle occurring during control of the braking equipment, it is possible to resort to already existing systems, such as an engine management system. The control of the motor vehicle may during the control of the braking equipment for leaving the stationary state take place in dependence upon an operating state of the braking equipment in the stationary state, the detected startup parameters, the detected current operating state in the state of start-up, and a current operating state during the control of the braking equipment.
- Preferably the engine speed and/or the engine torque are controlled during the control of the operating states of the motor vehicle during start-up. It is possible in this case that the engine speed and/or the engine torque is/are reduced at least for a short period of time during start-up if the braking equipment still generates braking forces preventing an actual starting of the motor vehicle. The engine speed and/or engine torque can be increased, for example in response to the chronological order of the effective braking forces while controlling the braking equipment, so that the stationary state can be left. In particular, engine speed and/or engine torque can be controlled in such a manner that an undesired movement of the motor vehicle (rolling away) is prevented during control of the braking equipment. Increase of the engine speed and/or engine torque may be effected abruptly, linearly, in steps or according to another function that effects a start-up comfortable to the driver and avoids increased strain on or damages of the brake linings.
- The invention further provides a system for ass sting the start-up of a motor vehicle, which is held in the stationary state by braking equipment activated in said stationary state. The system according to the invention comprises a control device as well as a plurality of detection devices (sensors) for acquiring parameters, which characterize operating states of the motor vehicle, and an interface for controlling the braking equipment, wherein the control device is operated using one of the previously described methods.
- In addition the invention provides a computer program product that comprises program code portions allowing it to carry out the above method steps.
- In the following description reference is made to the accompanying drawings, which show:
- FIG. 1 a diagrammatic view of a system according to the invention for assisting the start-up of a motor vehicle,
- FIG. 2 a flowchart of an embodiment of a method according to the invention for assisting startup, and
- FIG. 3 a flowchart of a further embodiment of a method according to the invention for assisting startup.
- The start-up
assistance system 1 illustrated in FIG. 1 may be a separately constructed device of a motor vehicle, use at least partially already existent components of further systems of the motor vehicle or be encompassed by a system which provides further control and check functions for the motor vehicle. - The start-up
assistance system 1 comprises acontrol device 2, which via aninterface 4 controlsbraking equipment 6 of a motor vehicle. For control of thebraking equipment 6, thecontrol device 2 by means of a plurality of devices, which are described below, detects the current operating state of the motor vehicle and on the basis of data supplied by said devices determines an operating state for the motor vehicle, into which operating state the motor vehicle is to be brought under the control of a vehicle driver. - A
sensor device 8 is connected to anignition system 10 of the motor vehicle, tosensors 12 for detecting open and closed positions of vehicle doors and to asafety device 14, which is used to recognize the occupation of vehicle seats and current operating states of protection devices for vehicle occupants (e.g. airbags, seat belt systems) - A
sensor device 16 for recognizing positions and/or movements of anaccelerator pedal 18 is connected to the latter and, if provided, to anaccelerator pedal switch 20, which checks whether the vehicle driver is contacting or actuating theaccelerator pedal 18. - In a comparable manner a
sensor device 22 is connected to abrake pedal 24 and, if provided, to abrake pedal switch 26 in order to determine positions and/or movements as well as actuation of the brake pedal 27. By means of a sensor device 28 a current actuating state of aclutch pedal 30 and optionally of aclutch pedal switch 32 is detected. - To ascertain whether a gear is selected and which gear is selected, a
sensor device 34 is connected to atransmission 36. Asensor device 38 is used to acquire parameters which characterize the current operating state of anengine 40. - The
control device 2 is further connected to atemperature sensor 42 for detecting the ambient temperature, avelocity sensor 44 for detecting the current vehicle velocity, avehicle inclination sensor 46 for detecting the current inclination of the motor vehicle in longitudinal direction of the latter,sensors 48 for detecting the rotational speeds of one or more vehicle wheels, and aweight sensor 50 for detecting a current vehicle weight. Thecontrol device 2 moreover via abrake sensor device 52 detects the current operating state of thebraking equipment 6. - Via an
interface 54 thecontrol device 2 receives data, which are provided by further components (not shown) of the motor vehicle and supply, in addition to the previously described performance quantities, further information about the state of the vehicle. Examples thereof are data, which characterize correct and/or defective operating states of a vehicle engine management system, an anti-skid system (ABS) and traction and stability control systems (e.g. ESP, ASR, ASD) and indicate the tyre air pressure of one or more tyres and available quantities of operating substances (e.g. gear oil, engine oil). It is further possible via theinterface 54 to detect whether the motor vehicle is connected to a towed vehicle (e.g. a caravan) and to detect parameters characterizing the current operating state of the towed vehicle. - The start-up
assistance system 1 is suitable for vehicles having conventional shift transmissions, automatic transmissions and semi-automatic transmissions. Given use of thesystem 1 in conjunction with an automatic or semiautomatic transmission, as opposed to use with a shift transmission, thesensor device 28 is connected to a clutch switch (not shown) instead of to theclutch pedal switch 32. Connection of thesensor device 28 to a clutch pedal is not possible in said cases. - Operation of the start-up
assistance system 1 in a motor vehicle having a conventional shift transmission is described with reference to the flowchart shown in FIG. 2. - As explained initially, in the stationary state of the motor vehicle the
braking equipment 6 independently and automatically generates braking forces which are needed to keep the motor vehicle in the stationary state. - Accordingly, upon start-up of the motor vehicle, i.e. upon a transition from the stationary state to a travelling state, the braking forces generated in the stationary state have to be reduced.
- In
step 1, it is checked whether thebraking equipment 6 is generating braking forces to keep the motor vehicle in the stationary state. If it is ascertained here that thebraking equipment 6 has not been activated, i.e. is not generating immobilizing braking forces, which is attributable e.g. to a defective operating state of thebraking equipment 6 or manual deactivation of thebraking equipment 6 by a vehicle driver, the steps described below for reducing braking forces generated by thebraking equipment 6 are not necessary. Accordingly, at this point the method (the program flow) for control of thesystem 1 is terminated. - The method likewise terminates if it is ascertained in
step 2 that theignition system 10 is not switched on, if instep 3 thevelocity sensor 44 detects a vehicle velocity, or if it is ascertained instep 4 that theclutch pedal 30 and/or, if provided, theclutch pedal switch 32 has not been actuated. - In
step 2 it is checked whether theignition system 10 is switched on. In said case, it may be checked whether theignition system 10 has effected a start of theengine 40, i.e. theengine 40 is running, Cr whether theignition system 10, e.g. because of a detected ignition key position, is in a state which allows starting of theengine 40. The last case of checking theignition system 10 is adequate particularly for motor vehicles, in which theengine 40 is automatically stopped in the stationary state and automatically started, e.g. through actuation of theaccelerator pedal 18, when the ignition key is in an appropriate position. - If it is ascertained in
steps ignition system 10 is switched on and the motor vehicle has zero velocity, a check is made instep 4 for the actuation of a clutch (not shown) necessary for start-up of a motor vehicle having a shift transmission. If said check is likewise successfully concluded, the basic preconditions for control of thebraking equipment 6 to assist start-up are met. In the steps described below, current operating states and operating states for the motor vehicle requested by the vehicle driver are determined in order to control thebraking equipment 6 accordingly during start-up of the motor vehicle. - In
step 5, the state of theaccelerator pedal 18 and, if provided, of theaccelerator pedal switch 20 is checked. If it is ascertained here that theaccelerator pedal 18 has been moved out of its neutral position (and, optionally, theaccelerator pedal switch 20 indicates an accelerator pedal operation), the control system moves on to step 6. It is further provided that instep 5 the nature of the movement of the accelerator pedal out of its neutral position, i.e. the speed at which the accelerator pedal is moved out of the neutral position, is determined. Detection of the accelerator pedal movement, which characterizes the manner in which the vehicle driver would like to start, may then be used to control the reduction of the braking forces generated by thebraking equipment 6 in the stationary state in a corresponding manner, provided further conditions described below are met. In the event of an unsuccessful check instep 5, the control system goes back tostep 1. - In
step 6 the transmission ratio of thetransmission 36 is determined in order to ascertain its suitability for startup of the motor vehicle. Usually said check is successfully concluded when the transmission ratio of thetransmission 36 indicates that first gear or reverse gear has been selected. Advantageously, a transmission ratio for second gear should also lead to a successful check because, particularly in the case of a road surface quality having low friction (e.g. snow-covered roads, black ice), second gear is frequently used for starting up. - In
step 7 the current engine speed and the current engine torque are determined. Here, it is checked whether the current engine speed is higher than the idling speed defined for theengine 40, whether the current engine torque is higher than a defined engine torque during no-load operation, and whether the engine torque requested by the vehicle driver through actuation of theaccelerator pedal 18 is equal to or greater than the current engine torque. - For the comparison of the current engine speed with the defined idling speed, it is advantageous if the
temperature sensor 42 detects the ambient temperature in order to take account of temperature-dependent influences upon the engine speed. Thus, in the event of low external temperatures which generally lead to an increased idling speed, it is possible for checking of the current engine speed to be effected accordingly. Here, in a comparable manner to step 5, the increase of the engine torque may also be determined in order to ascertain whether the increase is equal to or greater than zero. As with the detection of accelerator pedal movements, the engine torque increase may be used during the reduction of the immobilizing braking forces of thebraking equipment 6. - If the said three (four) conditions, which are necessary for recognizing the start-up request of the vehicle driver, are met, then in the following steps parameters/quantities characterizing the current operating state of the motor vehicle are checked.
- In
step 8 the current engine torque is compared with a value, which reflects the engine torque defined for no-load operation and correction factors. During said comparison the current engine torque is checked to ascertain whether it is actually sufficient for start-up of the vehicle from the stationary state. To said end, thevehicle inclination sensor 46 determines whether the motor vehicle is situated on an ascending or descending gradient, wherein optionally by means of theweight sensor 50 the current vehicle weight and/or via theinterface 52 the weight of a towed vehicle connected to the motor vehicle may be ascertained. On the basis of said information, the correction factors are calculated. - After a successful check in
step 8, instep 9 it is determined whether the current engine torque or the engine torque requested by the vehicle driver is increasing. - If this is the case, in
step 10 it is checked whether the clutch (not shown) of the motor vehicle is in a state which enables power transmission from theengine 40 to the wheels. For said purpose a time-averaged increase of the engine torque is detected, wherein said check is concluded successfully when the average torque increase during a defined period of time (e.g. around 4 milliseconds) lies within a defined range, e.g. is between 1% and 60%. - As an alternative to
steps step 11 it is checked whether the inclination detected by thevehicle inclination sensor 46 has changed by a defined amount relative to the vehicle inclination existing aftersteps 4 to 7 (i.e. after recognition of the start-up request). Thus, for example, the check instep 11 is successfully concluded when the inclination detected here has increased by 5% relative to the inclination of the motor vehicle upon recognition of the start-up request. - Alternatively in
step 11, instead of the inclination, the current change of inclination may be compared with changes of inclination insteps 4 to 7. - Whereas in
steps engine 40 to biting of the clutch, i.e. the gradient change of the engine speed curve, with a simultaneous increase of the engine torque is recognized, in step 11 a “dipping” of the motor vehicle, which is typical of start-up, is determined. As is indicated in FIG. 2 by the dashed lines,step 11, instead of replacingsteps - In an
optional step 12 further parameters/quantities may be acquired, which indicate whether the motor vehicle may or should actually be moved out of the stationary state. An obstacle to start-up of the motor vehicle is, for example, detection by thesensor device 22 of an actuation of thebrake pedal 24 and/or of thebrake pedal switch 26. Data provided via theinterface 54 may also reflect such operating states. Thus, for example, the motor vehicle should not be started up if the engine management system, the anti-skid system or traction and stability control systems are not operating correctly, if one of the tyres has insufficient air pressure or no air pressure at all, if operating substances fall below the minimum quantities needed to operate the motor vehicle, and the like. - Here, moreover, the state of the
sensors 12 for vehicle switches and of thesafety device 14 may be checked, wherein a start-up is admissible when all doors are closed and the seat belt systems of the occupied seats are activated. In said case, it should however be noted that start-up of the motor vehicle is desirable also with open vehicle doors when, for example, the driver door has been opened for manoeuvring into a parking space or bulky articles are transported with the boot lid open. The checking of seat belt systems may also lead to undesirable prevention of starting if, for example, an article is situated on a seat and activates the seat occupation recognition. - A further factor to be considered in respect of
step 12 is that the checks, which may be effected there, may be effected by other control and monitoring devices of the motor vehicle. - Once
steps 1 to 12 have been successfully completed in one of the described sequences, instep 13 via theinterface 4 thebraking equipment 6 is controlled by thecontrol device 2 in such a way that the braking forces generated in the stationary state are reduced, advantageously in dependence upon parameters/quantities acquired in the preceding steps. - Operation of the start-up
control system 1 in the case of an automatic or semi-automatic transmission is described with reference to FIG. 3. - Of the steps used to check the basic requirements for operation of the
system 1, steps 1, 2 and 3 of FIG. 3 correspond tosteps step 4 of FIG. 3, on the other hand, a clutch switch (not shown) is checked. -
Steps steps - Because of the mode of operation of an automatic or semiautomatic transmission, in said cases steps9 and 10 according to FIG. 2 are omitted from control of the
system 1. Consequently, during operation of thesystem 1 according to FIG. 3step 8 is implemented, which checks whether the current operating state of theengine 40 is actually capable of bringing the motor vehicle from a stationary state to a travelling state. In said case, the implementation ofstep 8 of FIG. 3 corresponds to that ofstep 8 according to FIG. 2. - The reason for said procedure is that, in the case of an automatic or semi-automatic transmission, a transfer function is awaited, which describes the relationship between positions and/or movements of the accelerator pedal and the driving wheels. Said transfer function is achieved when, according to
step 8, the engine torque required for start-up of the motor vehicle has been reached. - Here too, in a comparable manner to operation of the
system 1 according to FIG. 2, optional or additional implementation of the previously describedstep 11 is provided. - The previously described
optional step 12 may then be implemented. Then instep 13, as described above, thebraking equipment 6 is controlled so as to enable start-up of the motor vehicle, provided that the previously implemented steps have been successfully concluded.
Claims (16)
1. Method of assisting the start-up of a motor vehicle having a braking equipment (6) which is activated in the stationary state, comprising the following steps:
determination of starting parameters characterizing an operating state of the motor vehicle in which the motor vehicle is to be brought from a stationary state into a traveling state;
determination of current operating states of the motor vehicle until an operating state is determined which is occasioned by an active connection between an engine (40) and driving wheels of the motor vehicle, and
control of braking equipment (6) which is activated in the stationary state so as to reduce the braking forces generated in the stationary state in order to allow startup of the motor vehicle,
characterized in that
the determination of actual operating states is effected until an operating state is determined in which a current inclination of the motor vehicle has varied by a defined value relative to an inclination of the motor vehicle in the stationary state.
2. Method according to claim 1 , wherein
the determination of current operating states is effected until an operating state is determined in which a current inclination change of the motor vehicle reaches a predetermined value.
3. Method according to claim 1 or 2, comprising the following steps:
definition, for the stationary state, of an initial operating state which has to exist prior to determination of the starting parameters, and
determination of current operating states of the motor vehicle in the stationary state until an operating state is determined which corresponds to the initial operating state.
4. Method according to claim 3 , wherein
when defining the initial operating state, an operating state is defined in which an ignition system (10) is activated and/or the vehicle velocity equals zero and/or the braking equipment (6) is generating braking forces.
5. Method according to claim 3 or 4, wherein
when defining the initial operating state an operating state is defined in which a clutch pedal (30) and/or a clutch pedal switch (32) and/or a clutch switch has/have been operated.
6. Method according to one of the preceding claims, wherein
when determining the starting parameters at least one of the parameters is determined which indicate that an accelerator pedal (18) has been actuated and/or a current rotation speed of the engine (40) is higher than a defined rotational speed of the engine (40) during no-load operation, and/or a requested engine torque is higher than the current engine torque, and/or the current engine torque is higher than an idling torque defined for no-load operation of the engine (40).
7. Method according to one of the preceding claims, wherein
when determining the starting parameters at least one of the parameters is determined which indicate that an accelerator pedal switch (20) has been actuated and/or the accelerator pedal has been dynamically actuated, and/or a current change of the engine torque is greater than zero.
8. Method according to one of the preceding claims, wherein
determination of the starting parameters is effected until at least one of the starting parameters characterizes an operating state which differs from the operating state of the motor vehicle in the stationary state.
9. Method according to one of the preceding claims, wherein
when determining current operating states a current engine torque and/or a current change of the engine torque and/or a change of a requested engine torque and/or a time-averaged change of a current engine torque is/are determined.
10. Method according to claim 9 , wherein
the determination of operating states is effected until the current engine torque is higher than a combination of an engine torque, which is defined for no-load operation of the engine (40), and a correction factor, and/or the current change of the engine torque and/or the current change of the requested engine torque is greater than zero, and/or the current time-averaged change of the engine torque during a defined period of time lies within a defined range.
11. Method according to one of the preceding claims, wherein
control of the braking equipment (6) is effected in response to an operating state of the braking equipment (6) in the stationary state, and/or the determined starting parameters, and/or the determined current operating state, and/or a current operating state during control of the braking equipment (6).
12. Method according to one of the preceding claims, wherein
during control of the braking equipment (6) the current operating state of the motor vehicle is controlled in response to an operating state of the braking equipment (6) in the stationary state, and/or the detected startup parameters, and/or the detected current operating state, and/or a current operating state when controlling the braking equipment (6).
13. Method according to claim 12 , wherein
during control of the braking equipment (6) a current speed and/or a current torque of the engine (40) is/are controlled.
14. System for assisting the start-up of a motor vehicle having a braking equipment (6) that is activated in the stationary state, comprising
a control device (2) and
detection devices (8, 16, 22, 28, 34, 38, 42, 44, 46, 48, 54) for acquiring parameters characterizing operating states of the motor vehicle, and an interface (4) for control of the braking equipment (6), the control device (2) being designed to be operated in accordance with one of the methods according to claims 1 to 13 .
15. Computer program product having:
program code portions for carrying out the steps according to one of patent claims 1 to 14 .
16. Computer program product according to claim 15 , stored on a computer-readable recording medium or in a computer-readable recording device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/249,729 US7338137B2 (en) | 2000-12-18 | 2005-10-13 | Method and system for assisting the driveaway of a motor vehicle |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10063061.8 | 2000-12-18 | ||
DE10063061A DE10063061A1 (en) | 2000-12-18 | 2000-12-18 | Method and system for starting support of a motor vehicle |
PCT/EP2001/014947 WO2002049895A1 (en) | 2000-12-18 | 2001-12-18 | Method and system for assistance in starting a motor vehicle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/014947 Continuation WO2002049895A1 (en) | 2000-12-18 | 2001-12-18 | Method and system for assistance in starting a motor vehicle |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/249,729 Continuation-In-Part US7338137B2 (en) | 2000-12-18 | 2005-10-13 | Method and system for assisting the driveaway of a motor vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030214186A1 true US20030214186A1 (en) | 2003-11-20 |
Family
ID=7667639
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/464,283 Abandoned US20030214186A1 (en) | 2000-12-18 | 2003-06-18 | Method and system for assisting the start-up of a motor vehicle |
US11/249,729 Expired - Lifetime US7338137B2 (en) | 2000-12-18 | 2005-10-13 | Method and system for assisting the driveaway of a motor vehicle |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/249,729 Expired - Lifetime US7338137B2 (en) | 2000-12-18 | 2005-10-13 | Method and system for assisting the driveaway of a motor vehicle |
Country Status (7)
Country | Link |
---|---|
US (2) | US20030214186A1 (en) |
EP (1) | EP1343667B1 (en) |
AT (1) | ATE421451T1 (en) |
AU (1) | AU2002217129A1 (en) |
DE (2) | DE10063061A1 (en) |
ES (1) | ES2317871T3 (en) |
WO (1) | WO2002049895A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040212247A1 (en) * | 2001-11-20 | 2004-10-28 | Franz-Josef Endres | Method and system for controlling braking equipment |
US20050017580A1 (en) * | 2003-07-23 | 2005-01-27 | Ford Global Technologies, Llc. | Hill holding brake system for hybrid electric vehicles |
US20050246081A1 (en) * | 2004-04-10 | 2005-11-03 | Christophe Bonnet | Method and system to prevent unintended rolling of a vehicle |
US20060145533A1 (en) * | 2002-11-09 | 2006-07-06 | Karsten Braeuer | Method and device for controlling at least one wheel-brake unit of a vehicle |
US20060224277A1 (en) * | 2003-02-15 | 2006-10-05 | Daimlerchrysler Ag | Method and device for identifying the initiation of the starting process carried out by a driver of a vehicle |
US20100138129A1 (en) * | 2007-04-19 | 2010-06-03 | Renault S.A.S. | Hill start assistance method for motor vehicles |
US20110065548A1 (en) * | 2009-09-17 | 2011-03-17 | Hai Yu | Brake Assisted Vehicle Engine Restart on a Road Grade |
US20150031504A1 (en) * | 2012-01-09 | 2015-01-29 | Jaguar Land Rover Limited | Vehicle rollback control apparatus and method |
US20170080946A1 (en) * | 2014-05-21 | 2017-03-23 | Renault S.A.S | Method for controlling a power train of a vehicle, and corresponding device and vehicle |
US20220185245A1 (en) * | 2020-12-14 | 2022-06-16 | Ford Global Technologies, Llc | Hill-hold assist |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3958542B2 (en) * | 2001-09-12 | 2007-08-15 | 日野自動車株式会社 | Slope start assist device |
DE10200783C2 (en) * | 2002-01-11 | 2003-12-24 | Audi Ag | Anfahrhilfesteuerungsvorrichtung |
DE10243143B4 (en) * | 2002-09-17 | 2007-12-27 | Siemens Ag | Method and system for starting assistance for a motor vehicle |
DE10248813A1 (en) * | 2002-10-19 | 2004-06-09 | Wabco Gmbh & Co. Ohg | Method for controlling a roller lock for a vehicle |
DE10361280A1 (en) * | 2003-12-24 | 2005-07-28 | Daimlerchrysler Ag | Motor vehicle has controllable accident safety units with detection and evaluation based on weight and including any trailer |
DE102005011032B4 (en) * | 2004-03-16 | 2021-05-27 | Continental Teves Ag & Co. Ohg | Method for recognizing the time of engagement and arrangement for supporting a vehicle operator when starting off |
DE112005000624A5 (en) | 2004-03-23 | 2008-07-03 | Continental Teves Ag & Co. Ohg | System for assisting a driver |
DE102005015062B4 (en) * | 2004-03-31 | 2020-09-03 | Continental Teves Ag & Co. Ohg | Method for determining a vehicle standstill and device for assisting in starting a vehicle uphill as well as starting assistant |
DE102005024834B3 (en) * | 2005-05-31 | 2007-01-04 | Lucas Automotive Gmbh | Method and system for controlling a vehicle parking brake during a stop |
ITBO20060424A1 (en) * | 2006-05-31 | 2007-12-01 | Ferrari Spa | STEERING SYSTEM FOR A CAR |
DE102007036578B4 (en) | 2006-08-10 | 2023-05-25 | Continental Automotive Technologies GmbH | Method and device for more robust skid detection of vehicles |
DE102007015123A1 (en) * | 2007-03-29 | 2008-10-02 | Bayerische Motoren Werke Aktiengesellschaft | Brake regulation system for motor vehicles, has brake control unit, which is formed such that drive moment threshold is increased in case of re-start carried out manually or automatically during activation of parking brake function |
DE102007015889B4 (en) * | 2007-04-02 | 2023-10-05 | Bayerische Motoren Werke Aktiengesellschaft | Brake control system for motor vehicles |
FR2930219B1 (en) * | 2008-04-18 | 2010-04-23 | Renault Sas | METHOD AND SYSTEM FOR DIAGNOSING THE OPERATING STATE OF AN ASSISTED STARTING MODE OF A MOTOR VEHICLE |
DE102009023448A1 (en) | 2009-05-30 | 2009-12-31 | Daimler Ag | Driver assisting method for e.g. motor vehicle, involves determining reaction variable based on influencing variable, and adjusting default value of influencing variable depending on reaction variable |
DE102012019036A1 (en) * | 2012-09-27 | 2014-03-27 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Method for controlling electro-mechanical clutch system in motor vehicle, involves controlling engine torque by setpoint torque, and actuator to lowest possible difference between target and engine torques independent of clutch travel |
DE102017000954A1 (en) * | 2017-02-02 | 2018-08-02 | Lucas Automotive Gmbh | A system, method, computer program and controller for preventing a vehicle from rolling away |
CN112477863B (en) * | 2019-09-12 | 2022-05-20 | 宇通客车股份有限公司 | Vehicle, torque output method and device |
DE102019135052B3 (en) * | 2019-12-19 | 2021-03-04 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method and device for processing an audio signal for an engine in a motor vehicle |
DE102021208997A1 (en) | 2021-08-17 | 2023-02-23 | Zf Friedrichshafen Ag | Method for operating a driver assistance system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4717207A (en) * | 1985-06-03 | 1988-01-05 | Nissan Motor Co., Ltd. | Booster unit for moving a vehicle on a slope and method of controlling the same |
US5916062A (en) * | 1996-07-31 | 1999-06-29 | Bayerische Motoren Werke Aktiengesellschaft | Process and system for aiding a starting movement of a vehicle |
US20020033642A1 (en) * | 2000-08-23 | 2002-03-21 | Eberhard Holl | Method and device for controlling wheel brakes of a motor vehicle |
US6530450B2 (en) * | 2000-08-09 | 2003-03-11 | Deluca Michael | Fault reactive securely stopped vehicle method and apparatus |
US20030214185A1 (en) * | 2000-12-18 | 2003-11-20 | Ralf Kinder | Method and system for controlling brake equipment which can be activated when a motor vehicle is stationary |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2420252A1 (en) | 1974-04-26 | 1975-10-30 | Josef Hum | Automatically operating parking brake - which operates when accelerator pedal is released from contact with servo switch |
DE19849799B4 (en) * | 1998-10-29 | 2013-09-12 | Volkswagen Ag | Method for setting a brake pressure in a motor vehicle |
DE19917437B4 (en) * | 1999-04-17 | 2007-09-20 | Robert Bosch Gmbh | Method and device for controlling the brake system of a vehicle |
DE19925249B4 (en) * | 1999-06-01 | 2019-11-14 | Continental Teves Ag & Co. Ohg | Method for controlling a brake system to support a starting process in a motor vehicle |
-
2000
- 2000-12-18 DE DE10063061A patent/DE10063061A1/en not_active Ceased
-
2001
- 2001-12-18 WO PCT/EP2001/014947 patent/WO2002049895A1/en not_active Application Discontinuation
- 2001-12-18 AU AU2002217129A patent/AU2002217129A1/en not_active Abandoned
- 2001-12-18 DE DE50114679T patent/DE50114679D1/en not_active Expired - Lifetime
- 2001-12-18 ES ES01271299T patent/ES2317871T3/en not_active Expired - Lifetime
- 2001-12-18 AT AT01271299T patent/ATE421451T1/en not_active IP Right Cessation
- 2001-12-18 EP EP01271299A patent/EP1343667B1/en not_active Expired - Lifetime
-
2003
- 2003-06-18 US US10/464,283 patent/US20030214186A1/en not_active Abandoned
-
2005
- 2005-10-13 US US11/249,729 patent/US7338137B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4717207A (en) * | 1985-06-03 | 1988-01-05 | Nissan Motor Co., Ltd. | Booster unit for moving a vehicle on a slope and method of controlling the same |
US5916062A (en) * | 1996-07-31 | 1999-06-29 | Bayerische Motoren Werke Aktiengesellschaft | Process and system for aiding a starting movement of a vehicle |
US6530450B2 (en) * | 2000-08-09 | 2003-03-11 | Deluca Michael | Fault reactive securely stopped vehicle method and apparatus |
US20020033642A1 (en) * | 2000-08-23 | 2002-03-21 | Eberhard Holl | Method and device for controlling wheel brakes of a motor vehicle |
US20030214185A1 (en) * | 2000-12-18 | 2003-11-20 | Ralf Kinder | Method and system for controlling brake equipment which can be activated when a motor vehicle is stationary |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7092809B2 (en) | 2001-11-20 | 2006-08-15 | Lucas Automotive Gmbh | Method and system for controlling braking equipment |
US20040212247A1 (en) * | 2001-11-20 | 2004-10-28 | Franz-Josef Endres | Method and system for controlling braking equipment |
US20060145533A1 (en) * | 2002-11-09 | 2006-07-06 | Karsten Braeuer | Method and device for controlling at least one wheel-brake unit of a vehicle |
US20060224277A1 (en) * | 2003-02-15 | 2006-10-05 | Daimlerchrysler Ag | Method and device for identifying the initiation of the starting process carried out by a driver of a vehicle |
US7480545B2 (en) | 2003-02-15 | 2009-01-20 | Daimler Ag | Method and device for detecting the initiation of the driving off process by a driver of a vehicle |
US8396618B2 (en) * | 2003-07-23 | 2013-03-12 | Ford Global Technologies, Llc | System and method for controlling drivetrain torque and hill holding of a hybrid vehicle |
US20050017580A1 (en) * | 2003-07-23 | 2005-01-27 | Ford Global Technologies, Llc. | Hill holding brake system for hybrid electric vehicles |
US20050143877A1 (en) * | 2003-07-23 | 2005-06-30 | Ford Global Technologies, Llc | A system and method for controlling drivetrain torque and hill holding of a hybrid vehicle |
US20050246081A1 (en) * | 2004-04-10 | 2005-11-03 | Christophe Bonnet | Method and system to prevent unintended rolling of a vehicle |
US20100138129A1 (en) * | 2007-04-19 | 2010-06-03 | Renault S.A.S. | Hill start assistance method for motor vehicles |
US8412436B2 (en) | 2007-04-19 | 2013-04-02 | Renault S.A.S. | Hill start assistance method for motor vehicles |
CN102019924A (en) * | 2009-09-17 | 2011-04-20 | 福特全球技术公司 | Brake assisted vehicle engine restart on a road grade |
US20110065548A1 (en) * | 2009-09-17 | 2011-03-17 | Hai Yu | Brake Assisted Vehicle Engine Restart on a Road Grade |
US20160280227A1 (en) * | 2009-09-17 | 2016-09-29 | Ford Global Technologies, Llc | Brake assisted vehicle engine restart on a road grade |
US9457811B2 (en) * | 2009-09-17 | 2016-10-04 | Ford Global Technologies, Llc | Brake assisted vehicle engine restart on a road grade |
US10005461B2 (en) * | 2009-09-17 | 2018-06-26 | Ford Global Technologies, Llc | Brake assisted vehicle engine restart on a road grade |
US20150031504A1 (en) * | 2012-01-09 | 2015-01-29 | Jaguar Land Rover Limited | Vehicle rollback control apparatus and method |
US9522658B2 (en) * | 2012-01-09 | 2016-12-20 | Jaguar Land Rover Limited | Vehicle rollback control apparatus and method |
US20170080946A1 (en) * | 2014-05-21 | 2017-03-23 | Renault S.A.S | Method for controlling a power train of a vehicle, and corresponding device and vehicle |
US10023191B2 (en) * | 2014-05-21 | 2018-07-17 | Renault S.A.S. | Method for controlling a power train of a vehicle, and corresponding device and vehicle |
US20220185245A1 (en) * | 2020-12-14 | 2022-06-16 | Ford Global Technologies, Llc | Hill-hold assist |
Also Published As
Publication number | Publication date |
---|---|
DE50114679D1 (en) | 2009-03-12 |
EP1343667B1 (en) | 2009-01-21 |
EP1343667A1 (en) | 2003-09-17 |
ES2317871T3 (en) | 2009-05-01 |
WO2002049895A1 (en) | 2002-06-27 |
AU2002217129A1 (en) | 2002-07-01 |
US20060131957A1 (en) | 2006-06-22 |
DE10063061A1 (en) | 2002-06-20 |
US7338137B2 (en) | 2008-03-04 |
ATE421451T1 (en) | 2009-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7338137B2 (en) | Method and system for assisting the driveaway of a motor vehicle | |
KR100894336B1 (en) | Method for controlling brake equipment which can be activated when a motor vehicle is stationary | |
US5924508A (en) | Process for carrying out an automatic braking operation | |
US8406952B2 (en) | Electric parking brake control system and electric parking brake control method | |
US7845739B2 (en) | Brake regulation system for motor vehicles | |
CN109017794B (en) | Ramp auxiliary system based on electronic hydraulic braking and control method thereof | |
US6554744B2 (en) | Apparatus and method of controlling the road speed of a motor vehicle | |
US6994407B2 (en) | Method and device for controlling the braking equipment of a motor vehicle | |
US10906541B2 (en) | Method for braking a vehicle on a slope | |
US9789863B2 (en) | Method and system for controlling a motor vehicle parking brake during a stop | |
US9434360B2 (en) | Method and device for preventing a stationary vehicle from rolling away | |
US9028015B2 (en) | Method for operation of a braking system for a motor vehicle | |
US20100262349A1 (en) | Hillholder assistance system having a variable condition for releasing the brake | |
US7092809B2 (en) | Method and system for controlling braking equipment | |
JP2014511803A (en) | A method for automatically keeping a car stationary. | |
US10173682B2 (en) | P-range engagement method of vehicle and control device thereof | |
KR101688095B1 (en) | A system of preventing vehilce roll-back and method thereof | |
US20080147286A1 (en) | Control System for the Parking Brake of a Brake System in a Motor Vehicle | |
JPH0542862A (en) | Inter-vehicle distance control device | |
WO2008115132A1 (en) | Brake control system and method of controlling a braking system | |
JP4393602B2 (en) | Parking brake safety device | |
JPH07165036A (en) | On-slope start assisting device | |
JP2009537395A (en) | Hill hold brake function with built-in slip test | |
JP2900887B2 (en) | Valve check control device for antilock brake mechanism | |
KR100471809B1 (en) | Locking check device and the method for retarder in Vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LUCAS AUTOMOTIVE GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KINDER, RALF;KLAPPER, GERHARD;SHOKOUFANDEH, REZA;AND OTHERS;REEL/FRAME:014211/0252;SIGNING DATES FROM 20030513 TO 20030522 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |