US20030113827A1 - Non-or minimally invasive monitoring methods - Google Patents
Non-or minimally invasive monitoring methods Download PDFInfo
- Publication number
- US20030113827A1 US20030113827A1 US10/023,006 US2300601A US2003113827A1 US 20030113827 A1 US20030113827 A1 US 20030113827A1 US 2300601 A US2300601 A US 2300601A US 2003113827 A1 US2003113827 A1 US 2003113827A1
- Authority
- US
- United States
- Prior art keywords
- target surface
- analyte
- covering
- target
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 112
- 238000012544 monitoring process Methods 0.000 title claims description 31
- 239000012491 analyte Substances 0.000 claims abstract description 148
- 239000002245 particle Substances 0.000 claims abstract description 66
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 49
- 239000008103 glucose Substances 0.000 claims abstract description 49
- 238000005070 sampling Methods 0.000 claims abstract description 27
- 230000036571 hydration Effects 0.000 claims abstract description 9
- 238000006703 hydration reaction Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 49
- 239000012530 fluid Substances 0.000 claims description 26
- 239000000017 hydrogel Substances 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 7
- 230000001070 adhesive effect Effects 0.000 claims description 7
- 230000001133 acceleration Effects 0.000 claims description 5
- 230000001404 mediated effect Effects 0.000 claims description 4
- 239000004821 Contact adhesive Substances 0.000 claims 5
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims 5
- 239000008280 blood Substances 0.000 abstract description 27
- 210000004369 blood Anatomy 0.000 abstract description 27
- 238000009792 diffusion process Methods 0.000 abstract description 12
- 239000003795 chemical substances by application Substances 0.000 abstract description 7
- 238000002716 delivery method Methods 0.000 abstract 1
- 210000001124 body fluid Anatomy 0.000 description 23
- 239000010839 body fluid Substances 0.000 description 23
- 239000000126 substance Substances 0.000 description 22
- -1 opiates Substances 0.000 description 16
- 238000001514 detection method Methods 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 108090000790 Enzymes Proteins 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 14
- 229940088598 enzyme Drugs 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 239000000499 gel Substances 0.000 description 13
- 210000003722 extracellular fluid Anatomy 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 229940090044 injection Drugs 0.000 description 9
- 230000032258 transport Effects 0.000 description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 210000000245 forearm Anatomy 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000003814 drug Substances 0.000 description 6
- 239000002831 pharmacologic agent Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 102000004877 Insulin Human genes 0.000 description 5
- 108090001061 Insulin Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 229940125396 insulin Drugs 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 3
- 108010015776 Glucose oxidase Proteins 0.000 description 3
- 239000004366 Glucose oxidase Substances 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229940116332 glucose oxidase Drugs 0.000 description 3
- 235000019420 glucose oxidase Nutrition 0.000 description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000004400 mucous membrane Anatomy 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 206010039509 Scab Diseases 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000003869 coulometry Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 201000001421 hyperglycemia Diseases 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 239000002550 vasoactive agent Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-N Acetoacetic acid Natural products CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108010089254 Cholesterol oxidase Proteins 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- 208000002249 Diabetes Complications Diseases 0.000 description 1
- 206010012655 Diabetic complications Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002594 Polyethylene Glycol 8000 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 230000001195 anabolic effect Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 229930003827 cannabinoid Natural products 0.000 description 1
- 239000003557 cannabinoid Substances 0.000 description 1
- 229940065144 cannabinoids Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000001925 catabolic effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- WOWBFOBYOAGEEA-UHFFFAOYSA-N diafenthiuron Chemical compound CC(C)C1=C(NC(=S)NC(C)(C)C)C(C(C)C)=CC(OC=2C=CC=CC=2)=C1 WOWBFOBYOAGEEA-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005370 electroosmosis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000002641 glycemic effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000004140 ketosis Effects 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000001307 laser spectroscopy Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940080526 mannitol injection Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000037368 penetrate the skin Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229940043274 prophylactic drug Drugs 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000011540 sensing material Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 210000000106 sweat gland Anatomy 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229940005267 urate oxidase Drugs 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/411—Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14507—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
- A61B5/1451—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
- A61B5/14514—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/54—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/66—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/0064—Devices for taking samples of body liquids for taking sweat or sebum samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B2010/008—Interstitial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00747—Dermatology
- A61B2017/00765—Decreasing the barrier function of skin tissue by radiated energy, e.g. using ultrasound, using laser for skin perforation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0295—Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1468—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
- A61B5/1486—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means using enzyme electrodes, e.g. with immobilised oxidase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/142222—Hetero-O [e.g., ascorbic acid, etc.]
- Y10T436/143333—Saccharide [e.g., DNA, etc.]
- Y10T436/144444—Glucose
Definitions
- This invention relates generally to methods of monitoring the presence and/or concentration of target analytes in an aqueous biological system. More particularly, the invention relates to methods for determining the presence, or concentration, or both, of one or more analytes in a body fluid.
- One important application of the invention involves a method for monitoring blood glucose using a non-invasive or minimally invasive monitoring technique.
- a number of tests are routinely performed on humans to evaluate the amount or existence of substances present in blood or other body fluids. These tests typically rely on physiological fluid samples removed from a subject, either using a syringe or by pricking the skin.
- One particular test entails self-monitoring of blood glucose levels by diabetics.
- Type I diabetes insulin-dependent diabetes
- Insulin controls utilization of glucose or sugar in the blood and prevents hyperglycemia that, if left uncorrected, can lead to ketosis.
- improper administration of insulin therapy can result in hypoglycemic episodes, which can cause coma and death.
- Hyperglycemia in diabetics has been correlated with several long-term effects, such as heart disease, atherosclerosis, blindness, stroke, hypertension and kidney failure.
- Type II diabetes The value of frequent monitoring of blood glucose as a means to avoid or at least minimize the complications of Type I diabetes is well established. According to the National Institutes of Health, glucose monitoring is recommended 4-6 times a day. Patients with Type II (non-insulin-dependent) diabetes can also benefit from blood glucose monitoring in the control of their condition by way of diet, exercise and traditional oral drugs.
- This invention provides:
- a method for sampling an analyte present in a biological system More especially, the invention provides a method for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
- disruption of a target surface wherein disruption of the target surface is effective to allow access at the target surface to the analyte beneath the target surface, for example wherein the analyte or a fluid containing the analyte passes from beneath the target surface to the target surface;
- the invention further provides:
- a method for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual comprising:
- the present invention provides:
- a method of monitoring for an analyte present beneath a target skin or mucosal surface of an individual comprising:
- the present invention provides the methods detailed above, except that the determination step is carried out at a site distal to the target surface, for example where the determination step is carried out ex vivo.
- the invention also provides use of an inert material for the manufacture of a particulate composition for monitoring an analyte present beneath a target skin or mucosal surface of an individual by the methods of the invention.
- the inert material can be used in methods to determine, for example qualitatively or quantitatively, the presence of an analyte of interest in the biological system.
- the inert material can also be used in methods to determine the amount or concentration of the analyte of interest.
- the methods of the invention typically entail accelerating particles into and/or across a target surface of the biological system such that the particles allow access to the analyte of interest (e.g., a fluid sample containing or suspected of containing an analyte of interest may pass from beneath the target surface to the target surface).
- the analyte can be contacted with a sensing apparatus to derive a raw detectable signal therefrom, wherein the raw signal is either indicative of the presence of the analyte, or related to the analyte concentration.
- the analyte can be collected from the target surface prior to contact with the sensing apparatus.
- transdermal access and “transdermally accessed” intend any non-invasive, or at least minimally invasive method of using particle delivery techniques to facilitate access to (e.g., contact with and/or extraction of) an analyte present beneath a tissue surface, at the surface of skin or mucosal tissue for subsequent analysis on, or collection and analysis from the surface.
- the terms further include any such access whether or not coupled with application of skin penetration enhancers, negative pressure (vacuum or suction), or other extraction technique.
- Analyte (which may be within a volume of fluid extracted from the biological system) is then either contacted directly with a sensing apparatus for obtaining a raw signal indicative of the presence and/or concentration of the analyte of interest, or collected and then contacted with the sensing apparatus.
- This raw signal can be obtained using any suitable sensing methodology including, for example, methods which rely on direct contact of a sensing apparatus with the biological system, methods which rely on contact with a collected amount of the extracted analyte, and the like.
- the sensing apparatus used with any of the above-noted methods can employ any suitable sensing element to provide the raw signal including, but not limited to, physical, chemical, biochemical (e.g., enzymatic, immunological, or the like), electrochemical, photochemical, spectrophotometric, polarimetric, colorimetric, radiometric, or like elements.
- a biosensor is used which comprises an electrochemical sensing element.
- the analyte can be any specific substance or component that one is desirous of detecting and/or measuring in a chemical, physical, enzymatic, or optical analysis.
- Such analytes include, but are not limited to, toxins, contaminants, amino acids, enzyme substrates or products indicating a disease state or condition, other markers of disease states or conditions, drugs of recreation and/or abuse, performance-enhancing agents, therapeutic and/or pharmacologic agents, electrolytes, physiological analytes of interest (e.g., calcium, potassium, sodium, chloride, bicarbonate (CO 2 ), glucose, urea (blood urea nitrogen), lactate, and hemoglobin), lipids, and the like.
- physiological analytes of interest e.g., calcium, potassium, sodium, chloride, bicarbonate (CO 2 ), glucose, urea (blood urea nitrogen), lactate, and hemoglobin
- the analyte is a physiological analyte of interest, for example glucose, or a chemical that has a physiological action, for example a drug or pharmacological agent.
- a physiological analyte of interest for example glucose
- a chemical that has a physiological action for example a drug or pharmacological agent.
- the analyte is typically present beneath a target skin or mucosal surface of an individual.
- the method entails the steps disrupting a target site on the skin or mucosal surface, preferably by accelerating sampling particles into and/or across a target surface. Acceleration of the sampling particles into or across the target surface is effective to allow access to the analyte at the target surface (in some embodiments, a fluid sample comprising the analyte flows, exudes or otherwise passes to the target surface, in other embodiments, the analyte diffuses to the target surface essentially without net fluid transport).
- the presence and/or amount or concentration of the analyte that is so accessed is then determined by direct contact with a sensing apparatus, or the analyte can be collected from the target surface and then contacted with a sensing apparatus.
- An advantage of the invention is that the sampling process can be readily practiced inside and outside of the clinical setting and without pain. Moreover, the invention may be practiced repeatedly or continuously over time without having to constantly disrupt the skin surface.
- analyte is used herein in its broadest sense to denote any specific substance or component that is being detected and/or measured in a physical, chemical, biochemical, electrochemical, photochemical, spectrophotometric, polarimetric, colorimetric, or radiometric analysis.
- a detectable signal can be obtained, either directly or indirectly, from such a material.
- the analyte is a physiological analyte of interest (e.g., a physiologically active material), for example glucose, or a chemical that has a physiological action, for example a drug or pharmacological agent.
- Examples include materials for blood chemistries (blood pH, PO 2 , pCO 2 , Na + , Ca ++ , K + , lactic acid, glucose, and the like), for hematology (hormones, hormone releasing factors, coagulation factors, binding proteins, acylated, glycosylated, or otherwise modified proteins and the like), and immuno-diagnostics, toxins, contaminants, amino acids, enzymes, enzyme substrates or products indicating a disease state or condition, immunological substances, other markers of disease states or conditions, performance-enhancing agents, therapeutic and/or pharmacologic agents, electrolytes, physiological analytes of interest (e.g., calcium, potassium, sodium, chloride, bicarbonate ([HCO 2 ] ⁇ 2 ), glucose, urea (blood urea nitrogen), lactate, and hemoglobin), materials for DNA testing, nucleic acids, proteins, carbohydrates, lipids, electrolytes, metabolites (including but not limited to ketone bodies such as 3-hydroxybutyric acid, ace
- pharmacological agent intends any compound or composition of matter which, when administered to an organism (human or animal), induces a desired pharmacologic and/or physiologic effect by local and/or systemic action.
- an occlusive dressing is a barrier that protects a disrupted target site from outside factors, such as microbial agents or fluid that may corrupt (or affect in any way) the target site.
- the material may either be completely occlusive, in that it is impermeable to all substances, or it may be semi-permeable to gasses and water vapor.
- the permeability to water vapor is low, permitting the target skin or mucosal surface under the dressing to remain hydrated. Hydration reduces the tendency of the target surface to rapidly restore natural barrier function of otherwise to scab or close off disruptions in the surface that permit access to body fluids such as interstitial fluids.
- sampling means access to and monitoring of a substance from any biological system from the outside, e.g., across a membrane such as skin or tissue.
- the membrane can be natural or artificial, and is generally animal in nature, such as natural or artificial skin, blood vessel tissue, intestinal tissue, and the like.
- a “biological system” thus includes both living and artificially maintained systems.
- collection reservoir is used to describe any suitable containment means for containing a sample extracted from an individual using the methods of the present invention.
- Suitable collection reservoirs include, but are not limited to, pads, membranes, dipsticks, swabs, tubes, vials, cuvettes, capillary collection devices, and miniaturized etched, ablated or molded flow paths.
- sensing device or “sensing apparatus” encompass any device that can be used to measure the concentration of an analyte of interest.
- Preferred sensing devices for detecting blood analytes generally include electrochemical devices and chemical devices.
- electrochemical devices include the Clark electrode system (see, e.g., Updike et al. (1967) Nature 214:986-988), and other amperometric, coulometric, or potentiometric electrochemical devices.
- chemical devices include conventional enzyme-based reactions as used in the Lifescan® glucose monitor (see, e.g., U.S. Pat. No. 4,935,346 to Phillips et al.). Detection and/or quantification of a chemical signal can also be carried out using readily available spectrophotometric monitoring devices.
- the term “individual” encompasses any warm-blooded animal, particularly including a member of the class Mammalia such as, without limitation, humans and nonhuman primates such as chimpanzees and other apes and monkey species; farm animals such as cattle, sheep, pigs, goats and horses; domestic mammals such as dogs and cats; laboratory animals including rodents such as mice, rats and guinea pigs, and the like.
- the term does not denote a particular age or sex. Thus, adult, child and newborn subjects, whether male or female, are intended to be covered.
- FIG. 1 is a perspective view of a resealable, occlusive dressing, with an aperture cover in a closed position.
- FIG. 2 is a perspective view of a resealable, occlusive dressing, with an aperture cover in an open position.
- FIG. 3 is a cross-sectional view of a resealable, occlusive dressing, with an aperture cover in a closed position.
- the invention relates to a method for sampling analytes present in a biological system, typically a physiologically active material that is present beneath a target skin or mucosal surface of an individual.
- the method entails two general steps, an accessing step and a determination step.
- the accessing step can be generalized as follows. A target surface is selected and cleaned with a suitable solvent. The target surface is then disrupted in some manner sufficient to create micro-passages that allow access to a quantity of an analyte.
- the analyte may be present in a fluid that flows, exudes or otherwise passes from beneath the target surface, through the micro-passages to the target surface.
- small sampling particles are accelerated into and/or across a target surface.
- sampling particles are accelerated to a speed sufficient to penetrate the skin or mucosal layer at the target site, thereby breaching the natural barrier function of the skin or mucosal tissue and allowing access to an analyte present beneath the target surface.
- the target surface generally has an overall size ranging from about 0.1 to about 5 cm 2 .
- the sampling particles typically comprise an inert material.
- the material may be dissolvable such as commonly employed physiologically acceptable soluble materials including sugars (e.g., mannitol, sucrose, lactose, trehalose, and the like) and soluble or dissolvable polymers, e.g., swellable natural gels such as agarose.
- the sampling particles can be comprised of insoluble materials such as starch, TiO 2 , calcium carbonate, phosphate salts, hydroxy-apatite, or even synthetic polymers or metals such as gold, platinum or tungsten.
- Insoluble materials are sloughed off with the normal skin or mucosal tissue renewal process.
- Preferred materials are lactose, mannitol and polyethylene glycol, such as PEG 8000.
- the sampling particles can be coated with a locally active agent that facilitates the sampling step.
- the sampling particles can be coated with or contain a pharmacological agent such as a vasoactive agent or an anti-inflammatory agent.
- the vasoactive agent is generally used to provide short-acting vasoactivity (e.g., up to 24 hours) in order to maximize, hasten or prolong fluid access (optimize analyte access), whereas the anti-inflammatory agent is generally used to provide local anti-inflammatory action to protect the target site.
- the sampling particles can also be coated with or contain an osmotically active agent to facilitate the sampling process.
- the sampling particles can be delivered from a particle injection device, e.g., a needleless syringe system as described in commonly owned International Publication Nos. WO 94/24263, WO 96/04947, WO 96/12513, and WO 96/20022, all of which are incorporated herein by reference. Delivery of sampling particles from these needleless syringe systems is generally practiced with particles having an approximate size generally ranging from 0.1 to 250 ⁇ m, preferably ranging from about 10-70 ⁇ m. Particles larger than about 250 ⁇ m can also be delivered from the devices, with the upper limitation being the point at which the size of the particles would cause untoward pain and/or damage to the tissue.
- a particle injection device e.g., a needleless syringe system as described in commonly owned International Publication Nos. WO 94/24263, WO 96/04947, WO 96/12513, and WO 96/20022, all of which are incorporated herein by reference.
- the actual distance to which the delivered particles will penetrate a target surface depends upon particle size (e.g., the nominal particle diameter assuming a roughly spherical particle geometry), particle density, the initial velocity at which the particle impacts the surface, and the density and kinematic viscosity of the targeted skin tissue.
- optimal particle densities for use in needleless injection generally range between about 0.1 and 25 g/cm 3 , preferably between about 0.9 and 1.5 g/cm 3
- injection velocities generally range between about 100 and 3,000 m/sec.
- particles having an average diameter of 10-70 ⁇ m can be readily accelerated through the nozzle at velocities approaching the supersonic speeds of a driving gas flow.
- the pressure used when accelerating the particles will be less than 30 bar, preferably less than 25 bar and most preferably 20 bar or less.
- the sampling particles can be delivered from a particle-mediated delivery device such as a so-called “gene-gun” type device that delivers particles using either a gaseous or electric discharge.
- a particle-mediated delivery device such as a so-called “gene-gun” type device that delivers particles using either a gaseous or electric discharge.
- a gaseous discharge device is described in U.S. Pat. No. 5,204,253.
- An explosive-type device is described in U.S. Pat. No. 4,945,050.
- a helium discharge-type particle acceleration apparatus is the PowderJect XR® instrument (PowderJect Vaccines, Inc., Madison, Wis.), which instrument is described in U.S. Pat. No. 5,120,657.
- An electric discharge apparatus suitable for use herein is described in U.S. Pat. No. 5,149,655. The disclosure of all of these patents is incorporated herein by reference.
- micro-pathways refers to microscopic perforations and/or channels in the skin caused by pressure (water or particle injection), mechanical (micro lancets), electrical (thermal ablation, electro-poration, or electroosmosis), optical (laser ablation), and chemical methods or a combination thereof.
- pressure water or particle injection
- mechanical micro lancets
- electrical thermal ablation, electro-poration, or electroosmosis
- optical laser ablation
- 5,885,211 describes five specific techniques for creating micro-pathways which entail: ablating the surface with a heat source such that tissue bound water is vaporized; puncturing the surface with a microlancet calibrated to form a micropore; ablating the surface by focusing a tightly focused beam of sonic energy; hydraulically puncturing the surface with a high pressure jet of fluid; and puncturing the surface with short pulses of electricity to form a micro-pathway.
- Another specific technique is described in U.S. Pat. Nos. 6,219,574 and 6,230,051, which describe a device having a plurality of microblades. The microblades are angled and have a width of 10 to 500 microns and a thickness of 7 to 100 microns and are used to provide superficial disruptions in a skin surface.
- Disruption of the target surface allows access to the analyte of interest that was otherwise not accessible at the target surface.
- disruption of the target surface can produce micro-pathways that allow a small amount of a fluid sample (e.g., a body fluid) to flow, exude or otherwise pass to the target surface via mass fluid transport, wherein the fluid contains the analyte of interest.
- body fluid refers to biological fluid including, but not limited to interstitial fluid, blood, lymph, sweat, or any other body fluid accessible at the surface of suitably disrupted tissue.
- mass fluid transport refers to the movement of fluids, such as body fluid. This term is used to distinguish over analyte transport across the disrupted surface.
- the mass transport aspect refers to the physical movement of the fluid (as opposed to the movement of energy, or solutes) between body fluids in tissue beneath the target surface and the surface.
- disruption of the target surface can produce micro-pathways that simply allow access to the analyte beneath the surface from a position on the target surface itself, wherein the analyte passes to the surface essentially free of net mass fluid transport.
- the analyte may simply diffuse between the tissue below the target surface and a microenvironment established at the tissue surface.
- the term “essentially free” refers to an insubstantial amount of mass fluid transport between the tissue and the target surface.
- diffusion refers to the flux across the disrupted surface (e.g., across disrupted skin tissue) between a body fluid below the surface and the target surface itself, wherein flux occurs along a concentration gradient. Such diffusion would thus include transport of the target analyte to maintain equilibrium between the body fluid and the target surface. When the concentration of analyte is greater in the body, analyte diffusion would be toward the target surface. When the concentration of analyte is greater at the target surface, analyte diffusion would be toward the body. In addition, net diffusion of analyte from the target surface to the body fluid will occur when the concentration of analyte in the body decreases with respect to the previous measurement.
- Diffusion is not limited to the target analyte.
- Certain means of measurement for example those employing enzymatic electrochemical approaches, can generate natural byproducts by oxidation or reduction of the analyte such as gluconic acid or gluconolactone in the case of glucose. Such byproducts can diffuse from a sensing material in contact with the target surface into the body fluid.
- an interface is applied to disrupted target surface to facilitate the establishment and maintenance of an equilibrium concentration of both analyte and any byproducts by diffusion.
- the methods of the present invention permit a virtually continuous measurement during long-term monitoring without saturating the target surface with byproducts or even the analyte itself.
- the term “equilibrium” refers to the phenomenon in which diffusion has equalized the concentration of analyte on either side of the disrupted surface such that there is essentially no concentration gradient. Diffusion of analyte between the body fluid and the target surface allows approach to an equilibrium or steady-state condition.
- analyte concentration at the tissue surface When concentrations of analyte change in the body, a timely dynamic change in the equilibrium enables continuous monitoring of the analyte concentration at the tissue surface.
- the physical measurement of the analyte concentration can avoid transforming or consuming a significant amount of the analyte, thereby avoiding significant reduction in the amount of analyte at the surface that could render it a sink for the analyte.
- continuous monitoring of analyte concentration can measure the rate of diffusion instead of concentration, for example in the event that the time to reach equilibrium between the target surface and the body fluid is insufficient.
- a resealable and occlusive adhesive dressing is adhered to the target site.
- the occlusive dressing protects the disrupted target site from outside agents such as liquids, microbes or other substances that might contaminate the target site.
- the occlusive dressing maintains the target site environment in a moist or hydrated condition. Maintaining hydration enhances the methods of the present invention because it allows for access to body fluids (e.g., interstitial fluids) beneath the surface at the target surface for a longer period of time and also increases the reliablity and accuracy of the analyte reading.
- FIGS. 1, 2 and 3 show a preferred embodiment where the resealable occlusive dressing is a one piece device.
- An aperture cover 16 in the device acts like a door, hingedly connected on at least one of its four sides, thereby allowing the door to swing between open and closed positions.
- Alternative configurations such as a two-piece device wherein the aperture cover 16 is wholly removable and replaceable (e.g., the cover is removed, discarded and then replaced with each opening step) are also within the scope of the present invention.
- the components size, materials and configuration are all approximately similar, only the trap door configuration will be described herein below.
- Resealable, occlusive dressing 10 is comprised of occlusive strip 12 having a top surface 14 a and a bottom surface 14 b (shown only on FIG. 3).
- Occlusive strip 12 may be rectangular as shown but may of course be any shape as is convenient for use at the target site. That is, resealable, occlusive dressing 10 may be oval, circular, polygonal or non-polygonal, or any other shape conducive to effectively occlude the target site.
- Occlusive strip 12 may be fashioned from any material known in the art that has the necessary characteristics conducive for use with the method of the invention. Occlusive strip 12 will, typically, be created from an occlusive material. Most can adhere to target surface 22 and be comfortable and convenient to wear. As is well known in the art, a wide variety of occlusive materials are suitable for such applications, including many widely used polymers. The materials to make the occlusive strip are common and moderately priced. The occlusive strip 12 is preferably sufficiently flexible so as to bend and twist with a sufficient amount of give so that it can be worn reasonably comfortably on an anatomical part.
- occlusive strip 12 when adhered to a target surface, the occlusive strip 12 should be able to flex such that it does not overly grab or resist movement of a body part, wrinkle or tear.
- occlusive strip 12 has sufficient drape to bend around a body surface.
- occlusive strip 12 should be firm enough so that aperture cover 20 may be easily accessed without tearing occlusive strip 12 .
- occlusive strip 12 may be manufactured from a polymer thin film, a closed cell resilient thermoplastic material, or a vinyl material such as polyurethane.
- the material chosen is flexible or semi-flexible and more preferably, is non-allergenic.
- Aperture 20 (shown only in FIG. 2) traverses occlusive strip 12 from top portion 14 a to bottom portion 14 b.
- Aperture 20 is dimensioned so as to provide an amount of area roughly equivalent to the target site. More preferably, the area of aperture 20 would exceed the target surface area by at least 5%, preferably 10 to 20%, and most preferably by at least 25-50%, in all directions.
- the area of aperture 20 is greater than the target site to facilitate access of sensing or collection devices but should not be so large as to make occlusion difficult.
- the target surface has an area of 0.1 to 5 cm 2 . That is, a radius of 8 mm to 35 mm.
- aperture 20 preferably shall have an area of 5.5 to 7.5 cm 2 or a radius of 35 to 45 mm.
- aperture cover 16 is connected to upper surface 14 a by a hinge, such as a flexible material.
- the aperture cover 16 is attached at a point just past the edge of one side thereof. In a closed position, aperture cover 16 should completely cover aperture 20 , with enough overlap to create an occlusive seal between aperture cover 16 and upper surface 14 a.
- Aperture cover 16 may be fabricated from the same material as resealable, occlusive strip 10 , if it is fabricated from another material, that material should also be occlusive. Furthermore, the material is preferably flexible or semi-rigid.
- the aperture cover 16 can be secured to upper surface 14 a by a variety of suitable attachment mechanisms, all of which should provide a nearly airproof seal. It is further desirable that aperture cover 16 maintain its ability to seal despite repeatedly being opened and closed.
- a fine microhook material is used to secure the aperture cover 16 to the upper surface 14 a, wherein the microhooks cooperate with fine loops on the upper surface 14 a.
- a pressure sensitive adhesive is disposed around the edge to the aperture cover 16 such that it will contact upper surface 14 a and permit resealing of the port.
- attachment mechanisms are readily available to the skilled artisan, for example traditional hinge mechanisms, or where the cover is heat-sealed or bonded on one edge with the other overlapping edges being treated with a non-aggressive pressure sensitive adhesive.
- suitable attachments include a tape sealed opening, one or more snaps, friction-fit plugs, and compression seals (e.g., a mating pair of interconnectable pieces such as those commonly used on “ziplock” style resealable plastic storage or sandwich bags). Such attachments may be placed on one or more edges of the aperture cover/upper surface interface. Suitable compression seals are described, for example in U.S. Pat. No. 6,306,071, incorporated herein by reference.
- a non-treated (non-adhesive) finger pull or intuitive tab can be provided for ease of moving the cover from the aperture.
- numerous dressing configurations without an aperture cover are also suitable, such as dressings having a resealable slit over the aperture that allows access to the target skin surface.
- compression seals are useful for such embodiments, as are tension closing slits and the like.
- the analyte is present in a fluid sample that has flowed, exuded or otherwise passed to the surface, substantially instantaneously, or occurring over a period of time. Alternatively, no net mass fluid transport occurs, with the analyte simply diffusing to the target surface.
- the quantity of the analyte that is made available at the target surface may be varied by altering conditions such as the size and/or density of sampling particles and the settings of the apparatus used to deliver the particles. The quantity of fluid released may often be small, such as ⁇ 1 ⁇ l that is generally sufficient for detection of the analyte.
- the presence and/or amount or concentration of the analyte is determined.
- the target surface may be contacted with a suitable sensing apparatus.
- This detection step can be carried out in a continuous manner. Continual or continuous detection allows for monitoring of target analyte concentration fluctuations. If desired, a sample believed to contain the analyte can first be collected from the target surface prior to being contacted with the sensing apparatus.
- the sample may be collected from the target surface in a number of ways. For example pads, membrane dipsticks, swabs, tubes, vials, curvettes, capilliary collection devices and miniaturized etched, ablated or molded flow paths may be used as collection reservoirs.
- an absorbent material is passed over the target surface to absorb the fluid sample from the target surface for subsequent detection of the presence or amount of analyte.
- the absorbent material may be, for example, in the form of a pad, swab or gel.
- the absorbent material may additionally incorporate means to facilitate detection of the analyte such as an enzyme as described in more detail below.
- a suitable interface material may be applied to the target surface and subsequently covered by the occlusive dressing.
- a gel material can be spread over the target site.
- the gel may also be applied directly into aperture 20 after the dressing has been adhered to the target site. In this way the gel may be continuously replaced and analyte monitoring can continue over a longer period of time.
- the occlusive dressing can be fashioned such that the interface material is integrated within the aperture 20 prior to application to the target site.
- the occlusive dressing can contain a pad dimensioned to the same size and shape of the portal area, which is disposed within the aperture 20 when the dressing is manufactured.
- the user simply adheres the occlusive dressing at the target site, taking care to align the aperture 20 over the target site.
- the aperture cover 16 can then be opened, and an analyte reading sample taken using a suitable sensing apparatus, whereafter the aperture cover 16 closed until the next reading.
- Examples of particularly suitable interface materials include a hydrogel, or other hydrophilic polymer, the composition of which is predominantly water for measurement of water-soluble target analytes.
- the hydrogel can be used with or without surfactants or wetting agents.
- the interface material can be formulated to provide a continuous approach to equilibrium of target analyte concentration between the interface material and the body fluid.
- the physical properties of the interface material are selected to maintain close association with the micro-passages or other portals.
- Examples of hydrogels include, but are not limited to, a 1% solution of a Carbopol® (B. F.
- the interface material not withdraw a sample of body fluid, nor behave like a sink for the target analyte.
- the composition of the interface material can be selected to render it isosmotic with the body fluid containing the target analyte, such that it does not osmotically attract body fluid.
- hydrogels including, but not limited to, poly(hydroxyethyl methacrylate) (PHEMA), poly(acrylic acid) (PAA), polyacrylamide (PAAm), poly(vinyl alcohol) (PVA), poly(methacrylic acid) (PMAA), poly(methyl methacrylate) (PMMA), poly(vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), or poly(ethylene glycol) (PEG), avoiding polymers that can interfere with analytical methods for specific target analyte such as normal or chemically modified polysaccharides in the case of glucose measurement.
- PHEMA poly(hydroxyethyl methacrylate)
- PAA poly(acrylic acid)
- PAAm polyacrylamide
- PMAA poly(methacrylic acid)
- PMAA poly(methyl methacrylate)
- PMMA poly(vinylpyrrolidone)
- PEO poly(ethylene oxide)
- PEG poly(ethylene glycol)
- the composition of the interface material can further be selected to render it isotonic or isosmotic with the body fluid containing the target analyte, such that it does not osmotically attract mass flow of body fluid.
- the composition can comprise a modified Ringer's-type solution to simulate interstitial fluid having a composition of NaCl (9 g/l), CaCl 2 .2H 2 O (0.17 g/l), KCl (0.4 g/l), NaHCO 3 (2.1 g/l), and glucose (10 mg/l).
- Other embodiments can comprise simpler or more complex aqueous salt compositions with osmolality ranging from 290 mOsm/kg to 310 mOsm/kg.
- the interface material e.g., the gel
- the interface material may be applied to the target surface as described above and sufficient time allowed for analyte from the target surface to equilibrate in the gel prior to the detection step.
- the time may be quite short, such as from 30 seconds to 5 minutes.
- Detection may then be carried out by opening the aperture cover 16 and applying the sensing means to the gel such as by contacting the gel with a membrane containing a suitable enzyme system for the analyte.
- the trap door is then closed to maintain hydration.
- the site By occluding the site with the resealable occlusive dressing, the site remains hydrated. The target site will not close up and analyte-bearing fluids will continue to be accessible at the surface. Further, maintaining hydration enhances the concentration gradient and speeds up the process, leading to a more accurate reading of the analyte.
- the analyte-bearing gel is assessed for anlayte and then wiped away. A new amount of gel is then inserted into the aperture 20 and over the target site. Equilibrium is then reached again and another sample may be taken at any time convenient for the user or as is called for in the monitoring protocol.
- the determination step can be generalized as follows.
- An initial step can entail obtaining a raw signal from a sensing device, which signal is related to a target analyte present in the biological system.
- the raw signal can then be used directly to obtain an answer about the analyte, for example, whether or not the analyte is present, or a direct measurement indicative of the amount or concentration of the extracted analyte.
- the raw signal can also be used indirectly to obtain information about the analyte.
- the raw signal can be subjected to signal processing steps in order to correlate a measurement of the sampled analyte with the concentration of that analyte in the biological system. Such correlation methodologies are well known to those skilled in the art.
- Detection may be carried out by any suitable method that allows for detection of an analyte.
- Such analysis may be physical, chemical, biochemical, electrochemical, photochemical, spectrophotometric, polarimetric, colorimetric or radiometric analysis.
- Preferred methods include electrochemical (e.g. amperometric or coulometric), direct or reflective spectroscopic (e.g. fluorescent or chemiluminescent), biological (e.g. enzymatic), chemical, optical, electrical, mechanical (e.g. measuring gel expansion via piezoelectric means) methods known in the art for sensing the presence or concentration of analytes in solution.
- the detection step may be carried out at the site by applying a sensing apparatus through the aperture 20 to the target site, thereby obtaining a raw signal.
- a sample may be simply collected at the target site framed by the aperture 20 and then taken to another location containing the sensing apparatus.
- the determination step is then carried out at the second location. For the purposes of this invention, this is referred to as an ex vivo analyte determination.
- an enzyme may be disposed on the active surface or portion of a sensing apparatus that is contacted with the analyte at the target surface, or included within one or more collection reservoirs that are used to collect extracted analyte.
- Such enzymes must be capable of catalyzing a specific reaction with the extracted analyte (e.g., glucose) to the extent that a product of the reaction can be selectively sensed (e.g., detected electrochemically from the generation of a current which current is detectable and proportional to the amount of the analyte which is reacted).
- a suitable enzyme is glucose oxidase that oxidizes glucose to gluconic acid or its lactone and hydrogen peroxide.
- Glucose oxidase (GOx) is readily available commercially and has well known catalytic characteristics. However, other enzymes can also be used, so long as they specifically catalyze a reaction with an analyte or substance of interest to generate a detectable product in proportion to the amount of analyte so reacted.
- analyte-specific enzyme systems can be used in the methods of the invention.
- suitable enzyme systems can be used to detect ethanol (an alcohol oxidase enzyme system), or similarly uric acid (a urate oxidase system), cholesterol (a cholesterol oxidase system), and theophylline (a xanthine oxidase system).
- Hydrogels containing these analyte-specific enzyme systems can be prepared using readily available techniques familiar to the ordinarily skilled artisan.
- Preferred sensing devices are patches that include an enzyme or other specific reagent that reacts with the extracted analyte of interest to produce a detectable color change or other chemical signal.
- the color change can be assessed by comparison against a standard to determine analyte amount, or the color change can be detected using standard electronic reflectance measurement instruments.
- One such system is a transdermal glucose monitoring system developed by Technical Chemicals and Products, Inc (TCPI) of Pompano Beach, Fla.
- TCPI Technical Chemicals and Products, Inc
- Another suitable system is described in U.S. Pat. No. 5,267,152 to Yang et al. (a device and method for measuring blood glucose concentration using near-IR radiation diffuse-reflection laser spectroscopy). Similar near-IR spectrometric devices are also described in U.S. Pat. No.
- an iontophoretic transdermal sampling system can be used in conjunction with the present invention, for example where the instant particle method is used to pre-treat a skin site to facilitate improved sampling from a GlucoWatch# system (Cygnus, Redwood, Calif.).
- GlucoWatch# a system for example.
- This iontophoretic system is described in Glikfeld et al (1989), Pharm. Res. 6(11): 988 et seq. and in U.S. Pat. No. 5,771,890.
- the purpose of the following example was to demonstrate the use of the instant resealable occlusive dressings with a commercial color-generating glucose sensor strip to intermittently measure glucose concentration over a 24-hour period using a single powder injection administration to prepare the target skin site.
- the skin site was prepared by injecting 1 mg of 53-63 ⁇ m of a mannitol powder using a CO 2 -powered multi-shot particle injection device (PowderChek Diagnostics, Inc., Fremont, Calif.) fitted with a supersonic nozzle. Device pressure for particle administration was equivalent to 10 bar of CO 2 gas. Five microliters of sterile 4% aqueous Natrosol® (hydroxyethyl cellulose, Hercules Inc., Aqualon Div. Wilmington, Del.) was applied to a ⁇ 2 mm by 2 mm sensor element (cut from a LifeScan SureStep® strip) to moisturize it and act as the interface contact element with the injected skin site. The moistened sensor element was placed in contact with the skin for 2 minutes before removal for color intensity measurement using a hand-held densitometer (Model: RCP-N, Tobias Associates, Inc., Ivyland, Pa.).
- the resealable dressing for this example was constructed by application of an ovaloid commercial adhesive dressing (Large, Advanced Healing Band-Aid, Johnson & Johnson Consumer Companies, N.J.) having a pre-punched ⁇ fraction (5/16) ⁇ inch opening for placement over the injected skin area. This was the base dressing that was kept in place for the entire test period.
- a removable/replaceable occlusive patch was fabricated from a ⁇ fraction (7/16) ⁇ inch diameter disk Parafilm® “M” Laboratory Film (American National Can, Chicago, Ill.) secured to an adhesive backing of 1 in. diameter (3M Scotch Brand Mailing Tape, 3M, ST.
- Capillary blood glucose and ISF glucose at the powder injection site were determined by repeating this procedure every hour for 15 hours during the day and then the next morning.
- Capillary blood samples were taken from the forearm using the lancet and blood glucose measurement device of a commercial FreeStyle® alternative sampling site blood glucose system (TheraSense Inc., Alameda Calif.).
- Table 1 the measured capillary blood concentration of glucose in mg/dl from the FreeStyleTM commercial system is shown in column 2 and the values for interstitial fluid from powder-injected sites on the left and right volar forearms are shown in columns 3 and 4 respectively.
- the latter values are calculated using a single, mean calibration adjustment from the FreeStyle values and despite variability from the makeshift means of measurement with a hand-held laboratory densitometer, clearly show the access to interstitial fluid for glucose measurement to 24 hours.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Biotechnology (AREA)
- Heart & Thoracic Surgery (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Emergency Medicine (AREA)
- Food Science & Technology (AREA)
- Optics & Photonics (AREA)
- Wood Science & Technology (AREA)
- Diabetes (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Vascular Medicine (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Methods for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual are provided. The methods entail disruption of the target skin or mucosal surface, for example using a particle delivery method to provide micro-passages in the tissue. The methods further provide a resealable occlusive dressing or patch for protecting the target site from outside agents as well as maintaining hydration of the sample area. Maintaining hydration over the sampling site allows for continuous diffusion of the analyte of interest from beneath the target site to the target site. Multiple samples over time may then be taken, allowing the user to monitor for the presence of analyte over time. In a preferred embodiment, the methods are used to monitor blood glucose levels.
Description
- Not Applicable
- This invention relates generally to methods of monitoring the presence and/or concentration of target analytes in an aqueous biological system. More particularly, the invention relates to methods for determining the presence, or concentration, or both, of one or more analytes in a body fluid. One important application of the invention involves a method for monitoring blood glucose using a non-invasive or minimally invasive monitoring technique.
- A number of tests are routinely performed on humans to evaluate the amount or existence of substances present in blood or other body fluids. These tests typically rely on physiological fluid samples removed from a subject, either using a syringe or by pricking the skin. One particular test entails self-monitoring of blood glucose levels by diabetics.
- Diabetes is a major health concern, and treatment of the more severe form of the condition, Type I (insulin-dependent) diabetes, requires one or more insulin injections per day. Insulin controls utilization of glucose or sugar in the blood and prevents hyperglycemia that, if left uncorrected, can lead to ketosis. On the other hand, improper administration of insulin therapy can result in hypoglycemic episodes, which can cause coma and death. Hyperglycemia in diabetics has been correlated with several long-term effects, such as heart disease, atherosclerosis, blindness, stroke, hypertension and kidney failure.
- The value of frequent monitoring of blood glucose as a means to avoid or at least minimize the complications of Type I diabetes is well established. According to the National Institutes of Health, glucose monitoring is recommended 4-6 times a day. Patients with Type II (non-insulin-dependent) diabetes can also benefit from blood glucose monitoring in the control of their condition by way of diet, exercise and traditional oral drugs.
- Conventional blood glucose monitoring methods generally require the drawing of a blood sample (e.g., by finger prick) for each test, and a determination of the glucose level using an instrument that reads glucose concentrations by electrochemical or colorimetric methods. Type I diabetics must obtain several finger prick blood glucose measurements each day in order to maintain tight glycemic control. However, the pain and inconvenience associated with this blood sampling often leads to poor patient compliance, despite strong evidence that tight control dramatically reduces long-term diabetic complications. In fact, these considerations can often lead to an abatement of the monitoring process by the diabetic.
- This invention provides:
- a method for sampling an analyte present in a biological system. More especially, the invention provides a method for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
- (a) disruption of a target surface, wherein disruption of the target surface is effective to allow access at the target surface to the analyte beneath the target surface, for example wherein the analyte or a fluid containing the analyte passes from beneath the target surface to the target surface;
- (b) placing an occlusive covering over the target surface, thereby covering the target surface, wherein the covering has a moveable or resealable portion that can be displaced to provide access to said target surface without removing the entire covering from the target surface;
- (c) moving the moveable or resealable portion from a first closed position to a second position that allows access to said target surface;
- (d) contacting the target surface with a sensing apparatus that detects the presence or amount of said analyte; and
- (e) moving the moveable or resealable portion back to its first closed position thereby covering said target surface.
- In another embodiment, the invention further provides:
- a method for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
- (a) disrupting said target surface to create one or more passages in that surface sufficient to allow said analyte to flow, exude or otherwise pass from beneath the target surface to the target surface;
- (b) applying an absorbent material over said target surface;
- (c) placing an occlusive covering over said absorbent material and said target surface, wherein said covering has a moveable or resealable portion that can be displaced to provide access to said target surface without removing the entire covering from the target surface;
- (d) moving the moveable or resealable portion from a first closed position to a second position that allows access to said target surface;
- (e) contacting the target surface with a sensing apparatus that detects the presence or amount of said analyte; and
- (f) moving the moveable or resealable portion back to its first closed position thereby covering said target surface.
- In yet another embodiment, the present invention provides:
- A method of monitoring for an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
- (a) accelerating particles into and/or across said target surface, wherein the acceleration of said particles into or across the target surface is effective to allow access at the target surface to the analyte beneath the target surface, and further wherein said particles are accelerated toward the target surface using a needleless syringe device or a particle-mediated delivery device;
- (b) attaching an occlusive adhesive patch having a resealable aperture to a surface surrounding the target surface, thereby covering said target surface with said patch, wherein said aperture circumscribes said target surface, and further wherein said aperture is closed;
- (c) opening said resealable aperture;
- (d) contacting said target surface with a sensor;
- (e) determining the presence or concentration of said analyte; and
- (f) resealing said aperture, thereby maintaining hydration and allowing for continual monitoring over time.
- In still yet another embodiment, the present invention provides the methods detailed above, except that the determination step is carried out at a site distal to the target surface, for example where the determination step is carried out ex vivo.
- The invention also provides use of an inert material for the manufacture of a particulate composition for monitoring an analyte present beneath a target skin or mucosal surface of an individual by the methods of the invention. The inert material can be used in methods to determine, for example qualitatively or quantitatively, the presence of an analyte of interest in the biological system. The inert material can also be used in methods to determine the amount or concentration of the analyte of interest.
- The methods of the invention typically entail accelerating particles into and/or across a target surface of the biological system such that the particles allow access to the analyte of interest (e.g., a fluid sample containing or suspected of containing an analyte of interest may pass from beneath the target surface to the target surface). Once such access is provided, the analyte can be contacted with a sensing apparatus to derive a raw detectable signal therefrom, wherein the raw signal is either indicative of the presence of the analyte, or related to the analyte concentration. If desired, the analyte can be collected from the target surface prior to contact with the sensing apparatus.
- Monitoring is carried out such that the analyte of interest is transdermally accessed from within the biological system. In this regard, the terms “transdermal access” and “transdermally accessed” intend any non-invasive, or at least minimally invasive method of using particle delivery techniques to facilitate access to (e.g., contact with and/or extraction of) an analyte present beneath a tissue surface, at the surface of skin or mucosal tissue for subsequent analysis on, or collection and analysis from the surface. The terms further include any such access whether or not coupled with application of skin penetration enhancers, negative pressure (vacuum or suction), or other extraction technique.
- Analyte (which may be within a volume of fluid extracted from the biological system) is then either contacted directly with a sensing apparatus for obtaining a raw signal indicative of the presence and/or concentration of the analyte of interest, or collected and then contacted with the sensing apparatus. This raw signal can be obtained using any suitable sensing methodology including, for example, methods which rely on direct contact of a sensing apparatus with the biological system, methods which rely on contact with a collected amount of the extracted analyte, and the like. The sensing apparatus used with any of the above-noted methods can employ any suitable sensing element to provide the raw signal including, but not limited to, physical, chemical, biochemical (e.g., enzymatic, immunological, or the like), electrochemical, photochemical, spectrophotometric, polarimetric, colorimetric, radiometric, or like elements. In preferred embodiments of the invention, a biosensor is used which comprises an electrochemical sensing element.
- The analyte can be any specific substance or component that one is desirous of detecting and/or measuring in a chemical, physical, enzymatic, or optical analysis. Such analytes include, but are not limited to, toxins, contaminants, amino acids, enzyme substrates or products indicating a disease state or condition, other markers of disease states or conditions, drugs of recreation and/or abuse, performance-enhancing agents, therapeutic and/or pharmacologic agents, electrolytes, physiological analytes of interest (e.g., calcium, potassium, sodium, chloride, bicarbonate (CO2), glucose, urea (blood urea nitrogen), lactate, and hemoglobin), lipids, and the like. In preferred embodiments, the analyte is a physiological analyte of interest, for example glucose, or a chemical that has a physiological action, for example a drug or pharmacological agent. As will be understood by the ordinarily skilled artisan upon reading the present specification, there are a large number of analytes that can be sampled using the present methods.
- Accordingly, it is a primary object of the invention to provide a method for monitoring an analyte present in a biological system. The analyte is typically present beneath a target skin or mucosal surface of an individual. The method entails the steps disrupting a target site on the skin or mucosal surface, preferably by accelerating sampling particles into and/or across a target surface. Acceleration of the sampling particles into or across the target surface is effective to allow access to the analyte at the target surface (in some embodiments, a fluid sample comprising the analyte flows, exudes or otherwise passes to the target surface, in other embodiments, the analyte diffuses to the target surface essentially without net fluid transport). The presence and/or amount or concentration of the analyte that is so accessed is then determined by direct contact with a sensing apparatus, or the analyte can be collected from the target surface and then contacted with a sensing apparatus.
- An advantage of the invention is that the sampling process can be readily practiced inside and outside of the clinical setting and without pain. Moreover, the invention may be practiced repeatedly or continuously over time without having to constantly disrupt the skin surface.
- These and other objects, aspects, embodiments and advantages of the present invention will readily occur to those of ordinary skill in the art in view of the disclosure herein.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.
- In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.
- The term “analyte” is used herein in its broadest sense to denote any specific substance or component that is being detected and/or measured in a physical, chemical, biochemical, electrochemical, photochemical, spectrophotometric, polarimetric, colorimetric, or radiometric analysis. A detectable signal can be obtained, either directly or indirectly, from such a material. In preferred embodiments, the analyte is a physiological analyte of interest (e.g., a physiologically active material), for example glucose, or a chemical that has a physiological action, for example a drug or pharmacological agent. Examples include materials for blood chemistries (blood pH, PO2, pCO2, Na+, Ca++, K+, lactic acid, glucose, and the like), for hematology (hormones, hormone releasing factors, coagulation factors, binding proteins, acylated, glycosylated, or otherwise modified proteins and the like), and immuno-diagnostics, toxins, contaminants, amino acids, enzymes, enzyme substrates or products indicating a disease state or condition, immunological substances, other markers of disease states or conditions, performance-enhancing agents, therapeutic and/or pharmacologic agents, electrolytes, physiological analytes of interest (e.g., calcium, potassium, sodium, chloride, bicarbonate ([HCO2]−2), glucose, urea (blood urea nitrogen), lactate, and hemoglobin), materials for DNA testing, nucleic acids, proteins, carbohydrates, lipids, electrolytes, metabolites (including but not limited to ketone bodies such as 3-hydroxybutyric acid, acetone, and acetoacetic acid), therapeutic or prophylactic drugs, gases, compounds, elements, ions, drugs of recreation and/or abuse, anabolic, catabolic or reproductive hormones, anticonvulsant drugs, antipsychotic drugs, alcohol, cocaine, cannabinoids, opiates, stimulants, depressants, and their metabolites, degradation products and/or conjugates. The term “target analyte” refers to the analyte of interest in a specific monitoring method.
- As used herein, the term “pharmacological agent” intends any compound or composition of matter which, when administered to an organism (human or animal), induces a desired pharmacologic and/or physiologic effect by local and/or systemic action.
- As used herein, the term “occlusive” or “occlude” means to block or protect a target site from outside agents. That is, an occlusive dressing is a barrier that protects a disrupted target site from outside factors, such as microbial agents or fluid that may corrupt (or affect in any way) the target site. The material may either be completely occlusive, in that it is impermeable to all substances, or it may be semi-permeable to gasses and water vapor. In a preferred embodiment, the permeability to water vapor is low, permitting the target skin or mucosal surface under the dressing to remain hydrated. Hydration reduces the tendency of the target surface to rapidly restore natural barrier function of otherwise to scab or close off disruptions in the surface that permit access to body fluids such as interstitial fluids.
- As used herein, the term “sampling” means access to and monitoring of a substance from any biological system from the outside, e.g., across a membrane such as skin or tissue. The membrane can be natural or artificial, and is generally animal in nature, such as natural or artificial skin, blood vessel tissue, intestinal tissue, and the like. A “biological system” thus includes both living and artificially maintained systems.
- The term “collection reservoir” is used to describe any suitable containment means for containing a sample extracted from an individual using the methods of the present invention. Suitable collection reservoirs include, but are not limited to, pads, membranes, dipsticks, swabs, tubes, vials, cuvettes, capillary collection devices, and miniaturized etched, ablated or molded flow paths.
- The terms “sensing device” or “sensing apparatus” encompass any device that can be used to measure the concentration of an analyte of interest. Preferred sensing devices for detecting blood analytes generally include electrochemical devices and chemical devices. Examples of electrochemical devices include the Clark electrode system (see, e.g., Updike et al. (1967) Nature 214:986-988), and other amperometric, coulometric, or potentiometric electrochemical devices. Examples of chemical devices include conventional enzyme-based reactions as used in the Lifescan® glucose monitor (see, e.g., U.S. Pat. No. 4,935,346 to Phillips et al.). Detection and/or quantification of a chemical signal can also be carried out using readily available spectrophotometric monitoring devices.
- The term “individual” encompasses any warm-blooded animal, particularly including a member of the class Mammalia such as, without limitation, humans and nonhuman primates such as chimpanzees and other apes and monkey species; farm animals such as cattle, sheep, pigs, goats and horses; domestic mammals such as dogs and cats; laboratory animals including rodents such as mice, rats and guinea pigs, and the like. The term does not denote a particular age or sex. Thus, adult, child and newborn subjects, whether male or female, are intended to be covered.
- It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a particle” includes a mixture of two or more such particles, reference to “an analyte” includes mixtures of two or more such analytes, and the like.
- FIG. 1 is a perspective view of a resealable, occlusive dressing, with an aperture cover in a closed position.
- FIG. 2 is a perspective view of a resealable, occlusive dressing, with an aperture cover in an open position.
- FIG. 3 is a cross-sectional view of a resealable, occlusive dressing, with an aperture cover in a closed position.
- The invention relates to a method for sampling analytes present in a biological system, typically a physiologically active material that is present beneath a target skin or mucosal surface of an individual. The method entails two general steps, an accessing step and a determination step. The accessing step can be generalized as follows. A target surface is selected and cleaned with a suitable solvent. The target surface is then disrupted in some manner sufficient to create micro-passages that allow access to a quantity of an analyte. In this regard, the analyte may be present in a fluid that flows, exudes or otherwise passes from beneath the target surface, through the micro-passages to the target surface. In a preferred embodiment small sampling particles are accelerated into and/or across a target surface. These sampling particles are accelerated to a speed sufficient to penetrate the skin or mucosal layer at the target site, thereby breaching the natural barrier function of the skin or mucosal tissue and allowing access to an analyte present beneath the target surface. The target surface generally has an overall size ranging from about 0.1 to about 5 cm2.
- The sampling particles typically comprise an inert material. The material may be dissolvable such as commonly employed physiologically acceptable soluble materials including sugars (e.g., mannitol, sucrose, lactose, trehalose, and the like) and soluble or dissolvable polymers, e.g., swellable natural gels such as agarose. Alternatively, the sampling particles can be comprised of insoluble materials such as starch, TiO2, calcium carbonate, phosphate salts, hydroxy-apatite, or even synthetic polymers or metals such as gold, platinum or tungsten. Insoluble materials are sloughed off with the normal skin or mucosal tissue renewal process. Preferred materials are lactose, mannitol and polyethylene glycol, such as PEG 8000.
- If desired, the sampling particles can be coated with a locally active agent that facilitates the sampling step. For example, the sampling particles can be coated with or contain a pharmacological agent such as a vasoactive agent or an anti-inflammatory agent. The vasoactive agent is generally used to provide short-acting vasoactivity (e.g., up to 24 hours) in order to maximize, hasten or prolong fluid access (optimize analyte access), whereas the anti-inflammatory agent is generally used to provide local anti-inflammatory action to protect the target site. The sampling particles can also be coated with or contain an osmotically active agent to facilitate the sampling process.
- The sampling particles can be delivered from a particle injection device, e.g., a needleless syringe system as described in commonly owned International Publication Nos. WO 94/24263, WO 96/04947, WO 96/12513, and WO 96/20022, all of which are incorporated herein by reference. Delivery of sampling particles from these needleless syringe systems is generally practiced with particles having an approximate size generally ranging from 0.1 to 250 μm, preferably ranging from about 10-70 μm. Particles larger than about 250 μm can also be delivered from the devices, with the upper limitation being the point at which the size of the particles would cause untoward pain and/or damage to the tissue.
- The actual distance to which the delivered particles will penetrate a target surface depends upon particle size (e.g., the nominal particle diameter assuming a roughly spherical particle geometry), particle density, the initial velocity at which the particle impacts the surface, and the density and kinematic viscosity of the targeted skin tissue. In this regard, optimal particle densities for use in needleless injection generally range between about 0.1 and 25 g/cm3, preferably between about 0.9 and 1.5 g/cm3, and injection velocities generally range between about 100 and 3,000 m/sec. With appropriate gas pressure, particles having an average diameter of 10-70 μm can be readily accelerated through the nozzle at velocities approaching the supersonic speeds of a driving gas flow. Preferably, the pressure used when accelerating the particles will be less than 30 bar, preferably less than 25 bar and most preferably 20 bar or less.
- Alternatively, the sampling particles can be delivered from a particle-mediated delivery device such as a so-called “gene-gun” type device that delivers particles using either a gaseous or electric discharge. An example of a gaseous discharge device is described in U.S. Pat. No. 5,204,253. An explosive-type device is described in U.S. Pat. No. 4,945,050. One example of a helium discharge-type particle acceleration apparatus is the PowderJect XR® instrument (PowderJect Vaccines, Inc., Madison, Wis.), which instrument is described in U.S. Pat. No. 5,120,657. An electric discharge apparatus suitable for use herein is described in U.S. Pat. No. 5,149,655. The disclosure of all of these patents is incorporated herein by reference.
- Other methods for disrupting the target surface, in a way that micro-pathways are formed in a target skin or mucosal surface to provide access to analyte beneath the target surface, are well known in the art. The term “micro-pathways” refers to microscopic perforations and/or channels in the skin caused by pressure (water or particle injection), mechanical (micro lancets), electrical (thermal ablation, electro-poration, or electroosmosis), optical (laser ablation), and chemical methods or a combination thereof. For example, U.S. Pat. No. 5,885,211 describes five specific techniques for creating micro-pathways which entail: ablating the surface with a heat source such that tissue bound water is vaporized; puncturing the surface with a microlancet calibrated to form a micropore; ablating the surface by focusing a tightly focused beam of sonic energy; hydraulically puncturing the surface with a high pressure jet of fluid; and puncturing the surface with short pulses of electricity to form a micro-pathway. Another specific technique is described in U.S. Pat. Nos. 6,219,574 and 6,230,051, which describe a device having a plurality of microblades. The microblades are angled and have a width of 10 to 500 microns and a thickness of 7 to 100 microns and are used to provide superficial disruptions in a skin surface.
- Disruption of the target surface allows access to the analyte of interest that was otherwise not accessible at the target surface. For example, disruption of the target surface can produce micro-pathways that allow a small amount of a fluid sample (e.g., a body fluid) to flow, exude or otherwise pass to the target surface via mass fluid transport, wherein the fluid contains the analyte of interest. The term “body fluid” refers to biological fluid including, but not limited to interstitial fluid, blood, lymph, sweat, or any other body fluid accessible at the surface of suitably disrupted tissue. The term “mass fluid transport” refers to the movement of fluids, such as body fluid. This term is used to distinguish over analyte transport across the disrupted surface. The mass transport aspect refers to the physical movement of the fluid (as opposed to the movement of energy, or solutes) between body fluids in tissue beneath the target surface and the surface.
- Alternatively, disruption of the target surface can produce micro-pathways that simply allow access to the analyte beneath the surface from a position on the target surface itself, wherein the analyte passes to the surface essentially free of net mass fluid transport. In this regard, the analyte may simply diffuse between the tissue below the target surface and a microenvironment established at the tissue surface. The term “essentially free” refers to an insubstantial amount of mass fluid transport between the tissue and the target surface.
- The term “diffusion” refers to the flux across the disrupted surface (e.g., across disrupted skin tissue) between a body fluid below the surface and the target surface itself, wherein flux occurs along a concentration gradient. Such diffusion would thus include transport of the target analyte to maintain equilibrium between the body fluid and the target surface. When the concentration of analyte is greater in the body, analyte diffusion would be toward the target surface. When the concentration of analyte is greater at the target surface, analyte diffusion would be toward the body. In addition, net diffusion of analyte from the target surface to the body fluid will occur when the concentration of analyte in the body decreases with respect to the previous measurement. Diffusion, however, is not limited to the target analyte. Certain means of measurement, for example those employing enzymatic electrochemical approaches, can generate natural byproducts by oxidation or reduction of the analyte such as gluconic acid or gluconolactone in the case of glucose. Such byproducts can diffuse from a sensing material in contact with the target surface into the body fluid.
- In methods that depend upon such “diffusional” access to the target analyte, it is preferred that an interface is applied to disrupted target surface to facilitate the establishment and maintenance of an equilibrium concentration of both analyte and any byproducts by diffusion. In this manner, the methods of the present invention permit a virtually continuous measurement during long-term monitoring without saturating the target surface with byproducts or even the analyte itself. The term “equilibrium” refers to the phenomenon in which diffusion has equalized the concentration of analyte on either side of the disrupted surface such that there is essentially no concentration gradient. Diffusion of analyte between the body fluid and the target surface allows approach to an equilibrium or steady-state condition. When concentrations of analyte change in the body, a timely dynamic change in the equilibrium enables continuous monitoring of the analyte concentration at the tissue surface. The physical measurement of the analyte concentration can avoid transforming or consuming a significant amount of the analyte, thereby avoiding significant reduction in the amount of analyte at the surface that could render it a sink for the analyte. In the situation that a sink is created, continuous monitoring of analyte concentration can measure the rate of diffusion instead of concentration, for example in the event that the time to reach equilibrium between the target surface and the body fluid is insufficient.
- After the target surface has been disrupted, a resealable and occlusive adhesive dressing is adhered to the target site. The occlusive dressing protects the disrupted target site from outside agents such as liquids, microbes or other substances that might contaminate the target site. In addition, the occlusive dressing maintains the target site environment in a moist or hydrated condition. Maintaining hydration enhances the methods of the present invention because it allows for access to body fluids (e.g., interstitial fluids) beneath the surface at the target surface for a longer period of time and also increases the reliablity and accuracy of the analyte reading. That is, by occluding the target site, the tendency of the target site perforations to reestablish natural barrier functions, close or scab up is reduced or delayed. This enhances monitoring of the dynamic changes in levels of the analyte in the interstitial fluid over time. With the addition of a resealable port, which allows for sampling at discrete intervals while maintaining the hydrated environment, monitoring of an analyte may be maintained over time.
- Referring now to the drawings, there is shown one embodiment of the occlusive dressing for use with the sampling methods detailed herein. Specifically, FIGS. 1, 2 and3 show a preferred embodiment where the resealable occlusive dressing is a one piece device. An
aperture cover 16 in the device acts like a door, hingedly connected on at least one of its four sides, thereby allowing the door to swing between open and closed positions. Alternative configurations, such as a two-piece device wherein theaperture cover 16 is wholly removable and replaceable (e.g., the cover is removed, discarded and then replaced with each opening step) are also within the scope of the present invention. However, since the components size, materials and configuration are all approximately similar, only the trap door configuration will be described herein below. - Resealable, occlusive dressing10 is comprised of
occlusive strip 12 having a top surface 14 a and a bottom surface 14 b (shown only on FIG. 3).Occlusive strip 12 may be rectangular as shown but may of course be any shape as is convenient for use at the target site. That is, resealable, occlusive dressing 10 may be oval, circular, polygonal or non-polygonal, or any other shape conducive to effectively occlude the target site. -
Occlusive strip 12 may be fashioned from any material known in the art that has the necessary characteristics conducive for use with the method of the invention.Occlusive strip 12 will, typically, be created from an occlusive material. Most can adhere to targetsurface 22 and be comfortable and convenient to wear. As is well known in the art, a wide variety of occlusive materials are suitable for such applications, including many widely used polymers. The materials to make the occlusive strip are common and moderately priced. Theocclusive strip 12 is preferably sufficiently flexible so as to bend and twist with a sufficient amount of give so that it can be worn reasonably comfortably on an anatomical part. That is, when adhered to a target surface, theocclusive strip 12 should be able to flex such that it does not overly grab or resist movement of a body part, wrinkle or tear. Preferably,occlusive strip 12 has sufficient drape to bend around a body surface. On the other hand,occlusive strip 12 should be firm enough so thataperture cover 20 may be easily accessed without tearingocclusive strip 12. For example,occlusive strip 12 may be manufactured from a polymer thin film, a closed cell resilient thermoplastic material, or a vinyl material such as polyurethane. Preferably, the material chosen is flexible or semi-flexible and more preferably, is non-allergenic. - Aperture20 (shown only in FIG. 2) traverses
occlusive strip 12 from top portion 14 a to bottom portion 14 b.Aperture 20 is dimensioned so as to provide an amount of area roughly equivalent to the target site. More preferably, the area ofaperture 20 would exceed the target surface area by at least 5%, preferably 10 to 20%, and most preferably by at least 25-50%, in all directions. The area ofaperture 20 is greater than the target site to facilitate access of sensing or collection devices but should not be so large as to make occlusion difficult. Generally, the target surface has an area of 0.1 to 5 cm2. That is, a radius of 8 mm to 35 mm. Thus,aperture 20 preferably shall have an area of 5.5 to 7.5 cm2 or a radius of 35 to 45 mm. - In one embodiment,
aperture cover 16 is connected to upper surface 14 a by a hinge, such as a flexible material. Theaperture cover 16 is attached at a point just past the edge of one side thereof. In a closed position,aperture cover 16 should completely coveraperture 20, with enough overlap to create an occlusive seal betweenaperture cover 16 and upper surface 14 a.Aperture cover 16 may be fabricated from the same material as resealable,occlusive strip 10, if it is fabricated from another material, that material should also be occlusive. Furthermore, the material is preferably flexible or semi-rigid. - The
aperture cover 16 can be secured to upper surface 14 a by a variety of suitable attachment mechanisms, all of which should provide a nearly airproof seal. It is further desirable thataperture cover 16 maintain its ability to seal despite repeatedly being opened and closed. In one embodiment, for example, a fine microhook material is used to secure theaperture cover 16 to the upper surface 14 a, wherein the microhooks cooperate with fine loops on the upper surface 14 a. One example of such a microhook attachment system is commercially available under the VELCRO® tradename. In another embodiment, a pressure sensitive adhesive is disposed around the edge to theaperture cover 16 such that it will contact upper surface 14 a and permit resealing of the port. Other attachment mechanisms are readily available to the skilled artisan, for example traditional hinge mechanisms, or where the cover is heat-sealed or bonded on one edge with the other overlapping edges being treated with a non-aggressive pressure sensitive adhesive. Other suitable attachments include a tape sealed opening, one or more snaps, friction-fit plugs, and compression seals (e.g., a mating pair of interconnectable pieces such as those commonly used on “ziplock” style resealable plastic storage or sandwich bags). Such attachments may be placed on one or more edges of the aperture cover/upper surface interface. Suitable compression seals are described, for example in U.S. Pat. No. 6,306,071, incorporated herein by reference. If desired, a non-treated (non-adhesive) finger pull or intuitive tab can be provided for ease of moving the cover from the aperture. Alternatively, numerous dressing configurations without an aperture cover are also suitable, such as dressings having a resealable slit over the aperture that allows access to the target skin surface. Here again, compression seals are useful for such embodiments, as are tension closing slits and the like. - After the tissue surface has been suitable disrupted, access to the analyte is then available at the target surface. Typically, the analyte is present in a fluid sample that has flowed, exuded or otherwise passed to the surface, substantially instantaneously, or occurring over a period of time. Alternatively, no net mass fluid transport occurs, with the analyte simply diffusing to the target surface. In methods where a particle injection device is used to disrupt the target surface, the quantity of the analyte that is made available at the target surface may be varied by altering conditions such as the size and/or density of sampling particles and the settings of the apparatus used to deliver the particles. The quantity of fluid released may often be small, such as <1 μl that is generally sufficient for detection of the analyte.
- Once the analyte is accessible at the target surface, the presence and/or amount or concentration of the analyte is determined. In this regard, the target surface may be contacted with a suitable sensing apparatus. This detection step can be carried out in a continuous manner. Continual or continuous detection allows for monitoring of target analyte concentration fluctuations. If desired, a sample believed to contain the analyte can first be collected from the target surface prior to being contacted with the sensing apparatus.
- In those methods where a fluid sample passes to the surface, and the detection is carried out at a distal site (away for the target surface), the sample may be collected from the target surface in a number of ways. For example pads, membrane dipsticks, swabs, tubes, vials, curvettes, capilliary collection devices and miniaturized etched, ablated or molded flow paths may be used as collection reservoirs. In some methods, an absorbent material is passed over the target surface to absorb the fluid sample from the target surface for subsequent detection of the presence or amount of analyte. The absorbent material may be, for example, in the form of a pad, swab or gel. The absorbent material may additionally incorporate means to facilitate detection of the analyte such as an enzyme as described in more detail below.
- In other methods, a suitable interface material may be applied to the target surface and subsequently covered by the occlusive dressing. For example, a gel material can be spread over the target site. The gel may also be applied directly into
aperture 20 after the dressing has been adhered to the target site. In this way the gel may be continuously replaced and analyte monitoring can continue over a longer period of time. Alternatively, the occlusive dressing can be fashioned such that the interface material is integrated within theaperture 20 prior to application to the target site. For example, the occlusive dressing can contain a pad dimensioned to the same size and shape of the portal area, which is disposed within theaperture 20 when the dressing is manufactured. In these embodiments, the user simply adheres the occlusive dressing at the target site, taking care to align theaperture 20 over the target site. Theaperture cover 16, can then be opened, and an analyte reading sample taken using a suitable sensing apparatus, whereafter theaperture cover 16 closed until the next reading. - Examples of particularly suitable interface materials include a hydrogel, or other hydrophilic polymer, the composition of which is predominantly water for measurement of water-soluble target analytes. The hydrogel can be used with or without surfactants or wetting agents. For those methods where diffusional analyte access is used, the interface material can be formulated to provide a continuous approach to equilibrium of target analyte concentration between the interface material and the body fluid. The physical properties of the interface material are selected to maintain close association with the micro-passages or other portals. Examples of hydrogels include, but are not limited to, a 1% solution of a Carbopol® (B. F. Goodrich Co.; Cleveland, Ohio) in water, or a 4% solution of Natrosol® (Aqualon Hercules; Wilmington, Del.) in water. In some cases (e.g., diffusional analyte access) it is preferred that the interface material not withdraw a sample of body fluid, nor behave like a sink for the target analyte. In such embodiments, the composition of the interface material can be selected to render it isosmotic with the body fluid containing the target analyte, such that it does not osmotically attract body fluid. Other embodiments can comprise hydrogels including, but not limited to, poly(hydroxyethyl methacrylate) (PHEMA), poly(acrylic acid) (PAA), polyacrylamide (PAAm), poly(vinyl alcohol) (PVA), poly(methacrylic acid) (PMAA), poly(methyl methacrylate) (PMMA), poly(vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), or poly(ethylene glycol) (PEG), avoiding polymers that can interfere with analytical methods for specific target analyte such as normal or chemically modified polysaccharides in the case of glucose measurement.
- The composition of the interface material can further be selected to render it isotonic or isosmotic with the body fluid containing the target analyte, such that it does not osmotically attract mass flow of body fluid. In one embodiment, the composition can comprise a modified Ringer's-type solution to simulate interstitial fluid having a composition of NaCl (9 g/l), CaCl2.2H2O (0.17 g/l), KCl (0.4 g/l), NaHCO3 (2.1 g/l), and glucose (10 mg/l). Other embodiments can comprise simpler or more complex aqueous salt compositions with osmolality ranging from 290 mOsm/kg to 310 mOsm/kg.
- The interface material, e.g., the gel, may be applied to the target surface as described above and sufficient time allowed for analyte from the target surface to equilibrate in the gel prior to the detection step. The time may be quite short, such as from 30 seconds to 5 minutes. Detection may then be carried out by opening the
aperture cover 16 and applying the sensing means to the gel such as by contacting the gel with a membrane containing a suitable enzyme system for the analyte. The trap door is then closed to maintain hydration. - By occluding the site with the resealable occlusive dressing, the site remains hydrated. The target site will not close up and analyte-bearing fluids will continue to be accessible at the surface. Further, maintaining hydration enhances the concentration gradient and speeds up the process, leading to a more accurate reading of the analyte. In some embodiments, the analyte-bearing gel is assessed for anlayte and then wiped away. A new amount of gel is then inserted into the
aperture 20 and over the target site. Equilibrium is then reached again and another sample may be taken at any time convenient for the user or as is called for in the monitoring protocol. - The determination step can be generalized as follows. An initial step can entail obtaining a raw signal from a sensing device, which signal is related to a target analyte present in the biological system. The raw signal can then be used directly to obtain an answer about the analyte, for example, whether or not the analyte is present, or a direct measurement indicative of the amount or concentration of the extracted analyte. The raw signal can also be used indirectly to obtain information about the analyte. For example, the raw signal can be subjected to signal processing steps in order to correlate a measurement of the sampled analyte with the concentration of that analyte in the biological system. Such correlation methodologies are well known to those skilled in the art.
- Detection may be carried out by any suitable method that allows for detection of an analyte. Such analysis may be physical, chemical, biochemical, electrochemical, photochemical, spectrophotometric, polarimetric, colorimetric or radiometric analysis. Preferred methods include electrochemical (e.g. amperometric or coulometric), direct or reflective spectroscopic (e.g. fluorescent or chemiluminescent), biological (e.g. enzymatic), chemical, optical, electrical, mechanical (e.g. measuring gel expansion via piezoelectric means) methods known in the art for sensing the presence or concentration of analytes in solution.
- The detection step may be carried out at the site by applying a sensing apparatus through the
aperture 20 to the target site, thereby obtaining a raw signal. Alternatively, a sample may be simply collected at the target site framed by theaperture 20 and then taken to another location containing the sensing apparatus. The determination step is then carried out at the second location. For the purposes of this invention, this is referred to as an ex vivo analyte determination. - In order to facilitate detection of the analyte, an enzyme may be disposed on the active surface or portion of a sensing apparatus that is contacted with the analyte at the target surface, or included within one or more collection reservoirs that are used to collect extracted analyte. Such enzymes must be capable of catalyzing a specific reaction with the extracted analyte (e.g., glucose) to the extent that a product of the reaction can be selectively sensed (e.g., detected electrochemically from the generation of a current which current is detectable and proportional to the amount of the analyte which is reacted). A suitable enzyme is glucose oxidase that oxidizes glucose to gluconic acid or its lactone and hydrogen peroxide. The subsequent detection of hydrogen peroxide on an appropriate biosensor electrode generates two electrons per hydrogen peroxide molecule that create a current which can be detected and related to the amount of glucose entering the device. Glucose oxidase (GOx) is readily available commercially and has well known catalytic characteristics. However, other enzymes can also be used, so long as they specifically catalyze a reaction with an analyte or substance of interest to generate a detectable product in proportion to the amount of analyte so reacted.
- A number of other analyte-specific enzyme systems can be used in the methods of the invention. For example, when using a common biosensor electrode that detects hydrogen peroxide, suitable enzyme systems can be used to detect ethanol (an alcohol oxidase enzyme system), or similarly uric acid (a urate oxidase system), cholesterol (a cholesterol oxidase system), and theophylline (a xanthine oxidase system). Hydrogels containing these analyte-specific enzyme systems can be prepared using readily available techniques familiar to the ordinarily skilled artisan.
- Preferred sensing devices are patches that include an enzyme or other specific reagent that reacts with the extracted analyte of interest to produce a detectable color change or other chemical signal. The color change can be assessed by comparison against a standard to determine analyte amount, or the color change can be detected using standard electronic reflectance measurement instruments. One such system is a transdermal glucose monitoring system developed by Technical Chemicals and Products, Inc (TCPI) of Pompano Beach, Fla. Another suitable system is described in U.S. Pat. No. 5,267,152 to Yang et al. (a device and method for measuring blood glucose concentration using near-IR radiation diffuse-reflection laser spectroscopy). Similar near-IR spectrometric devices are also described in U.S. Pat. No. 5,086,229 to Rosenthal et al. and U.S. Pat. No. 4,975,581 to Robinson et al. U.S. Pat. No. 5,139,023 to Stanley describes a blood glucose monitoring apparatus that relies on a permeability enhancer (e.g., a bile salt) to facilitate transdermal movement of glucose along a concentration gradient established between interstitial fluid and a receiving medium. U.S. Pat. No. 5,036,861 to Sembrowich describes a passive glucose monitor that collects perspiration through a skin patch, where a cholinergic agent is used to stimulate perspiration secretion from the eccrine sweat gland. Similar perspiration collection devices are described in U.S. Pat. No. 5,076,273 to Schoendorfer and U.S. Pat. No. 5,140,985 to Schroeder. Detection of extracted glucose is carried out using standard chemical (e.g., enzymatic) colorimetric or spectrometric techniques.
- Alternatively, an iontophoretic transdermal sampling system can be used in conjunction with the present invention, for example where the instant particle method is used to pre-treat a skin site to facilitate improved sampling from a GlucoWatch# system (Cygnus, Redwood, Calif.). This iontophoretic system is described in Glikfeld et al (1989), Pharm. Res. 6(11): 988 et seq. and in U.S. Pat. No. 5,771,890.
- The purpose of the following example was to demonstrate the use of the instant resealable occlusive dressings with a commercial color-generating glucose sensor strip to intermittently measure glucose concentration over a 24-hour period using a single powder injection administration to prepare the target skin site.
- The skin site was prepared by injecting 1 mg of 53-63 μm of a mannitol powder using a CO2-powered multi-shot particle injection device (PowderChek Diagnostics, Inc., Fremont, Calif.) fitted with a supersonic nozzle. Device pressure for particle administration was equivalent to 10 bar of CO2 gas. Five microliters of sterile 4% aqueous Natrosol® (hydroxyethyl cellulose, Hercules Inc., Aqualon Div. Wilmington, Del.) was applied to a ˜2 mm by 2 mm sensor element (cut from a LifeScan SureStep® strip) to moisturize it and act as the interface contact element with the injected skin site. The moistened sensor element was placed in contact with the skin for 2 minutes before removal for color intensity measurement using a hand-held densitometer (Model: RCP-N, Tobias Associates, Inc., Ivyland, Pa.).
- The resealable dressing for this example was constructed by application of an ovaloid commercial adhesive dressing (Large, Advanced Healing Band-Aid, Johnson & Johnson Consumer Companies, N.J.) having a pre-punched {fraction (5/16)} inch opening for placement over the injected skin area. This was the base dressing that was kept in place for the entire test period. A removable/replaceable occlusive patch was fabricated from a {fraction (7/16)} inch diameter disk Parafilm® “M” Laboratory Film (American National Can, Chicago, Ill.) secured to an adhesive backing of 1 in. diameter (3M Scotch Brand Mailing Tape, 3M, ST. PAUL, Minn.) and protected until application by a removable 3 mil Scotchpak® 1022 release liner (3M, ST. PAUL, Minn.). Between each two-minute glucose determination a fresh occlusive element was applied to the base dressing after the skin was gently wiped once with a moist Q-Tip® cotton swab, then blotted with a dry Q-Tip.
- Capillary blood glucose and ISF glucose at the powder injection site were determined by repeating this procedure every hour for 15 hours during the day and then the next morning. Capillary blood samples were taken from the forearm using the lancet and blood glucose measurement device of a commercial FreeStyle® alternative sampling site blood glucose system (TheraSense Inc., Alameda Calif.).
- At ˜3 hour intervals a mannitol injection was also be made to a fresh, random site on the volar forearm for comparison. These sites were not covered nor reused.
- At the 24-hour time point the measurement procedure was repeated to indicate if the skin permeabilized by powder injection remained open for that duration as a viable portal for glucose determination.
- Referring now to Table 1, the measured capillary blood concentration of glucose in mg/dl from the FreeStyle™ commercial system is shown in column 2 and the values for interstitial fluid from powder-injected sites on the left and right volar forearms are shown in columns 3 and 4 respectively. The latter values are calculated using a single, mean calibration adjustment from the FreeStyle values and despite variability from the makeshift means of measurement with a hand-held laboratory densitometer, clearly show the access to interstitial fluid for glucose measurement to 24 hours.
TABLE 1 Comparison of Capillary Blood Glucose and Interstitial Fluid for one Subject Test Hour Capillary Blood ISF Left Forearm ISF Right Forearm 0 94 100 97 1 88 83 86 2 76 83 78 3 108 105 94 4 183 108 108 5 156 105 89 6 109 94 83 7 82 78 75 8 66 83 72 9 125 111 114 10 133 119 111 11 131 139 102 13 102 114 100 14 84 102 94 21 86 111 94 22 108 147 97 23 108 127 89 24 104 161 102 - As seen in Table 2, below, there was also a good correlation between the glucose values obtained from the 24 hour occluded site and the values obtained at the fresh powder injected sites (as seen in a second subject). The positive and negative fluctuations in glucose concentrations in body fluid underlying the skin into which micro-pathways have been made are clear. This shows glucose diffusing to the interface contact gel from the underlying body fluid. This diffusion through the skin can occur within a relatively short period of time.
TABLE 2 Comparison of Capillary Blood Glucose and Interstitial Fluid for a 2nd Subject ISF Left Test Capillary ISF Left ISF Right Forearm Hour Blood Forearm Forearm (Fresh Site) 0 89 69 93 2 111 85 102 4 85 104 110 106 6 88 97 102 97 22 96 93 102 24 96 93 97 - It is to be understood that this invention is not limited to particularly exemplified analytes or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.
- All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.
Claims (38)
1. A method for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
(a) disrupting said target surface to create one or more passages in that surface sufficient to allow access to said analyte at the target surface;
(b) placing an occlusive covering over said target surface thereby covering said target surface, wherein said covering has a moveable or resealable portion that can be displaced to provide access to said target surface without removing the entire covering from the target surface;
(c) moving the moveable or resealable portion from a first closed position to a second position that allows access to said target surface;
(d) contacting the target surface with a sensing apparatus that detects the presence or amount of said analyte at the target surface; and
(e) moving the moveable or resealable portion back to its first closed position thereby covering said target surface.
2. The method of claim 1 wherein the target surface is disrupted by accelerating particles into and/or across said target surface.
3. The method of claim 2 wherein the particles have a size ranging from 0.1-250 μm.
4. The method of claim 3 wherein the particles have a size ranging from 10-70 μm.
5. The method of claim 1 wherein the analyte is glucose.
6. The method of claim 1 wherein a first side of the moveable or resealable portion is hingeably attached to the upper surface of said occlusive covering.
7. The method of claim 1 wherein a first side of the moveable or resealable portion is attached to the covering by a contact adhesive.
8. A method for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
(a) disrupting said target surface to create one or more passages in that surface sufficient to allow said analyte to flow, exude or otherwise pass from beneath the target surface to the target surface;
(b) applying an interface material over said target surface;
(c) placing an occlusive covering over said interface material and said target surface, wherein said covering has a moveable or resealable portion that can be displaced to provide access to said target surface without removing the entire covering from the target surface;
(d) moving the moveable or resealable portion from a first closed position to a second position that allows access to said target surface;
(e) contacting the interface material with a sensing apparatus that detects the presence or amount of said analyte at the target surface; and
(f) moving the moveable or resealable portion back to its first closed position thereby covering said target surface.
9. The method of claim 8 wherein the target surface is disrupted by accelerating particles into and/or across said target surface.
10. The method of claim 9 wherein the particles have a size ranging from 0.1-250 μm.
11. The method of claim 10 wherein the particles have a size ranging from 10-70 μm.
12. The method of claim 8 wherein the analyte is glucose.
13. The method of claim 8 wherein a first side of the moveable or resealable portion is hingeably attached to the upper surface of said occlusive covering.
14. The method of claim 8 wherein a first side of the moveable or resealable portion is attached to the covering by a contact adhesive.
15. The method of claim 8 , wherein the interface material is a hydrogel.
16. A method for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
(a) disrupting said target surface to create one or more passages in that surface sufficient to allow said analyte to flow, exude or otherwise pass from beneath the target surface to the target surface;
(b) placing an occlusive covering over said target surface thereby covering said target surface, wherein said covering has a moveable or resealable portion that can be displaced to provide access to said target surface without removing the entire covering from the target surface;
(c) moving the moveable or resealable portion from a first closed position to a second position that allows access to said target surface;
(d) sampling said target surface and then detecting said analyte ex vivo; and
(e) moving the moveable or resealable portion back to its first closed position thereby covering said target surface.
17. The method of claim 16 wherein the target surface is disrupted by accelerating particles into and/or across said target surface
18. The method of claim 17 wherein the particles have a size ranging from 0.1-250 μm.
19. The method of claim 18 wherein the particles have a size ranging from 10-70 μam.
20. The method of claim 16 wherein the analyte is glucose.
21. The method of claim 16 wherein a first side of the moveable or resealable portion is hingeably attached to the upper surface of said occlusive covering.
22. The method of claim 16 wherein the first side of the movable or resealable portion is attached to the covering by a contact adhesive.
23. A method for detecting the presence or amount of an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
(a) disrupting said target surface to create one or more passages in that surface sufficient to allow access to said analyte at the target surface;
(b) applying an interface material over said target surface;
(c) placing an occlusive covering over said interface material and said target surface, wherein said covering has a moveable or resealable portion that can be displaced to provide access to said target surface without removing the entire covering from the target surface;
(d) moving the moveable or resealable portion from a first closed position to a second position that allows access to said target surface;
(e) sampling said interface material and then detecting said analyte in the sample ex vivo; and
(f) moving the moveable or resealable portion back to its first closed position thereby covering said target surface.
24. The method of claim 23 wherein the target surface is disrupted by accelerating particles into and/or across said target surface.
25. The method of claim 24 wherein the particles have a size ranging from 0.1-250 μm.
26. The method of claim 25 wherein the particles have a size ranging from 10-70 μm.
27. The method of claim 23 wherein the analyte is glucose.
28. The method of claim 23 wherein the first side of the movable or resealable portion is attached to the covering by a contact adhesive.
29. The method of claim 23 wherein a first side of the moveable or resealable portion is hingeably attached to the upper surface of said occlusive covering.
30. The method of claim 23 , wherein the interface material is a hydrogel.
31. A method of monitoring for an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
(a) accelerating particles into and/or across said target surface, wherein the acceleration of said particles into or across the target surface is effective to create micro-passages that allow access to the analyte at the target surface, and further wherein said particles are accelerated toward the target surface using a needleless syringe device or a particle-mediated delivery device;
(b) attaching an occlusive adhesive patch having a resealable aperture to a surface surrounding the target surface, thereby covering said target surface with said patch, wherein said aperture circumscribes said target surface, and further wherein said aperture is closed;
(c) opening said resealable aperture;
(d) contacting the target surface with a sensor;
(e) determining the presence or concentration of said analyte at the target surface; and
(f) resealing said aperture, thereby maintaining hydration and allowing for continual monitoring over time.
32. A method of monitoring for an analyte present beneath a target skin or mucosal surface of an individual, said method comprising:
(a) accelerating particles into and/or across said target surface, wherein the acceleration of said particles into or across the target surface is effective to allow passage of a fluid sample from beneath the target surface to the target surface, and further wherein said particles are accelerated toward the target surface using a needleless syringe device or a particle-mediated delivery device;
(b) contacting said target surface with an interface medium, wherein the interface medium collects said fluid sample;
(c) attaching an occlusive adhesive patch having a resealable aperture to a surface surrounding the target surface, thereby covering said target surface with said patch, wherein said aperture circumscribes said target surface, and further wherein said aperture is closed;
(d) opening said resealable aperture;
(e) contacting said interface medium with a sensor;
(f) determining the presence or concentration of said analyte in the interface medium; and
(g) resealing said aperture, thereby maintaining hydration and allowing for continual monitoring over time.
33. The method of claim 31 , wherein the interface medium is a hydrogel.
34. The method of claim 31 or 32 wherein the analyte is glucose.
35. The method of claim 31 or 32 wherein the particles have a size ranging from 0.1-250 μm.
36. The method of claim 31 or 32 wherein the particles have a size ranging from 10-70 μm.
37. The method of claim 31 or 32 wherein the first side of the movable or resealable portion is attached to the covering by a contact adhesive.
38. The method of claim 31 or 32 wherein a first side of the moveable or resealable portion is hingeably attached to the upper surface of said occlusive covering.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/023,006 US20030113827A1 (en) | 2001-12-17 | 2001-12-17 | Non-or minimally invasive monitoring methods |
EP02786772A EP1466007A1 (en) | 2001-12-17 | 2002-12-13 | Non-or minimally invasive monitoring methods |
PCT/US2002/037605 WO2003052125A1 (en) | 2001-12-17 | 2002-12-13 | Non-or minimally invasive monitoring methods |
US10/499,319 US20050176084A1 (en) | 2001-12-17 | 2002-12-13 | Non-or minimally invasive monitoring methods |
JP2003552992A JP2005513428A (en) | 2001-12-17 | 2002-12-13 | Non-invasive or minimally invasive monitoring method |
AU2002350241A AU2002350241A1 (en) | 2001-12-17 | 2002-12-13 | Non-or minimally invasive monitoring methods |
CA002470772A CA2470772A1 (en) | 2001-12-17 | 2002-12-13 | Non-or minimally invasive monitoring methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/023,006 US20030113827A1 (en) | 2001-12-17 | 2001-12-17 | Non-or minimally invasive monitoring methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030113827A1 true US20030113827A1 (en) | 2003-06-19 |
Family
ID=21812570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/023,006 Abandoned US20030113827A1 (en) | 2001-12-17 | 2001-12-17 | Non-or minimally invasive monitoring methods |
Country Status (1)
Country | Link |
---|---|
US (1) | US20030113827A1 (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050115570A1 (en) * | 2003-12-01 | 2005-06-02 | Joseph Hare | Covering for an aseptic treatment site |
US20060204399A1 (en) * | 2002-12-30 | 2006-09-14 | Freeman Dominique M | Method and apparatus using optical techniques to measure analyte levels |
US20060207609A1 (en) * | 2003-12-01 | 2006-09-21 | Michael Gil | Covering for an aseptic treatment site |
US20070088248A1 (en) * | 2005-09-02 | 2007-04-19 | Iomai Corporation | Devices for transcutaneous delivery of vaccines and transdermal delivery of drugs and uses thereof |
WO2007075368A2 (en) * | 2005-12-16 | 2007-07-05 | Bayer Healthcare Llc | Transdermal analyte sensor assembly and methods of using the same |
US20070219462A1 (en) * | 2002-04-19 | 2007-09-20 | Barry Briggs | Methods and apparatus for lancet actuation |
US20070219573A1 (en) * | 2002-04-19 | 2007-09-20 | Dominique Freeman | Method and apparatus for penetrating tissue |
US20080208107A1 (en) * | 2002-03-11 | 2008-08-28 | Mcrae Stuart | Transdermal porator and patch system and method for using same |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US7780631B2 (en) | 1998-03-30 | 2010-08-24 | Pelikan Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
EP2239000A2 (en) | 2009-03-13 | 2010-10-13 | Sysmex Corporation | System for measuring components in a living body, kit for a micropore forming device, and marking member |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7850622B2 (en) | 2001-06-12 | 2010-12-14 | Pelikan Technologies, Inc. | Tissue penetration device |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US20110034787A1 (en) * | 2009-08-04 | 2011-02-10 | Sysmex Corporation | Device for Interstitial Fluid Extraction, Production Process Thereof and Analyzing Process of Interstitial Fluid Using the Device |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7901365B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US20110066076A1 (en) * | 2009-09-16 | 2011-03-17 | Sysmex Corporation | Interstitial fluid collection method and interstitial fluid collection kit and interstitial fluid collection sheet used for the method |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US8007446B2 (en) | 2002-04-19 | 2011-08-30 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8262614B2 (en) | 2003-05-30 | 2012-09-11 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8337421B2 (en) | 2001-06-12 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
WO2013164827A3 (en) * | 2012-05-03 | 2013-12-27 | Sensible Medical Innovations Ltd. | Patches for the attachment of electromagnetic (em) probes |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
CN103845086A (en) * | 2012-12-04 | 2014-06-11 | 希森美康株式会社 | Body fluid collection device |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
WO2018226245A1 (en) * | 2017-06-09 | 2018-12-13 | Arkal, Inc. | Devices and methods for enhanced skin perforation for continuous glucose monitoring |
WO2020237013A1 (en) * | 2019-05-21 | 2020-11-26 | Verily Life Sciences Llc | Adhesive layer stack with offset seams |
US11154235B2 (en) * | 2016-04-19 | 2021-10-26 | Medidata Solutions, Inc. | Method and system for measuring perspiration |
EP3912550B1 (en) * | 2015-04-02 | 2024-06-12 | HeartFlow, Inc. | System, method and computer program product for estimating perfusion |
-
2001
- 2001-12-17 US US10/023,006 patent/US20030113827A1/en not_active Abandoned
Cited By (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US7780631B2 (en) | 1998-03-30 | 2010-08-24 | Pelikan Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8439872B2 (en) | 1998-03-30 | 2013-05-14 | Sanofi-Aventis Deutschland Gmbh | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US8337421B2 (en) | 2001-06-12 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8845550B2 (en) | 2001-06-12 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8679033B2 (en) | 2001-06-12 | 2014-03-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7981055B2 (en) | 2001-06-12 | 2011-07-19 | Pelikan Technologies, Inc. | Tissue penetration device |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US8641643B2 (en) | 2001-06-12 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US8622930B2 (en) | 2001-06-12 | 2014-01-07 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9694144B2 (en) | 2001-06-12 | 2017-07-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US9802007B2 (en) | 2001-06-12 | 2017-10-31 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US7909775B2 (en) | 2001-06-12 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8382683B2 (en) | 2001-06-12 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8360991B2 (en) | 2001-06-12 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8282577B2 (en) | 2001-06-12 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US9937298B2 (en) | 2001-06-12 | 2018-04-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8216154B2 (en) | 2001-06-12 | 2012-07-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8211037B2 (en) | 2001-06-12 | 2012-07-03 | Pelikan Technologies, Inc. | Tissue penetration device |
US8206319B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7850622B2 (en) | 2001-06-12 | 2010-12-14 | Pelikan Technologies, Inc. | Tissue penetration device |
US8206317B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8123700B2 (en) | 2001-06-12 | 2012-02-28 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8016774B2 (en) | 2001-06-12 | 2011-09-13 | Pelikan Technologies, Inc. | Tissue penetration device |
US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US8116860B2 (en) * | 2002-03-11 | 2012-02-14 | Altea Therapeutics Corporation | Transdermal porator and patch system and method for using same |
US20080208107A1 (en) * | 2002-03-11 | 2008-08-28 | Mcrae Stuart | Transdermal porator and patch system and method for using same |
US8372016B2 (en) | 2002-04-19 | 2013-02-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US8636673B2 (en) | 2002-04-19 | 2014-01-28 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7901365B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9907502B2 (en) | 2002-04-19 | 2018-03-06 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
US7938787B2 (en) | 2002-04-19 | 2011-05-10 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7988644B2 (en) * | 2002-04-19 | 2011-08-02 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8007446B2 (en) | 2002-04-19 | 2011-08-30 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7875047B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US8062231B2 (en) | 2002-04-19 | 2011-11-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8079960B2 (en) | 2002-04-19 | 2011-12-20 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US8157748B2 (en) | 2002-04-19 | 2012-04-17 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8197423B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8202231B2 (en) | 2002-04-19 | 2012-06-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9724021B2 (en) | 2002-04-19 | 2017-08-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9498160B2 (en) | 2002-04-19 | 2016-11-22 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US9339612B2 (en) | 2002-04-19 | 2016-05-17 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8235915B2 (en) | 2002-04-19 | 2012-08-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US9186468B2 (en) | 2002-04-19 | 2015-11-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9089678B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7713214B2 (en) | 2002-04-19 | 2010-05-11 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing |
US8366637B2 (en) | 2002-04-19 | 2013-02-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9089294B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8382682B2 (en) | 2002-04-19 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US8388551B2 (en) | 2002-04-19 | 2013-03-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for multi-use body fluid sampling device with sterility barrier release |
US8403864B2 (en) | 2002-04-19 | 2013-03-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8414503B2 (en) | 2002-04-19 | 2013-04-09 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8430828B2 (en) | 2002-04-19 | 2013-04-30 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8491500B2 (en) | 2002-04-19 | 2013-07-23 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8496601B2 (en) | 2002-04-19 | 2013-07-30 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8562545B2 (en) | 2002-04-19 | 2013-10-22 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8905945B2 (en) | 2002-04-19 | 2014-12-09 | Dominique M. Freeman | Method and apparatus for penetrating tissue |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US20070219462A1 (en) * | 2002-04-19 | 2007-09-20 | Barry Briggs | Methods and apparatus for lancet actuation |
US8845549B2 (en) | 2002-04-19 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US8808201B2 (en) | 2002-04-19 | 2014-08-19 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for penetrating tissue |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US20070219573A1 (en) * | 2002-04-19 | 2007-09-20 | Dominique Freeman | Method and apparatus for penetrating tissue |
US8690796B2 (en) | 2002-04-19 | 2014-04-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8574895B2 (en) * | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US20060204399A1 (en) * | 2002-12-30 | 2006-09-14 | Freeman Dominique M | Method and apparatus using optical techniques to measure analyte levels |
US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US8262614B2 (en) | 2003-05-30 | 2012-09-11 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US8251921B2 (en) | 2003-06-06 | 2012-08-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US10034628B2 (en) | 2003-06-11 | 2018-07-31 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US7275544B2 (en) | 2003-12-01 | 2007-10-02 | Michael Gil | Covering for an aseptic treatment site |
US7290547B2 (en) * | 2003-12-01 | 2007-11-06 | Joseph Hare | Covering for an aseptic treatment site |
US20060207609A1 (en) * | 2003-12-01 | 2006-09-21 | Michael Gil | Covering for an aseptic treatment site |
US20050115570A1 (en) * | 2003-12-01 | 2005-06-02 | Joseph Hare | Covering for an aseptic treatment site |
US9561000B2 (en) | 2003-12-31 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8296918B2 (en) | 2003-12-31 | 2012-10-30 | Sanofi-Aventis Deutschland Gmbh | Method of manufacturing a fluid sampling device with improved analyte detecting member configuration |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US9261476B2 (en) | 2004-05-20 | 2016-02-16 | Sanofi Sa | Printable hydrogel for biosensors |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US20070088248A1 (en) * | 2005-09-02 | 2007-04-19 | Iomai Corporation | Devices for transcutaneous delivery of vaccines and transdermal delivery of drugs and uses thereof |
US8271064B2 (en) | 2005-12-16 | 2012-09-18 | Bayer Healthcare Llc | Transdermal analyte sensor assembly and methods of using the same |
US8504131B2 (en) | 2005-12-16 | 2013-08-06 | Bayer Healthcare Llc | Transdermal analyte sensor assembly and methods of using the same |
WO2007075368A2 (en) * | 2005-12-16 | 2007-07-05 | Bayer Healthcare Llc | Transdermal analyte sensor assembly and methods of using the same |
EP2289401A1 (en) * | 2005-12-16 | 2011-03-02 | Bayer Healthcare LLC | Transdermal analyte sensor assembly and methods of manufacturing the same |
US20090312614A1 (en) * | 2005-12-16 | 2009-12-17 | Brenneman Allen J | Transdermal Analyte Sensor Assembly and Methods of Using the Same |
WO2007075368A3 (en) * | 2005-12-16 | 2007-09-13 | Bayer Healthcare Llc | Transdermal analyte sensor assembly and methods of using the same |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
EP2239000A2 (en) | 2009-03-13 | 2010-10-13 | Sysmex Corporation | System for measuring components in a living body, kit for a micropore forming device, and marking member |
CN103800040A (en) * | 2009-08-04 | 2014-05-21 | 希森美康株式会社 | Device for interstitial fluid extraction, production process thereof and analyzing process of interstitial fluid using the device |
US9380964B2 (en) * | 2009-08-04 | 2016-07-05 | Nichiban Co., Ltd. | Device for interstitial fluid extraction, production process thereof and analyzing process of interstitial fluid using the device |
US20110034787A1 (en) * | 2009-08-04 | 2011-02-10 | Sysmex Corporation | Device for Interstitial Fluid Extraction, Production Process Thereof and Analyzing Process of Interstitial Fluid Using the Device |
US20130345597A1 (en) * | 2009-08-04 | 2013-12-26 | Nichiban Co., Ltd. | Device for Interstitial Fluid Extraction, Production Process Thereof and Analyzing Process of Interstitial Fluid Using the Device |
CN102018536A (en) * | 2009-09-16 | 2011-04-20 | 希森美康株式会社 | Interstitial fluid collection method and interstitial fluid collection kit and interstitial fluid collection sheet used for the method |
US9017267B2 (en) * | 2009-09-16 | 2015-04-28 | Sysmex Corporation | Interstitial fluid collection method and interstitial fluid collection kit and interstitial fluid collection sheet used for the method |
US20110066076A1 (en) * | 2009-09-16 | 2011-03-17 | Sysmex Corporation | Interstitial fluid collection method and interstitial fluid collection kit and interstitial fluid collection sheet used for the method |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
WO2013164827A3 (en) * | 2012-05-03 | 2013-12-27 | Sensible Medical Innovations Ltd. | Patches for the attachment of electromagnetic (em) probes |
EP2844130A2 (en) * | 2012-05-03 | 2015-03-11 | Sensible Medical Innovations Ltd. | Patches for the attachment of electromagnetic (em) probes |
US11266350B2 (en) | 2012-05-03 | 2022-03-08 | Sensible Medical Innovations Ltd. | Adhesive patches for the attachment of radiofrequency (RF) electromagnetic (EM) cup-shaped probe with radiation absorbing material |
EP2844130B1 (en) * | 2012-05-03 | 2023-04-19 | Sensible Medical Innovations Ltd. | Patches for the attachment of electromagnetic (em) probes |
CN103845086A (en) * | 2012-12-04 | 2014-06-11 | 希森美康株式会社 | Body fluid collection device |
EP3912550B1 (en) * | 2015-04-02 | 2024-06-12 | HeartFlow, Inc. | System, method and computer program product for estimating perfusion |
US12138026B2 (en) | 2015-04-02 | 2024-11-12 | Heartflow, Inc. | Systems and methods for predicting perfusion deficits from physiological, anatomical, and patient characteristics |
US11154235B2 (en) * | 2016-04-19 | 2021-10-26 | Medidata Solutions, Inc. | Method and system for measuring perspiration |
US20220007998A1 (en) * | 2016-04-19 | 2022-01-13 | Medidata Solutions, Inc. | Method and system for measuring perspiration |
US11992326B2 (en) * | 2016-04-19 | 2024-05-28 | Medidata Solutions, Inc. | Method and system for measuring perspiration |
WO2018226245A1 (en) * | 2017-06-09 | 2018-12-13 | Arkal, Inc. | Devices and methods for enhanced skin perforation for continuous glucose monitoring |
WO2020237013A1 (en) * | 2019-05-21 | 2020-11-26 | Verily Life Sciences Llc | Adhesive layer stack with offset seams |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030113827A1 (en) | Non-or minimally invasive monitoring methods | |
US20050176084A1 (en) | Non-or minimally invasive monitoring methods | |
EP1107690B1 (en) | Second medical use of a particle delivery method | |
US6602678B2 (en) | Non- or minimally invasive monitoring methods | |
JP3507437B2 (en) | Collection assembly for transdermal sampling systems | |
US6391643B1 (en) | Kit and method for quality control testing of an iontophoretic sampling system | |
EP1102561B1 (en) | Press device for a gel/sensor assembly | |
US6009343A (en) | Enhanced transdermal transport of fluid using vacuum | |
CA2303129A1 (en) | Noninvasive transdermal systems for detecting analytes | |
CA2390330A1 (en) | Percutaneous biological fluid constituent sampling and measurement devices and methods | |
JP2006167428A (en) | Analyte extraction device, analyzer, analyte extraction method, and analysis method | |
AU2001283469B2 (en) | Method for transdermal nucleic acid sampling | |
Bansod et al. | Comparative study of current approaches for minimally invasive and non-invasive blood glucose monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: POWDERJECT RESEARCH LIMITED, A COMPANY OF TH UNITE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURKOTH, TERRY;REEL/FRAME:012360/0454 Effective date: 20011212 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |