US20030183808A1 - Corrosion inhibitor - Google Patents
Corrosion inhibitor Download PDFInfo
- Publication number
- US20030183808A1 US20030183808A1 US10/393,465 US39346503A US2003183808A1 US 20030183808 A1 US20030183808 A1 US 20030183808A1 US 39346503 A US39346503 A US 39346503A US 2003183808 A1 US2003183808 A1 US 2003183808A1
- Authority
- US
- United States
- Prior art keywords
- corrosion inhibitor
- solvent
- group
- formate
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *N(*)[Y] Chemical compound *N(*)[Y] 0.000 description 3
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/04—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/54—Compositions for in situ inhibition of corrosion in boreholes or wells
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
- C23F11/10—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
- C23F11/14—Nitrogen-containing compounds
Definitions
- the invention relates to methods and compositions for inhibiting corrosion of metals, and, in one aspect, more particularly relates to methods and compositions for inhibiting corrosion of metals in acid environments where the acid contains halogen, such as hydrochloric acid, hydrofluoric acid, and the like.
- the vast majority of production and workover conduits comprised carbon steels. These steels were utilized either temporarily or permanently in the well, and treatment and/or stimulation fluids were introduced through them into the well.
- the production and workover conduits for use in the wells have been made of high alloy steels.
- the high alloy steels include chrome steels, duplex steels, stainless steels, martensitic alloy steels, ferritic alloy steels, austenitic stainless steels, precipitation-hardened stainless steels, high nickel content steels, and the like.
- R is a radical selected from the group consisting of abietyl, hydroabietyl, and dehydroabietyl
- Y is the group CH 2 R 1
- X is a radical selected from the group consisting of hydrogen and CH 2 R 1
- R 1 represents alpha ketonyl groups.
- U.S. Pat. No. 3,077,454 describes compositions for inhibiting corrosion made by combining certain active hydrogen containing compounds with organic ketones having at least one hydrogen atom on the carbon atom alpha to the carbonyl group and an aldehyde selected from the group consisting of aliphatic aldehydes containing from 1 to 16 carbons, and aromatic aldehydes of the benzene series, having no functional groups other than aldehyde groups, and a fatty acid.
- Still another object of the invention is to provide a halogen acid corrosion inhibitor that has improved performance as compared with conventional corrosion inhibitors.
- a corrosion inhibitor having at least one corrosion inhibitor base selected from the group consisting of Mannich reaction products and nitrogen-substituted heterocycles of 6 to 10 members quaternized with at least one alkyl or aryl halide, and at least one first solvent selected from the group consisting of C 1 acids and ester derivatives thereof and salts thereof. At least one surfactant may be optionally present. An additional, second solvent may also be optionally present.
- the invention also concerns methods of inhibiting the corrosion of metals in the presence of liquids containing at least one halogen acid and the corrosion inhibitor of this invention.
- the corrosion of the metal is inhibited as compared with a liquid otherwise identical but absent the corrosion inhibitor of this invention.
- the invention includes fluids for contacting metal surfaces that have had their corrosion inhibition improved by the corrosion inhibitor of this invention.
- the single FIGURE is a chart comparing the corrosion loss in lbs/ft 2 (kg/m 2 ) for a corrosion inhibitor of this invention with a conventional corrosion inhibitor as a function of temperature.
- useful halogen acid corrosion inhibitor may be provided by the use of at least one corrosion inhibitor base selected from the group consisting a Mannich reaction product and a nitrogen-substituted heterocycle of 6 to 10 members quaternized with alkyl halides, at least one solvent, and optionally at least one surfactant.
- the solvent is a C 1 acid or derivative thereof, particularly ester derivatives thereof.
- the Mannich reaction products may include, but are not necessarily limited to, the materials of U.S. Pat. Nos. 3,077,454; 5,366,643; and 5,591,381.
- the products of U.S. Pat. No. 3,077,454 can be made with approximately a 50% yield, and they require the presence of a fatty acid, such as a tall oil fatty acid, in one non-limiting embodiment.
- a fatty acid such as a tall oil fatty acid
- the nitrogen-substituted heterocycles of 6 to 10 members quaternized with alkyl halides are also commonly referred to as coal tar based quats. These materials are typically quinolines, pyridines and the like quaternized with alkyl and/or aryl halides, where the alkyl or aryl group may range from methyl to benzyl (C 1 to C 6 ). Naphthyl quinoline quats are included in this group. Further information may be found with reference to U.S. Pat. No. 2,814,593, incorporated by reference herein, which discusses benzyl chloride quats of quinoline.
- the surfactant suitable for use in the method of this invention may be, in one non-limiting embodiment, an esterified alcohol that has been alkoxylated.
- the alkoxylation is achieved by reaction with ethylene oxide.
- Propylene oxide and butylene oxide may also be used, as well as combinations thereof, such as a combination of ethylene oxide and propylene oxide.
- Suitable alcohols have from about 6 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and may have more than one hydroxyl group, in one non-limiting embodiment from 1 to 6 hydroxyl groups, and in another non-limiting embodiment from 1 to 3 hydroxyl groups.
- Particular alcohols expected to be useful in preparing the surfactants for the compositions of this invention include, but are not necessarily limited to, sorbitol, glycerol, ethylene glycol, alkylphenols, and mixtures thereof.
- the surfactant is made by esterifying sorbitol with one mole of tall oil and then reacting the product thereof with ethylene oxide until the desired properties are obtained.
- the desired properties include, but are not necessarily limited to, facilitating, improving and assisting the corrosion inhibitor base and the solvent in contacting any metal in contact with the fluid being inhibited.
- a suitable amount of ethylene oxide may range from about 3 to about 60 moles, preferably from about 12 to about 40 moles in another non-limiting embodiment of the invention, and from about 3 to about 30 mules in yet another non-limiting embodiment.
- formic acid will be the solvent of choice, although other materials are expected to function equivalently. These materials include, but are not necessarily limited to ester derivatives of C 1 acids, and salts of these acids or ester derivatives.
- the solvent may include, but is not necessarily limited to, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formates and mixtures thereof.
- inventive solvents unexpectedly and surprisingly give better results than conventional solvents such as unmodified or unreacted alcohols, which in one embodiment of the invention are preferably absent.
- it may be desirable in some embodiments to use conventional solvents as a second solvent such as low carbon number alcohols, e.g.
- IPA isopropyl alcohol
- these conventional solvents may be optionally present in the corrosion inhibitor in proportions from about 0 to about 50 volume % in one non-limiting embodiment, and from 0 to about 30 volume % in an alternate non-limiting embodiment.
- the proportions of the various components in the corrosion inhibitor composition may range from about 10 to about 60 vol. % corrosion inhibitor base, from about 5 to about 50 vol. % surfactant, and from about 3 to about 50 vol. % solvent.
- the corrosion inhibitor composition may range from about 10 to about 50 vol. % corrosion inhibitor base, from about 10 to about 50 vol. % surfactant, and from about 10 to about 40 vol. % solvent.
- the corrosion inhibitor includes about 20% to 40% corrosion inhibitor base, about 20% to 40% surfactant, and about 10% to 40% solvent.
- halogen acid environments where the invention is useful encompass acid environments where the acid includes, but is not limited to, hydrochloric acid, hydrofluoric acid, formic acid, acetic acid, and mixtures thereof.
- the composition of this invention has been found to have excellent stability, thus avoiding degradation over time. These corrosion inhibitors will be cost effective and provide excellent corrosion control.
- the acid corrosion inhibitor may be combined with any suitable acidic injection medium, including but not necessarily limited to, such media as downhole acidizing fluids and compositions; 15% and 28% concentrations of HCl, 15-5% acetic acid/HCl blend. It aids corrosion control at elevated temperatures and pressures with the inventive inhibitor.
- acetylenic compound such as acetylenic alcohols; cinnamaldehyde; a nitrogen compound, such as a quaternary ammonium compound; solvents such as alcohols or ketones; and aromatic hydrocarbons or mixtures thereof, as are known to those skilled in the art.
- any acetylenic compound such as acetylenic alcohols; cinnamaldehyde; a nitrogen compound, such as a quaternary ammonium compound
- solvents such as alcohols or ketones
- aromatic hydrocarbons or mixtures thereof as are known to those skilled in the art.
- teachings from acid corrosion inhibitors as made and described in U.S. Pat. Nos. 3,514,410; 3,404,094; 3,107,221; 2,993,863; and 3,382,179; may be utilized in accordance with the present invention. All of these patents are hereby incorporated by reference.
- the corrosion inhibitor contains at least one acetylenic alcohol having from 3 to 10 carbon atoms.
- compounds such as HAP (high alkyl pyridines), Reilly 10-20 base and alkyl pyridines H3.
- Other nitrogen compounds include the crude quinolines having a variety of substituents.
- the corrosion inhibitor may also contain a number of other constituents, such as fatty alcohol adducts, nonyl phenol adducts and tallow amine adducts, tall oil adducts, such as surfactants. Oil wetting components, such as heavy aromatic solvents, may also be present.
- the corrosion inhibitor contains at least one saturated alcohol having from 1 to 5 carbon atoms, and at least one alkyl phenol or alkoxylated alkyl phenol having from 15 to 24 carbon atoms.
- the corrosion inhibitor has an absence of a source of molybdate ions. In yet another non-limiting embodiment of the invention, the corrosion inhibitor has an absence of cinnamaldehyde or substituted cinnamaldehyde.
- halogen acid corrosion inhibitor of this invention may be used with conventional corrosion inhibitors as described above and below, and in any application where a steel surface, such as stainless steel, high alloy or other steel, is exposed to an acid environment. While the specific implementation of this invention is described in the context of the oil patch, the invention may certainly find uses in other applications where it is desirable to reduce corrosion, such as chemical processes that necessarily require the contact of acids with conduits, fittings, and other equipment, such as industrial cleaning applications.
- a fluid is introduced through a high alloy steel member or conduit positioned within the well.
- the fluid is an acidic injection medium and includes an acid corrosion inhibitor.
- the invention also encompasses a method of treating a well for enhancement of production within a production zone by introduction into the steel conduit of the acid corrosion inhibitor composition of this invention.
- acetylenic compounds examples include propargyl alcohol (2-propyn-1-ol), hexynol, dimethyl hexynol, diethyl hexynediol, dimethyl hexynediol, ethyl octynol, dimethyl octynediol, methyl butynol, methyl pentynol, ethynyl cyclohexynol, 2-ethyl hexynol, phenyl butynol, and ditertiary acetylenic glycol.
- propargyl alcohol (2-propyn-1-ol
- hexynol dimethyl hexynol
- diethyl hexynediol dimethyl hexynediol
- ethyl octynol dimethyl octy
- acetylenic compounds which can be employed in accordance with the present invention include, but are not limited to, butynediol; 1-ethynylcyclohexanol; 3-methyl-1-nonyn-3-ol; 2-methyl-3-butyn-2-ol; also 1-propyn-3-ol; 1-butyn-3-ol; 1-pentyn-3-ol; 1-heptyn-3-ol; 1-octyn-3-ol; 1-nonyn-3-ol; 1-decyn-3-ol; 1-(2,4,6-trimethyl-3-yclohexenyl)-3-propyne1-ol; and in general acetylenic compounds having the general formula:
- R 1 is —H, —OH, or an alkyl radical
- R 2 is —H, or an alkyl, phenyl, substituted phenyl or hydroxyalkyl radical
- R 3 is —H or an alkyl, phenyl, substituted phenyl or hydroxyalkyl radical.
- the nitrogen or ammonia compounds that can be optionally employed in accordance with the present invention may include, but are not limited to, those amines having from 1 to 24 carbon atoms in each alkyl moiety as well as the six-membered heterocyclic amines, for example, alkyl pyridines, crude quinolines and mixtures thereof.
- alkyl pyridines having from one to five nuclear alkyl substituents per pyridine moiety, such alkyl substituents having from one to 12 carbon atoms, and preferably those having an average of six carbon atoms per pyridine moiety, such as a mixture of high boiling tertiary-nitrogen-heterocyclic
- the fluid which is contemplated for use in one aspect of the present invention for treatment of a subterranean well for enhancement of production will be aqueous based; that is, it will be formed using sea water available at the well location, a brine, tap water or similar fluid.
- the amount of fluid used for the treatment will vary, of course, from well to well, and will be based upon the particular application at hand, and the amount thereof is not particularly critical to the method of the present invention. It will be appreciated that one of ordinary skill in the art of corrosion inhibition will be able to adapt the teachings of this invention to applications outside the realm of oil and gas recovery, such as the area of chemical processing, with only routine experimentation.
- the expected treatment fluid in an oil production environment is expected to have as a primary additive an acidic injection medium, which may be any compatible acid, including but not limited to hydrochloric acid, hydrofluoric acid, other mineral acids, other halogen acids, and mixtures thereof.
- the fluid with the acid injection medium therein should have a pH of no greater than about 6.9.
- Acidizing fluids can have pH of less than 1 when mixed with produced fluids which may have a pH as high as 6.9.
- the treatment fluid also contemplates incorporation of other acid corrosion inhibitors, which typically will be provided in treatment concentrations of from about 1,000 ppm, based upon the weight of the entire treatment fluid to about 60,000 ppm of such weight. Most often, the total amount of corrosion inhibitors will range from about 1,000 to 30,000 ppm.
- the treatment level of the acid corrosion inhibitor will depend upon the particular physical characteristics of the well, the high alloy steel conduit, temperature and pressure considerations, the selected acidic injection medium, and the like.
- the treatment level of the acid corrosion inhibitor of this invention will vary depending upon a wide variety of complex, interrelated parameters including, but not limited to, the particular physical characteristics of the system or well, the nature of the steel, temperature and pressure considerations, the acid and strength thereof in the system, and the like. Nevertheless, to give a sense of the typical proportions that might be used, non-limiting effective amounts of the corrosion inhibitor ranges from about 0.1 to about 10 gpt (gallons of inhibitor per thousand gallons of acid), depending on the acid strength. (This could also be expressed as 0.1 to 10 lpt—liters per thousand liters of acid.) The treatment level also depends upon the temperature and exposure time, with the following being non-limiting, representative examples:
- gpt (20 lpt) of corrosion inhibitor intermediate is commonly used in acid systems at or above 250° F. (121° C.) in one non-limiting embodiment. Proportions of 2-4 gpt (2-4 lpt) may be suitable in some environments (N-80 steel test coupons) at up to 270° F. (132° C.).
- the amount of corrosion inhibitor based on the liquid being inhibited ranges from about 0.1 to about 22 volume %, preferably from about 3 to about 6 volume%. It will be appreciated that these treatment levels will be different for other mineral acids and other halogen acids.
- the inventive corrosion inhibitor of Example 3 gives noticeably improved corrosion inhibition as contrasted with the comparative Examples 1 and 2.
- the 0.056 lb/ft 2 (0.273 kg/m 2 ) result for Test 1 of Example 3 is about five times better than the 0.222 lb/ft 2 (1.08 kg/m 2 ) of Example 1 or the 0.277 lb/ft 2 (1.35 kg/m 2 ) of Example 2. Similar comparisons can be made for the other Tests.
- the inventive corrosion inhibitor is consistently better for all Tests.
- Formula C of Inventive Example 4 was similar to Formula B of Inventive Example 3 except that a surfactant was not used. With the exception of Test 1, the results are comparable to Example 3. It is surprising and unexpected that the addition of an acid, such as formic acid, and ester derivatives thereof, would reduce corrosion in the HCl environment of these Examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Cosmetics (AREA)
- Fats And Perfumes (AREA)
Abstract
The corrosion inhibitor blend of at least one corrosion inhibitor base (which may be a Mannich reaction product), a solvent selected from the group consisting of C1 acids and ester and salt derivatives thereof, and optionally a surfactant, has been found to be effective as a corrosion inhibitor for metals in acid media, particularly fluids containing halogen acids. The corrosion inhibitor has improved performance over similar or identical corrosion inhibitor compositions where an alcohol such as methanol is used as a solvent. Suitable, non-limiting possibilities for the solvent include, but are not necessarily limited to formic acid, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formate, and mixtures thereof.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/368,750 filed Mar. 28, 2002.
- The invention relates to methods and compositions for inhibiting corrosion of metals, and, in one aspect, more particularly relates to methods and compositions for inhibiting corrosion of metals in acid environments where the acid contains halogen, such as hydrochloric acid, hydrofluoric acid, and the like.
- It is well known that steel surfaces will corrode in the presence of acid environments. While the rate at which corrosion will occur depends on a number of factors, such as the steel alloy itself, the strength and type of acid, the temperature of the environment, the length of contact, etc., some sort of corrosion invariably occurs. Alloy technology has provided materials to withstand the incidental contact of steel with acid, but the corrosion problem is particularly aggravated when there is no choice but to contact steel with acid, as in the case of chemical processing where acids are employed. In instances where the acid is not required to remain pure and where the contact is inevitable, attention has turned toward providing corrosion inhibitors in the acid medium itself to prevent corrosion of the steel surfaces that it must come into contact with, yet still deliver the acid to its ultimate destination. It would be advantageous if a new corrosion inhibitor were discovered that would be an improvement over the presently known systems. For example, a corrosion inhibitor providing a large corrosion inhibiting effect for a small proportion used would be advantageous.
- Specific environments in which an improved corrosion inhibitor would be appreciated include industrial cleaning and hydrocarbon recovery operations. With respect to oil and gas production, it is well known that during the production life of an oil or gas well, the production zone within the well may be chemically treated or otherwise stimulated to enhance the economical production lifetime of the well. A common way of doing this is by acid fracturing or matrix acidizing, whereby a highly acidic solution, generally having a pH of less than about 1, but which may be as high as about 6.9 is injected into the well. Spent acid in return fluids may have a pH of around 3 to 6.9. Because of the acidic nature of the treatment fluid, the production or workover conduit which is utilized in the well in such applications encounters considerable acidic corrosion, in the forms of surface pitting, embrittlement, loss of metal component and the like. Halogen acids are commonly used in these fluids.
- In earlier years of producing subterranean wells, the vast majority of production and workover conduits comprised carbon steels. These steels were utilized either temporarily or permanently in the well, and treatment and/or stimulation fluids were introduced through them into the well. Recently, due primarily to the drilling and completion of many subterranean wells through formations which contain high concentrations of corrosive fluids such as hydrogen sulfide, carbon dioxide, brine, and combinations of these constituents, the production and workover conduits for use in the wells have been made of high alloy steels. The high alloy steels include chrome steels, duplex steels, stainless steels, martensitic alloy steels, ferritic alloy steels, austenitic stainless steels, precipitation-hardened stainless steels, high nickel content steels, and the like.
- Various corrosion inhibitors are known, to which are added other components, such as intensifiers, surfactants, oil wetting components, and the like.
-
- where R is a radical selected from the group consisting of abietyl, hydroabietyl, and dehydroabietyl, Y is the group CH2R1, X is a radical selected from the group consisting of hydrogen and CH2R1, and R1 represents alpha ketonyl groups. These rosin amines are noted as useful in reducing the rate of corrosion of metals such as magnesium, aluminum and zinc when they are exposed to the action of a corrosive material such as hydrochloric acid.
- Further, U.S. Pat. No. 3,077,454 describes compositions for inhibiting corrosion made by combining certain active hydrogen containing compounds with organic ketones having at least one hydrogen atom on the carbon atom alpha to the carbonyl group and an aldehyde selected from the group consisting of aliphatic aldehydes containing from 1 to 16 carbons, and aromatic aldehydes of the benzene series, having no functional groups other than aldehyde groups, and a fatty acid.
- Additionally, Mannich base and thiourea inhibitor compositions and methods of inhibiting the acid attack by aqueous hydrofluoric acid on ferrous metal surfaces, and in particular highly reactive ferrous metal surfaces, are described in U.S. Pat. Nos. 3,992,313 and 4,104,303.
- There remains a need for new corrosion inhibitor and methods of use therefore which would work in halogen acid environments for a wide variety of metals, particularly iron alloys such as steels.
- Accordingly, it is an object of the present invention to provide a composition of matter effective in the inhibition of corrosion in halogen acid environments.
- It is another object of the present invention to provide a corrosion inhibitor composition for minimizing corrosion in halogen acid situations, which compositions may be easily made.
- Still another object of the invention is to provide a halogen acid corrosion inhibitor that has improved performance as compared with conventional corrosion inhibitors.
- In carrying out these and other objects of the invention, there is provided, in one non-limiting embodiment of the invention, a corrosion inhibitor having at least one corrosion inhibitor base selected from the group consisting of Mannich reaction products and nitrogen-substituted heterocycles of 6 to 10 members quaternized with at least one alkyl or aryl halide, and at least one first solvent selected from the group consisting of C1 acids and ester derivatives thereof and salts thereof. At least one surfactant may be optionally present. An additional, second solvent may also be optionally present.
- The invention also concerns methods of inhibiting the corrosion of metals in the presence of liquids containing at least one halogen acid and the corrosion inhibitor of this invention. The corrosion of the metal is inhibited as compared with a liquid otherwise identical but absent the corrosion inhibitor of this invention. Additionally, the invention includes fluids for contacting metal surfaces that have had their corrosion inhibition improved by the corrosion inhibitor of this invention.
- The single FIGURE is a chart comparing the corrosion loss in lbs/ft2 (kg/m2) for a corrosion inhibitor of this invention with a conventional corrosion inhibitor as a function of temperature.
- It has been discovered that useful halogen acid corrosion inhibitor may be provided by the use of at least one corrosion inhibitor base selected from the group consisting a Mannich reaction product and a nitrogen-substituted heterocycle of 6 to 10 members quaternized with alkyl halides, at least one solvent, and optionally at least one surfactant. The solvent is a C1 acid or derivative thereof, particularly ester derivatives thereof.
- In one non-limiting embodiment of the invention, the Mannich reaction products may include, but are not necessarily limited to, the materials of U.S. Pat. Nos. 3,077,454; 5,366,643; and 5,591,381. The products of U.S. Pat. No. 3,077,454 can be made with approximately a 50% yield, and they require the presence of a fatty acid, such as a tall oil fatty acid, in one non-limiting embodiment. The text of this patent is incorporated by reference herein. More specifically, the Mannich reaction product may be the product of reaction of
- (i) one mole of an ammonia derivative having at least one hydrogen attached to nitrogen and having no groups reactive under the conditions of reaction other than hydrogen,
- (ii) from 1.5 to 10 moles of a carbonyl compound having at least one hydrogen atom on the carbon atom adjacent to the carbonyl group,
- (iii) from 2 to 10 moles of an aldehyde different from the carbonyl compound selected from the group consisting of aliphatic aldehydes having from 1 to 16 carbon atoms and aromatic aldehydes of the benzene series and having no functional groups other than aldehyde groups, and
- (iv) from 0.6 to 24 parts by weight based on (1), (2), and (3) of a fatty acid having from 1 to 20 carbon atoms
- at a temperature of from about 150° F. (66° C.) to about 250° F. (121° C.) for from about 1 to 16 hours.
- The nitrogen-substituted heterocycles of 6 to 10 members quaternized with alkyl halides are also commonly referred to as coal tar based quats. These materials are typically quinolines, pyridines and the like quaternized with alkyl and/or aryl halides, where the alkyl or aryl group may range from methyl to benzyl (C1 to C6). Naphthyl quinoline quats are included in this group. Further information may be found with reference to U.S. Pat. No. 2,814,593, incorporated by reference herein, which discusses benzyl chloride quats of quinoline.
- The surfactant suitable for use in the method of this invention may be, in one non-limiting embodiment, an esterified alcohol that has been alkoxylated. In a particularly preferred embodiment, the alkoxylation is achieved by reaction with ethylene oxide. Propylene oxide and butylene oxide may also be used, as well as combinations thereof, such as a combination of ethylene oxide and propylene oxide. Suitable alcohols have from about 6 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and may have more than one hydroxyl group, in one non-limiting embodiment from 1 to 6 hydroxyl groups, and in another non-limiting embodiment from 1 to 3 hydroxyl groups. Particular alcohols expected to be useful in preparing the surfactants for the compositions of this invention include, but are not necessarily limited to, sorbitol, glycerol, ethylene glycol, alkylphenols, and mixtures thereof. In a particularly preferred embodiment of the invention, the surfactant is made by esterifying sorbitol with one mole of tall oil and then reacting the product thereof with ethylene oxide until the desired properties are obtained. The desired properties include, but are not necessarily limited to, facilitating, improving and assisting the corrosion inhibitor base and the solvent in contacting any metal in contact with the fluid being inhibited. A suitable amount of ethylene oxide may range from about 3 to about 60 moles, preferably from about 12 to about 40 moles in another non-limiting embodiment of the invention, and from about 3 to about 30 mules in yet another non-limiting embodiment.
- It is expected that formic acid will be the solvent of choice, although other materials are expected to function equivalently. These materials include, but are not necessarily limited to ester derivatives of C1 acids, and salts of these acids or ester derivatives. In particular, the solvent may include, but is not necessarily limited to, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formates and mixtures thereof. These inventive solvents unexpectedly and surprisingly give better results than conventional solvents such as unmodified or unreacted alcohols, which in one embodiment of the invention are preferably absent. However, it may be desirable in some embodiments to use conventional solvents as a second solvent such as low carbon number alcohols, e.g. isopropyl alcohol (IPA) for other reasons, including, but not necessarily limited to pour point depression. These conventional solvents may be optionally present in the corrosion inhibitor in proportions from about 0 to about 50 volume % in one non-limiting embodiment, and from 0 to about 30 volume % in an alternate non-limiting embodiment.
- In still another non-limiting embodiment of the invention, the proportions of the various components in the corrosion inhibitor composition may range from about 10 to about 60 vol. % corrosion inhibitor base, from about 5 to about 50 vol. % surfactant, and from about 3 to about 50 vol. % solvent. In a preferred embodiment of the invention, the corrosion inhibitor composition may range from about 10 to about 50 vol. % corrosion inhibitor base, from about 10 to about 50 vol. % surfactant, and from about 10 to about 40 vol. % solvent. In one particularly preferred embodiment of the invention, the corrosion inhibitor includes about 20% to 40% corrosion inhibitor base, about 20% to 40% surfactant, and about 10% to 40% solvent.
- The halogen acid environments where the invention is useful encompass acid environments where the acid includes, but is not limited to, hydrochloric acid, hydrofluoric acid, formic acid, acetic acid, and mixtures thereof. The composition of this invention has been found to have excellent stability, thus avoiding degradation over time. These corrosion inhibitors will be cost effective and provide excellent corrosion control.
- The acid corrosion inhibitor may be combined with any suitable acidic injection medium, including but not necessarily limited to, such media as downhole acidizing fluids and compositions; 15% and 28% concentrations of HCl, 15-5% acetic acid/HCl blend. It aids corrosion control at elevated temperatures and pressures with the inventive inhibitor.
- Other optional ingredients may be used with the corrosion inhibitor of this invention, and may include, but are not necessarily limited to, any acetylenic compound such as acetylenic alcohols; cinnamaldehyde; a nitrogen compound, such as a quaternary ammonium compound; solvents such as alcohols or ketones; and aromatic hydrocarbons or mixtures thereof, as are known to those skilled in the art. For example, teachings from acid corrosion inhibitors as made and described in U.S. Pat. Nos. 3,514,410; 3,404,094; 3,107,221; 2,993,863; and 3,382,179; may be utilized in accordance with the present invention. All of these patents are hereby incorporated by reference. In one embodiment, the corrosion inhibitor contains at least one acetylenic alcohol having from 3 to 10 carbon atoms. compounds, such as HAP (high alkyl pyridines), Reilly 10-20 base and alkyl pyridines H3. Other nitrogen compounds include the crude quinolines having a variety of substituents.
- The corrosion inhibitor may also contain a number of other constituents, such as fatty alcohol adducts, nonyl phenol adducts and tallow amine adducts, tall oil adducts, such as surfactants. Oil wetting components, such as heavy aromatic solvents, may also be present. In another non-limiting embodiment of the invention, the corrosion inhibitor contains at least one saturated alcohol having from 1 to 5 carbon atoms, and at least one alkyl phenol or alkoxylated alkyl phenol having from 15 to 24 carbon atoms.
- In another non-limiting embodiment of the invention, the corrosion inhibitor has an absence of a source of molybdate ions. In yet another non-limiting embodiment of the invention, the corrosion inhibitor has an absence of cinnamaldehyde or substituted cinnamaldehyde.
- It will be appreciated that the halogen acid corrosion inhibitor of this invention may be used with conventional corrosion inhibitors as described above and below, and in any application where a steel surface, such as stainless steel, high alloy or other steel, is exposed to an acid environment. While the specific implementation of this invention is described in the context of the oil patch, the invention may certainly find uses in other applications where it is desirable to reduce corrosion, such as chemical processes that necessarily require the contact of acids with conduits, fittings, and other equipment, such as industrial cleaning applications.
- In the implementation of the invention in the production of fluids from subterranean reservoirs, a fluid is introduced through a high alloy steel member or conduit positioned within the well. The fluid is an acidic injection medium and includes an acid corrosion inhibitor. The invention also encompasses a method of treating a well for enhancement of production within a production zone by introduction into the steel conduit of the acid corrosion inhibitor composition of this invention.
- Examples of acetylenic compounds that may be used include propargyl alcohol (2-propyn-1-ol), hexynol, dimethyl hexynol, diethyl hexynediol, dimethyl hexynediol, ethyl octynol, dimethyl octynediol, methyl butynol, methyl pentynol, ethynyl cyclohexynol, 2-ethyl hexynol, phenyl butynol, and ditertiary acetylenic glycol.
- Other acetylenic compounds which can be employed in accordance with the present invention include, but are not limited to, butynediol; 1-ethynylcyclohexanol; 3-methyl-1-nonyn-3-ol; 2-methyl-3-butyn-2-ol; also 1-propyn-3-ol; 1-butyn-3-ol; 1-pentyn-3-ol; 1-heptyn-3-ol; 1-octyn-3-ol; 1-nonyn-3-ol; 1-decyn-3-ol; 1-(2,4,6-trimethyl-3-yclohexenyl)-3-propyne1-ol; and in general acetylenic compounds having the general formula:
- wherein R1 is —H, —OH, or an alkyl radical; R2 is —H, or an alkyl, phenyl, substituted phenyl or hydroxyalkyl radical; and R3 is —H or an alkyl, phenyl, substituted phenyl or hydroxyalkyl radical.
- The nitrogen or ammonia compounds that can be optionally employed in accordance with the present invention, may include, but are not limited to, those amines having from 1 to 24 carbon atoms in each alkyl moiety as well as the six-membered heterocyclic amines, for example, alkyl pyridines, crude quinolines and mixtures thereof. This includes such amines as ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, mono-, di- and tripentylamine, mono-, di- and trihexylamine and isomers of these such as isopropylamine, tertiarybutylamine, etc. This also includes alkyl pyridines having from one to five nuclear alkyl substituents per pyridine moiety, such alkyl substituents having from one to 12 carbon atoms, and preferably those having an average of six carbon atoms per pyridine moiety, such as a mixture of high boiling tertiary-nitrogen-heterocyclic
- The fluid which is contemplated for use in one aspect of the present invention for treatment of a subterranean well for enhancement of production will be aqueous based; that is, it will be formed using sea water available at the well location, a brine, tap water or similar fluid. The amount of fluid used for the treatment will vary, of course, from well to well, and will be based upon the particular application at hand, and the amount thereof is not particularly critical to the method of the present invention. It will be appreciated that one of ordinary skill in the art of corrosion inhibition will be able to adapt the teachings of this invention to applications outside the realm of oil and gas recovery, such as the area of chemical processing, with only routine experimentation.
- The expected treatment fluid in an oil production environment is expected to have as a primary additive an acidic injection medium, which may be any compatible acid, including but not limited to hydrochloric acid, hydrofluoric acid, other mineral acids, other halogen acids, and mixtures thereof. The fluid with the acid injection medium therein should have a pH of no greater than about 6.9. Acidizing fluids can have pH of less than 1 when mixed with produced fluids which may have a pH as high as 6.9.
- The treatment fluid also contemplates incorporation of other acid corrosion inhibitors, which typically will be provided in treatment concentrations of from about 1,000 ppm, based upon the weight of the entire treatment fluid to about 60,000 ppm of such weight. Most often, the total amount of corrosion inhibitors will range from about 1,000 to 30,000 ppm. The treatment level of the acid corrosion inhibitor will depend upon the particular physical characteristics of the well, the high alloy steel conduit, temperature and pressure considerations, the selected acidic injection medium, and the like.
- In particular, it will be appreciated that the treatment level of the acid corrosion inhibitor of this invention will vary depending upon a wide variety of complex, interrelated parameters including, but not limited to, the particular physical characteristics of the system or well, the nature of the steel, temperature and pressure considerations, the acid and strength thereof in the system, and the like. Nevertheless, to give a sense of the typical proportions that might be used, non-limiting effective amounts of the corrosion inhibitor ranges from about 0.1 to about 10 gpt (gallons of inhibitor per thousand gallons of acid), depending on the acid strength. (This could also be expressed as 0.1 to 10 lpt—liters per thousand liters of acid.) The treatment level also depends upon the temperature and exposure time, with the following being non-limiting, representative examples:
- 1-3 gpt (1-3 lpt) at ambient to 200° F. (93° C.) in 15% HCl and 6 hours exposure;
- 1-5 gpt (1-5 lpt) at ambient to 200° F. (93° C.) in 28% HCl and 6 hours exposure;
- 3-10 gpt (3-10 lpt) at 200 to 250° (93 to 121° C.) in 15% HCl and 6 hours exposure; and
- 5-15 gpt (5-15 lpt) at 200 to 250° (93 to 121° C.) in 28% HCl and 6 hours exposure.
- Twenty (20) gpt (20 lpt) of corrosion inhibitor intermediate is commonly used in acid systems at or above 250° F. (121° C.) in one non-limiting embodiment. Proportions of 2-4 gpt (2-4 lpt) may be suitable in some environments (N-80 steel test coupons) at up to 270° F. (132° C.). In another non-limiting embodiment of the invention, the amount of corrosion inhibitor based on the liquid being inhibited ranges from about 0.1 to about 22 volume %, preferably from about 3 to about 6 volume%. It will be appreciated that these treatment levels will be different for other mineral acids and other halogen acids.
- The invention will be described further in the following illustrative Examples, which are non-limiting and serve only to further illuminate the invention.
TABLE I Corrosion Inhibitor Comparison lb/ft2 (kg/m2) Example Blend Solvent Test 1 Test 2 Test 3 Test 4 Comp. 1 TFT MeOH 0.222 0.099 0.264 0.610 (1.08) (0.483) (1.29) (2.98) Comp. 2 Formula A MeOH 0.277 0.164 0.150 0.553 (1.35) (0.801) (0.732) (2.70) Inv. 3 Formula B Formic 0.056 0.050 0.032 0.120 Acid (0.273) (0.244) (0.156) (0.586) Inv. 4 Formula C Formic 0.105 0.053 0.025 0.168 Acid (0.513) (0.259) (0.122) (0.820) - It will be appreciated that the inventive corrosion inhibitor of Example 3 gives noticeably improved corrosion inhibition as contrasted with the comparative Examples 1 and 2. For instance, the 0.056 lb/ft2 (0.273 kg/m2) result for Test 1 of Example 3 is about five times better than the 0.222 lb/ft2 (1.08 kg/m2) of Example 1 or the 0.277 lb/ft2 (1.35 kg/m2) of Example 2. Similar comparisons can be made for the other Tests. The inventive corrosion inhibitor is consistently better for all Tests.
- Formula C of Inventive Example 4 was similar to Formula B of Inventive Example 3 except that a surfactant was not used. With the exception of Test 1, the results are comparable to Example 3. It is surprising and unexpected that the addition of an acid, such as formic acid, and ester derivatives thereof, would reduce corrosion in the HCl environment of these Examples.
- The corrosion loss of corrosion inhibitors of Inventive Example 3 and Comparative Example 1 are compared in the FIGURE chart as a function of temperature. It should be remembered that the corrosion loss scale of the y-axis is a logarithmic scale. This data, presented below in Table II, was collected using N-80 tubing steel in 15% HCl. It may be seen that the corrosion inhibitor of Inventive Example 3 far outperforms that of Comparative Example 1.
TABLE II Comparison of Corrosion Inhibitors of Inventive Example 3 with Comparative Example 1 on N-80 in 15% HCl Inventive Example 3 Comparative Example 1 Temperature Corrosion Loss Corrosion Loss ° F. (° C.) lbs/ft2 kg/m2 lbs/ft2 kg/m2 200 (93) 0.006 0.029 0.007 0.034 225 (107) 0.013 0.063 0.023 0.112 250 (121) 0.023 0.112 0.065 0.317 275 (135) 0.039 0.190 0.140 0.683 300 (149) 0.061 0.298 0.373 1.820 325 (163) 0.037 0.181 0.187 0.913 - Many modifications may be made in the present invention without departing from the spirit and scope thereof that are defined only by the appended claims. For example, certain components per se, or combinations of components thereof other than those specifically set out herein may be found by one of routine skill in the art to be particularly advantageous, eg. different combinations of corrosion inhibitor bases with certain solvents and/or different combinations of surfactants. Additionally, certain proportions of reactants may produce corrosion inhibitors having particular efficacy.
Claims (39)
1. A corrosion inhibitor comprising:
a. at least one corrosion inhibitor base selected from the group consisting of:
i) a Mannich reaction product, and
ii) a nitrogen-substituted heterocycle of 6 to 10 members quaternized with at least one alkyl or aryl halide; and
b. at least one first solvent selected from the group consisting of C1 acids and ester derivatives thereof and salts thereof.
2. The corrosion inhibitor of claim 1 where the Mannich reaction product comprises the product of reaction of
(i) one mole of an ammonia derivative having at least one hydrogen attached to nitrogen and having no groups reactive under the conditions of reaction other than hydrogen,
(ii) from 1.5 to 10 moles of a carbonyl compound having at least one hydrogen atom on the carbon atom adjacent to the carbonyl group,
(iii) from 2 to 10 moles of an aldehyde different from the carbonyl compound, selected from the group consisting of aliphatic aldehydes having from 1 to 16 carbon atoms and aromatic aldehydes of the benzene series and having no functional groups other than aldehyde groups, and
(iv) from 0.6 to 24 parts by weight based on (1), (2), and (3) of a fatty acid having from 1 to 20 carbon atoms
at a temperature of from about 150° F. (66° C.) to about 250° F. (121° C.) for from about 1 to 16 hours.
3. The corrosion inhibitor of claim 1 where the at least one first solvent is selected from the group consisting of formic acid, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formates, and mixtures thereof.
4. The corrosion inhibitor of claim 1 where the components are present in the following proportions:
a. about 10 to 60 volume % corrosion inhibitor base; and
b. about 3 to 50 volume % solvent,
based on the total corrosion inhibitor.
5. The corrosion inhibitor of claim 1 further comprising a second solvent different from the first solvent present up to about 50 volume %, based on the total corrosion inhibitor.
6. A corrosion inhibitor comprising:
a. at least one corrosion inhibitor base selected from the group consisting of:
i) a Mannich reaction product, and
ii) a nitrogen-substituted heterocycle of 6 to 10 members quatemized with at least one alkyl or aryl halide;
b. at least one first solvent selected from the group consisting of C1 acids and ester derivatives thereof and salts thereof; and
c. at least one surfactant.
7. The corrosion inhibitor of claim 6 where the Mannich reaction product comprises the product of reaction of
(i) one mole of an ammonia derivative having at least one hydrogen attached to nitrogen and having no groups reactive under the conditions of reaction other than hydrogen,
(ii) from 1.5 to 10 moles of a carbonyl compound having at least one hydrogen atom on the carbon atom adjacent to the carbonyl group,
(iii) from 2 to 10 moles of an aldehyde different from the carbonyl compound, selected from the group consisting of aliphatic aldehydes having from 1 to 16 carbon atoms and aromatic aldehydes of the benzene series and having no functional groups other than aldehyde groups, and
(iv) from 0.6 to 24 parts by weight based on (1), (2), and (3) of a fatty acid having from 1 to 20 carbon atoms
at a temperature of from about 150° F. (66° C.) to about 250° F. (121° C.) for from about 1 to 16 hours.
8. The corrosion inhibitor of claim 6 where the at least one surfactant is an alcohol or an esterified alcohol that has been alkoxylated.
9. The corrosion inhibitor of claim 8 where the alcohol used to make the at least one surfactant has from about 6 to 30 carbon atoms.
10. The corrosion inhibitor of claim 6 where the at least one first solvent is selected from the group consisting of formic acid, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formates, and mixtures thereof.
11. The corrosion inhibitor of claim 6 where the components are present in the following proportions:
a. about 10 to 60 volume % corrosion inhibitor base;
b. about 3 to 50 volume % solvent; and
c. about 5 to 50 volume % surfactant,
based on the total corrosion inhibitor.
12. The corrosion inhibitor of claim 6 further comprising a second solvent different from the first solvent present up to about 50 volume %, based on the total corrosion inhibitor.
13. A method of inhibiting the corrosion of metals in the presence of a liquid medium containing at least one halogen acid comprising including in the fluid a corrosion inhibitor comprising
a. at least one corrosion inhibitor base selected from the group consisting of:
i) a Mannich reaction product, and
ii) a nitrogen-substituted heterocycle of 6 to 10 members quaternized with at least one alkyl or aryl halide; and
b. at least one first solvent selected from the group consisting of C1 acids and ester derivatives thereof and salts thereof.
14. The method of claim 13 where the corrosion inhibitor comprises at least one Mannich reaction product comprises the product of reaction of
(i) one mole of an ammonia derivative having at least one hydrogen attached to nitrogen and having no groups reactive under the conditions of reaction other than hydrogen,
(ii) from 1.5 to 10 moles of a carbonyl compound having at least one hydrogen atom on the carbon atom adjacent to the carbonyl group,
(iii) from 2 to 10 moles of an aldehyde different from the carbonyl compound, selected from the group consisting of aliphatic aldehydes having from 1 to 16 carbon atoms and aromatic aldehydes of the benzene series and having no functional groups other than aldehyde groups, and
(iv) from 0.6 to 24 parts by weight based on (1), (2), and (3) of a fatty acid having from 1 to 20 carbon atoms at a temperature of from about 150° F. (66° C.) to about 250° F. (121° C.) for from about 1 to 16 hours.
15. The method of claim 13 where in the corrosion inhibitor, the at least one first solvent is selected from the group consisting of formic acid, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formates, and mixtures thereof.
16. The method of claim 13 where the components of the corrosion inhibitor are present in the following proportions:
a. about 10 to 60 volume % corrosion inhibitor base; and
b. about 3 to 50 volume % solvent, based on the total corrosion inhibitor.
17. The method of claim 13 where the corrosion inhibitor further comprises a second solvent different from the first solvent, and the second solvent is present up to about 50 volume %, based on the total corrosion inhibitor.
18. A method of inhibiting the corrosion of metals in the presence of a liquid medium containing at least one halogen acid comprising including in the fluid a corrosion inhibitor comprising
a. at least one corrosion inhibitor base selected from the group consisting of:
i) a Mannich reaction product, and
ii) a nitrogen-substituted heterocycle of 6 to 10 members quaternized with at least one alkyl or aryl halide;
b. at least one first solvent selected from the group consisting of C1 acids and ester derivatives thereof and salts thereof; and
c. at least one surfactant.
19. The method of claim 18 where the corrosion inhibitor comprises at least one Mannich reaction product comprises the product of reaction of
(i) one mole of an ammonia derivative having at least one hydrogen attached to nitrogen and having no groups reactive under the conditions of reaction other than hydrogen,
(ii) from 1.5 to 10 moles of a carbonyl compound having at least one hydrogen atom on the carbon atom adjacent to the carbonyl group,
(iii) from 2 to 10 moles of an aldehyde different from the carbonyl compound, selected from the group consisting of aliphatic aldehydes having from 1 to 16 carbon atoms and aromatic aldehydes of the benzene series and having no functional groups other than aldehyde groups, and
(iv) from 0.6 to 24 parts by weight based on (1), (2), and (3) of a fatty acid having from 1 to 20 carbon atoms
at a temperature of from about 150° F. (66° C.) to about 250° F. (121° C.) for from about 1 to 16 hours.
20. The method of claim 18 where in the corrosion inhibitor, the at least one surfactant is an esterified alcohol that has been alkoxylated.
21. The method of claim 20 where in the surfactant, the alcohol used to make the at least one surfactant has from about 6 to 30 carbon atoms.
22. The method of claim 18 where in the corrosion inhibitor, the at least one first solvent is selected from the group consisting of formic acid, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formates, and mixtures thereof.
23. The method of claim 18 where the components of the corrosion inhibitor are present in the following proportions:
a. about 10 to 60 volume % corrosion inhibitor base;
b. about 3 to 50 volume % solvent;
c. about 5 to 50 vol. % surfactant; and
based on the total corrosion inhibitor.
24. The method of claim 18 where the corrosion inhibitor further comprises a second solvent different from the first solvent, and the second solvent is present up to about 50 volume %, based on the total corrosion inhibitor.
25. The method of claim 18 where the amount of corrosion inhibitor in the liquid ranges from about 0.1 to about 3.0% volume %.
26. A fluid for contacting a metal surface, the fluid comprising
A. at least one halogen acid; and
B. a corrosion inhibitor comprising:
a. at least one corrosion inhibitor base selected from the group consisting of:
i) a Mannich reaction product, and
ii) a nitrogen-substituted heterocycle of 6 to 10 members quaternized with at least one alkyl or aryl halide; and
b. at least one first solvent selected from the group consisting of C1 acids and ester derivatives thereof and salts thereof.
27. The fluid of claim 26 where in the corrosion inhibitor, the Mannich reaction product comprises the product of reaction of
(i) one mole of an ammonia derivative having at least one hydrogen attached to nitrogen and having no groups reactive under the conditions of reaction other than hydrogen,
(ii) from 1.5 to 10 moles of a carbonyl compound having at least one hydrogen atom on the carbon atom adjacent to the carbonyl group,
(iii) from 2 to 10 moles of an aldehyde different from the carbonyl compound, selected from the group consisting of aliphatic aldehydes having from 1 to 16 carbon atoms and aromatic aldehydes of the benzene series and having no functional groups other than aldehyde groups, and
(iv) from 0.6 to 24 parts by weight based on (1), (2), and (3) of a fatty acid having from 1 to 20 carbon atoms
at a temperature of from about 150° F. (66° C.) to about 250° F. (121° C.) for from about 1 to 16 hours.
28. The fluid of claim 26 where in the corrosion inhibitor, the at least one first solvent is selected from the group consisting of formic acid, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formate, and mixtures thereof.
29. The fluid of claim 26 where in the corrosion inhibitor, the components are present in the following proportions:
a. about 10 to 60 vol. % corrosion inhibitor base; and
b. about 3 to 50 vol. % solvent.
30. The fluid of claim 26 where the amount of corrosion inhibitor in the liquid ranges from about 0.1 to about 22 volume %.
31. The fluid of claim 26 where the corrosion inhibitor further comprises a second solvent different from the first solvent, and the second solvent is present up to about 50 volume %, based on the total corrosion inhibitor.
32. A fluid for contacting a metal surface, the fluid comprising
A. at least one halogen acid; and
B. a corrosion inhibitor comprising:
a. at least one corrosion inhibitor base selected from the group consisting of:
i) a Mannich reaction product, and
ii) a nitrogen-substituted heterocycle of 6 to 10 members quaternized with at least one alkyl or aryl halide;
b. at least one first solvent selected from the group consisting of C1 acids and ester derivatives thereof and salts thereof; and
c. at least one surfactant.
33. The fluid of claim 32 where in the corrosion inhibitor, the Mannich reaction product comprises the product of reaction of
(i) one mole of an ammonia derivative having at least one hydrogen attached to nitrogen and having no groups reactive under the conditions of reaction other than hydrogen,
(ii) from 1.5 to 10 moles of a carbonyl compound having at least one hydrogen atom on the carbon atom adjacent to the carbonyl group,
(iii) from 2 to 10 moles of an aldehyde different from the carbonyl compound selected from the group consisting of aliphatic aldehydes having from 1 to 16 carbon atoms and aromatic aldehydes of the benzene series and having no functional groups other than aldehyde groups, and
(iv) from 0.6 to 24 parts by weight based on (1), (2), and (3) of a fatty acid having from 1 to 20 carbon atoms
at a temperature of from about 150° F. (66° C.) to about 250° F. (121° C.) for from about 1 to 16 hours.
34. The fluid of claim 32 where in the corrosion inhibitor, the at least one surfactant is an esterified alcohol that has been alkoxylated.
35. The fluid of claim 34 where in the surfactant, the alcohol used to make the at least one surfactant has from about 3 to at least 22 carbon atoms.
36. The fluid of claim 32 where in the corrosion inhibitor, the at least one solvent is selected from the group consisting of formic acid, formate salts, methyl formate, ethyl formate, benzyl formate, formate salts of amines, inorganic formate, and mixtures thereof.
37. The fluid of claim 32 where in the corrosion inhibitor, the components are present in the following proportions:
a. about 10 to 60 vol. % corrosion inhibitor base;
b. about 3 to 50 vol. % solvent; and
c. about 5 to 50 vol. % surfactant.
38. The fluid of claim 32 where the amount of corrosion inhibitor in the liquid ranges from about 0.1 to about 22 volume %.
39. The fluid of claim 32 where the corrosion inhibitor further comprises a second solvent different from the first solvent, and the second solvent is present up to about 50 volume %, based on the total corrosion inhibitor.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/393,465 US20030183808A1 (en) | 2002-03-28 | 2003-03-20 | Corrosion inhibitor |
CA002482513A CA2482513A1 (en) | 2002-03-28 | 2003-03-25 | Corrosion inhibitor |
BR0303658-8A BR0303658A (en) | 2002-03-28 | 2003-03-25 | Corrosion inhibitor |
EP03728275A EP1497482A2 (en) | 2002-03-28 | 2003-03-25 | Corrosion inhibitor |
AU2003233426A AU2003233426A1 (en) | 2002-03-28 | 2003-03-25 | Corrosion inhibitor |
PCT/US2003/009047 WO2003083173A2 (en) | 2002-03-28 | 2003-03-25 | Corrosion inhibitor |
NO20034955A NO20034955L (en) | 2002-03-28 | 2003-11-07 | Corrosion |
US11/409,789 US7655158B2 (en) | 2002-03-28 | 2006-04-24 | Corrosion inhibitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36875002P | 2002-03-28 | 2002-03-28 | |
US10/393,465 US20030183808A1 (en) | 2002-03-28 | 2003-03-20 | Corrosion inhibitor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/409,789 Continuation-In-Part US7655158B2 (en) | 2002-03-28 | 2006-04-24 | Corrosion inhibitor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030183808A1 true US20030183808A1 (en) | 2003-10-02 |
Family
ID=28457253
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/393,465 Abandoned US20030183808A1 (en) | 2002-03-28 | 2003-03-20 | Corrosion inhibitor |
US11/409,789 Active 2024-12-12 US7655158B2 (en) | 2002-03-28 | 2006-04-24 | Corrosion inhibitor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/409,789 Active 2024-12-12 US7655158B2 (en) | 2002-03-28 | 2006-04-24 | Corrosion inhibitor |
Country Status (7)
Country | Link |
---|---|
US (2) | US20030183808A1 (en) |
EP (1) | EP1497482A2 (en) |
AU (1) | AU2003233426A1 (en) |
BR (1) | BR0303658A (en) |
CA (1) | CA2482513A1 (en) |
NO (1) | NO20034955L (en) |
WO (1) | WO2003083173A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2875510A1 (en) * | 2004-09-22 | 2006-03-24 | Ceca Sa Sa | TREATMENT PROCESS FOR INHIBITING THE CORRELATION OF PIPES TOWERS USED IN THE PETROLEUM INDUSTRY |
FR2875506A1 (en) * | 2004-09-22 | 2006-03-24 | Ceca Sa Sa | Process to inhibit top of line corrosion of petroleum pipes, comprises providing an inhibiting composition as a corrosion inhibitor, and injecting the composition in the petroleum fluid contained and/or circulating in the pipe |
US20110065614A1 (en) * | 2009-09-11 | 2011-03-17 | Baker Hughes Incorporated | Corrosion inhibitor for acid stimulation systems |
US20130112416A1 (en) * | 2010-07-29 | 2013-05-09 | Ramesh Varadaraj | Compositions and Methods for Protecting Metal Surfaces from Corrosion |
US20130112418A1 (en) * | 2010-07-29 | 2013-05-09 | Ramesh Varadaraj | Composition and Methods for Protecting Metal Surfaces from Corrosion |
US8889598B2 (en) | 2004-09-22 | 2014-11-18 | Ceca S.A. | Treatment process for inhibiting top of line corrosion of pipes used in the petroleum industry |
CN115161124A (en) * | 2022-07-21 | 2022-10-11 | 福建省佑达环保材料有限公司 | Non-corrosive LiF cleaning agent and preparation method thereof |
US11591511B2 (en) | 2018-05-11 | 2023-02-28 | Fluid Energy Group Ltd | Methods for stimulating a hydrocarbon-bearing formation by perforating a wellbore and introducing and acidic composition in the wellbore |
CN117924209A (en) * | 2024-01-22 | 2024-04-26 | 山东滨州昱诚化工科技有限公司 | Corrosion inhibitor for oilfield fracturing acidification and synthesis method thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7842127B2 (en) * | 2006-12-19 | 2010-11-30 | Nalco Company | Corrosion inhibitor composition comprising a built-in intensifier |
US8720570B2 (en) | 2011-02-04 | 2014-05-13 | Baker Hughes Incorporated | Method of corrosion mitigation using nanoparticle additives |
US9074289B2 (en) | 2011-11-08 | 2015-07-07 | Nalco Company | Environmentally friendly corrosion inhibitor |
CN102827596B (en) * | 2012-09-12 | 2014-04-02 | 西南石油大学 | Corrosion inhibitor suitable for acidizing stratum at 140-180 DEG C |
CN102942908B (en) * | 2012-11-22 | 2014-08-13 | 中国海洋石油总公司 | Water injected pitting-corrosion composite inhibitor and application thereof |
CN104789968A (en) * | 2015-04-16 | 2015-07-22 | 西南石油大学 | Acid liquor corrosion inhibitor for inhibiting hydrochloric acid solution from corroding carbon steel and preparation method |
CN106902395B (en) * | 2015-12-22 | 2020-04-07 | 先健科技(深圳)有限公司 | Absorbable iron-based alloy implantation medical instrument |
CN105694836A (en) * | 2016-01-05 | 2016-06-22 | 南京华洲新材料有限公司 | Diverting acid acidizing corrosion inhibitor and preparation method thereof |
CN110156617B (en) * | 2019-06-12 | 2022-04-19 | 中国石油化工股份有限公司 | Preparation method and application of corrosion inhibitor |
WO2021247832A1 (en) * | 2020-06-03 | 2021-12-09 | Ecolab Usa Inc. | Oxyalkylated surfactants as corrosion inhibitors |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2814593A (en) * | 1953-12-18 | 1957-11-26 | Gen Aniline & Film Corp | Corrosion inhibition |
US3077454A (en) * | 1960-07-14 | 1963-02-12 | Dow Chemical Co | Compositions for inhibiting corrosion |
US3634270A (en) * | 1969-06-20 | 1972-01-11 | Dow Chemical Co | Inhibitor |
US3779935A (en) * | 1971-07-12 | 1973-12-18 | Exxon Research Engineering Co | Inhibition of corrosion |
US4028268A (en) * | 1975-12-03 | 1977-06-07 | Exxon Research And Engineering Company | High temperature corrosion inhibitor |
US4493775A (en) * | 1983-09-30 | 1985-01-15 | The Dow Chemical Company | Method and composition for corrosion |
USH751H (en) * | 1988-06-10 | 1990-03-06 | Sullivan Daniel S | Method of inhibiting acid corrosion of ferrous metals |
US5366643A (en) * | 1988-10-17 | 1994-11-22 | Halliburton Company | Method and composition for acidizing subterranean formations |
US5441929A (en) * | 1994-06-23 | 1995-08-15 | Halliburton Company | Hydrochloric acid acidizing composition and method |
US5591381A (en) * | 1992-10-22 | 1997-01-07 | Halliburton Company | Corrosion inhibiting compositions and methods |
US5697443A (en) * | 1996-02-09 | 1997-12-16 | Halliburton Energy Services, Inc. | Method and composition for acidizing subterranean formations utilizing corrosion inhibitor intensifiers |
US5854180A (en) * | 1998-03-24 | 1998-12-29 | Clearwater, Inc. | Environmentally improved acid corrosion inhibitor |
US6117364A (en) * | 1999-05-27 | 2000-09-12 | Nalco/Exxon Energy Chemicals, L.P. | Acid corrosion inhibitor |
US20020017629A1 (en) * | 2000-08-02 | 2002-02-14 | Benjamin Mosier | Transesterification composition of fatty acid esters, and uses thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0276879B1 (en) * | 1987-01-30 | 1991-10-23 | Pumptech N.V. | Process and composition for inhibiting iron and steel corrosion |
US5543388A (en) * | 1993-08-05 | 1996-08-06 | Exxon Chemical Patents Inc. | Intensified corrosion inhibitor and method of use |
EP0869258A1 (en) * | 1997-04-03 | 1998-10-07 | Halliburton Energy Services, Inc. | Method and composition for acidizing subterranean formations utilizing corrosion inhibitor intensifiers |
-
2003
- 2003-03-20 US US10/393,465 patent/US20030183808A1/en not_active Abandoned
- 2003-03-25 AU AU2003233426A patent/AU2003233426A1/en not_active Abandoned
- 2003-03-25 BR BR0303658-8A patent/BR0303658A/en not_active Application Discontinuation
- 2003-03-25 WO PCT/US2003/009047 patent/WO2003083173A2/en not_active Application Discontinuation
- 2003-03-25 CA CA002482513A patent/CA2482513A1/en not_active Abandoned
- 2003-03-25 EP EP03728275A patent/EP1497482A2/en not_active Ceased
- 2003-11-07 NO NO20034955A patent/NO20034955L/en not_active Application Discontinuation
-
2006
- 2006-04-24 US US11/409,789 patent/US7655158B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2814593A (en) * | 1953-12-18 | 1957-11-26 | Gen Aniline & Film Corp | Corrosion inhibition |
US3077454A (en) * | 1960-07-14 | 1963-02-12 | Dow Chemical Co | Compositions for inhibiting corrosion |
US3634270A (en) * | 1969-06-20 | 1972-01-11 | Dow Chemical Co | Inhibitor |
US3779935A (en) * | 1971-07-12 | 1973-12-18 | Exxon Research Engineering Co | Inhibition of corrosion |
US4028268A (en) * | 1975-12-03 | 1977-06-07 | Exxon Research And Engineering Company | High temperature corrosion inhibitor |
US4493775A (en) * | 1983-09-30 | 1985-01-15 | The Dow Chemical Company | Method and composition for corrosion |
USH751H (en) * | 1988-06-10 | 1990-03-06 | Sullivan Daniel S | Method of inhibiting acid corrosion of ferrous metals |
US5366643A (en) * | 1988-10-17 | 1994-11-22 | Halliburton Company | Method and composition for acidizing subterranean formations |
US5591381A (en) * | 1992-10-22 | 1997-01-07 | Halliburton Company | Corrosion inhibiting compositions and methods |
US5441929A (en) * | 1994-06-23 | 1995-08-15 | Halliburton Company | Hydrochloric acid acidizing composition and method |
US5697443A (en) * | 1996-02-09 | 1997-12-16 | Halliburton Energy Services, Inc. | Method and composition for acidizing subterranean formations utilizing corrosion inhibitor intensifiers |
US5854180A (en) * | 1998-03-24 | 1998-12-29 | Clearwater, Inc. | Environmentally improved acid corrosion inhibitor |
US6117364A (en) * | 1999-05-27 | 2000-09-12 | Nalco/Exxon Energy Chemicals, L.P. | Acid corrosion inhibitor |
US20020017629A1 (en) * | 2000-08-02 | 2002-02-14 | Benjamin Mosier | Transesterification composition of fatty acid esters, and uses thereof |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA020064B1 (en) * | 2004-09-22 | 2014-08-29 | Сека С.А. | Treatment method for inhibiting corrosion of top of lines used in the oil industry |
FR2875506A1 (en) * | 2004-09-22 | 2006-03-24 | Ceca Sa Sa | Process to inhibit top of line corrosion of petroleum pipes, comprises providing an inhibiting composition as a corrosion inhibitor, and injecting the composition in the petroleum fluid contained and/or circulating in the pipe |
WO2006032774A1 (en) * | 2004-09-22 | 2006-03-30 | Ceca S.A. | Treatment method for inhibiting corrosion of top of lines used in the oil industry |
FR2875510A1 (en) * | 2004-09-22 | 2006-03-24 | Ceca Sa Sa | TREATMENT PROCESS FOR INHIBITING THE CORRELATION OF PIPES TOWERS USED IN THE PETROLEUM INDUSTRY |
US8889598B2 (en) | 2004-09-22 | 2014-11-18 | Ceca S.A. | Treatment process for inhibiting top of line corrosion of pipes used in the petroleum industry |
US8933000B2 (en) | 2009-09-11 | 2015-01-13 | Baker Hughes Incorporated | Corrosion inhibitor for acid stimulation systems |
WO2011032032A3 (en) * | 2009-09-11 | 2011-07-21 | Baker Hughes Incorporated | Corrosion inhibition for acid stimulation systems |
US20110065614A1 (en) * | 2009-09-11 | 2011-03-17 | Baker Hughes Incorporated | Corrosion inhibitor for acid stimulation systems |
US20130112418A1 (en) * | 2010-07-29 | 2013-05-09 | Ramesh Varadaraj | Composition and Methods for Protecting Metal Surfaces from Corrosion |
US20130112416A1 (en) * | 2010-07-29 | 2013-05-09 | Ramesh Varadaraj | Compositions and Methods for Protecting Metal Surfaces from Corrosion |
US11591511B2 (en) | 2018-05-11 | 2023-02-28 | Fluid Energy Group Ltd | Methods for stimulating a hydrocarbon-bearing formation by perforating a wellbore and introducing and acidic composition in the wellbore |
US12018210B2 (en) | 2018-05-11 | 2024-06-25 | Dorf Ketal Chemicals Fze | Methods for stimulating a hydrocarbon-bearing formation by perforating a wellbore and introducing an acidic composition in the wellbore |
CN115161124A (en) * | 2022-07-21 | 2022-10-11 | 福建省佑达环保材料有限公司 | Non-corrosive LiF cleaning agent and preparation method thereof |
CN117924209A (en) * | 2024-01-22 | 2024-04-26 | 山东滨州昱诚化工科技有限公司 | Corrosion inhibitor for oilfield fracturing acidification and synthesis method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2003083173A3 (en) | 2004-11-11 |
BR0303658A (en) | 2004-07-13 |
WO2003083173A2 (en) | 2003-10-09 |
NO20034955D0 (en) | 2003-11-07 |
EP1497482A2 (en) | 2005-01-19 |
US20060186380A1 (en) | 2006-08-24 |
CA2482513A1 (en) | 2003-10-09 |
AU2003233426A8 (en) | 2003-10-13 |
AU2003233426A1 (en) | 2003-10-13 |
NO20034955L (en) | 2004-01-14 |
US7655158B2 (en) | 2010-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7655158B2 (en) | Corrosion inhibitor | |
US20110100630A1 (en) | Method of Mitigating Corrosion Rate of Oilfield Tubular Goods | |
Finšgar et al. | Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review | |
CA2656344C (en) | Methods and compositions for protecting steels in acidic solutions | |
US7994101B2 (en) | Corrosion inhibitor intensifier compositions and associated methods | |
GB2237013A (en) | Corrosion inhibition in acid environments | |
US6511613B1 (en) | Corrosion inhibitor | |
US20070071887A1 (en) | Methods of inhibiting corrosion of a metal surface | |
US8404157B2 (en) | Methods and compositions for inhibiting corrosion | |
AU2018203740B2 (en) | Chemical inhibition of pitting corrosion in methanolic solutions containing an organic halide | |
US20030176288A1 (en) | Halogen acid corrosion inhibitor base | |
US20070069182A1 (en) | Corrosion inhibitor compositions and associated methods | |
CA2974358C (en) | Use of hydroxyacid to reduce the localized corrosion potential of low dose hydrate inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAKER HUGHES INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WALKER, MICHAEL L.;REEL/FRAME:013891/0628 Effective date: 20030320 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |