US20030013870A1 - Carbopeptoids and carbonucleotoids - Google Patents
Carbopeptoids and carbonucleotoids Download PDFInfo
- Publication number
- US20030013870A1 US20030013870A1 US10/140,597 US14059702A US2003013870A1 US 20030013870 A1 US20030013870 A1 US 20030013870A1 US 14059702 A US14059702 A US 14059702A US 2003013870 A1 US2003013870 A1 US 2003013870A1
- Authority
- US
- United States
- Prior art keywords
- equivalents
- carbon
- carbohydrate
- anomeric
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 20
- 150000001875 compounds Chemical class 0.000 claims description 117
- -1 carbohydrate amino acid Chemical class 0.000 claims description 110
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 58
- 229910052799 carbon Inorganic materials 0.000 claims description 57
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 42
- 150000001408 amides Chemical class 0.000 claims description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims description 34
- 229930182476 C-glycoside Natural products 0.000 claims description 31
- 150000004713 phosphodiesters Chemical class 0.000 claims description 27
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 19
- 230000002194 synthesizing effect Effects 0.000 claims description 19
- 239000001257 hydrogen Substances 0.000 claims description 16
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical compound [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 150000000700 C-glycosides Chemical class 0.000 claims description 9
- 150000002431 hydrogen Chemical class 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000007877 drug screening Methods 0.000 claims description 4
- ORTFAQDWJHRMNX-UHFFFAOYSA-M oxidooxomethyl Chemical compound [O-][C]=O ORTFAQDWJHRMNX-UHFFFAOYSA-M 0.000 claims description 3
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical group OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 claims 2
- 229920001542 oligosaccharide Polymers 0.000 abstract description 27
- 150000002482 oligosaccharides Chemical class 0.000 abstract description 27
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 8
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 4
- 102000040430 polynucleotide Human genes 0.000 abstract 1
- 108091033319 polynucleotide Proteins 0.000 abstract 1
- 239000002157 polynucleotide Substances 0.000 abstract 1
- 229920001184 polypeptide Polymers 0.000 abstract 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 353
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 278
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 235
- 239000000243 solution Substances 0.000 description 191
- 239000012267 brine Substances 0.000 description 141
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 141
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 139
- 238000006243 chemical reaction Methods 0.000 description 138
- 238000003818 flash chromatography Methods 0.000 description 127
- 238000002360 preparation method Methods 0.000 description 127
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 126
- 238000000746 purification Methods 0.000 description 121
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 106
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 88
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 81
- 239000000203 mixture Substances 0.000 description 75
- 238000003756 stirring Methods 0.000 description 63
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 62
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 55
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 52
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 50
- 235000019270 ammonium chloride Nutrition 0.000 description 50
- 235000014633 carbohydrates Nutrition 0.000 description 46
- 229960004132 diethyl ether Drugs 0.000 description 46
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 44
- 239000011541 reaction mixture Substances 0.000 description 39
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 36
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 30
- 239000002253 acid Substances 0.000 description 29
- 238000003786 synthesis reaction Methods 0.000 description 29
- 230000015572 biosynthetic process Effects 0.000 description 28
- 239000007787 solid Substances 0.000 description 26
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 24
- 239000011521 glass Substances 0.000 description 21
- 239000000377 silicon dioxide Substances 0.000 description 21
- 0 *C(*)(*)*.*C(*)(*)*.C.CC(C)(C)OCCOCCOC(C)(C)P(=O)(O)C(C)(C)OCCOCCOC(C)(C)P(=O)(O)C(C)(C)OCCOCCOC(C)(C)P(=O)(O)C(C)(C)OCCOCCOC(C)(C)C.CCNC(C)(C)C(=O)COCCNC(C)(C)C(=O)COCCNC(C)(C)C(=O)COCCNC(C)(C)C(=O)COCCNC(C)(C)C(=O)CC.NCCOCC(=O)O.NCCOCC(=O)O.NCCOCC(=O)O.NCCOCC(=O)O.OCCOCCO.OCCOCCO.OCCOCCO.OCCOCCO Chemical compound *C(*)(*)*.*C(*)(*)*.C.CC(C)(C)OCCOCCOC(C)(C)P(=O)(O)C(C)(C)OCCOCCOC(C)(C)P(=O)(O)C(C)(C)OCCOCCOC(C)(C)P(=O)(O)C(C)(C)OCCOCCOC(C)(C)C.CCNC(C)(C)C(=O)COCCNC(C)(C)C(=O)COCCNC(C)(C)C(=O)COCCNC(C)(C)C(=O)COCCNC(C)(C)C(=O)CC.NCCOCC(=O)O.NCCOCC(=O)O.NCCOCC(=O)O.NCCOCC(=O)O.OCCOCCO.OCCOCCO.OCCOCCO.OCCOCCO 0.000 description 19
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 19
- IRXSLJNXXZKURP-UHFFFAOYSA-N fluorenylmethyloxycarbonyl chloride Chemical compound C1=CC=C2C(COC(=O)Cl)C3=CC=CC=C3C2=C1 IRXSLJNXXZKURP-UHFFFAOYSA-N 0.000 description 19
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 18
- 125000003277 amino group Chemical group 0.000 description 18
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 18
- STMPXDBGVJZCEX-UHFFFAOYSA-N triethylsilyl trifluoromethanesulfonate Chemical compound CC[Si](CC)(CC)OS(=O)(=O)C(F)(F)F STMPXDBGVJZCEX-UHFFFAOYSA-N 0.000 description 18
- 235000017557 sodium bicarbonate Nutrition 0.000 description 17
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 16
- 239000003208 petroleum Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 16
- 239000000543 intermediate Substances 0.000 description 15
- 239000012044 organic layer Substances 0.000 description 15
- 239000012047 saturated solution Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 13
- 239000012074 organic phase Substances 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 12
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 239000001632 sodium acetate Substances 0.000 description 12
- 235000017281 sodium acetate Nutrition 0.000 description 12
- LEIMLDGFXIOXMT-UHFFFAOYSA-N trimethylsilyl cyanide Chemical compound C[Si](C)(C)C#N LEIMLDGFXIOXMT-UHFFFAOYSA-N 0.000 description 12
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 11
- 108010038807 Oligopeptides Proteins 0.000 description 11
- 102000015636 Oligopeptides Human genes 0.000 description 11
- 229910019891 RuCl3 Inorganic materials 0.000 description 11
- 150000007513 acids Chemical class 0.000 description 11
- 229910000365 copper sulfate Inorganic materials 0.000 description 11
- 229930182470 glycoside Natural products 0.000 description 11
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 11
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- 150000003254 radicals Chemical class 0.000 description 10
- 235000000346 sugar Nutrition 0.000 description 10
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 9
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium on carbon Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- 108010043958 Peptoids Proteins 0.000 description 9
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 9
- 239000012280 lithium aluminium hydride Substances 0.000 description 9
- 235000019341 magnesium sulphate Nutrition 0.000 description 9
- 239000010452 phosphate Substances 0.000 description 9
- 238000010791 quenching Methods 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 8
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 8
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- UQDAEORWFCPQCU-UHFFFAOYSA-N acetic acid;oxolane;hydrate Chemical compound O.CC(O)=O.C1CCOC1 UQDAEORWFCPQCU-UHFFFAOYSA-N 0.000 description 8
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 8
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 8
- MKRTXPORKIRPDG-UHFFFAOYSA-N diphenylphosphoryl azide Chemical compound C=1C=CC=CC=1P(=O)(N=[N+]=[N-])C1=CC=CC=C1 MKRTXPORKIRPDG-UHFFFAOYSA-N 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 239000002480 mineral oil Substances 0.000 description 8
- 235000010446 mineral oil Nutrition 0.000 description 8
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 8
- 238000010992 reflux Methods 0.000 description 8
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- JVSFQJZRHXAUGT-UHFFFAOYSA-N 2,2-dimethylpropanoyl chloride Chemical compound CC(C)(C)C(Cl)=O JVSFQJZRHXAUGT-UHFFFAOYSA-N 0.000 description 7
- QWTBDIBOOIAZEF-UHFFFAOYSA-N 3-[chloro-[di(propan-2-yl)amino]phosphanyl]oxypropanenitrile Chemical compound CC(C)N(C(C)C)P(Cl)OCCC#N QWTBDIBOOIAZEF-UHFFFAOYSA-N 0.000 description 7
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 7
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 7
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 7
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 239000012043 crude product Substances 0.000 description 7
- 238000010790 dilution Methods 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- 125000001810 isothiocyanato group Chemical group *N=C=S 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 7
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 6
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 6
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 6
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 229920005990 polystyrene resin Polymers 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 6
- 239000001476 sodium potassium tartrate Substances 0.000 description 6
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 6
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 6
- 229940086542 triethylamine Drugs 0.000 description 6
- JBWYRBLDOOOJEU-UHFFFAOYSA-N 1-[chloro-(4-methoxyphenyl)-phenylmethyl]-4-methoxybenzene Chemical compound C1=CC(OC)=CC=C1C(Cl)(C=1C=CC(OC)=CC=1)C1=CC=CC=C1 JBWYRBLDOOOJEU-UHFFFAOYSA-N 0.000 description 5
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 5
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 5
- YTAHJIFKAKIKAV-XNMGPUDCSA-N [(1R)-3-morpholin-4-yl-1-phenylpropyl] N-[(3S)-2-oxo-5-phenyl-1,3-dihydro-1,4-benzodiazepin-3-yl]carbamate Chemical compound O=C1[C@H](N=C(C2=C(N1)C=CC=C2)C1=CC=CC=C1)NC(O[C@H](CCN1CCOCC1)C1=CC=CC=C1)=O YTAHJIFKAKIKAV-XNMGPUDCSA-N 0.000 description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 5
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 5
- 229960002442 glucosamine Drugs 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 150000008300 phosphoramidites Chemical group 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 4
- DJOWTWWHMWQATC-KYHIUUMWSA-N Karpoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1(O)C(C)(C)CC(O)CC1(C)O)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C DJOWTWWHMWQATC-KYHIUUMWSA-N 0.000 description 4
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 4
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229950006780 n-acetylglucosamine Drugs 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- KJTULOVPMGUBJS-UHFFFAOYSA-N tert-butyl-[tert-butyl(diphenyl)silyl]oxy-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(C(C)(C)C)O[Si](C(C)(C)C)(C=1C=CC=CC=1)C1=CC=CC=C1 KJTULOVPMGUBJS-UHFFFAOYSA-N 0.000 description 4
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 4
- HEVMDQBCAHEHDY-UHFFFAOYSA-N (Dimethoxymethyl)benzene Chemical compound COC(OC)C1=CC=CC=C1 HEVMDQBCAHEHDY-UHFFFAOYSA-N 0.000 description 3
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 3
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 3
- OATSAEBKJWENJK-AZJKEOADSA-N O=C(OC[C@@H]1O[C@H](COP(=O)(O)OC[C@@H]2O[C@H](COP(=O)(O)OC[C@@H]3O[C@H](COP(=O)(O)OC[C@@H]4O[C@H](CO)[C@@H](OCC5=CC=CC=C5)[C@H](OCC5=CC=CC=C5)[C@H]4OCC4=CC=CC=C4)[C@@H](OCC4=CC=CC=C4)[C@H](OCC4=CC=CC=C4)[C@H]3OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@H]2OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC2=CC=CC=C2C=C1 Chemical compound O=C(OC[C@@H]1O[C@H](COP(=O)(O)OC[C@@H]2O[C@H](COP(=O)(O)OC[C@@H]3O[C@H](COP(=O)(O)OC[C@@H]4O[C@H](CO)[C@@H](OCC5=CC=CC=C5)[C@H](OCC5=CC=CC=C5)[C@H]4OCC4=CC=CC=C4)[C@@H](OCC4=CC=CC=C4)[C@H](OCC4=CC=CC=C4)[C@H]3OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@H]2OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC2=CC=CC=C2C=C1 OATSAEBKJWENJK-AZJKEOADSA-N 0.000 description 3
- 241000206607 Porphyra umbilicalis Species 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 229940000406 drug candidate Drugs 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- 238000006384 oligomerization reaction Methods 0.000 description 3
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 3
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 150000003536 tetrazoles Chemical class 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- YQOLEILXOBUDMU-KRWDZBQOSA-N (4R)-5-[(6-bromo-3-methyl-2-pyrrolidin-1-ylquinoline-4-carbonyl)amino]-4-(2-chlorophenyl)pentanoic acid Chemical compound CC1=C(C2=C(C=CC(=C2)Br)N=C1N3CCCC3)C(=O)NC[C@H](CCC(=O)O)C4=CC=CC=C4Cl YQOLEILXOBUDMU-KRWDZBQOSA-N 0.000 description 2
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- KKHFRAFPESRGGD-UHFFFAOYSA-N 1,3-dimethyl-7-[3-(n-methylanilino)propyl]purine-2,6-dione Chemical compound C1=NC=2N(C)C(=O)N(C)C(=O)C=2N1CCCN(C)C1=CC=CC=C1 KKHFRAFPESRGGD-UHFFFAOYSA-N 0.000 description 2
- 150000000094 1,4-dioxanes Chemical class 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 2
- XZXLYGAUEAPJET-UHFFFAOYSA-N 5-amino-3h-1-benzofuran-2-one Chemical compound NC1=CC=C2OC(=O)CC2=C1 XZXLYGAUEAPJET-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 2
- URSBDPDTERVBDN-XPABHHOTSA-N CC(=O)OC[C@H]1O[C@@H](C#N)[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@@H]1OC(C)=O Chemical compound CC(=O)OC[C@H]1O[C@@H](C#N)[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@@H]1OC(C)=O URSBDPDTERVBDN-XPABHHOTSA-N 0.000 description 2
- MTRFXBFWIIRJCD-VVULQXIFSA-N CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O MTRFXBFWIIRJCD-VVULQXIFSA-N 0.000 description 2
- YFAOATPTSZNQGQ-JAJWTYFOSA-N CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O Chemical compound CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O YFAOATPTSZNQGQ-JAJWTYFOSA-N 0.000 description 2
- 229910021012 Co2(CO)8 Inorganic materials 0.000 description 2
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 2
- 208000007976 Ketosis Diseases 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- LPTITAGPBXDDGR-UHFFFAOYSA-N Penta-Ac-Mannose Natural products CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O LPTITAGPBXDDGR-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 239000001083 [(2R,3R,4S,5R)-1,2,4,5-tetraacetyloxy-6-oxohexan-3-yl] acetate Substances 0.000 description 2
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 2
- LPTITAGPBXDDGR-LYYZXLFJSA-N [(2r,3s,4s,5r,6s)-3,4,5,6-tetraacetyloxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@H]1O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@H]1OC(C)=O LPTITAGPBXDDGR-LYYZXLFJSA-N 0.000 description 2
- MJOQJPYNENPSSS-XQHKEYJVSA-N [(3r,4s,5r,6s)-4,5,6-triacetyloxyoxan-3-yl] acetate Chemical compound CC(=O)O[C@@H]1CO[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O MJOQJPYNENPSSS-XQHKEYJVSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N aldehydo-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- AQIHMSVIAGNIDM-UHFFFAOYSA-N benzoyl bromide Chemical compound BrC(=O)C1=CC=CC=C1 AQIHMSVIAGNIDM-UHFFFAOYSA-N 0.000 description 2
- CCWPXMLXXAIAJP-UHFFFAOYSA-N benzylidene(dibutyl)tin Chemical compound CCCC[Sn](CCCC)=CC1=CC=CC=C1 CCWPXMLXXAIAJP-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-RWOPYEJCSA-N beta-D-mannose Chemical compound OC[C@H]1O[C@@H](O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-RWOPYEJCSA-N 0.000 description 2
- LPTITAGPBXDDGR-IBEHDNSVSA-N beta-d-glucose pentaacetate Chemical compound CC(=O)OC[C@H]1O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@@H]1OC(C)=O LPTITAGPBXDDGR-IBEHDNSVSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- UWTDFICHZKXYAC-UHFFFAOYSA-N boron;oxolane Chemical compound [B].C1CCOC1 UWTDFICHZKXYAC-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 159000000006 cesium salts Chemical class 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 229940125844 compound 46 Drugs 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 235000008504 concentrate Nutrition 0.000 description 2
- YBPGMKDTGOJASU-UHFFFAOYSA-N ethanol;2-(oxolan-2-yl)acetic acid Chemical compound CCO.OC(=O)CC1CCCO1 YBPGMKDTGOJASU-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 150000002584 ketoses Chemical class 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- IHCHOVVAJBADAH-UHFFFAOYSA-N n-[2-hydroxy-4-(1h-pyrazol-4-yl)phenyl]-6-methoxy-3,4-dihydro-2h-chromene-3-carboxamide Chemical compound C1C2=CC(OC)=CC=C2OCC1C(=O)NC(C(=C1)O)=CC=C1C=1C=NNC=1 IHCHOVVAJBADAH-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 150000008163 sugars Chemical group 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- MHYGQXWCZAYSLJ-UHFFFAOYSA-N tert-butyl-chloro-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](Cl)(C(C)(C)C)C1=CC=CC=C1 MHYGQXWCZAYSLJ-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- ASGMFNBUXDJWJJ-JLCFBVMHSA-N (1R,3R)-3-[[3-bromo-1-[4-(5-methyl-1,3,4-thiadiazol-2-yl)phenyl]pyrazolo[3,4-d]pyrimidin-6-yl]amino]-N,1-dimethylcyclopentane-1-carboxamide Chemical compound BrC1=NN(C2=NC(=NC=C21)N[C@H]1C[C@@](CC1)(C(=O)NC)C)C1=CC=C(C=C1)C=1SC(=NN=1)C ASGMFNBUXDJWJJ-JLCFBVMHSA-N 0.000 description 1
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 1
- FNHHVPPSBFQMEL-KQHDFZBMSA-N (3S)-5-N-[(1S,5R)-3-hydroxy-6-bicyclo[3.1.0]hexanyl]-7-N,3-dimethyl-3-phenyl-2H-1-benzofuran-5,7-dicarboxamide Chemical compound CNC(=O)c1cc(cc2c1OC[C@@]2(C)c1ccccc1)C(=O)NC1[C@H]2CC(O)C[C@@H]12 FNHHVPPSBFQMEL-KQHDFZBMSA-N 0.000 description 1
- UDQTXCHQKHIQMH-KYGLGHNPSA-N (3ar,5s,6s,7r,7ar)-5-(difluoromethyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3ah-pyrano[3,2-d][1,3]thiazole-6,7-diol Chemical compound S1C(NCC)=N[C@H]2[C@@H]1O[C@H](C(F)F)[C@@H](O)[C@@H]2O UDQTXCHQKHIQMH-KYGLGHNPSA-N 0.000 description 1
- OOKAZRDERJMRCJ-KOUAFAAESA-N (3r)-7-[(1s,2s,4ar,6s,8s)-2,6-dimethyl-8-[(2s)-2-methylbutanoyl]oxy-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl]-3-hydroxy-5-oxoheptanoic acid Chemical compound C1=C[C@H](C)[C@H](CCC(=O)C[C@@H](O)CC(O)=O)C2[C@@H](OC(=O)[C@@H](C)CC)C[C@@H](C)C[C@@H]21 OOKAZRDERJMRCJ-KOUAFAAESA-N 0.000 description 1
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 1
- OMBVEVHRIQULKW-DNQXCXABSA-M (3r,5r)-7-[3-(4-fluorophenyl)-8-oxo-7-phenyl-1-propan-2-yl-5,6-dihydro-4h-pyrrolo[2,3-c]azepin-2-yl]-3,5-dihydroxyheptanoate Chemical compound O=C1C=2N(C(C)C)C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C(C=3C=CC(F)=CC=3)C=2CCCN1C1=CC=CC=C1 OMBVEVHRIQULKW-DNQXCXABSA-M 0.000 description 1
- SRKGZXIJDGWVAI-GVAVTCRGSA-M (e,3r)-7-[6-tert-butyl-4-(4-fluorophenyl)-2-propan-2-ylpyridin-3-yl]-3,5-dihydroxyhept-6-enoate Chemical compound CC(C)C1=NC(C(C)(C)C)=CC(C=2C=CC(F)=CC=2)=C1\C=C\C(O)C[C@@H](O)CC([O-])=O SRKGZXIJDGWVAI-GVAVTCRGSA-M 0.000 description 1
- DEVSOMFAQLZNKR-RJRFIUFISA-N (z)-3-[3-[3,5-bis(trifluoromethyl)phenyl]-1,2,4-triazol-1-yl]-n'-pyrazin-2-ylprop-2-enehydrazide Chemical compound FC(F)(F)C1=CC(C(F)(F)F)=CC(C2=NN(\C=C/C(=O)NNC=3N=CC=NC=3)C=N2)=C1 DEVSOMFAQLZNKR-RJRFIUFISA-N 0.000 description 1
- MHSLDASSAFCCDO-UHFFFAOYSA-N 1-(5-tert-butyl-2-methylpyrazol-3-yl)-3-(4-pyridin-4-yloxyphenyl)urea Chemical compound CN1N=C(C(C)(C)C)C=C1NC(=O)NC(C=C1)=CC=C1OC1=CC=NC=C1 MHSLDASSAFCCDO-UHFFFAOYSA-N 0.000 description 1
- GOWMBYUZXIZENX-CAUSLRQDSA-N 1-[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-(hexadecylamino)pyrimidin-2-one Chemical compound O=C1N=C(NCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 GOWMBYUZXIZENX-CAUSLRQDSA-N 0.000 description 1
- UUFQTNFCRMXOAE-UHFFFAOYSA-N 1-methylmethylene Chemical compound C[CH] UUFQTNFCRMXOAE-UHFFFAOYSA-N 0.000 description 1
- WGFNXGPBPIJYLI-UHFFFAOYSA-N 2,6-difluoro-3-[(3-fluorophenyl)sulfonylamino]-n-(3-methoxy-1h-pyrazolo[3,4-b]pyridin-5-yl)benzamide Chemical compound C1=C2C(OC)=NNC2=NC=C1NC(=O)C(C=1F)=C(F)C=CC=1NS(=O)(=O)C1=CC=CC(F)=C1 WGFNXGPBPIJYLI-UHFFFAOYSA-N 0.000 description 1
- QTMAZYGAVHCKKX-UHFFFAOYSA-N 2-[(4-amino-5-bromopyrrolo[2,3-d]pyrimidin-7-yl)methoxy]propane-1,3-diol Chemical compound NC1=NC=NC2=C1C(Br)=CN2COC(CO)CO QTMAZYGAVHCKKX-UHFFFAOYSA-N 0.000 description 1
- PYRKKGOKRMZEIT-UHFFFAOYSA-N 2-[6-(2-cyclopropylethoxy)-9-(2-hydroxy-2-methylpropyl)-1h-phenanthro[9,10-d]imidazol-2-yl]-5-fluorobenzene-1,3-dicarbonitrile Chemical compound C1=C2C3=CC(CC(C)(O)C)=CC=C3C=3NC(C=4C(=CC(F)=CC=4C#N)C#N)=NC=3C2=CC=C1OCCC1CC1 PYRKKGOKRMZEIT-UHFFFAOYSA-N 0.000 description 1
- FMKGJQHNYMWDFJ-CVEARBPZSA-N 2-[[4-(2,2-difluoropropoxy)pyrimidin-5-yl]methylamino]-4-[[(1R,4S)-4-hydroxy-3,3-dimethylcyclohexyl]amino]pyrimidine-5-carbonitrile Chemical compound FC(COC1=NC=NC=C1CNC1=NC=C(C(=N1)N[C@H]1CC([C@H](CC1)O)(C)C)C#N)(C)F FMKGJQHNYMWDFJ-CVEARBPZSA-N 0.000 description 1
- VVCMGAUPZIKYTH-VGHSCWAPSA-N 2-acetyloxybenzoic acid;[(2s,3r)-4-(dimethylamino)-3-methyl-1,2-diphenylbutan-2-yl] propanoate;1,3,7-trimethylpurine-2,6-dione Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O.CN1C(=O)N(C)C(=O)C2=C1N=CN2C.C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 VVCMGAUPZIKYTH-VGHSCWAPSA-N 0.000 description 1
- LFOIDLOIBZFWDO-UHFFFAOYSA-N 2-methoxy-6-[6-methoxy-4-[(3-phenylmethoxyphenyl)methoxy]-1-benzofuran-2-yl]imidazo[2,1-b][1,3,4]thiadiazole Chemical compound N1=C2SC(OC)=NN2C=C1C(OC1=CC(OC)=C2)=CC1=C2OCC(C=1)=CC=CC=1OCC1=CC=CC=C1 LFOIDLOIBZFWDO-UHFFFAOYSA-N 0.000 description 1
- DFRAKBCRUYUFNT-UHFFFAOYSA-N 3,8-dicyclohexyl-2,4,7,9-tetrahydro-[1,3]oxazino[5,6-h][1,3]benzoxazine Chemical compound C1CCCCC1N1CC(C=CC2=C3OCN(C2)C2CCCCC2)=C3OC1 DFRAKBCRUYUFNT-UHFFFAOYSA-N 0.000 description 1
- WYFCZWSWFGJODV-MIANJLSGSA-N 4-[[(1s)-2-[(e)-3-[3-chloro-2-fluoro-6-(tetrazol-1-yl)phenyl]prop-2-enoyl]-5-(4-methyl-2-oxopiperazin-1-yl)-3,4-dihydro-1h-isoquinoline-1-carbonyl]amino]benzoic acid Chemical compound O=C1CN(C)CCN1C1=CC=CC2=C1CCN(C(=O)\C=C\C=1C(=CC=C(Cl)C=1F)N1N=NN=C1)[C@@H]2C(=O)NC1=CC=C(C(O)=O)C=C1 WYFCZWSWFGJODV-MIANJLSGSA-N 0.000 description 1
- GSDQYSSLIKJJOG-UHFFFAOYSA-N 4-chloro-2-(3-chloroanilino)benzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C=C1NC1=CC=CC(Cl)=C1 GSDQYSSLIKJJOG-UHFFFAOYSA-N 0.000 description 1
- DQAZPZIYEOGZAF-UHFFFAOYSA-N 4-ethyl-n-[4-(3-ethynylanilino)-7-methoxyquinazolin-6-yl]piperazine-1-carboxamide Chemical compound C1CN(CC)CCN1C(=O)NC(C(=CC1=NC=N2)OC)=CC1=C2NC1=CC=CC(C#C)=C1 DQAZPZIYEOGZAF-UHFFFAOYSA-N 0.000 description 1
- VKLKXFOZNHEBSW-UHFFFAOYSA-N 5-[[3-[(4-morpholin-4-ylbenzoyl)amino]phenyl]methoxy]pyridine-3-carboxamide Chemical compound O1CCN(CC1)C1=CC=C(C(=O)NC=2C=C(COC=3C=NC=C(C(=O)N)C=3)C=CC=2)C=C1 VKLKXFOZNHEBSW-UHFFFAOYSA-N 0.000 description 1
- XFJBGINZIMNZBW-CRAIPNDOSA-N 5-chloro-2-[4-[(1r,2s)-2-[2-(5-methylsulfonylpyridin-2-yl)oxyethyl]cyclopropyl]piperidin-1-yl]pyrimidine Chemical compound N1=CC(S(=O)(=O)C)=CC=C1OCC[C@H]1[C@@H](C2CCN(CC2)C=2N=CC(Cl)=CN=2)C1 XFJBGINZIMNZBW-CRAIPNDOSA-N 0.000 description 1
- RSIWALKZYXPAGW-NSHDSACASA-N 6-(3-fluorophenyl)-3-methyl-7-[(1s)-1-(7h-purin-6-ylamino)ethyl]-[1,3]thiazolo[3,2-a]pyrimidin-5-one Chemical compound C=1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)N=C2SC=C(C)N2C(=O)C=1C1=CC=CC(F)=C1 RSIWALKZYXPAGW-NSHDSACASA-N 0.000 description 1
- XASOHFCUIQARJT-UHFFFAOYSA-N 8-methoxy-6-[7-(2-morpholin-4-ylethoxy)imidazo[1,2-a]pyridin-3-yl]-2-(2,2,2-trifluoroethyl)-3,4-dihydroisoquinolin-1-one Chemical compound C(N1C(=O)C2=C(OC)C=C(C=3N4C(=NC=3)C=C(C=C4)OCCN3CCOCC3)C=C2CC1)C(F)(F)F XASOHFCUIQARJT-UHFFFAOYSA-N 0.000 description 1
- JQUCWIWWWKZNCS-LESHARBVSA-N C(C1=CC=CC=C1)(=O)NC=1SC[C@H]2[C@@](N1)(CO[C@H](C2)C)C=2SC=C(N2)NC(=O)C2=NC=C(C=C2)OC(F)F Chemical compound C(C1=CC=CC=C1)(=O)NC=1SC[C@H]2[C@@](N1)(CO[C@H](C2)C)C=2SC=C(N2)NC(=O)C2=NC=C(C=C2)OC(F)F JQUCWIWWWKZNCS-LESHARBVSA-N 0.000 description 1
- LWFGLZLZQNJNDL-MFSQHZNVSA-N C.C.C.C.C.C.C.C.C1CCOCC1.C1CCOCC1.CC.CC.CC.CC.CNC(=O)CF.CNC(=O)CF.COC.C[C@@H]1C[C@H](C(=O)O)O[C@H](CNC(=O)CF)[C@@H]1C.C[C@H]1CCO[C@@H](C(=O)O)C1.C[C@H]1CCO[C@@H](C(=O)O)[C@@H]1C.C[C@H]1CCO[C@@H](C)C1.C[C@H]1CCO[C@@H](C)[C@@H]1C.C[C@H]1[C@@H](C(=O)O)O[C@@H](CNF)[C@H](C)[C@H]1C.O=[N+]([O-])C[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O.[2H]C([3H])OC[C@H]1O[C@@H](CO)[C@H](C)[C@@H](C)[C@H]1C.[2H]OC[C@H]1C[C@@H](C)[C@@H](C)[C@@H](CO)O1.[3H]C Chemical compound C.C.C.C.C.C.C.C.C1CCOCC1.C1CCOCC1.CC.CC.CC.CC.CNC(=O)CF.CNC(=O)CF.COC.C[C@@H]1C[C@H](C(=O)O)O[C@H](CNC(=O)CF)[C@@H]1C.C[C@H]1CCO[C@@H](C(=O)O)C1.C[C@H]1CCO[C@@H](C(=O)O)[C@@H]1C.C[C@H]1CCO[C@@H](C)C1.C[C@H]1CCO[C@@H](C)[C@@H]1C.C[C@H]1[C@@H](C(=O)O)O[C@@H](CNF)[C@H](C)[C@H]1C.O=[N+]([O-])C[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O.[2H]C([3H])OC[C@H]1O[C@@H](CO)[C@H](C)[C@@H](C)[C@H]1C.[2H]OC[C@H]1C[C@@H](C)[C@@H](C)[C@@H](CO)O1.[3H]C LWFGLZLZQNJNDL-MFSQHZNVSA-N 0.000 description 1
- LPPMPIAGTUUCDZ-YPTVJHBWSA-N C.C.C.C.C.CC(=O)N[C@H]1[C@H](C(=O)O)O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@H]3C[C@@H](O)[C@H](O)[C@@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(=O)[C@@H]6O[C@H](CN)[C@@H](O)[C@H](O)[C@H]6NC(C)=O)[C@@H](O)[C@H](O)[C@H]5NC(C)=O)[C@@H](O)[C@H](O)[C@H]4NC(C)=O)O3)[C@@H](O)[C@H](O)[C@H]2NC(C)=O)[C@@H](O)[C@@H]1O.CC(=O)N[C@H]1[C@H](CO)O[C@H](COP(=O)(O)OC[C@@H]2O[C@H](COP(=O)(O)OC[C@@H]3O[C@H](COP(=O)(O)OC[C@@H]4O[C@H](COP(=O)(O)OC[C@@H]5O[C@H](COP(=O)(O)OC[C@@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6NC(C)=O)[C@@H](O)[C@H](O)[C@H]5NC(C)=O)[C@@H](O)[C@H](O)[C@H]4NC(C)=O)[C@@H](O)[C@H](O)[C@H]3NC(C)=O)[C@@H](O)[C@H](O)[C@H]2NC(C)=O)[C@@H](O)[C@@H]1O.NC[C@H]1O[C@@H](C(=O)NC[C@H]2O[C@@H](C(=O)NC[C@H]3O[C@@H](C(=O)NC[C@H]4O[C@@H](C(=O)NC[C@H]5O[C@@H](C(=O)NC[C@H]6O[C@@H](C(=O)O)[C@H](O)[C@@H](O)[C@@H]6O)[C@H](O)[C@@H](O)[C@@H]5O)[C@H](O)[C@@H](O)[C@@H]4O)[C@H](O)[C@@H](O)[C@@H]3O)[C@H](O)[C@@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O.O=P(O)(OC[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)OC[C@H]1O[C@@H](COP(=O)(O)OC[C@H]2O[C@@H](COP(=O)(O)OC[C@H]3O[C@@H](COP(=O)(O)OC[C@H]4O[C@@H](COP(=O)(O)OC[C@H]5O[C@@H](CO)[C@H](O)[C@@H](O)[C@@H]5O)[C@H](O)[C@@H](O)[C@@H]4O)[C@H](O)[C@@H](O)[C@@H]3O)[C@H](O)[C@@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O Chemical compound C.C.C.C.C.CC(=O)N[C@H]1[C@H](C(=O)O)O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@H]3C[C@@H](O)[C@H](O)[C@@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(=O)[C@@H]6O[C@H](CN)[C@@H](O)[C@H](O)[C@H]6NC(C)=O)[C@@H](O)[C@H](O)[C@H]5NC(C)=O)[C@@H](O)[C@H](O)[C@H]4NC(C)=O)O3)[C@@H](O)[C@H](O)[C@H]2NC(C)=O)[C@@H](O)[C@@H]1O.CC(=O)N[C@H]1[C@H](CO)O[C@H](COP(=O)(O)OC[C@@H]2O[C@H](COP(=O)(O)OC[C@@H]3O[C@H](COP(=O)(O)OC[C@@H]4O[C@H](COP(=O)(O)OC[C@@H]5O[C@H](COP(=O)(O)OC[C@@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6NC(C)=O)[C@@H](O)[C@H](O)[C@H]5NC(C)=O)[C@@H](O)[C@H](O)[C@H]4NC(C)=O)[C@@H](O)[C@H](O)[C@H]3NC(C)=O)[C@@H](O)[C@H](O)[C@H]2NC(C)=O)[C@@H](O)[C@@H]1O.NC[C@H]1O[C@@H](C(=O)NC[C@H]2O[C@@H](C(=O)NC[C@H]3O[C@@H](C(=O)NC[C@H]4O[C@@H](C(=O)NC[C@H]5O[C@@H](C(=O)NC[C@H]6O[C@@H](C(=O)O)[C@H](O)[C@@H](O)[C@@H]6O)[C@H](O)[C@@H](O)[C@@H]5O)[C@H](O)[C@@H](O)[C@@H]4O)[C@H](O)[C@@H](O)[C@@H]3O)[C@H](O)[C@@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O.O=P(O)(OC[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)OC[C@H]1O[C@@H](COP(=O)(O)OC[C@H]2O[C@@H](COP(=O)(O)OC[C@H]3O[C@@H](COP(=O)(O)OC[C@H]4O[C@@H](COP(=O)(O)OC[C@H]5O[C@@H](CO)[C@H](O)[C@@H](O)[C@@H]5O)[C@H](O)[C@@H](O)[C@@H]4O)[C@H](O)[C@@H](O)[C@@H]3O)[C@H](O)[C@@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O LPPMPIAGTUUCDZ-YPTVJHBWSA-N 0.000 description 1
- QAAKBSMJMMUYHE-IRPXVYKRSA-N C.C.C.COC.COC(=O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1N.COC(=O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NC(=O)C1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1N.COC(=O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NC(=O)C1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NC(=O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1N.O=C(O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NF.O=C(O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NF.O=C(O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NF.[CH2+]OC.[CH2+]OC Chemical compound C.C.C.COC.COC(=O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1N.COC(=O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NC(=O)C1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1N.COC(=O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NC(=O)C1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NC(=O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1N.O=C(O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NF.O=C(O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NF.O=C(O)[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1NF.[CH2+]OC.[CH2+]OC QAAKBSMJMMUYHE-IRPXVYKRSA-N 0.000 description 1
- QEZBFXVJCJOSNO-JBIXCZGASA-N C.CC(C)(C)[Si](OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](OC(=O)C2=CC=CC=C2)[C@H]1O)(C1=CC=CC=C1)C1=CC=CC=C1.CCC[Ni](CCC)P(Cl)OCCC#N.CCC[Ni](CCC)P(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OC(=O)C2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O.O=C(O[C@@H]1[C@@H](OCC2=CC=CC=C2)[C@H](CO)O[C@H](COCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC=CC=C1.OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](O)[C@H]1O Chemical compound C.CC(C)(C)[Si](OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](OC(=O)C2=CC=CC=C2)[C@H]1O)(C1=CC=CC=C1)C1=CC=CC=C1.CCC[Ni](CCC)P(Cl)OCCC#N.CCC[Ni](CCC)P(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OC(=O)C2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O.O=C(O[C@@H]1[C@@H](OCC2=CC=CC=C2)[C@H](CO)O[C@H](COCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC=CC=C1.OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](O)[C@H]1O QEZBFXVJCJOSNO-JBIXCZGASA-N 0.000 description 1
- KTUCIIHOPITSAG-XKPDAOMBSA-N C.CC(C)(C)[Si](OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.CC(C)(C)[Si](OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OC(=O)C2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.CCC[Ni]CCC.CCC[Ni]CCC.CCOC(=O)[C@@H]1O[C@@H]2COC(C3=CC=CC=C3)O[C@H]2[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O.N#CCCOPCl.N#CCCOPOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OC(=O)C2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.O=C(O[C@@H]1[C@@H](COCC2=CC=CC=C2)O[C@@H](CO)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC=CC=C1 Chemical compound C.CC(C)(C)[Si](OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.CC(C)(C)[Si](OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OC(=O)C2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.CCC[Ni]CCC.CCC[Ni]CCC.CCOC(=O)[C@@H]1O[C@@H]2COC(C3=CC=CC=C3)O[C@H]2[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O.N#CCCOPCl.N#CCCOPOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OC(=O)C2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.O=C(O[C@@H]1[C@@H](COCC2=CC=CC=C2)O[C@@H](CO)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC=CC=C1 KTUCIIHOPITSAG-XKPDAOMBSA-N 0.000 description 1
- KIHFDJBQFCDKSJ-GIIBABNHSA-N C.CNCC1O[C@@H](C(=O)O)[C@H](C)[C@@H](C)[C@@H]1C.C[C@@H]1OC(CO)[C@@H](O)[C@H](O)[C@H]1O.C[C@@H]1[C@@H](CNC(=O)CF)O[C@H](C(=O)O)[C@H](C)[C@H]1C.[2H]C([3H])OCC1O[C@@H](COP(C)OCC[N+]#[C-])[C@H](C)[C@@H](C)[C@@H]1C.[2H]C([3H])OCC1O[C@H](C)[C@H](C)[C@@H](C)[C@@H]1C.[Ac]OCC1O[C@@H](O[Ac])[C@H](O[Ac])[C@@H](O[Ac])[C@@H]1O[Ac] Chemical compound C.CNCC1O[C@@H](C(=O)O)[C@H](C)[C@@H](C)[C@@H]1C.C[C@@H]1OC(CO)[C@@H](O)[C@H](O)[C@H]1O.C[C@@H]1[C@@H](CNC(=O)CF)O[C@H](C(=O)O)[C@H](C)[C@H]1C.[2H]C([3H])OCC1O[C@@H](COP(C)OCC[N+]#[C-])[C@H](C)[C@@H](C)[C@@H]1C.[2H]C([3H])OCC1O[C@H](C)[C@H](C)[C@@H](C)[C@@H]1C.[Ac]OCC1O[C@@H](O[Ac])[C@H](O[Ac])[C@@H](O[Ac])[C@@H]1O[Ac] KIHFDJBQFCDKSJ-GIIBABNHSA-N 0.000 description 1
- MFFQUWBXDWULIA-CUZACWQJSA-N CC(=O)N[C@@H]1[C@@H](C)[C@H](C)[C@@H](CN)O[C@H]1C(=O)O Chemical compound CC(=O)N[C@@H]1[C@@H](C)[C@H](C)[C@@H](CN)O[C@H]1C(=O)O MFFQUWBXDWULIA-CUZACWQJSA-N 0.000 description 1
- BOUCXDULOMJPRN-CWBACZIBSA-N CC(=O)N[C@H]1C(C(=O)O)O[C@H](CN)[C@@H](C)[C@@H]1C.CC(=O)N[C@H]1C(ON)OC(C(=O)O)[C@@H](C)[C@@H]1C.C[C@@H]1C(C(=O)O)OC(ON)[C@H](C)[C@H]1C.C[C@@H]1C(C(=O)O)O[C@H](CN)[C@@H](C)[C@@H]1C.C[C@@H]1C(C(=O)O)O[C@H](CN)[C@@H](C)[C@@H]1C.C[C@@H]1C(C(=O)O)O[C@H](CN)[C@@H](C)[C@H]1C.C[C@@H]1C(ON)OC(C(=O)O)[C@@H](C)[C@@H]1C.C[C@@H]1[C@@H](C)C(C(=O)O)O[C@H](CN)[C@@H]1C.C[C@@H]1[C@@H](C)C(C(=O)O)O[C@H](CN)[C@@H]1C.C[C@@H]1[C@@H](C)C(ON)OC(C(=O)O)[C@@H]1C.C[C@@H]1[C@@H](CN)OC(C(=O)O)[C@@H]1C.C[C@@H]1[C@@H](CN)OC(C(=O)O)[C@H](C)[C@H]1C.C[C@H]1C(C(=O)O)O[C@@H](CN)[C@@H]1C Chemical compound CC(=O)N[C@H]1C(C(=O)O)O[C@H](CN)[C@@H](C)[C@@H]1C.CC(=O)N[C@H]1C(ON)OC(C(=O)O)[C@@H](C)[C@@H]1C.C[C@@H]1C(C(=O)O)OC(ON)[C@H](C)[C@H]1C.C[C@@H]1C(C(=O)O)O[C@H](CN)[C@@H](C)[C@@H]1C.C[C@@H]1C(C(=O)O)O[C@H](CN)[C@@H](C)[C@@H]1C.C[C@@H]1C(C(=O)O)O[C@H](CN)[C@@H](C)[C@H]1C.C[C@@H]1C(ON)OC(C(=O)O)[C@@H](C)[C@@H]1C.C[C@@H]1[C@@H](C)C(C(=O)O)O[C@H](CN)[C@@H]1C.C[C@@H]1[C@@H](C)C(C(=O)O)O[C@H](CN)[C@@H]1C.C[C@@H]1[C@@H](C)C(ON)OC(C(=O)O)[C@@H]1C.C[C@@H]1[C@@H](CN)OC(C(=O)O)[C@@H]1C.C[C@@H]1[C@@H](CN)OC(C(=O)O)[C@H](C)[C@H]1C.C[C@H]1C(C(=O)O)O[C@@H](CN)[C@@H]1C BOUCXDULOMJPRN-CWBACZIBSA-N 0.000 description 1
- AOEKPUGGNTUMOU-JQPYETGSSA-N CC(=O)N[C@H]1[C@H](C(=O)O)O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(=O)[C@@H]6O[C@H](CN)[C@@H](O)[C@H](O)[C@H]6O)[C@@H](O)[C@H](O)[C@H]5NC(C)=O)[C@@H](O)[C@H](O)[C@H]4O)[C@@H](O)[C@H](O)[C@H]3O)C(O)[C@H](O)[C@H]2O)[C@@H](O)[C@@H]1O Chemical compound CC(=O)N[C@H]1[C@H](C(=O)O)O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(=O)[C@@H]6O[C@H](CN)[C@@H](O)[C@H](O)[C@H]6O)[C@@H](O)[C@H](O)[C@H]5NC(C)=O)[C@@H](O)[C@H](O)[C@H]4O)[C@@H](O)[C@H](O)[C@H]3O)C(O)[C@H](O)[C@H]2O)[C@@H](O)[C@@H]1O AOEKPUGGNTUMOU-JQPYETGSSA-N 0.000 description 1
- YJJUDCWIJWCFFK-OKYBJJGRSA-N CC(=O)OCC1OC(OC(C)=O)[C@H](C)[C@@H](OC(C)=O)[C@@H]1OC(C)=O.CCOC(=O)[C@@H]1OC(CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O.CP(Cl)OCCC#N.[2H]C([3H])OCC1O[C@@H](C(=O)OCC)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C.[2H]C([3H])OCC1O[C@@H](CC)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C.[2H]C([3H])OCC1O[C@@H](CO)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C.[2H]C([3H])OCC1O[C@@H](COP(C)OCCC#N)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C Chemical compound CC(=O)OCC1OC(OC(C)=O)[C@H](C)[C@@H](OC(C)=O)[C@@H]1OC(C)=O.CCOC(=O)[C@@H]1OC(CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O.CP(Cl)OCCC#N.[2H]C([3H])OCC1O[C@@H](C(=O)OCC)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C.[2H]C([3H])OCC1O[C@@H](CC)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C.[2H]C([3H])OCC1O[C@@H](CO)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C.[2H]C([3H])OCC1O[C@@H](COP(C)OCCC#N)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C YJJUDCWIJWCFFK-OKYBJJGRSA-N 0.000 description 1
- HUVSSFUXGNUJBP-DRIGJWAJSA-N CC(=O)OC[C@H]1O[C@@H](C#N)[C@H](C)[C@@H](OC(C)=O)[C@@H]1OC(C)=O Chemical compound CC(=O)OC[C@H]1O[C@@H](C#N)[C@H](C)[C@@H](OC(C)=O)[C@@H]1OC(C)=O HUVSSFUXGNUJBP-DRIGJWAJSA-N 0.000 description 1
- SLQLMIYYHRZAJX-CDQPQXCUSA-N CC(=O)OC[C@H]1O[C@@H](OC(C)=O)[C@H](C)[C@@H](OC(C)=O)[C@@H]1OC(C)=O Chemical compound CC(=O)OC[C@H]1O[C@@H](OC(C)=O)[C@H](C)[C@@H](OC(C)=O)[C@@H]1OC(C)=O SLQLMIYYHRZAJX-CDQPQXCUSA-N 0.000 description 1
- FPAATFHQMQMINS-WTHJNWCGSA-N CC(C)(C)[Si](C)(C)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COC(=O)C3=CC4=CC=CC=C4C=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound CC(C)(C)[Si](C)(C)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COC(=O)C3=CC4=CC=CC=C4C=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 FPAATFHQMQMINS-WTHJNWCGSA-N 0.000 description 1
- QGQFASDUWVOPFR-HWPKUMQQSA-N CC(C)(C)[Si](C)(C)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COP(=O)(OCCC#N)OC[C@H]3O[C@@H](COC(=O)C4=CC5=CC=CC=C5C=C4)[C@H](OCC4=CC=CC=C4)[C@@H](OCC4=CC=CC=C4)[C@@H]3OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound CC(C)(C)[Si](C)(C)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COP(=O)(OCCC#N)OC[C@H]3O[C@@H](COC(=O)C4=CC5=CC=CC=C5C=C4)[C@H](OCC4=CC=CC=C4)[C@@H](OCC4=CC=CC=C4)[C@@H]3OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 QGQFASDUWVOPFR-HWPKUMQQSA-N 0.000 description 1
- DSMDVLBIUWVIHC-MHVRBPEQSA-N CC(C)(C)[Si](C)(C)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COP(=O)(OCCC#N)OC[C@H]3O[C@@H](COP(=O)(OCCC#N)OC[C@H]4O[C@@H](COC(=O)C5=CC6=CC=CC=C6C=C5)[C@H](OCC5=CC=CC=C5)[C@@H](OCC5=CC=CC=C5)[C@@H]4OCC4=CC=CC=C4)[C@H](OCC4=CC=CC=C4)[C@@H](OCC4=CC=CC=C4)[C@@H]3OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound CC(C)(C)[Si](C)(C)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COP(=O)(OCCC#N)OC[C@H]3O[C@@H](COP(=O)(OCCC#N)OC[C@H]4O[C@@H](COC(=O)C5=CC6=CC=CC=C6C=C5)[C@H](OCC5=CC=CC=C5)[C@@H](OCC5=CC=CC=C5)[C@@H]4OCC4=CC=CC=C4)[C@H](OCC4=CC=CC=C4)[C@@H](OCC4=CC=CC=C4)[C@@H]3OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 DSMDVLBIUWVIHC-MHVRBPEQSA-N 0.000 description 1
- OHZAYMWORFVFFV-GPEJODLCSA-N CC1=CC=C(S(=O)(=O)OC[C@H]2O[C@H](C3=CC=CO3)[C@H](C)[C@@H](C)[C@@H]2C)C=C1 Chemical compound CC1=CC=C(S(=O)(=O)OC[C@H]2O[C@H](C3=CC=CO3)[C@H](C)[C@@H](C)[C@@H]2C)C=C1 OHZAYMWORFVFFV-GPEJODLCSA-N 0.000 description 1
- ZYLAZEIWVWXVFV-GWMYMTPSSA-N CCC[Ni](CCC)P(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OC(=O)C1=CC=CC=C1.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)C[C@H](OCC2=CC=CC=C2)[C@H]1O.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OP(=O)(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](O)[C@H]1OCC1=CC=CC=C1.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OP(=O)(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OP(=O)(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](O)[C@H]1OCC1=CC=CC=C1.COCC1=CC=CC=C1 Chemical compound CCC[Ni](CCC)P(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OC(=O)C1=CC=CC=C1.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)C[C@H](OCC2=CC=CC=C2)[C@H]1O.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OP(=O)(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](O)[C@H]1OCC1=CC=CC=C1.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OP(=O)(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OP(=O)(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](O)[C@H]1OCC1=CC=CC=C1.COCC1=CC=CC=C1 ZYLAZEIWVWXVFV-GWMYMTPSSA-N 0.000 description 1
- DTUZACWJZWEOGY-FBDQPXRJSA-N CCOC(=O)[C@@H]1O[C@H](CN)[C@@H](C)[C@H](C)[C@H]1C Chemical compound CCOC(=O)[C@@H]1O[C@H](CN)[C@@H](C)[C@H](C)[C@H]1C DTUZACWJZWEOGY-FBDQPXRJSA-N 0.000 description 1
- PWRTWATYORNREO-VWNXEWBOSA-N CCOC(=O)[C@@H]1O[C@H](CN)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CN)[C@@H](C)[C@H](C)[C@H]1NC(C)=O PWRTWATYORNREO-VWNXEWBOSA-N 0.000 description 1
- NFUMWGUGMKRKMZ-FBDQPXRJSA-N CCOC(=O)[C@@H]1O[C@H](CN=[N+]=[N-])[C@@H](C)[C@H](C)[C@H]1C Chemical compound CCOC(=O)[C@@H]1O[C@H](CN=[N+]=[N-])[C@@H](C)[C@H](C)[C@H]1C NFUMWGUGMKRKMZ-FBDQPXRJSA-N 0.000 description 1
- XHDGSIUFBLSZNY-VWNXEWBOSA-N CCOC(=O)[C@@H]1O[C@H](CN=[N+]=[N-])[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CN=[N+]=[N-])[C@@H](C)[C@H](C)[C@H]1NC(C)=O XHDGSIUFBLSZNY-VWNXEWBOSA-N 0.000 description 1
- LMJWPLRDRYDJLI-MWIKYUIJSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CN)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CN)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O LMJWPLRDRYDJLI-MWIKYUIJSA-N 0.000 description 1
- OXYJSMQCSDDTJI-GUDVULQESA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)CF)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)CF)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O OXYJSMQCSDDTJI-GUDVULQESA-N 0.000 description 1
- RIISGTSQXUQZLO-ZBJWWGNUSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CN)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CN)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O RIISGTSQXUQZLO-ZBJWWGNUSA-N 0.000 description 1
- MNRMGLVYACYTJB-FRUWQHAZSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)CF)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)CF)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O MNRMGLVYACYTJB-FRUWQHAZSA-N 0.000 description 1
- XXRFGIOMHKUYPG-VKCVGLBWSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CN)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CN)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O XXRFGIOMHKUYPG-VKCVGLBWSA-N 0.000 description 1
- IZUPHZQJFOBHOQ-SRCWVRRFSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)CF)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)CF)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O IZUPHZQJFOBHOQ-SRCWVRRFSA-N 0.000 description 1
- RAKXFSHMOHJZEU-FZUYHZSOSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CN)[C@@H](C)[C@H](C)[C@H]5NC(C)=O)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)C(C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CN)[C@@H](C)[C@H](C)[C@H]5NC(C)=O)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)C(C)[C@H](C)[C@H]1NC(C)=O RAKXFSHMOHJZEU-FZUYHZSOSA-N 0.000 description 1
- LJTNBPXNBNQRJC-HQEOPZNXSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(=O)[C@@H]6O[C@H](CN)[C@@H](C)[C@H](C)[C@H]6C)[C@@H](C)[C@H](C)[C@H]5NC(C)=O)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)C(C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(=O)[C@@H]6O[C@H](CN)[C@@H](C)[C@H](C)[C@H]6C)[C@@H](C)[C@H](C)[C@H]5NC(C)=O)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)C(C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O LJTNBPXNBNQRJC-HQEOPZNXSA-N 0.000 description 1
- VGDQJFXBIVJQLU-CDIYQECKSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(=O)[C@@H]6O[C@H](CNC(=O)CF)[C@@H](C)[C@H](C)[C@H]6C)[C@@H](C)[C@H](C)[C@H]5NC(C)=O)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)C(C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(=O)[C@@H]6O[C@H](CNC(=O)CF)[C@@H](C)[C@H](C)[C@H]6C)[C@@H](C)[C@H](C)[C@H]5NC(C)=O)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)C(C)[C@H](C)[C@H]2C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O VGDQJFXBIVJQLU-CDIYQECKSA-N 0.000 description 1
- INIAGJBVNMWKGV-ASJOTIMZSA-N CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(C)=O)[C@@H](C)[C@H](C)[C@H]5NC(C)=O)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)C(C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CNC(=O)[C@@H]2O[C@H](CNC(=O)[C@@H]3O[C@H](CNC(=O)[C@@H]4O[C@H](CNC(=O)[C@@H]5O[C@H](CNC(C)=O)[C@@H](C)[C@H](C)[C@H]5NC(C)=O)[C@@H](C)[C@H](C)[C@H]4C)[C@@H](C)[C@H](C)[C@H]3NC(C)=O)[C@@H](C)[C@H](C)[C@H]2C)C(C)[C@H](C)[C@H]1NC(C)=O INIAGJBVNMWKGV-ASJOTIMZSA-N 0.000 description 1
- PZXQNKJLMGURJQ-VWNXEWBOSA-N CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](CO)[C@@H](C)[C@H](C)[C@H]1NC(C)=O PZXQNKJLMGURJQ-VWNXEWBOSA-N 0.000 description 1
- CFMYYJGYVLJROK-ODXJTPSBSA-N CCOC(=O)[C@@H]1O[C@H](COC(=O)C(C)(C)C)[C@@H](C)[C@H](C)[C@H]1C Chemical compound CCOC(=O)[C@@H]1O[C@H](COC(=O)C(C)(C)C)[C@@H](C)[C@H](C)[C@H]1C CFMYYJGYVLJROK-ODXJTPSBSA-N 0.000 description 1
- CUZDXSSMSMCQGJ-ULQWKZLWSA-N CCOC(=O)[C@@H]1O[C@H](COC(=O)C(C)(C)C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](COC(=O)C(C)(C)C)[C@@H](C)[C@H](C)[C@H]1NC(C)=O CUZDXSSMSMCQGJ-ULQWKZLWSA-N 0.000 description 1
- FLYCLJPVFUPQBX-SYLRKERUSA-N CCOC(=O)[C@@H]1O[C@H](COC(=O)C(C)(C)C)[C@@H](O)[C@H](O)[C@H]1NC(C)=O Chemical compound CCOC(=O)[C@@H]1O[C@H](COC(=O)C(C)(C)C)[C@@H](O)[C@H](O)[C@H]1NC(C)=O FLYCLJPVFUPQBX-SYLRKERUSA-N 0.000 description 1
- XIEUDSPWOHMTLB-KAMPLNKDSA-N CCOC(=O)[C@@H]1O[C@H](COC(=O)C(C)(C)C)[C@@H](O)[C@H](O)[C@H]1O Chemical compound CCOC(=O)[C@@H]1O[C@H](COC(=O)C(C)(C)C)[C@@H](O)[C@H](O)[C@H]1O XIEUDSPWOHMTLB-KAMPLNKDSA-N 0.000 description 1
- MJKCTHXMTBDKIF-SAVGLBRCSA-N CC[C@@H]1O[C@H](CO)[C@@H](C)[C@H](C)[C@H]1C Chemical compound CC[C@@H]1O[C@H](CO)[C@@H](C)[C@H](C)[C@H]1C MJKCTHXMTBDKIF-SAVGLBRCSA-N 0.000 description 1
- JZGYOCHJCAXKFJ-QATXWYEKSA-N CC[C@@H]1O[C@H](CO)[C@@H](C)[C@H](C)[C@H]1NC(C)=O Chemical compound CC[C@@H]1O[C@H](CO)[C@@H](C)[C@H](C)[C@H]1NC(C)=O JZGYOCHJCAXKFJ-QATXWYEKSA-N 0.000 description 1
- SUTQQBZPRLTZJB-XSXASNHFSA-N CC[C@H]1OC(C(=O)OC)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound CC[C@H]1OC(C(=O)OC)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 SUTQQBZPRLTZJB-XSXASNHFSA-N 0.000 description 1
- ANNJBQDGVMNPHD-ZCCUTQAASA-N CC[C@H]1O[C@@H](CO)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound CC[C@H]1O[C@@H](CO)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 ANNJBQDGVMNPHD-ZCCUTQAASA-N 0.000 description 1
- ZWNITLZEGDASJF-HKQUGVCMSA-N CC[C@H]1O[C@@H](COP(OCCC#N)N(C(C)C)C(C)C)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound CC[C@H]1O[C@@H](COP(OCCC#N)N(C(C)C)C(C)C)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 ZWNITLZEGDASJF-HKQUGVCMSA-N 0.000 description 1
- PKAHDRANPYOJGH-BVKWZILOSA-N CNC(=O)CCBr.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.O=C(O[C@@H]1[C@@H](COCC2=CC=CC=C2)O[C@@H](CO)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC=CC=C1 Chemical compound CNC(=O)CCBr.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.O=C(O[C@@H]1[C@@H](COCC2=CC=CC=C2)O[C@@H](CO)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC=CC=C1 PKAHDRANPYOJGH-BVKWZILOSA-N 0.000 description 1
- MPCUOTPUUCGRER-CGRMNPJJSA-N CNC(=O)CCBr.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](O)[C@H]1OCC1=CC=CC=C1.O=C(O[C@@H]1[C@@H](OCC2=CC=CC=C2)[C@H](CO)O[C@H](COCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC=CC=C1 Chemical compound CNC(=O)CCBr.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](O)[C@H]1OCC1=CC=CC=C1.O=C(O[C@@H]1[C@@H](OCC2=CC=CC=C2)[C@H](CO)O[C@H](COCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC=CC=C1 MPCUOTPUUCGRER-CGRMNPJJSA-N 0.000 description 1
- BQHQVYNAVJJJHC-NHDDYPLOSA-N CNC(=O)CCBr.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1O.O=C(O[C@H]1[C@H](CO)O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1)C1=CC=CC=C1 Chemical compound CNC(=O)CCBr.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1O.O=C(O[C@H]1[C@H](CO)O[C@H](COCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1)C1=CC=CC=C1 BQHQVYNAVJJJHC-NHDDYPLOSA-N 0.000 description 1
- RHRUNYXEWFJWEM-NODPRENISA-N CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OP(=O)(OCCC#N)OC[C@@H]2O[C@H](COCC3=CC=CC=C3)[C@@H](O)[C@H](OCC3=CC=CC=C3)[C@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OP(=O)(OCCC#N)OC[C@@H]2O[C@H](COCC3=CC=CC=C3)[C@@H](OP(=O)(OCCC#N)OC[C@@H]3O[C@H](COCC4=CC=CC=C4)[C@@H](O)[C@H](OCC4=CC=CC=C4)[C@H]3OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CP(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OC(=O)C2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1 Chemical compound CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](O)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OP(=O)(OCCC#N)OC[C@@H]2O[C@H](COCC3=CC=CC=C3)[C@@H](O)[C@H](OCC3=CC=CC=C3)[C@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CNC(=O)CCCOC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OP(=O)(OCCC#N)OC[C@@H]2O[C@H](COCC3=CC=CC=C3)[C@@H](OP(=O)(OCCC#N)OC[C@@H]3O[C@H](COCC4=CC=CC=C4)[C@@H](O)[C@H](OCC4=CC=CC=C4)[C@H]3OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1.CP(OCCC#N)OC[C@@H]1O[C@H](COCC2=CC=CC=C2)[C@@H](OC(=O)C2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1 RHRUNYXEWFJWEM-NODPRENISA-N 0.000 description 1
- DDVBSNPLHUUBOJ-WLDMJGECSA-N COC(=O)C1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O Chemical compound COC(=O)C1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DDVBSNPLHUUBOJ-WLDMJGECSA-N 0.000 description 1
- SKAJLOXMZQGAOS-OZRWLHRGSA-N COC(=O)C1O[C@H](CO[Si](C)(C)C(C)(C)C)[C@@H](O)[C@H](O)[C@H]1O Chemical compound COC(=O)C1O[C@H](CO[Si](C)(C)C(C)(C)C)[C@@H](O)[C@H](O)[C@H]1O SKAJLOXMZQGAOS-OZRWLHRGSA-N 0.000 description 1
- XFGCRZALOKMPEG-MSIKLVLDSA-N COC(=O)[C@@H]1O[C@H](COP([V])I)[C@H](C)[C@H](C)[C@H]1C Chemical compound COC(=O)[C@@H]1O[C@H](COP([V])I)[C@H](C)[C@H](C)[C@H]1C XFGCRZALOKMPEG-MSIKLVLDSA-N 0.000 description 1
- ZSYGJTHLDPRTOS-GPDLBWMLSA-N COC.C[C@H]1[C@@H](C(=O)O)O[C@@H](CNF)[C@H](C)[C@H]1C Chemical compound COC.C[C@H]1[C@@H](C(=O)O)O[C@@H](CNF)[C@H](C)[C@H]1C ZSYGJTHLDPRTOS-GPDLBWMLSA-N 0.000 description 1
- LBWJTUAJBDRYTD-DBPMVHSISA-N COC.C[C@H]1[C@@H](CO)O[C@@H](CNF)[C@H](C)[C@H]1C Chemical compound COC.C[C@H]1[C@@H](CO)O[C@@H](CNF)[C@H](C)[C@H]1C LBWJTUAJBDRYTD-DBPMVHSISA-N 0.000 description 1
- IZIRQTOCXATUFK-GFCNNYQPSA-N COC.C[C@H]1[C@H](C)[C@@H](C)[C@@H](CNF)O[C@@H]1CC(=O)O Chemical compound COC.C[C@H]1[C@H](C)[C@@H](C)[C@@H](CNF)O[C@@H]1CC(=O)O IZIRQTOCXATUFK-GFCNNYQPSA-N 0.000 description 1
- GADDTJHJBDZEHR-DMCMZXEWSA-N COC.[2H]C([3H])OC[C@H]1O[C@@H](CNF)[C@H](C)[C@@H](C)[C@H]1C Chemical compound COC.[2H]C([3H])OC[C@H]1O[C@@H](CNF)[C@H](C)[C@@H](C)[C@H]1C GADDTJHJBDZEHR-DMCMZXEWSA-N 0.000 description 1
- GADDTJHJBDZEHR-LYHRHRMISA-N COC.[2H]C([3H])OC[C@H]1O[C@H](CNF)[C@H](C)[C@@H](C)[C@@H]1C Chemical compound COC.[2H]C([3H])OC[C@H]1O[C@H](CNF)[C@H](C)[C@@H](C)[C@@H]1C GADDTJHJBDZEHR-LYHRHRMISA-N 0.000 description 1
- DRSHXJFUUPIBHX-UHFFFAOYSA-N COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 Chemical compound COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 DRSHXJFUUPIBHX-UHFFFAOYSA-N 0.000 description 1
- XIDXSEGBWJXZLM-FHNUBNKASA-N C[C@@H]1O[C@H](CO)[C@@H](C)[C@H](C)[C@H]1C Chemical compound C[C@@H]1O[C@H](CO)[C@@H](C)[C@H](C)[C@H]1C XIDXSEGBWJXZLM-FHNUBNKASA-N 0.000 description 1
- OPGURFNRLJICAJ-OFPUPOEVSA-N C[C@@H]1[C@@H](CN)O[C@@H](C(=O)O)[C@H](C)[C@H]1C Chemical compound C[C@@H]1[C@@H](CN)O[C@@H](C(=O)O)[C@H](C)[C@H]1C OPGURFNRLJICAJ-OFPUPOEVSA-N 0.000 description 1
- NZYJTISJAWTBGM-ABXGFROZSA-N C[C@@H]1[C@@H](CN=[N+]=[N-])O[C@H](C(=O)O)[C@H](C)[C@H]1C Chemical compound C[C@@H]1[C@@H](CN=[N+]=[N-])O[C@H](C(=O)O)[C@H](C)[C@H]1C NZYJTISJAWTBGM-ABXGFROZSA-N 0.000 description 1
- VVAOKMNNWDADFA-TXDRYBTRSA-N C[C@@H]1[C@@H](CN=[N+]=[N-])O[C@H](C2=CC=CO2)[C@H](C)[C@H]1C Chemical compound C[C@@H]1[C@@H](CN=[N+]=[N-])O[C@H](C2=CC=CO2)[C@H](C)[C@H]1C VVAOKMNNWDADFA-TXDRYBTRSA-N 0.000 description 1
- GYTRWCGDNOFHSB-AQWCXSTCSA-N C[C@@H]1[C@@H](CNC(=O)CF)O[C@H](C(=O)O)[C@H](C)[C@H]1C Chemical compound C[C@@H]1[C@@H](CNC(=O)CF)O[C@H](C(=O)O)[C@H](C)[C@H]1C GYTRWCGDNOFHSB-AQWCXSTCSA-N 0.000 description 1
- PKMUHQIDVVOXHQ-HXUWFJFHSA-N C[C@H](C1=CC(C2=CC=C(CNC3CCCC3)S2)=CC=C1)NC(C1=C(C)C=CC(NC2CNC2)=C1)=O Chemical compound C[C@H](C1=CC(C2=CC=C(CNC3CCCC3)S2)=CC=C1)NC(C1=C(C)C=CC(NC2CNC2)=C1)=O PKMUHQIDVVOXHQ-HXUWFJFHSA-N 0.000 description 1
- LMZCQOBEBDEPOB-JZXMKOBPSA-N C[C@H]1[C@@H](C)[C@@H](C/N=C/OCF)O[C@@H](C(=O)O)[C@@H]1C Chemical compound C[C@H]1[C@@H](C)[C@@H](C/N=C/OCF)O[C@@H](C(=O)O)[C@@H]1C LMZCQOBEBDEPOB-JZXMKOBPSA-N 0.000 description 1
- OPGURFNRLJICAJ-XDQCBXAXSA-N C[C@H]1[C@@H](C)[C@@H](CN)O[C@@H](C(=O)O)[C@@H]1C Chemical compound C[C@H]1[C@@H](C)[C@@H](CN)O[C@@H](C(=O)O)[C@@H]1C OPGURFNRLJICAJ-XDQCBXAXSA-N 0.000 description 1
- NZYJTISJAWTBGM-XDQCBXAXSA-N C[C@H]1[C@@H](C)[C@@H](CN=[N+]=[N-])O[C@@H](C(=O)O)[C@@H]1C Chemical compound C[C@H]1[C@@H](C)[C@@H](CN=[N+]=[N-])O[C@@H](C(=O)O)[C@@H]1C NZYJTISJAWTBGM-XDQCBXAXSA-N 0.000 description 1
- CKCRWYUCIFPAOW-CHHOWFRJSA-N C[C@H]1[C@@H](C)[C@@H](CN=[N+]=[N-])O[C@@H](C[N+](=O)[O-])[C@@H]1C Chemical compound C[C@H]1[C@@H](C)[C@@H](CN=[N+]=[N-])O[C@@H](C[N+](=O)[O-])[C@@H]1C CKCRWYUCIFPAOW-CHHOWFRJSA-N 0.000 description 1
- YBXWUQHJJZAMOL-DBPMVHSISA-N C[C@H]1[C@@H](COP([V])I)O[C@@H](CO)[C@H](C)[C@H]1C Chemical compound C[C@H]1[C@@H](COP([V])I)O[C@@H](CO)[C@H](C)[C@H]1C YBXWUQHJJZAMOL-DBPMVHSISA-N 0.000 description 1
- AHGGHSSGOHOZFO-DBPMVHSISA-N C[C@H]1[C@@H](COP([V])I)O[C@@H](C[N+](=O)[O-])[C@H](C)[C@H]1C Chemical compound C[C@H]1[C@@H](COP([V])I)O[C@@H](C[N+](=O)[O-])[C@H](C)[C@H]1C AHGGHSSGOHOZFO-DBPMVHSISA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229940127007 Compound 39 Drugs 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-OWMBCFKOSA-N L-ribopyranose Chemical compound O[C@H]1COC(O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-OWMBCFKOSA-N 0.000 description 1
- NNWGBANFKDPMSI-BOYHRMMASA-N N#CC1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O Chemical compound N#CC1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O NNWGBANFKDPMSI-BOYHRMMASA-N 0.000 description 1
- MREJTSGMHYCJRQ-SEPNRPHVSA-N N#CCCOP(=O)(OC[C@@H]1O[C@H](CO)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)OC[C@H]1O[C@@H](COC(=O)C2=CC3=CC=CC=C3C=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound N#CCCOP(=O)(OC[C@@H]1O[C@H](CO)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)OC[C@H]1O[C@@H](COC(=O)C2=CC3=CC=CC=C3C=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 MREJTSGMHYCJRQ-SEPNRPHVSA-N 0.000 description 1
- PLRQAPQDXWTTJW-ANSBHXGPSA-N N#CCCOP(=O)(OC[C@@H]1O[C@H](CO)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COC(=O)C3=CC4=CC=CC=C4C=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound N#CCCOP(=O)(OC[C@@H]1O[C@H](CO)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COC(=O)C3=CC4=CC=CC=C4C=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 PLRQAPQDXWTTJW-ANSBHXGPSA-N 0.000 description 1
- HVMPZWNJKPQDTK-JVIKGWCMSA-N N#CCCOP(=O)(OC[C@@H]1O[C@H](CO)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COP(=O)(OCCC#N)OC[C@H]3O[C@@H](COC(=O)C4=CC5=CC=CC=C5C=C4)[C@H](OCC4=CC=CC=C4)[C@@H](OCC4=CC=CC=C4)[C@@H]3OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 Chemical compound N#CCCOP(=O)(OC[C@@H]1O[C@H](CO)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)OC[C@H]1O[C@@H](COP(=O)(OCCC#N)OC[C@H]2O[C@@H](COP(=O)(OCCC#N)OC[C@H]3O[C@@H](COC(=O)C4=CC5=CC=CC=C5C=C4)[C@H](OCC4=CC=CC=C4)[C@@H](OCC4=CC=CC=C4)[C@@H]3OCC3=CC=CC=C3)[C@H](OCC3=CC=CC=C3)[C@@H](OCC3=CC=CC=C3)[C@@H]2OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@@H](OCC2=CC=CC=C2)[C@@H]1OCC1=CC=CC=C1 HVMPZWNJKPQDTK-JVIKGWCMSA-N 0.000 description 1
- LVDRREOUMKACNJ-BKMJKUGQSA-N N-[(2R,3S)-2-(4-chlorophenyl)-1-(1,4-dimethyl-2-oxoquinolin-7-yl)-6-oxopiperidin-3-yl]-2-methylpropane-1-sulfonamide Chemical compound CC(C)CS(=O)(=O)N[C@H]1CCC(=O)N([C@@H]1c1ccc(Cl)cc1)c1ccc2c(C)cc(=O)n(C)c2c1 LVDRREOUMKACNJ-BKMJKUGQSA-N 0.000 description 1
- LIMFPAAAIVQRRD-BCGVJQADSA-N N-[2-[(3S,4R)-3-fluoro-4-methoxypiperidin-1-yl]pyrimidin-4-yl]-8-[(2R,3S)-2-methyl-3-(methylsulfonylmethyl)azetidin-1-yl]-5-propan-2-ylisoquinolin-3-amine Chemical compound F[C@H]1CN(CC[C@H]1OC)C1=NC=CC(=N1)NC=1N=CC2=C(C=CC(=C2C=1)C(C)C)N1[C@@H]([C@H](C1)CS(=O)(=O)C)C LIMFPAAAIVQRRD-BCGVJQADSA-N 0.000 description 1
- AVYVHIKSFXVDBG-UHFFFAOYSA-N N-benzyl-N-hydroxy-2,2-dimethylbutanamide Chemical compound C(C1=CC=CC=C1)N(C(C(CC)(C)C)=O)O AVYVHIKSFXVDBG-UHFFFAOYSA-N 0.000 description 1
- POFVJRKJJBFPII-UHFFFAOYSA-N N-cyclopentyl-5-[2-[[5-[(4-ethylpiperazin-1-yl)methyl]pyridin-2-yl]amino]-5-fluoropyrimidin-4-yl]-4-methyl-1,3-thiazol-2-amine Chemical compound C1(CCCC1)NC=1SC(=C(N=1)C)C1=NC(=NC=C1F)NC1=NC=C(C=C1)CN1CCN(CC1)CC POFVJRKJJBFPII-UHFFFAOYSA-N 0.000 description 1
- QOVYHDHLFPKQQG-NDEPHWFRSA-N N[C@@H](CCC(=O)N1CCC(CC1)NC1=C2C=CC=CC2=NC(NCC2=CN(CCCNCCCNC3CCCCC3)N=N2)=N1)C(O)=O Chemical compound N[C@@H](CCC(=O)N1CCC(CC1)NC1=C2C=CC=CC2=NC(NCC2=CN(CCCNCCCNC3CCCCC3)N=N2)=N1)C(O)=O QOVYHDHLFPKQQG-NDEPHWFRSA-N 0.000 description 1
- 238000006987 Nef reaction Methods 0.000 description 1
- MTNHERCZHBRCJQ-GASJEMHNSA-N O=C(O)C1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O Chemical compound O=C(O)C1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O MTNHERCZHBRCJQ-GASJEMHNSA-N 0.000 description 1
- ZIKBPRYTHPRPFI-LTBFCVEOSA-N O=C(OC[C@@H]1O[C@H](CO)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC2=CC=CC=C2C=C1 Chemical compound O=C(OC[C@@H]1O[C@H](CO)[C@@H](OCC2=CC=CC=C2)[C@H](OCC2=CC=CC=C2)[C@H]1OCC1=CC=CC=C1)C1=CC2=CC=CC=C2C=C1 ZIKBPRYTHPRPFI-LTBFCVEOSA-N 0.000 description 1
- ZYGGKJOWJXDZLM-HOTMZDKISA-N OC[C@H]1O[C@H](C2=CC=CO2)[C@H](O)[C@@H](O)[C@@H]1O Chemical compound OC[C@H]1O[C@H](C2=CC=CO2)[C@H](O)[C@@H](O)[C@@H]1O ZYGGKJOWJXDZLM-HOTMZDKISA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- DRBWRJPFNOBNIO-KOLCDFICSA-N [(2r)-1-[(2r)-2-(pyridine-4-carbonylamino)propanoyl]pyrrolidin-2-yl]boronic acid Chemical compound N([C@H](C)C(=O)N1[C@@H](CCC1)B(O)O)C(=O)C1=CC=NC=C1 DRBWRJPFNOBNIO-KOLCDFICSA-N 0.000 description 1
- PSLUFJFHTBIXMW-WYEYVKMPSA-N [(3r,4ar,5s,6s,6as,10s,10ar,10bs)-3-ethenyl-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-6-(2-pyridin-2-ylethylcarbamoyloxy)-5,6,6a,8,9,10-hexahydro-2h-benzo[f]chromen-5-yl] acetate Chemical compound O([C@@H]1[C@@H]([C@]2(O[C@](C)(CC(=O)[C@]2(O)[C@@]2(C)[C@@H](O)CCC(C)(C)[C@@H]21)C=C)C)OC(=O)C)C(=O)NCCC1=CC=CC=N1 PSLUFJFHTBIXMW-WYEYVKMPSA-N 0.000 description 1
- DIVCAJXCAYUIDX-JBVWNXMHSA-N [2H]C([3H])OC1O[C@@H](C(=O)O)[C@H](C)[C@@H](C)[C@H]1C Chemical compound [2H]C([3H])OC1O[C@@H](C(=O)O)[C@H](C)[C@@H](C)[C@H]1C DIVCAJXCAYUIDX-JBVWNXMHSA-N 0.000 description 1
- QVVRVECFJFSYTN-YEFWMDCMSA-N [2H]C([3H])OC1O[C@@H](CO)[C@H](C)[C@@H](C)[C@H]1C Chemical compound [2H]C([3H])OC1O[C@@H](CO)[C@H](C)[C@@H](C)[C@H]1C QVVRVECFJFSYTN-YEFWMDCMSA-N 0.000 description 1
- TYDSLMYDYXBZPN-YEFWMDCMSA-N [2H]C([3H])OC1O[C@@H](C[N+](=O)[O-])[C@H](C)[C@@H](C)[C@H]1C Chemical compound [2H]C([3H])OC1O[C@@H](C[N+](=O)[O-])[C@H](C)[C@@H](C)[C@H]1C TYDSLMYDYXBZPN-YEFWMDCMSA-N 0.000 description 1
- HEFOPSWRMABAOK-UNZRMWOHSA-N [2H]C([3H])OC[C@H]1O[C@@H](C[N+](=O)[O-])[C@H](C)[C@@H](C)[C@H]1C Chemical compound [2H]C([3H])OC[C@H]1O[C@@H](C[N+](=O)[O-])[C@H](C)[C@@H](C)[C@H]1C HEFOPSWRMABAOK-UNZRMWOHSA-N 0.000 description 1
- IPZHSPSLEWKTGY-OKTLXSBFSA-N [2H]C([3H])OC[C@H]1O[C@H](C(=O)OC)[C@H](C)[C@@H](C)[C@@H]1C Chemical compound [2H]C([3H])OC[C@H]1O[C@H](C(=O)OC)[C@H](C)[C@@H](C)[C@@H]1C IPZHSPSLEWKTGY-OKTLXSBFSA-N 0.000 description 1
- SQTRILLWEYNHKW-PJEMQCDQSA-N [2H]C([3H])OC[C@H]1O[C@H](C2=CC=CO2)[C@H](C)[C@@H](C)[C@@H]1C Chemical compound [2H]C([3H])OC[C@H]1O[C@H](C2=CC=CO2)[C@H](C)[C@@H](C)[C@@H]1C SQTRILLWEYNHKW-PJEMQCDQSA-N 0.000 description 1
- KQAGWIMDNNWZKG-OPGBKRKOSA-N [2H]C([3H])OC[C@H]1O[C@H](CN=[N+]=[N-])[C@H](C)[C@@H](C)[C@@H]1C Chemical compound [2H]C([3H])OC[C@H]1O[C@H](CN=[N+]=[N-])[C@H](C)[C@@H](C)[C@@H]1C KQAGWIMDNNWZKG-OPGBKRKOSA-N 0.000 description 1
- SQTSMKNUUIIBDV-OPGBKRKOSA-N [2H]C([3H])OC[C@H]1O[C@H](CO)[C@H](C)[C@@H](C)[C@@H]1C Chemical compound [2H]C([3H])OC[C@H]1O[C@H](CO)[C@H](C)[C@@H](C)[C@@H]1C SQTSMKNUUIIBDV-OPGBKRKOSA-N 0.000 description 1
- ZHVGPPHNTXLLRM-NZPYMUDXSA-N [2H]OC[C@@H]1O[C@H](CO)[C@H](C)[C@H](C)[C@H]1C.[3H]C Chemical compound [2H]OC[C@@H]1O[C@H](CO)[C@H](C)[C@H](C)[C@H]1C.[3H]C ZHVGPPHNTXLLRM-NZPYMUDXSA-N 0.000 description 1
- FTWBFZIBYWWZQJ-PFIWQTKZSA-N [2H]OC[C@@H]1O[C@H](COP([V])I)[C@H](C)[C@H](C)[C@H]1C.[3H]C Chemical compound [2H]OC[C@@H]1O[C@H](COP([V])I)[C@H](C)[C@H](C)[C@H]1C.[3H]C FTWBFZIBYWWZQJ-PFIWQTKZSA-N 0.000 description 1
- JBYKKLZYTGDRQL-JOOQLEFVSA-N [3H]OCOC[C@H]1O[C@@H](CC(=O)OCC)[C@H](C)[C@@H](C)[C@@H]1C Chemical compound [3H]OCOC[C@H]1O[C@@H](CC(=O)OCC)[C@H](C)[C@@H](C)[C@@H]1C JBYKKLZYTGDRQL-JOOQLEFVSA-N 0.000 description 1
- PRHOVXPUYLNKKP-HCTFOCQUSA-N [3H]OCOC[C@H]1O[C@@H](CC(=O)OCC)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C Chemical compound [3H]OCOC[C@H]1O[C@@H](CC(=O)OCC)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C PRHOVXPUYLNKKP-HCTFOCQUSA-N 0.000 description 1
- MAHBCAAPXFGWIG-VGNQSCFOSA-N [3H]OCOC[C@H]1O[C@@H](CO)[C@H](C)[C@@H](C)[C@@H]1C Chemical compound [3H]OCOC[C@H]1O[C@@H](CO)[C@H](C)[C@@H](C)[C@@H]1C MAHBCAAPXFGWIG-VGNQSCFOSA-N 0.000 description 1
- MUQUYAQYSLHCCQ-ZAKQUOSXSA-N [3H]OCOC[C@H]1O[C@@H](CO)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C Chemical compound [3H]OCOC[C@H]1O[C@@H](CO)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C MUQUYAQYSLHCCQ-ZAKQUOSXSA-N 0.000 description 1
- HWZLYFPGPAGNKM-WATNEQTESA-N [3H]OCOC[C@H]1O[C@@H](COC(OCCC#N)N(C(C)C)C(C)C)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C Chemical compound [3H]OCOC[C@H]1O[C@@H](COC(OCCC#N)N(C(C)C)C(C)C)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C HWZLYFPGPAGNKM-WATNEQTESA-N 0.000 description 1
- IMCXHOYJQQBCCB-DENSSHDXSA-N [3H]OCOC[C@H]1O[C@@H](COP(OCCC#N)N(C(C)C)C(C)C)[C@H](C)[C@@H](C)[C@@H]1C Chemical compound [3H]OCOC[C@H]1O[C@@H](COP(OCCC#N)N(C(C)C)C(C)C)[C@H](C)[C@@H](C)[C@@H]1C IMCXHOYJQQBCCB-DENSSHDXSA-N 0.000 description 1
- AJVDPFUMVNRINE-HVIDRSHPSA-N [3H]OSOC[C@H]1O[C@@H](C[N+](=O)[O-])[C@H](C)[C@@H](C)[C@H]1C Chemical compound [3H]OSOC[C@H]1O[C@@H](C[N+](=O)[O-])[C@H](C)[C@@H](C)[C@H]1C AJVDPFUMVNRINE-HVIDRSHPSA-N 0.000 description 1
- RJJVZEJNKRAJMF-JQDIXDHISA-N [H]N(C[C@H]1O[C@@H](C(=O)O)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C)C(=O)CF Chemical compound [H]N(C[C@H]1O[C@@H](C(=O)O)[C@H](NC(C)=O)[C@@H](C)[C@@H]1C)C(=O)CF RJJVZEJNKRAJMF-JQDIXDHISA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- WQZGKKKJIJFFOK-TVIMKVIFSA-N alpha-D-altropyranose Chemical compound OC[C@H]1O[C@H](O)[C@@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-TVIMKVIFSA-N 0.000 description 1
- WQZGKKKJIJFFOK-DVKNGEFBSA-N alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-DVKNGEFBSA-N 0.000 description 1
- WQZGKKKJIJFFOK-RXRWUWDJSA-N alpha-D-gulose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-RXRWUWDJSA-N 0.000 description 1
- WQZGKKKJIJFFOK-RDQKPOQOSA-N alpha-D-idopyranose Chemical compound OC[C@H]1O[C@H](O)[C@@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-RDQKPOQOSA-N 0.000 description 1
- 238000010976 amide bond formation reaction Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940125878 compound 36 Drugs 0.000 description 1
- 229940127573 compound 38 Drugs 0.000 description 1
- 229940126540 compound 41 Drugs 0.000 description 1
- 229940125936 compound 42 Drugs 0.000 description 1
- 229940127113 compound 57 Drugs 0.000 description 1
- 229940126179 compound 72 Drugs 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000006264 debenzylation reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JQZUMFHYRULBEN-UHFFFAOYSA-N diethyl(methyl)silicon Chemical compound CC[Si](C)CC JQZUMFHYRULBEN-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- MDIHZUXHMBQPOF-UHFFFAOYSA-L dipotassium sodium 2,3-dihydroxybutanedioate Chemical compound [Na+].[K+].[K+].[O-]C(=O)C(O)C(O)C([O-])=O MDIHZUXHMBQPOF-UHFFFAOYSA-L 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- GWNFQAKCJYEJEW-UHFFFAOYSA-N ethyl 3-[8-[[4-methyl-5-[(3-methyl-4-oxophthalazin-1-yl)methyl]-1,2,4-triazol-3-yl]sulfanyl]octanoylamino]benzoate Chemical compound CCOC(=O)C1=CC(NC(=O)CCCCCCCSC2=NN=C(CC3=NN(C)C(=O)C4=CC=CC=C34)N2C)=CC=C1 GWNFQAKCJYEJEW-UHFFFAOYSA-N 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N formamide Substances NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- YGBMCLDVRUGXOV-UHFFFAOYSA-N n-[6-[6-chloro-5-[(4-fluorophenyl)sulfonylamino]pyridin-3-yl]-1,3-benzothiazol-2-yl]acetamide Chemical compound C1=C2SC(NC(=O)C)=NC2=CC=C1C(C=1)=CN=C(Cl)C=1NS(=O)(=O)C1=CC=C(F)C=C1 YGBMCLDVRUGXOV-UHFFFAOYSA-N 0.000 description 1
- NSNPSJGHTQIXDO-UHFFFAOYSA-N naphthalene-1-carbonyl chloride Chemical compound C1=CC=C2C(C(=O)Cl)=CC=CC2=C1 NSNPSJGHTQIXDO-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- GRJJQCWNZGRKAU-UHFFFAOYSA-N pyridin-1-ium;fluoride Chemical compound F.C1=CC=NC=C1 GRJJQCWNZGRKAU-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 125000000037 tert-butyldiphenylsilyl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1[Si]([H])([*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H5/00—Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
- C07H5/04—Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to nitrogen
- C07H5/06—Aminosugars
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H11/00—Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof
- C07H11/04—Phosphates; Phosphites; Polyphosphates
Definitions
- the invention relates to oligosaccharides and libraries incorporating oligosaccharide. More particularly, the invention relates to oligosaccharides and libraries of oligosaccharides which employ amide and/or phosphodiester linkages for joining adjacent carbohydrate subunits.
- Carbohydrates are known to mediate many cellular recognition processes. Carbohydrates can serve directly as binding molecules and, in such instances, are essential to the recognition process.
- a review of the biological role of carbohydrates with respect to cellular recognition phenomena is provided by Sharon et al. ( Scientific American , Jan. 1993, 82). The emerging importance of glycobiology is further characterized by Mekelburger et al. ( Angew. Chem. Int. Ed. Engl. 1992, 31, 1571) and by Dagani et al. ( Chem. Eng. News, Feb. 1, 1993, 28).
- Dysfunctional mediation of cellular recognition processes can lead to disease states. If a cellular recognition process is mediated by an oligosaccharide, then an absence or excess of such oligosaccharide can lead to a dysfunctional mediation of such process.
- the mediating oligosaccharide may be deficient or absent due to a deficiency of production or due to a high rate of catabolism. If rate of catabolism is excessive, then catabolically resistant analogs of the bioactive oligosaccharide may be preferred as drug candidates as compared to the native bioactive oligosaccharide.
- Simon, et al. Proc, Natl. Acad. Sci. USA, 1992, 89, 9367-9371 disclose oligopeptide analogs in which amino acid side chain groups are attached not to conventional peptide backbone carbons but to peptide backbone nitrogens. Such analogs are termed peptoids. Simon also discloses the construction of peptoid libraries as a modular approach to drug discovery. Simon's oligopeptoids are shown by calculation to have greater conformational freedom as compared to conventional oligopeptides. Accordingly, oligopeptoids are thought to have greater potential as pharmaceutically useful binding ligands as compared to conventional oligopeptides having close sequence homology to such oligopeptoids.
- Von Roedern et al. disclose a carbohydrate amino acid ( Angew. Chem, Int. Ed. Engl. 1994, 31, 687-689). Although von Roedern discloses that carbohydrate amino acids may be coupled to peptides, he does not disclose that they may also be polymerized so as to form oligosaccharides.
- a first aspect of the invention involves the molecular design and chemical synthesis of a class of carbohydrates designated as carbopeptoids (CPD's).
- CPD's carbopeptoids
- Glycopeptoids are preferred carbopeptoids.
- Carbopeptoids and glcopeptoids are oligosaccharides which employ peptide-like amide bonds for linking the various carbohydrate subunits within an oligomer assembly. Amide bond formation may be achieved by employing oligopeptide synthesis technology and instrumentation.
- the method allows for the design and synthesis of specific compounds for biological and pharmacological investigations.
- the method also allows for the generation of libraries of compounds for biological and pharmacological screening.
- the invention is directed to a oligomeric carbopeptoid or glycopeptoid compound having carbohydrate amino acid subunits (CA's) or glycoside amino acid subunits (GA's) coupled to one another via an amide linkage.
- the amide linkage may be represented by the formula CA 1 —(CO—NH)—CA 2 .
- the amide linkage (CO—NH) includes a carbonyl carbon and an amido nitrogen.
- a first carbohydrate amino acid subunit CA 1 or glycoside amino acid subunit GA 1 has an anomeric carbon bonded to the carbonyl carbon of the amide linkage.
- the anomeric carbon of the first carbohydrate amino acid subunit CA 1 forms a C-glycosidic bond with the carbonyl carbon of the amide linkage and maintains the carbohydrate in a closed ring configuration.
- a second carbohydrate amino acid subunit CA 2 has a non-anomeric carbon bonded to the amido nitrogen of the amide linkage.
- the second carbohydrate amino acid subunit CA 2 like the first amino acid subunit CA 1 , may include an anomeric carbon bonded to the carbonyl carbon of a second amide linkage linking the second carbohydrate amino acid subunit CA 2 to a third carbohydrate amino acid subunit CA 3 , etc.
- the anomeric carbon of the second carbohydrate amino acid subunit CA 2 forms a C-glycosidic bond with the carbonyl carbon of the amide linkage and maintains the carbohydrate in a closed ring configuration.
- the second carbohydrate amino acid subunit CA 2 is a terminal subunit, then its anomeric carbon may form a hemiacetal, a hemiketal, or a glycoside.
- the invention is also directed to a process for synthesizing the above oligomeric carbopeptoid or glycopeptoid compound.
- the synthetic process involves the coupling of two or more carbohydrate amino acid subunits (CA's) or glycoside amino acid subunits (GA's) to one another by means of amide linkages.
- CA's carbohydrate amino acid subunits
- GA's glycoside amino acid subunits
- the invention is also directed to libraries of oligomeric carbopeptoid or glycopeptoid compounds. Such libraries are employable for drug screening.
- Each oligomeric carbopeptoid or glydopeptoid compound includes at least two carbohydrate amino acid subunits (CA's) or glycoside amino acid subunits (GA's) coupled to one another via an amide linkage as indicated above.
- CA's carbohydrate amino acid subunits
- GA's glycoside amino acid subunits
- the invention is also directed to an improved process for synthesizing the above library of oligomers. The process employs an elongation step for coupling the subunits to one another to produce the oligomers. In the elongation step, two carbohydrate amino acid subunits (CA's) or glycoside amino acid subunits (GA's) are coupled to one another via an amide linkage as indicated above.
- a first chemical intermediate is a derived carbohydrate amino acid having an anomeric carbon and non-anomeric carbons.
- the anomeric carbon is substituted with a carboxyl radical.
- Each of the non-anomeric carbons is substituted with a radical selected from the group consisting of blocked hydroxyl, blocked amino, differentially protected amino, and hydrogen, with the proviso that at least one radical is a differentially protected amino.
- a second chemical intermediate is a derived carbohydrate amino acid similar to the first except that the non-anomeric carbons are substituted with a radical selected from the group consisting of blocked hydroxyl, blocked amino, unprotected amino, and hydrogen, with the proviso that at least one radical is an unprotected amino and at least one radical is a blocked hydroxyl or amino.
- a second aspect of the invention involves the molecular design and chemical synthesis of a class of carbohydrates designated as carbonucleotoids (CND's).
- Carbonucleotoids are oligosaccharides which employ oligonucleotide-like phosphate bonds for linking the various carbohydrate subunits within an oligomer assembly. Phosphate bond formation may be achieved by employing technology and instrumentation developed for oligonucleotide synthesis.
- the phosphate bonds employed within carbonucleotoids are convenient linkages for coupling these units. The ease and high efficiency by which the oligonucleotide-like linkages can be constructed make the synthesis of these molecules a practical proposition.
- the disclosed methods are characterized by their versatility and practicality.
- the methods may exploit conventional solid phase and automated synthesis techniques for producing carbopeptoids and carbonucleotoids in large scale.
- the second aspect of the invention is directed to an oligomeric carbonucleotoid molecule comprising carbohydrate C-glycoside subunits (CG's) coupled to one another via a phosphodiester linkage.
- the phosphodiester linkage may be represented by the structure: CG 1 —C 1 —(O—PO(OH)—O)—CG 2 .
- the first carbohydrate C-glycoside subunit (CG 1 —C 1 ) has an anomeric carbon forming a C-glycosidic bond with a carbon C 1 .
- the carbon C 1 is bonded to the phosphodiester linkage.
- the second carbohydrate C-glycoside subunit CG2 has a non-anomeric carbon bonded to the phosphodiester linkage.
- the invention is also directed a process for synthesizing the oligomeric carbonucleotoid molecule.
- the process employs a coupling step wherein two or more carbohydrate C-glycoside subunits (CG's) are coupled by means of a phosphodiester linkage as indicated above.
- the second aspect of the invention is also directed to libraries of oligomeric carbonucleotoid molecules.
- the libraries are employable for drug screening.
- Each oligomeric carbonucleotoid molecule including at least two carbohydrate C-glycoside subunits (CG's) coupled to one another by means of a phosphodiester linkage as indicated above.
- the invention is also directed to an improved process for synthesizing a library of oligomers. The process employs an elongation step wherein subunits are coupled to one another to produce the oligomers.
- the improvement is directed to the use of phosphodiester linkage linkages for linking the C-glycoside subunits as indicated above.
- the second aspect of the invention is also directed to derived carbohydrate C-glycosides having an anomeric carbon and non-anomeric carbons.
- the anomeric carbon forms a C-glycosidic bond with carbon C 1 .
- the carbon C 1 is bonded to an phosphoramidite.
- Each of the non-anomeric carbons is substituted with a radical selected from the group consisting of blocked hydroxyl, differentially protected hydroxyl, and hydrogen, with the proviso that at least one radical is a differentially protected hydroxyl.
- An alternative derived carbohydrate C-glycoside is similar to the above except that each of the non-anomeric carbons is substituted with a radical selected from the group consisting of blocked hydroxyl, unprotected hydroxyl, and hydrogen, with the proviso that at least one radical is an unprotected hydroxyl and at least one radical is a blocked hydroxyl.
- the carbopeptoids are oligomers having repeating carbohydrate subunits linked to one another by means of amide linkage units. More particularly, the carbonyl carbon of each amide linkage unit is bonded to the anomeric carbon of a carbohydrate subunit. Similarly, the amide nitrogen of the amide linkage unit is bonded to a non-anomeric carbon.
- the retrosynthetic scheme suggests that the amide bond may be split and that the preferred starting materials are carbohydrate amino acids.
- Carbonucleotoids are oligosaccharides in which carbohydrate C-glycoside subunits (CG's) are linked to one another by means of phosphodiester bonds. More particularly, the retrosynthetic scheme suggests that the phosphate group may be eliminated, yielding hydroxylated starting material.
- Scheme 2 illustrates representative carbohydrate amino acid subunits (CA's) and carbohydrate C-glycoside subunits (CG's).
- Preferred carbohydrate amino acid subunits (CA's) include the following:
- D-mannose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-galactose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- N-acetyl-D-glucosamine having an unprotected carboxyl at the anomeric C1) position, an unprotected amino group at the C(6) position, a blocked amino group at the C(2) position, and blocked hydroxyls at the C(3) and C(4) positions;
- ⁇ -D-idose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- ⁇ -D-altrose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- ⁇ -D-gulose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- ⁇ -D-glucose having an unprotected O-glycosidic amino at the anomeric C(1) position, an unprotected carboxyl as the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-mannose having an unprotected O-glycosidic amino at the anomeric C(1) position, an unprotected carboxyl as the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-galactose having an unprotected O-glycosidic amino at the anomeric C(1) position, an unprotected carboxyl as the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- N-acetyl-D-glucosamine having an unprotected O-glycosidic amino at the anomeric C(1) position, an unprotected carboxyl as the C(6) position, a blocked amino group at the C(2) position and blocked hydroxyls at the C(3) and C(4) positions;
- D-ribose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(5) position, and blocked hydroxyls at the C(2) and C(3) positions;
- D-arabinose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(5) position, and blocked hydroxyls at the C(2) and C(3) positions.
- CA's include the following:
- D-glucose having a C(1) C 1 -glycosidic carbon bonded to a phosphoramidite, an unprotected hydroxyl at the C(6) position and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-mannose having a C(1) C 1 -glycosidic carbon bonded to a phosphoramidite, an unprotected hydroxyl at the C(6) position and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-galactose having a C(1) C 1 -glycosidic carbon bonded to a phosphoramidite, an unprotected hydroxyl at the C(6) position and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- N-acetyl-D-glucosamine having a C(1) C 1 -glycosidic carbon bonded to a phosphoramidite, an unprotected hydroxyl at the C(6) position, a blocked amino at the C(2) position, and blocked hydroxyls at the C(3) and C(4) positions.
- Scheme 5 summarizes the synthesis of hexamer 74, i.e glucose-glucosamine hetero carbopeptoid (CPD).
- Scheme 6 illustrates the construction of suitably protected and activated C-glycoside subunits (CG's) corresponding to glucose.
- Scheme 7 illustrates the construction of suitably protected and activated C-glycoside subunits (CG's) corresponding to glucosamine.
- Scheme 8 summarizes the synthesis of hexamer 116, i.e. glucose-glucosamine hetero carbonucleotoid (CND).
- a oligosaccharide carbopeptoid (CPD) library may be constructed by performing using a split synthesis method of oligomerization as illustrated in Scheme 500 for carbopeptoids and Scheme 550 for carbonucleotoids.
- the split synthesis may employ beads upon which to build the oligomers. Beads are aliquoted into each of a several reaction vessels, each reacrtion vessel containing a different core molecule. The core molecules are then allowed to attach to the beads.
- the beads are washed, mixed with one another, and then re-aliquoted (split) into a second set of reaction vessels for addition of a second core molecule to the first added core molecule.
- the process is then reiterated until the oligomerization process is complete.
- the resultant library of oligosaccharides may then be screened using conventional methods developed for oligopeptide and oligonucleotide libraries. Screening an oligosaccharide library can lead to the identification of individual oligosaccharide components within the library having binding activity and/or bioactivity.
- oligosaccharide libraries may be enlarged by introducing additional functionalities into the basic CA's and CG's.
- oligosaccharide libraries may be further enlarged by enlarging the pool of free functional groups on the CA's and CG's and employed this enlarged pools of CA's and CG's during the respective split synthesis processes.
- Scheme 20 illustrate a protocol published by Fuchs, E. F. et al. ( J. Chem Ber. 1975, 108, 2254) for the synthesis of CA 45 and 46 from glucose pentaacetate. Additionally, Scheme 20 illustrates a synthetic route for CG 82, also starting from glucose pentaacetate. The reagents and conditions for synthesizing CG 82 are provided as follows:
- Step M The reagents and conditions for synthesizing CA 46 from CA 45 are provided in Step M as follows:
- Step 1 DCC, HOBT, Et 3 , DMF;
- reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO 3 (3 ⁇ ), brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography affords compound 98 (scheme 8).
- reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO 3 (3 ⁇ ), brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography affords compound 102 (scheme 8).
- reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO 3 (3 ⁇ ), brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography affords compound 106 (scheme 8).
- reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO 3 (3 ⁇ ), brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography affords compound 110 (scheme 8).
- reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO 3 (3 ⁇ ), brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated. Purification by flash column chromatography affords compound 114 (scheme 8).
- scheme 9 step f the choice of the protecting group is relative and the molecule can be protected with other protecting groups at C2, C3, C4, such as PMB (paramethoxvbenzyl), TES (triethvlsilyl), TBS (tertbutvldimethvlsilyl), etc.
- PMB paramethoxvbenzyl
- TES triethvlsilyl
- TBS tertbutvldimethvlsilyl
- the compound is purified by flash column chromatography and then a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diusopropylethylamine (2.2 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (2.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2 ⁇ ), brine (1 ⁇ ) and then dried (MgSO 4 ) and concentrated. Purification by flash column chromatography affords the protected tosylate/acid 182.
- triol 182 (0.0 equiv.) in CH 2 Cl 2 (0.5 M) at 0° C.
- sodium-azide 1.2 equiv.
- the reaction is stirred for 1 h and then is quenched with saturated ammonium chloride (1.5 mL), diluted with ethyl acetate (25 mL), washed with water (2 ⁇ 5 mL), brine (1 ⁇ 5 mL), back-extracted (2 ⁇ ). recombined, dried (MgSO 4 ) and evaporated.
- the compound is purified by flash column chromatography and affords compound 183.
- a solution of 194 (1.0 equivalents) is dissolved in ethanol (0.01 M total) at 25° C.
- the mixture is next exposed to 10% Pd/C (0.1 equivalents) and is then subsequently capped with a hydrogen balloon at 1 atmosphere.
- the reaction is stirred for 72 hours and is then filtered through celite.
- the crude mixture is subsequently diluted with ether and washed with NaHCO 3 (3 ⁇ ), brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated.
- a solution of 201 (1.0 equivalents) is dissolved in ethanol (0.01 M total) at 25° C.
- the mixture is next exposed to 10% Pd/C (0.1 equivalents) and is then subsequently capped with a hydrogen balloon at I atmosphere.
- the reaction is stirred for 72 hours and is then filtered through celite.
- the crude mixture is subsequently diluted with ether and washed with NaHCO 3 (3 ⁇ ), brine (1 ⁇ ) and dried (MgSO 4 ) and concentrated.
- To a solution of crude amine (1.0 equivalents) in methylene chloride (0.10 Molar). is added sodium bicarbonate (2.0 equivalents) at 0° C.
- a depiction of the generation of a combinatorial library for oligopeptoid compounds is shown in scheme 500.
- the example uses an alphabet of eight D-aldose hexose sugars (other sugars groups such as the D/L ketoses and L-configurations of aldose hexoses, may be used) and carries the synthesis to a degree of three or 512 compounds. (The process can repeat itself to afford the library of desired size). Standard chemistry is shown and follows the reaction conditions as described above herein for peptoid synthesis.
- the solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass: isothiocyanato glass and others as purchased from Sigma company. All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage. amide, ether. alkyl chain with terminal carbon activated as free alcohol. bromide etc.).
- a linker extending from the amino group on the support (eg. succinate linkage. amide, ether. alkyl chain with terminal carbon activated as free alcohol. bromide etc.).
- a depiction of the generation of a combinatorial library for oligonucleotoid compounds is shown in scheme 550.
- the example uses an alphabet of eight D-aldose hexose sugars (other sugars groups such as the D/L ketoses and L-configurations of aldose hexoses, may be used) and carries the synthesis to a degree of three or 512 compounds. (The process can repeat itself to afford the library of desired size). Standard chemistry is shown and follows the reaction conditions as described above herein for carbonucleotoid synthesis.
- the solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass; isothiocyanato glass and others as purchased from Sigma company. All -supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage, amide. ether. alkyl chain with terminal carbon activated as free alcohol. bromide etc.).
- a linker extending from the amino group on the support eg. succinate linkage, amide. ether. alkyl chain with terminal carbon activated as free alcohol. bromide etc.
- the benzylidene is then azeotroped with benzene (2 ⁇ 100 mL) and then dried overnight under vacuum over P 2 O 5 .
- a mixture of benzylidene, dibutyl tin oxide (1.2 equiv.) and dry methanol (0.25 M) are heated at reflux for 4 h until the solution became clear and homogeneous. (An automatic stirring apparatus may be necessary.)
- the solvent is next removed in vacuo to give a foamy white tin complex which was then azeotroped with benzene (2 ⁇ ) and dried (2 h to overnight) under vacuum over P 2 O 5 .
- the solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass; isothiocyanato glass and others as purchased from Sigma company. All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage, amide, ether, alkyl chain with terminal carbon activated as free alcohol, bromide etc.).
- a linker extending from the amino group on the support (eg. succinate linkage, amide, ether, alkyl chain with terminal carbon activated as free alcohol, bromide etc.).
- TBDPS ether is then azeotroped with benzene (2 ⁇ 100 mL) and then dried overnight under vacuum over P 2 O 5 .
- a mixture of benzylidene, dibutyl tin oxide (1.2 equiv.) and dry methanol (0.25 M) are heated at reflux for 4 h until the solution became clear and homogeneous. (An automatic stirring apparatus may be necessary.)
- the solvent is next removed in vacuo to give a foamy white tin complex which was then azeotroped with benzene (2 ⁇ ) and dried- (2h to overnight) under vacuum over P 2 O 5 .
- the solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass; isothiocyanato glass and others as purchased from Sigma company. All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage. amide, ether, alkyl chain with terminal carbon activated as tree alcohol, bromide etc.).
- All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage, amide, ether, alkyl chain with terminal carbon activated as free alcohol, bromide etc.)).
- the mixture is then diluted with ether, washed with aqueous NaHCO 3 (2 ⁇ ), water (2 ⁇ ), and brine (2 ⁇ ).
- the compound/support 1.0 equivalents in dimethyl-formamide (0.10 Molar) at 25° C., is added piperidine (1.1 equivalents).
- the support is stirred or exposed for 1 hour and is then diluted with-ether, and washed with aqueous CuSO 4 (2 ⁇ ), water (2 ⁇ ), and brine (2 ⁇ ).
- the final step affords compound 3040.
- Phosphoramidate 138 (2 diastereomers): IR, (neat) cm ⁇ 1 : 3089, 2964, 2927, 2856, 2253, 1497, 1455, 1396, 1363, 1253, 1184, 1156, 1094, 1028, 978, 876, 836, 779, 735, 1 H—NM (400 MHz, C 6 D 6 ): ⁇ 7.34 (m, 5 H. Ph), 7.14 (m, 10 H, Ph), 4.97 (m, 4 H, CH 2 Ph), 4.78 (m, 2 H, CH 2 Ph), 4.07-3.24 (m, 13 H, OCH, OCH 2 , CH 2 CN), 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
Abstract
Libraries are synthesized with oligomeric carbopeptoids and carbonucleotoids. Carbopeptoids are oligosaccharides having carbohydrate subunits linked to one another by amide bonds. Carbonucleotoids are oligosaccharides having carbohydrate subunits linked to one another by phosphodiester bonds. Carbopeptoid libraries may be fabricated using automated polypeptide synthesizers. Carbonucleotoid libraries may be fabricated using automated polynucleotide synthesizers.
Description
- 1. Field of the Invention
- The invention relates to oligosaccharides and libraries incorporating oligosaccharide. More particularly, the invention relates to oligosaccharides and libraries of oligosaccharides which employ amide and/or phosphodiester linkages for joining adjacent carbohydrate subunits.
- 2. BACKGROUND
- Carbohydrates are known to mediate many cellular recognition processes. Carbohydrates can serve directly as binding molecules and, in such instances, are essential to the recognition process. A review of the biological role of carbohydrates with respect to cellular recognition phenomena is provided by Sharon et al. (Scientific American, Jan. 1993, 82). The emerging importance of glycobiology is further characterized by Mekelburger et al. (Angew. Chem. Int. Ed. Engl. 1992, 31, 1571) and by Dagani et al. (Chem. Eng. News, Feb. 1, 1993, 28).
- Dysfunctional mediation of cellular recognition processes can lead to disease states. If a cellular recognition process is mediated by an oligosaccharide, then an absence or excess of such oligosaccharide can lead to a dysfunctional mediation of such process. The mediating oligosaccharide may be deficient or absent due to a deficiency of production or due to a high rate of catabolism. If rate of catabolism is excessive, then catabolically resistant analogs of the bioactive oligosaccharide may be preferred as drug candidates as compared to the native bioactive oligosaccharide.
- Accordingly, what is needed is a library which includes analogs of known bioactive oligosaccharides. Such a library may be usefully employed for screening drug candidates.
- Central requirements for the design of libraries of oligosaccharide analogs include the following:
- (a) A need to maximize the potential of the designed oligosaccharides as ligand and drug candidates;
- (b) A need to capitalize on existing highly sophisticated technology directed to the synthesis of oligopeptides and oligonucleotides in order to facilitate the rapid and efficient design and construction of oligosaccharides; and
- (c) A need for flexibility with respect to synthesizing either single target molecules or large libraries of target molecules simultaneously.
- Methodologies for synthesizing biopolymers are well developed for peptides, nucleic acids, and saccharides. Segments of oligopeptides and of oligonucleotides can now be routinely synthesized both in solution and in the solid phase, manually and/or on automated systems. The synthesis of such structures is facilitated by the availability of efficient techniques and sophisticated instrumentation for synthesizing peptide and phosphate bonds with high yields. The synthesis of oligopeptides and oligonucleotides is also facilitated by the absence of stereocenters in these linkages. In contrast, technology for the construction of oligosaccharides is comparatively less sophisticated and efficient. Synthetic methods for constructing oligosaccharides give comparatively lower yields and are complicated by the two isomer possibilities (α and β) in glycoside bond formation.
- Techniques and chemical methods for simultaneously synthesizing multiple oligopeptides, e.g. 100-150 completely different peptides having lengths of up to 20 amino acid residues, are reviewed by Jung, G. et al. (Angew. Chem, Int. Ed. Engl. 1992, 31, 367-383 -incorporated therein by reference). Such techniques facilitate the construction of oligopeptide libraries.
- Simon, et al. (Proc, Natl. Acad. Sci. USA, 1992, 89, 9367-9371) disclose oligopeptide analogs in which amino acid side chain groups are attached not to conventional peptide backbone carbons but to peptide backbone nitrogens. Such analogs are termed peptoids. Simon also discloses the construction of peptoid libraries as a modular approach to drug discovery. Simon's oligopeptoids are shown by calculation to have greater conformational freedom as compared to conventional oligopeptides. Accordingly, oligopeptoids are thought to have greater potential as pharmaceutically useful binding ligands as compared to conventional oligopeptides having close sequence homology to such oligopeptoids.
- Von Roedern et al. disclose a carbohydrate amino acid (Angew. Chem, Int. Ed. Engl. 1994, 31, 687-689). Although von Roedern discloses that carbohydrate amino acids may be coupled to peptides, he does not disclose that they may also be polymerized so as to form oligosaccharides.
- A first aspect of the invention involves the molecular design and chemical synthesis of a class of carbohydrates designated as carbopeptoids (CPD's). Glycopeptoids are preferred carbopeptoids. Carbopeptoids and glcopeptoids are oligosaccharides which employ peptide-like amide bonds for linking the various carbohydrate subunits within an oligomer assembly. Amide bond formation may be achieved by employing oligopeptide synthesis technology and instrumentation. The method allows for the design and synthesis of specific compounds for biological and pharmacological investigations. The method also allows for the generation of libraries of compounds for biological and pharmacological screening. Conventional screening techniques employed with respect to peptide and peptoid libraries (Simon et al., supra) may also be employed with respect to carbopeptoid libraries. The design takes advantage of the multifunctionality of carbohydrate subunits to maximize the binding properties of the molecules. The ease and high efficiency by which the peptide-like linkages can be constructed make the synthesis of these molecules a practical proposition. Furthermore, non-carbohydrate units may be inserted into the sequence making this approach even more flexible and versatile for the generation of new libraries of organic compounds.
- More particularly, the invention is directed to a oligomeric carbopeptoid or glycopeptoid compound having carbohydrate amino acid subunits (CA's) or glycoside amino acid subunits (GA's) coupled to one another via an amide linkage. The amide linkage may be represented by the formula CA1—(CO—NH)—CA2. The amide linkage (CO—NH) includes a carbonyl carbon and an amido nitrogen. A first carbohydrate amino acid subunit CA1 or glycoside amino acid subunit GA1 has an anomeric carbon bonded to the carbonyl carbon of the amide linkage. The anomeric carbon of the first carbohydrate amino acid subunit CA1 forms a C-glycosidic bond with the carbonyl carbon of the amide linkage and maintains the carbohydrate in a closed ring configuration. A second carbohydrate amino acid subunit CA2 has a non-anomeric carbon bonded to the amido nitrogen of the amide linkage. The second carbohydrate amino acid subunit CA2, like the first amino acid subunit CA1, may include an anomeric carbon bonded to the carbonyl carbon of a second amide linkage linking the second carbohydrate amino acid subunit CA2 to a third carbohydrate amino acid subunit CA3, etc. In this instance, the anomeric carbon of the second carbohydrate amino acid subunit CA2 forms a C-glycosidic bond with the carbonyl carbon of the amide linkage and maintains the carbohydrate in a closed ring configuration. On the other hand, if the second carbohydrate amino acid subunit CA2 is a terminal subunit, then its anomeric carbon may form a hemiacetal, a hemiketal, or a glycoside.
- The invention is also directed to a process for synthesizing the above oligomeric carbopeptoid or glycopeptoid compound. The synthetic process involves the coupling of two or more carbohydrate amino acid subunits (CA's) or glycoside amino acid subunits (GA's) to one another by means of amide linkages.
- The invention is also directed to libraries of oligomeric carbopeptoid or glycopeptoid compounds. Such libraries are employable for drug screening. Each oligomeric carbopeptoid or glydopeptoid compound includes at least two carbohydrate amino acid subunits (CA's) or glycoside amino acid subunits (GA's) coupled to one another via an amide linkage as indicated above. The invention is also directed to an improved process for synthesizing the above library of oligomers. The process employs an elongation step for coupling the subunits to one another to produce the oligomers. In the elongation step, two carbohydrate amino acid subunits (CA's) or glycoside amino acid subunits (GA's) are coupled to one another via an amide linkage as indicated above.
- The invention is also directed to chemical intermediates for producing oligomeric carbopeptoids. A first chemical intermediate is a derived carbohydrate amino acid having an anomeric carbon and non-anomeric carbons. The anomeric carbon is substituted with a carboxyl radical. Each of the non-anomeric carbons is substituted with a radical selected from the group consisting of blocked hydroxyl, blocked amino, differentially protected amino, and hydrogen, with the proviso that at least one radical is a differentially protected amino. A second chemical intermediate is a derived carbohydrate amino acid similar to the first except that the non-anomeric carbons are substituted with a radical selected from the group consisting of blocked hydroxyl, blocked amino, unprotected amino, and hydrogen, with the proviso that at least one radical is an unprotected amino and at least one radical is a blocked hydroxyl or amino.
- A second aspect of the invention involves the molecular design and chemical synthesis of a class of carbohydrates designated as carbonucleotoids (CND's). Carbonucleotoids are oligosaccharides which employ oligonucleotide-like phosphate bonds for linking the various carbohydrate subunits within an oligomer assembly. Phosphate bond formation may be achieved by employing technology and instrumentation developed for oligonucleotide synthesis. The phosphate bonds employed within carbonucleotoids are convenient linkages for coupling these units. The ease and high efficiency by which the oligonucleotide-like linkages can be constructed make the synthesis of these molecules a practical proposition.
- The disclosed methods are characterized by their versatility and practicality. The methods may exploit conventional solid phase and automated synthesis techniques for producing carbopeptoids and carbonucleotoids in large scale.
- More particularly, the second aspect of the invention is directed to an oligomeric carbonucleotoid molecule comprising carbohydrate C-glycoside subunits (CG's) coupled to one another via a phosphodiester linkage. The phosphodiester linkage may be represented by the structure: CG1—C1—(O—PO(OH)—O)—CG2. The first carbohydrate C-glycoside subunit (CG1—C1) has an anomeric carbon forming a C-glycosidic bond with a carbon C1. In turn the carbon C1 is bonded to the phosphodiester linkage. The second carbohydrate C-glycoside subunit CG2 has a non-anomeric carbon bonded to the phosphodiester linkage. The invention is also directed a process for synthesizing the oligomeric carbonucleotoid molecule. The process employs a coupling step wherein two or more carbohydrate C-glycoside subunits (CG's) are coupled by means of a phosphodiester linkage as indicated above.
- The second aspect of the invention is also directed to libraries of oligomeric carbonucleotoid molecules. The libraries are employable for drug screening. Each oligomeric carbonucleotoid molecule including at least two carbohydrate C-glycoside subunits (CG's) coupled to one another by means of a phosphodiester linkage as indicated above. The invention is also directed to an improved process for synthesizing a library of oligomers. The process employs an elongation step wherein subunits are coupled to one another to produce the oligomers. The improvement is directed to the use of phosphodiester linkage linkages for linking the C-glycoside subunits as indicated above.
-
- Retrosynthetic schemes for carbopeptoids (compound I) and carbonucleotoids (compound II) are illustrated in Scheme 1.
- The carbopeptoids (CPD's) are oligomers having repeating carbohydrate subunits linked to one another by means of amide linkage units. More particularly, the carbonyl carbon of each amide linkage unit is bonded to the anomeric carbon of a carbohydrate subunit. Similarly, the amide nitrogen of the amide linkage unit is bonded to a non-anomeric carbon. The retrosynthetic scheme suggests that the amide bond may be split and that the preferred starting materials are carbohydrate amino acids.
- Carbonucleotoids (CND's) are oligosaccharides in which carbohydrate C-glycoside subunits (CG's) are linked to one another by means of phosphodiester bonds. More particularly, the retrosynthetic scheme suggests that the phosphate group may be eliminated, yielding hydroxylated starting material.
- Scheme 2 illustrates representative carbohydrate amino acid subunits (CA's) and carbohydrate C-glycoside subunits (CG's). Preferred carbohydrate amino acid subunits (CA's) include the following:
- D-glucose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-mannose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
-
- N-acetyl-D-glucosamine having an unprotected carboxyl at the anomeric C1) position, an unprotected amino group at the C(6) position, a blocked amino group at the C(2) position, and blocked hydroxyls at the C(3) and C(4) positions;
- α-D-idose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- α-D-altrose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- α-D-gulose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- α-D-glucose having an unprotected O-glycosidic amino at the anomeric C(1) position, an unprotected carboxyl as the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-mannose having an unprotected O-glycosidic amino at the anomeric C(1) position, an unprotected carboxyl as the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-galactose having an unprotected O-glycosidic amino at the anomeric C(1) position, an unprotected carboxyl as the C(6) position, and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- N-acetyl-D-glucosamine having an unprotected O-glycosidic amino at the anomeric C(1) position, an unprotected carboxyl as the C(6) position, a blocked amino group at the C(2) position and blocked hydroxyls at the C(3) and C(4) positions;
- D-ribose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(5) position, and blocked hydroxyls at the C(2) and C(3) positions; and
- D-arabinose having an unprotected carboxyl at the anomeric C(1) position, an unprotected amino group at the C(5) position, and blocked hydroxyls at the C(2) and C(3) positions.
- Preferred carbohydrate amino acid subunits (CA's) include the following:
- D-glucose having a C(1) C1-glycosidic carbon bonded to a phosphoramidite, an unprotected hydroxyl at the C(6) position and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-mannose having a C(1) C1-glycosidic carbon bonded to a phosphoramidite, an unprotected hydroxyl at the C(6) position and blocked hydroxyls at the C(2), C(3), and C(4) positions;
- D-galactose having a C(1) C1-glycosidic carbon bonded to a phosphoramidite, an unprotected hydroxyl at the C(6) position and blocked hydroxyls at the C(2), C(3), and C(4) positions; and
- N-acetyl-D-glucosamine having a C(1) C1-glycosidic carbon bonded to a phosphoramidite, an unprotected hydroxyl at the C(6) position, a blocked amino at the C(2) position, and blocked hydroxyls at the C(3) and C(4) positions.
-
-
-
-
-
-
-
- In analogy with the construction of oligopeptide and oligonucleotide libraries, a oligosaccharide carbopeptoid (CPD) library may be constructed by performing using a split synthesis method of oligomerization as illustrated in Scheme 500 for carbopeptoids and Scheme 550 for carbonucleotoids. For example, the split synthesis may employ beads upon which to build the oligomers. Beads are aliquoted into each of a several reaction vessels, each reacrtion vessel containing a different core molecule. The core molecules are then allowed to attach to the beads. The beads are washed, mixed with one another, and then re-aliquoted (split) into a second set of reaction vessels for addition of a second core molecule to the first added core molecule. The process is then reiterated until the oligomerization process is complete. The resultant library of oligosaccharides may then be screened using conventional methods developed for oligopeptide and oligonucleotide libraries. Screening an oligosaccharide library can lead to the identification of individual oligosaccharide components within the library having binding activity and/or bioactivity.
- The above oligosaccharide libraries (CPD and CND) may be enlarged by introducing additional functionalities into the basic CA's and CG's.
- The above oligosaccharide libraries (CPD and CND) may be further enlarged by enlarging the pool of free functional groups on the CA's and CG's and employed this enlarged pools of CA's and CG's during the respective split synthesis processes.
- Scheme 20 illustrate a protocol published by Fuchs, E. F. et al. (J. Chem Ber. 1975, 108, 2254) for the synthesis of CA 45 and 46 from glucose pentaacetate. Additionally, Scheme 20 illustrates a synthetic route for CG 82, also starting from glucose pentaacetate. The reagents and conditions for synthesizing CG 82 are provided as follows:
- Steps (a)-(d): according to Fuchs (supra).
- Step (e):
- (1) DMTCl, DMAP, Pyridine; room temperature.
- (2) TESTfl; 0° C.
- Step (f): DIBAL—H, CH2Cl2; −78° C.; and
- Step (g): (NCCH2CH2) (NiPr2)PCl, tetrazole, CH2Cl2.
- The reagents and conditions for synthesizing CA 46 from CA 45 are provided in Step M as follows:
-
- A synthetic route for producing C-glycosides (CG's) with β-configuration at the former anomeric center is illustrated in Scheme 21. The starting material (compound 36) is commercially available. The reagents and conditions for synthesizing CG 181 and CG 185 are as follows:
- Step (a): Co2(CO)8, HSiEt2Me, CO.
- Step (b):
- (1) AcOH, H2O, THF;
- (2) RuCl3, NalO4, CH2CN, H2O, CCL4, room temperature;
- Step (c): NaOMe, MeOH;
- Step (d):
- (1) DMTCl, DMAP, Pyridine, room temperature;
- (2) TESOTf;
- Step (e): BH3—THF;
- Step (f): (NCCH2CH2) (NiPr2)PCl, tetrazole, Ch2Cl2;
- Step (g):
- (1) 1 equiv TsCl. base;,
- (2) TESOTf;
- Step (h): NaN3;
- Step (i): H2, Pd(OH)2—C;
-
- Synthetic routes for producing with C-glycosides with α-configurations at the former anomeric center, i.e. CG 196 and CG 1204, are illustrated in Scheme 22. The common starting material for these synthetic routes (compound 190) is disclosed by Schmidt, R. R. et al. (Liebigs Ann. Chem. 1987, 825). The reagents and conditions for the reactions leading to CG 196 and CG 204 are as follows:
- Step (a): reductive debenzylation;
- Step (b):
- (1) equiv TsCl. base;
- (2) TESoTf.
- Step (c): NaN3.
- Step (d): RuCl3, NalO4, CH3CN, H2O, CC4.
- Step (e): H2, Pd—C.
- Step (f): FMOC—Cl, base.
- Step (g):
- (1) DMTCl, DMAP, Pyridine, room temperature;
- (2) TESOTf.
- Step (h):
- (1) RuCl3, NalO4, CH3CN, H2O, CC4;
- (2) CH2N2.
- Step (i): DIBAL—H.
- Step (j): PPh3, DIAD, diphenyl phosphoryl azide (DPPA),THF.
- Step (k): KMnO4, t-BUOH, buffer.
- Reactions for the development of the galactose derived C-glycoside 138 into protected CA's and diols is illustrate in Scheme 23. The common starting material for these synthetic routes (compound 138) is disclosed by Petrus, L. et al. (Chem. zvesti. 1982, 36, 103). The reagents and conditions required for the synthesis of compound 209, compound 214, compound 220, and compound 224 are indicated below:
- Step (a):
- (1) 1.1 equivalent DMTCl, DMAP, Pyridine, 12 hour, 20° C.;
- (2) TesOTf, CH2, 0° C., 1 hour, 83%.
- Step (b):
- (1) LAH, ether, reflux, 2 hour;
- (2)FMOC—Cl, K2CO3, THF, H2O, 0° C., 1 hour, 55%;
- Step (c): 10% HCOOH in CH2Cl2, 0° C., 2 minutes, 100%.
- Step (d): RuCl3, NalO4, CH3CN, H2O, CCl4, 20° C., 10 minutes, 54%.
- Step (e):
- (1) 1 equiv. TsCl, base;
- (2) TESOTf.
- Step (f): NaN3.
- Step (g): oxidative NEF.
- Step (h): Pd—C, H2.
- Step (i): FMOC—Cl, base.
- Step (j):
- (1) 1 equiv. PivCl, base;
- (2) TESOTf.
- Step (k):
- (1) oxidative Nef;
- (2) CH2N2.
- Step (l): DIBAL—H.
- Step (m): DMTCl, DMAP, Pyridine.
- Step (n): LAH
- Step (o): Nef reaction
-
- An exemplary protocol for synthesizing a hexamer carbopeptoid (CPD 234) starting from galactose derived CA 214, glucosamine derived CA 62, and glucose derived CA, using standard methods for solid phase peptide synthesis is illustrated in Scheme 24. The reagents and condition for these reactions are as follows:
- Step 1: DCC, HOBT, Et3, DMF;
-
-
- To a solution of β-D-Glucose pentaacetate 36 i n nitromethane from Aldrich company (0.13 Molar), is added trimethylsilyl cyanide (3.0 equivalents) and then SnCl4 (0.02 equivalents). The mixture is stirred for one hour and then an aqueous solution of sodium acetate was added to hydrolyze the remaining trimethylsilyl cyanide. The mixture is evaporated and the remaining oil is resuspended in dichloromethane and washed with sodium acetate solution (1×), water (1×). brine (1×) and then dried over magnesium sulphate and concentrated. The crude solid is then recrystallized from methanol to yield 37 as a white solid (47%). scheme 3 step 1; scheme 9, step a.
-
- The crude product 37 is next dissolved in ethanol (0.15 M) and then concentrated H2SO4 (0.01 equivalents-catalytic) is added. The reaction mixture is heated to 85° C. for eight hours. The solution is next concentrated in vacuo and purification by flash column chromatography affords compound 38. scheme 3 step 2
-
- To a solution of 38 (1.0 equivalents) in pyridine (.10 Molar), is added trimethylacetyl chloride (pivaloyl chloride) (2.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×), copper sulfate (2×), brine (1×), dried over MgSO4 and concentrated. Purification by flash column chromatography affords compound 39. scheme 3 step 1
-
- To a solution of 39 (1.0 equivalents) in methylene chloride (0.10 Molar), is added diisopropylethylamine (3.3 equivalents) at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 40. scheme 3 step 2
-
- To a solution of 40 in ethanol (0.13 Molar), is added sodium ethoxide (0.3 equivalents) and the reaction mixture is stirred for two hours at room temperature. The solution is then concentrated in vacuo and purification by flash column chromatography affords compound 41. scheme 3 step 1
-
- A solution of 41 (1.0 equivalents) in tetrahydrofuran (0.18 M) is treated with DPPA (diphenylphosphorylazide, 2.0 equivalents), triphenylphosphine (1.3 equivalents) and DIAD (diisopropyl-azo-dicarboxylate, 1.3 equivalents). The reaction is heated to 80° C. for 3 hours and then diluted with ether (2×) and washed with 0.5 M aqueous NaOH (2×). The organic layer is dried over MgSO4 and evaporated. Purification by flash column chromatography affords compound 42. scheme 3 step 2
-
- A solution of 42 (1.0 equivalents) is dissolved in ethanol (0.01 M total) at 25° C. The mixture is next exposed to 10% Pd/C (0.1 equivalents) and is then subsequently capped with a hydrogen balloon at 1 atmosphere. The reaction is stirred for 72 hours and is then filtered through celite. The crude mixture is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 44. scheme 3 step 1
-
- A solution of 44 (1.0 equivalents) is dissolved in p-dioxanes (0.1 M) and then exposed to a solution 3.0 Molar solution of sodium hydroxide (1.5 equivalents). The reaction is then stirred for 2 hours at 50° C. and is subsequently diluted with ether and washed with a solution of NH4Cl (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 45. scheme 3 step 1
- Preparation of 46
- To a solution of 45 (1.0 equivalents) in methylene chloride (0.10 Molar), is added sodium bicarbonate (2.0 equivalents) at 0° C. Subsequent addition of 9-fluorenylmethyl chloroformate (FMOC—Cl, 1.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×). brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 46. scheme 3 step 2
-
- Procedure as described in Methods in Carbohydrate chemistry, Whistler, R.,II, 1963, p. 327. A mixture of 80 g anhydrous D-glucosamine hydrochloride or D-galactosamine hydrochloride from Aldrich chemical company, in 200 mL. methanol and 20 g Dowex 50 (H+) acidic resin, is stirred at the boiling point in a round bottom flask. After 24-hr. reaction time, the resin is removed by filtration and ished three times with 20 ml. of methanol. The filrate and ishings are combined and concentrated to about 125 ml by rotovap. The concentrate is allowed to cool to room temperature and the product crystallizes overnight.
- To a solution of free amine, in chloroform (0.5 M), is added phthalic anhydride (1.5 equiv.) and the reaction mixture is allowed to reflux at 70° C. for 4 h. The product is then crystallized and carried onto the next step.
- To a solution of triol in methylene chloride (0.5 M), is added acetic anhydride (3.5 equiv.) and triethyl amine (3.5 equiv.) and the reaction mixture is allowed to stir at 0° C. for 4 h. The product 48, is then crystallized or purified by flash column chromatography and carried onto the next step.
-
- To a solution of N-phthalamido-D-Glucosamine tetraacetae 48 in nitromethane (0.13 Molar), is added trimethylsilyl cyanide (3.0 equivalents) and then SnCl4 (0.02 equivalents). The mixture is stirred for one hour and then an aqueous solution of sodium acetate was added to hydrolyze the remaining trimethylsilyl cyanide. The mixture is evaporated and the remaining oil is resuspended in dichloromethane and washed with sodium acetate solution (1×), water (1×), brine (1×) and then dried over magnesium sulphate and concentrated. The crude solid is then recrystallized from methanol to yield 50 as a white solid (47%). scheme 4
- Preparation of 52
- The crude product 50 is next dissolved in ethanol (0.15 M) and then concentrated H2SO4 (0.01 equivalents-catalytic) is added. The reaction mixture is heated to 85° C. for eight hours. The solution is next concentrated in vacuo and purification by flash column chromatography affords compound 52. scheme 4
-
- A solution of 52 (1.0 equivalents) is dissolved in methanol (0.1 M total). The reaction is then charged with acetic anhydride (1.1 equivalents) and is subsequently stirred for 2 hours at 30° C. The reaction is next diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 54. scheme 4
-
- To a solution of 54 (1.0 equivalents) in pyridine (0.10 Molar), is added trimethylacetylchloride (pivaloyl chloride) (2.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×), copper sulfate (2×), brine (1×), dried over MgSO4 and concentrated. Purification by flash column chromatography affords compound 55. scheme 4
-
- To a solution of 55 (1.0 equivalents) in methylene chloride (0.10 Molar). is added diisopropylethylamine (2.2 equivalents) at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (2.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×). brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 56. scheme 4
-
- To a solution of 56 in ethanol (0.13 Molar), is added sodium ethoxide (0.3 equivalents) and the reaction mixture is stirred for two hours at room temperature. The solution is then concentrated in vacuo and purification by flash column chromatography affords compound 57. scheme 4
-
- A solution of 57 (1.0 equivalents) in tetrahydrofuran (0.18 M) is treated with DPPA (diphenylphosphorylazide, 2.0 equivalents), triphenylphosphine (1.3 equivalents) and DIAD (diisopropyl-azo-dicarboxylate, 1.3 equivalents). The reaction is heated to 80° C. for 3 hours and then diluted with ether (2×) and washed with 0.5 M aqueous NaOH (2×). The organic layer is dried over MgSO4 and evaporated. Purification by flash column chromatography affords compound 58. scheme 4
-
- A solution of 58 (1.0 equivalents) is dissolved in ethanol (0.01 M total) at 25° C. The mixture is next exposed to 10% Pd/C (0.1 equivalents) and is then subsequently capped with a hydrogen balloon at 1 atm. The reaction is stirred for 72 hours and is then filtered through celite. The crude mixture is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 60. scheme 4
-
- A solution of 60 (1.0 equivalents) is dissolved in p-dioxanes (0.1 M) and then exposed to a solution 3.0 Molar solution of sodium hydroxide (1.5 equivalents). The reaction is then stirred for 2 hours at 50° C. and is subsequently diluted with ether and washed with a solution of NH4Cl (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 61. scheme 4
-
- To a solution of 61 (1.0 equivalents) in methylene chloride (0.10 Molar), is added sodium bicarbonate (2.0 equivalents) at 0° C. Subsequent addition of 9-fluorenylmethyl chloroformate (FMOC—Cl, 1.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 62. scheme 4
-
- To a stirred solution of the acid 46 (1.0 equivalents) and the amine 60 (1.1 equivalents) in dimethylformamide (0.10 Molar) at )5° C. is added 1-hydroxybenzotriazole (HOBT: 1.1 equivalents). Next dicyclohexylcarbodiimide (1.2 equivalents) is added and the reaction is stirred for 14 hours. The mixture is diluted with ether. filtered and the filtrate is washed with aqueous NaHCO3 (2×). water (2×). and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 63. scheme 5 step 1
-
- To a stirred solution of 63 (1.0 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added piperidine (1.1 equivalents). The reaction is stirred for 1 hour and is then diluted with ether, and washed with aqueous CuSO4 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 64. scheme 5 step 2
-
- To a stirred solution of the acid 62 (1.0 equivalents) and the amine 64 (1.1 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added 1-hydroxybenzotriazole (HOBT; 1.1 equivalents). Note: numerous iterations can be performed using the acid 62 or intermixing with other acids including for example acid 46 to form successive oligomers where n=2 to infinity (a hexamer is shown in scheme 5) to obtain large carbopeptoid libraries. Next dicyclohexylcarbodiimide (1.2 equivalents) is added and the reaction is stirred for 14 hours. The mixture is diluted with ether, filtered and the filtrate is washed with aqueous NaHCO3 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 65. scheme 5 step 1
-
- To a stirred solution of 65 (1.0 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added piperidine (1.1 equivalents). The reaction is stirred for 1 hour and is then diluted with ether, and washed with aqueous CuSO4 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 66. Note: numerous iterations can be performed using variable length oligomers of 66 to form peptoid oligomers where n=2 to infinity (a hexamer is shown in scheme 5). scheme 5 step 2
-
- To a stirred solution of the acid 46 (1.0 equivalents) and the amine 66 (1.1 equivalents) in dimethylformamide (0.10 Molar) at 25° C, is added 1-hydroxybenzotriazole (HOBT; 1.1 equivalents). Note: numerous iterations can be performed using the acid 46 or intermixing with other acids including for example acid 62, to form successive oligomers where n=2 to infinity (a hexamer is shown in scheme 5) to obtain large carbopeptoid libraries. Next dicyclohexylcarbodiimide (1.2 equivalents) is added and the reaction is stirred for 14 hours. The mixture is diluted with ether, filtered and the filtrate is washed with aqueous NaHCO3 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 67. scheme 5 step 1
-
- To a stirred solution of 67 (1.0 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added piperidine (1.1 equivalents). The reaction is stirred for 1 hour and is then diluted with ether, and washed with aqueous CuSO4 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 68. Note: numerous iterations can be performed using variable length oligomers of 68 to form peptoid oligomers where n=2 to infinity (a hexamer is shown in scheme 5). scheme 5 step 2
-
- To a stirred solution of the acid 62 (1.0 equivalents) and the amine 68 (1.1 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added 1-hydroxybenzotriazole (HOBT; 1.1 equivalents). Note: numerous iterations can be performed using the acid 62, or intermixing with other acids including for example acid 46, to form successive oligomers where n=2 to infinity (a hexamer is shown in scheme 5) to obtain large carbopeptoid libraries. Next dicyclohexylcarbodiimide (1.2 equivalents) is added and the reaction is stirred for 14 hours. The mixture is diluted with ether, filtered and the filtrate is washed with aqueous NaHCO3 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 69. scheme 5 step 1
-
- To a stirred solution of 69 (1.0 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added piperidine (1.1 equivalents). The reaction is stirred for 1 hour and is then diluted with ether, and washed with aqueous CuSO4 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 70. Note: numerous iterations can be performed using variable length oligomers of 70 to form peptoid oligomers where n=2 to infinity (a hexamer is shown in scheme 5). scheme 5 step 2
-
- To a stirred solution of the acid 46 (1.0 equivalents) and the amine 70 (1.1 equivalents) in dimethylformamide (0.10 Molar) at 25° C, is added 1-hydroxybenzotriazole (HOBT: 1.1 equivalents). Note: numerous iterations can be performed using the acid 46 or intermixing with other acids including for example acid 62, to form successive oligomers where n=2 to infinity (a hexamer is shown in scheme 5) to obtain large carbopeptoid libraries. Next dicyclohexylcarbodiimide (1.2 equivalents) is added and the reaction is stirred for 14 hours. The mixture is diluted with ether, filtered and the filtrate is washed with aqueous NaHCO3 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 71. scheme 5 step 1
-
- To a stirred solution of 71 (1.0 equivalents) in dimethylformamide (0.10 Molar) at 25° C, is added piperidine (1.1 equivalents). The reaction is stirred for 1 hour and is then diluted with ether, and washed with aqueous CuSO4 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 72. Note: numerous iterations can be performed using variable length oligomers of 72 to form peptoid oligomers where n=2 to infinity (a hexamer is shown in scheme 5). scheme 5 step 2
-
- To a stirred solution of 72 (1.0 equivalents) in acetonitrile (0.50 Molar) is added an HF pyridine solution (0.50 M) from Aldrich chemical company. The reaction is allowed to stir for five hours and is then condensed. The crude 73 oligomer is then resuspended in p-dioxane (0.50 Molar) to which is added a 3.0 Molar solution of NaOH (3.0 equivalents). The reaction is stirred for 1 hour at 50° C. and is then quenched with aqueous NH4Cl (2×) and subsequently lyophilized. Purification by HPLC chromatography affords compound 74. scheme 5
-
- To a solution of P-D-Glucose pentaacetate 36 i n nitromethane from Aldrich company (0.13 Molar), is added trimethylsilylcyanide (3.0 equivalents) and then tin tetrachloride (0.02 equivalents). Note: other pyranose sugars such as β-D-Mannose, β-D-Galactose pentaacetate and other lewis acids such as BF3OEt2 may, be used for alternative derivatives. The mixture is stirred for one hour and then an aqueous solution of sodium acetate was added to hydrolyze the remaining trimethylsilylcyanide. The mixture is evaporated and the remaining oil is resuspended in dichloromethane and washed with sodium acetate solution (1×), water (1×), brine (1×) and then dried over magnesium sulphate and concentrated. The crude product is next dissolved in ethanol (or methanol if the O-methyl glycoside is desired as in scheme 20), (0.15 M) and then concentrated H2SO4 (0.01 equivalents) is added. The reaction mixture is heated to 85° C. for eight hours. The solution is next concentrated in vacuo and purification by flash column chromatography affords compound 76. scheme 6; 76, scheme 20 (as the O-methyl glycoside).
-
- To Tetrol 76 (1.0 equivalents) in pyridine (0.10 Molar), is added dimethyoxytritylchloride (DMT chloride) (2.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×), copper sulfate (2×), brine (1×), dried over MgSO4 and concentrated. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diisopropylethylamine (4.4 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (4.4 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 78, scheme 6; 78, scheme 20 (as the O-methyl glycoside).
-
- To a solution of 78 (1.0 equivalents) in methylene chloride (0.10 Molar) is added a 1.0 M solution of DIBALH in methylene chloride from Aldrich chemical company (1.2 equivalents) at 0° C. Subsequent stirring for 2 hours is followed by dilution with diethylether and washing with sodium-potassium tartrate (2×), brine (1×) and then MgSO4. The solution is then concentrated and purification by flash column chromatography affords compound 80. scheme 6
-
- To a solution of 80 (1.0 equivalents) in methylene chloride (0.10 M), is added diisopropylethylamine (4.0 equivalents) at 25° C. The reaction is stirred for 5 minutes and then 2-cyanoethyl-N,N-diisopropyl-chlorophosphoramidite (1.5 equivalents) is added, as prepared from the procedures of Sinha et al.Nucl. Acids Res. 1984, 12, 4539. After 15 minutes the reaction is complete and is next diluted with ether and next washed with brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 30% ethyl acetate in petroleum ether) affords compound 82 (66% yield). scheme 6
-
- To 80 (1.0 equivalents) in methylene chloride (0.10 Molar) at 0° C., is added diisopropylethylamine (1.1 equivalents). Subsequent addition of triethylsilyl trifluoromethanesulfonate (1.1 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. The crude is then resuspended in nitromethane and exposed to 10% Cl3COOH (1.1 equivalents) in THF (0.10 Molar). The reaction is stirred at 0° C. for 2 hours and is then diluted with ether and washed with sodium bicarbonate (2×). brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 84. scheme 6
-
- To a solution of N-phthalamido-D-Glucosamine tetraacetate 48 in nitromethane (0.13 Molar), is added trimethylsilyl cyanide (3.0 equivalents) and then SnCl4 (0.02 equivalents). The mixture is stirred for one hour and then an aqueous solution of sodium acetate was added to hydrolyze the remaining trimethylsilyl cyanide. The mixture is evaporated and the remaining oil is resuspended in dichloromethane and washed with sodium acetate solution (1×). water (1×), brine (1×) and then dried over magnesium sulphate and concentrated. The crude product is next dissolved in ethanol (0.15 M) and then concentrated H2SO4 (0.04 equivalents) is added. The reaction mixture is heated to 85° C. for eight hours. The solution is next concentrated in vacuo and is then resuspended in methanol (0.10 M) and acetic anhydride (1.1 equivalents) from Aldrich company is added in one step. After 2 hours. condensation and purification by flash column chromatography affords compound 86. scheme 7
-
- To Triol 86 (1.0 equivalents) in pyridine (0.10 Molar), is added dimethyoxytritylchloride (DMT chloride) (2.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×), copper sulfate (2×), brine (1×), dried over MgSO4 and concentrated. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diisopropylethylamine (3.3 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 88. scheme 7
-
- To a solution of 88 (1.0 equivalents) in methylene chloride (0.10 Molar) is added a 1.0 M solution of DIBALH in methylene chloride from Aldrich chemical company (1.2 equivalents) at 0° C. Subsequent stirring for 2 hours is followed by dilution with diethylether and washing with sodium-potassium tartrate (2×), brine (1×) and then MgSO4. The solution is then concentrated and purification by flash column chromatography affords compound 90. scheme 7
-
- To a solution of 90 (1.0 equivalents) in methylene chloride (0.10 M). is added diisopropylethylamine (4.0 equivalents) at 25° C. The reaction is stirred for 5 minutes and then 2-cyanoethyl-N,N-diisopropyl-chlorophosphoramidite (1.5 equivalents) is added, as prepared from the procedures of Sinha et al.Nucl. Acids Res. 1984, 12, 4539. After 15 minutes the reaction is complete and is next diluted with ether and next washed with brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 30% ethyl acetate in petroleum ether) affords compound 92 (66% yield). scheme 7
-
- To 90 (1.0 equivalents) in methylene chloride (0.10 Molar) at 0° C., is added diisopropylethylamine (1.1 equivalents). Subsequent addition of triethylsilyl trifluoromethanesulfonate (1.1 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. The crude is then resuspended in nitromethane and exposed to 10% Cl3COOH (1.1 equivalents) in THF (0.10 Molar). The reaction is stirred at 0° C. for 2 hours and is then diluted with ether and washed with sodium bicarbonate (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 94. scheme 7
- Preparation of 98 (homodimer scheme 8)
- To a solution of 94 (1.0 equivalents) in methylene chloride (0.10 M), is added 1-H-tetrazole from Aldrich company (10.0 equivalents) at 25° C. Next, a solution of 82 (3.0 equivalents) in methylene chloride (1.0 M), is added dropwise with stirring at 25° C. After 25 minutes, the mixture is cooled to 0° C. and I2 (4.0 equivalents), 2,6 lutidine (4.0 equivalents) in THF (1.0 M) is added to oxidize the phosphoamidate to the phosphate (Alternatively m-chloroperoxybenzoic acid (4.5 equivalents) is added). The reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 98 (scheme 8).
- Preparation of 102 (heterotrimer scheme 8)
- To a solution of 98 (1.0 equivalents) in methylene chloride (0.10 M), is added 1-H-tetrazole from Aldrich company (10.0 equivalents) at 25° C. Next, a solution of 92 (3.0 equivalents) in methylene chloride (1.0 M), is added dropwise with stirring at 25° C. After 25 minutes, the mixture is cooled to 0° C. and I2 (4.0 equivalents), 2,6 lutidine (4.0 equivalents) in THF (1.0 M) is added to oxidize the phosphoamidate to the phosphate (Alternatively m-chloroperoxybenzoic acid (4.5 equivalents) is added). The reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 102 (scheme 8).
- Preparation of 106 (heterotetramer scheme 8)
- To a solution of 102 (1.0 equivalents) in methylene chloride (0.10 M), is added 1-H-tetrazole from Aldrich company (10.0 equivalents) at 25° C. Next, a solution of 82 (3.0 equivalents) in methylene chloride (1.0 M), is added dropwise with stirring at 25° C. After 25 minutes, the mixture is cooled to 0° C. and I2 (4.0 equivalents), 2,6 lutidine (4.0 equivalents) in THF (1.0 M) is added to oxidize the phosphoamidate to the phosphate (Alternatively m-chloroperoxybenzoic acid (4.5 equivalents) is added). The reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 106 (scheme 8).
- Preparation of 110 (heteropentamer scheme 8)
- To a solution of 106 (1.0 equivalents) in methylene chloride (0.10 M), is added 1-H-tetrazole from Aldrich company (10.0 equivalents) at 25° C. Next, a solution of 92 (3.0 equivalents) in methylene chloride (1.0 M), is added dropwise with stirring at 25° C. After 25 minutes. the mixture is cooled to 0° C. and I2 (4.0 equivalents), 2.6 lutidine (4.0 equivalents) in THF (1.0 M) is added to oxidize the phosphoamidate to the phosphate (Alternatively m-chloroperoxybenzoic acid (4.5 equivalents) is added). The reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 110 (scheme 8).
- Preparation of 114 (heterohexamer scheme 8)
- To a solution of 110 (1.0 equivalents) in methylene chloride (0.10 M), is added 1-H-tetrazole from Aldrich company (10.0 equivalents) at 25° C. Next, a solution of 82 (3.0 equivalents) in methylene chloride (1.0 M), is added dropwise with stirring at 25° C. After 25 minutes, the mixture is cooled to 0° C. and I2 (4.0 equivalents), 2,6 lutidine (4.0 equivalents) in THF (1.0 M) is added to oxidize the phosphoamidate to the phosphate (Alternatively m-chloroperoxybenzoic acid (4.5 equivalents) is added). The reaction is next stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography and then the product is suspended in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) and stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 114 (scheme 8).
- Preparation of 116 (heterohexamer scheme 8)
- To a solution of 114 (1.0 equivalents) in methylene chloride (0.10 M), is added a solution of HF-pyridine (1.0 M) at 0° C. The reaction is next stirred for an additional 30 minutes and is next diluted with ether and washed with a saturated solution of sodium bicarbonate (3×). copper sulfate solution to remove the pyridine (2×) brine (1×), dried (MgSO4) and concentrated. Purification by flash column chromatography and then the product is resuspended in concentrated aqueous ammonium hydroxide and acetonitrile (1:1), (0.1 M total). The reaction is then stirred for 2 hours at 50° C and is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 116 scheme 8.
-
- To a solution of β-D-Glucose pentaacetate in nitromethane from Aldrich company (0.13 Molar), is added trimethylsilylcyanide (3.0 equivalents) and then borontrifluoride etherate (0.02 equivalents). Note: other pyranose sugars such as β-D-Mannose, β-D-Galactose pentaacetate and other lewis acids such as SnCl4, may be used for alternative derivatives. The mixture is stirred for one hour and then an aqueous solution of sodium acetate was added to hydrolyze the remaining trimethylsilylcyanide. The mixture is evaporated and the remaining oil is resuspended in dichloromethane and washed with sodium acetate solution (1×). water (1×), brine (1×) and then dried over magnesium sulphate and concentrated. The crude solid is then recrystallized from methanol to yield 125 (also 37) as a white solid (47%). scheme 9 step a
-
- To a solution of 125 in methanol (0.13 Molar), is added sodium methoxide (0.3 equivalents) and the reaction mixture is stirred for two hours at room temperature. The dark brown solution is then concentrated in vacuo to give a dark brown syrup of compound 126 which is carried on without purification as a crude oil for the next step. scheme 9 step b
-
- The crude product 126 is dissolved in 25% NaOH (0.5 M) and heated at reflux for 18 hours (vigorous reflux is necessary). Next, the solution is diluted with an addition of water (0.1 M) and to this solution is added Amberlite 112120 resin (H+-form) and is then stirred. The supernatant is then decanted and the resin is washed until the eluate is colorless. The eluate is then collected, condensed and azeotroped with MeOH which yields 127 as a crude, pale yellow syrup (47%).
-
- The crude product 127 is next dissolved in methanol (0.15 M) and then concentrated HCl (0.01 equivalents) is added. The reaction mixture is heated to 85° C. for eight hours. The solution is next concentrated in vacuo and purification by flash column chromatography (silica, 20% methanol in ethyl acetate), affords compound 130 as a white solid (60% yield). scheme 9 step d
-
- To a solution of 130 (1.0 equivalents) in dimethylformamide (0.23 Molar), is added imidazole (2.5 equivalents) at 0° C. Subsequent addition of tert-Butyl-diethylsilyichloride (2.5 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 50% ethyl acetate) affords compound 131 as a white solid (93% yield). scheme 9 step e Note: the molecule can be protected with other primary directing protecting groups such as DMT (dimethoxytrityl), and TBDPS tert-butvldiphenlysilyl, etc.
-
- To a solution of 131 (1.0 equivalents) in dimethylformamide (0.23 M), is added Ag2O (6.0 equivalents) at 25° C. Benzyl bromide (9.0 equivalents) is next added and the reaction is allowed to stir for 20 hours. The reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 20% ethyl acetate) affords compound 132 (83% yield). scheme 9 step f Note: the choice of the protecting group is relative and the molecule can be protected with other protecting groups at C2, C3, C4, such as PMB (paramethoxvbenzyl), TES (triethvlsilyl), TBS (tertbutvldimethvlsilyl), etc.
-
- To a solution of 132 (1.0 equivalents) in tetrahydrofuran (0.08 M), is added diisobutvlaluminumhydride (DIBALH) (3.0 equivalents) at 0° C. The reaction is stirred for 1 hour and then quenched with methanol and diluted with ether. The reaction is next worked-up with ammonium chloride (2×), brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica. 20% ethyl acetate) affords compound 134 (66% yield). scheme 9 step g
-
- To a solution of 134 (1.0 equivalents) in pyridine (10.0 equivalents), is added naphthoyl chloride (3.0 equivalents) from Aldrich company (3.0 equivalents) at 25° C. The reaction is stirred for 45 minutes and then diluted with ether and worked-up with a saturated solution of CuSO4 (2×), brine (1×) and is then dried (MgSO4) and concentrated. The crude product is then exposed to acetic acid/tetrahydrofuran/water (3:1:1) at 25° C. and allowed to stir for 15 hours. The reaction is then diluted with ether and worked-up with brine (2×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica. 20% ethyl acetate) affords compound 136 (95% yield). Note: alternatively, one could originally protect the C7 position as a DMT (dimethoxytrityl) functionality) and protect the C1 position as a TES (triethyl silyl) group. Subsequent mild acid hydrolysis of the DMT group leads to the above compound with the TES group at the C1 position and a free hydroxyl at the C7 position. scheme 9 step h
-
- To a solution of 134 (1.0 equivalents) in methylene chloride (0.10 M), is added diisopropylethylamine (4.0 equivalents) at 25 ° C. The reaction is stirred for 5 minutes and then 2-cyanoethyl-N,N-diisopropyl-chlorophosphoramidite (1.5 equivalents) is added, as prepared from the procedures of Sinha et al.Nucl. Acids Res. 1984, 12, 4539. After 15 minutes the reaction is complete and is next diluted with ether and next washed with brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 30% ethyl acetate in petroleum ether) affords compound 138 (66% yield). scheme 9 step i
- It should be noted that the oligomerization process as shown below in scheme 9, uses the same C-glycoside 138 in an iterative fashion. The process can be extended however to include a pool of random or ordered C-glycosides as depicted in scheme 8.
-
- To a solution of 136 (1.0 equivalents) in methylene chloride (0.10 M), is added 1-H-tetrazole from Aldrich company (10.0 equivalents) at 25° C. Next, a solution of 138 (3.0 equivalents) in methylene chloride (1.0 M), is added dropwise with stirring at 25° C. After 25 minutes, the mixture is cooled to 0° C. and m-chloroperoxybenzoic acid (4.5 equivalents) is added. The reaction is stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 50% ethyl acetate in petroleum ether) affords compound 140 (97% yield). scheme 9 step j Note the process can iterate as many times as possible to build large carbonucleotide libraries.
-
- A solution of 140 (1.0 equivalents) in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M) is stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 60% ethyl acetate in petroleum ether) affords compound 142 (95% yield). scheme 9 step k Note the process can iterate as manya times as possible to build large carbonucleotide libraries.
-
- To a solution of 138 (1.0 equivalents) in methylene chloride (0.10 M), is added 1-H-tetrazole from Aldrich company (10.0 equivalents) at 25° C. Next, a solution of 142 (3.0 equivalents) in methylene chloride (1.0 M), is added dropwise with stirring at 25° C. After 25 minutes, the mixture is cooled to 0° C. and m-chloroperoxybenzoic acid (4.5 equivalents) is added. The reaction is stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 50% ethyl acetate in petroleum ether) affords compound 144 (97% yield). scheme 9 step j Note the process can iterate as manya times as possible to build large carbonucleotide libraries.
-
- A solution of 144 (1.0 equivalents) in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M total) is stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 60% ethyl acetate in petroleum ether) affords compound 146 (95% yield). scheme 9 step k Note the process can iterate as many times as possible to build large carboniucleotide libraries.
-
- To a solution of 138 (1.0 equivalents) in methylene chloride (0.10 M), is added 1-H-tetrazole from Aldrich company (10.0 equivalents) at 25° C. Next, a solution of 146 (3.0 equivalents) in methylene chloride (1.0 M), is added dropwise with stirring at 25° C. After 25 minutes, the mixture is cooled to 0° C. and m-chloroperoxybenzoic acid (4.5 equivalents) is added. The reaction is stirred for an additional 5 minutes and is next diluted with ether and washed with brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica. 50% ethyl acetate in petroleum ether) affords compound 148 (97% yield). scheme 9 step j Note the process can iterate as man), times as possible to build large carbontucleotide libraries.
-
- A solution of 148 (1.0 equivalents) in acetic acid-tetrahydrofuran-water (3:1:1), (0.01 M total) is stirred for 18 hours at 25° C. The reaction is then diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 60% ethyl acetate in petroleum ether) affords compound 150 (95% yield). scheme 9 step k Note the process can iterate as many times as possible to build large carbonucleotide libraries.
-
- A solution of 150 (1.0 equivalents) is dissolved in concentrated aqueous ammonium hydroxide and acetonitrile (1:1), (0.1 M total). The reaction is then stirred for 2 hours at 50° C. and is subsequently diluted with ether and washed with NaHCO3 (3×). brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica. 80% ethyl acetate in petroleum ether) affords compound 152 (88% yield). scheme 9 step L
-
- A solution of 152 (1.0 equivalents) is dissolved in a mixture of ethanol-tetrahydrofuran-acetic acid (2:1:1), (0.01 M total) at 25° C. The mixture is next exposed to 10% Pd/C (1.0 equivalents) and is then subsequently capped with a hydrogen balloon at 1 atmosphere. The reaction is stirred for 72 hours and is then filtered through celite. The crude mixture is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 100% ethyl acetate in petroleum ether) affords compound 154 (78% yield). scheme 9 step m
- Preparation of 174 (R group=OTES, NPhth or NHAc)
- To a solution of tetraacetate derived from 36 or 48 (glucose or glucosamine derived) in methylene chloride (0.1 molar) is added a 1.0 molar solution of Co2(CO)8 (1.5 equivalents ) in methylene chloride and diethylmethylsilane (1.5 equivalents) at 0° C. To the stirring reaction mixture, a stream of carbon monoxide is bubbled at 1 ml per 10 seconds for 30 minutes. The reaction mixture is then quenched with water (1.5 equivalents), diluted with ether, washed with sodium bicarbonate (2×), brine (1×) and dried over magnesium sulfate. The crude is purified by column chromatography and affords product 174.
- Preparation of 176 (R group=OTES, NPhth or NHAc)
- To a solution of compound 174 in acetonitrile/water (1:1 ratio, 0.1 molar combined), is added RuCl3 (0.03 equiv.) and NaIO4 (4.0 equiv.) at 25° C. and the muddy black mixture is allowed to stir for 1.5 h. The mixture is then diluted with ether (25 mL), washed with water (2×5.0 mL) and brine (1×5 mL). The aqueous layer is back extracted (2×), recombined, and the organic layer was then dried MgSO4 and evaporated. Purification by flash column chromatography yields the desired product 176.
- Preparation of 178 (R group=OTES, NPhth or NHAc)
- A solution of triacetate 176 (1.0 equiv.) in methanol (0.5 M), is treated with NaOMe (0.4 equiv.) and allowed to stir at 25° C. for 24 h. The reaction mixture is then condensed and purified by flash column chromatography to afford compound 178.
- Preparation of 180 (R group=OTES, NPhth or NHAc)
- To triol 178 (1.0 equivalents) in pyridine (0.10 Molar), is added dimethyoxytritylchloride (DMT chloride) (1.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×). copper sulfate (2×). brine (1×), dried over MgSO4 and concentrated. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diisopropylethylamine (3.3 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×). brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords the intermediate acid, which is then resuspended in THF (1.0 M) and exposed to a 1.0 M solution of BH3-THF (1.5 equivalents) at 0° C. for 1 hour. The reaction is then quenched with methanol for an additional hour and the crude is then diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords the desired tetraprotected alcohol 180.
- Preparation of 181 (R group=OTES, NPhth or NHAC)
- To a solution of 180 (1.0 equivalents) in methylene chloride (0.10 M), is added tetrazole (4.0 equivalents) at 25° C. The reaction is stirred for 5 minutes and then 2-cyanoethyl-N,N-diisopropyl-chlorophosphoramidite (1.5 equiv.) is added, as prepared from the procedures of Sinha et al.Nucl. Acids Res. 1984, 12, 4539. After 15 minutes the reaction is complete and is next diluted with ether and next washed with brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica. 30% ethyl acetate in petroleum ether) affords compound 181 (66% vield). scheme 21
- Preparation of 182 (R group=OTES. NPhth or NHAc) To a solution of triol 178 (0.0 equiv.) in CH2Cl2 (0.5 M) at 0° C. was added triethylamine (1.2 equiv.), 4-DMAP (0.10 equiv.) and then TOSCl (1.1 equiv.). The reaction is stirred for 1 h and then is quenched with saturated ammonium chloride (1.5 mL), diluted with ethyl acetate (25 mL), washed with water (2×5 mL). brine (1×5 mL), back-extracted (2×), recombined, dried (MgSO4) and evaporated. The compound is purified by flash column chromatography and then a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diusopropylethylamine (2.2 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (2.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords the protected tosylate/acid 182.
- Preparation of 183 (R group=OTES. NPhth or NHAc)
- To a solution of triol 182 (0.0 equiv.) in CH2Cl2 (0.5 M) at 0° C., is added sodium-azide (1.2 equiv.) from Aldrich chemical company at 0° C. The reaction is stirred for 1 h and then is quenched with saturated ammonium chloride (1.5 mL), diluted with ethyl acetate (25 mL), washed with water (2×5 mL), brine (1×5 mL), back-extracted (2×). recombined, dried (MgSO4) and evaporated. The compound is purified by flash column chromatography and affords compound 183.
- Preparation of 185 (R group=OTES, NPhth or NHAc)
- A solution of 183 (1.0 equivalents) in ethanol (0.01 M total) at 25° C. is exposed to 10% Pd(OH)2—C (0.1 equivalents) and is then subsequently capped with a hydrogen balloon at 1 atmosphere. The reaction is stirred for 72 hours and is then filtered through celite. The crude mixture is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 185 scheme 21.
-
- A solution of starting material 190 as disclosed by Schmidt, R. R. et al. (Liebigs Ann. Chem. 1987, 825), (1.0 equivalents) is dissolved in a mixture of ethanol-tetrahydrofuran-acetic acid (2:1:1), (0.01 M total) at 25° C. The mixture is next exposed to 10% Pd/C (1.0 equivalents) and is then subsequently capped with a hydrogen balloon at 1 atmosphere. The reaction is stirred for 72 hours and is then filtered through celite. The crude mixture is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 100% ethyl acetate in petroleum ether) affords compound 191. scheme 22 step a
-
- To a solution of 191 (1.0 equivalents) in methylene chloride (0.10 Molar) is added tosylchloride (1.2 equivalents) at 0° C. Subsequent addition of triethylamine (1.5 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated to afford the crude tosylate. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diusopropylethylamine (3.3 equivalents) is added at 0° C. Subsequent addition of triethvlsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 192. scheme 22 step b
-
- To a solution of 192 (1.0 equivalents) in methylene chloride (0.10 Molar) is added sodium azide from Aldrich chemical company (1.2 equivalents) at 0° C. Subsequent stirring for 2 hours is followed by dilution with diethylether and washing with ammonium chloride (2×), brine (1×) and then MgSO4. The solution is then concentrated and purification by flash column chromatography affords compound 193. scheme 22 step c
-
- To solution of 193 in CCl4 (0.33 M). CH3CN (0.33 M) and water (0.22 M) at 0° C. is added RuCl3 (0.03 equiv.) and NaIO4 (4.0 equiv.) and the muddy black mixture is allowed to stir for 1.5 h. The mixture is then diluted with ether (25 mL), washed with water (2×5.0 mL) and brine (1×5 mL). The aqueous layer is back extracted (2×), recombined, and the organic layer iss then dried MgSO4 and evaporated. Purification by flash column chromatography affords the compound 194. scheme 22 step d
-
- A solution of 194 (1.0 equivalents) is dissolved in ethanol (0.01 M total) at 25° C. The mixture is next exposed to 10% Pd/C (0.1 equivalents) and is then subsequently capped with a hydrogen balloon at 1 atmosphere. The reaction is stirred for 72 hours and is then filtered through celite. The crude mixture is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Next, to a solution of crude amine (1.0 equivalents) in methylene chloride (0.10 Molar), is added sodium bicarbonate (2.0 equivalents) at 0° C. Subsequent addition of 9-fluorenvlmethyl chloroformate (FMOC—Cl, 1.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 196. scheme 22 steps e-f
-
- To Tetrol 191 (1.0 equivalents) in pyridine (0.10 Molar), is added dimethyoxytritvlchloride (DMT chloride) (2.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×). copper sulfate (2×), brine (1×), dried over MgSO4 and concentrated. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diisopropylethylamine (3.3 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirrinn for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 197. scheme 22 step g
-
- To solution of 197 in CCl4 (0.33 M), CH3CN (0.33 M) and water (0.22 M) at 0° C. is added RuCl3 (0.03 equiv.) and NaIO4 (4.0 equiv.) and the muddy black mixture is allowed to stir for 1.5 h. The mixture is then diluted with ether (25 mL), washed with water (2×5.0 mL) and brine (1×5 mL). The crude is then resuspended in a mixture of methylene chloride/water (1:1, 0.1 M total) and diazomethane (1.2 equivalents) is gradually dropped into the flask via an addition funnel at the rate of 1 drop/10 seconds. After complete addition the mixture is diluted with ether, washed with brine (2×) and the aqueous laver is back extracted (2×) recombined, and the organic laver is then dried MgSO4 and evaporated. Purification by flash column chromatography affords the compound 198. scheme 22 step h
-
- To a solution of 198 (1.0 equivalents) in methylene chloride (0.10 Molar) is added a 1.0 M solution of DIBALH in methylene chloride from Aldrich chemical company (1.2 equivalents) at 0° C. Subsequent stirring for 2 hours is followed by dilution with diethylether and washing with sodium—potassium potassium tartrate (2×), brine (1×) and then MgSO4. The solution is then concentrated and purification by flash column chromatography affords compound 200. scheme 22 step i
-
- A solution of 200 (1.0 equivalents) in tetrahydrofuran (0.18 M) is treated with DPPA (diphenylphosphorylazide, 2.0 equivalents), triphenylphosphine (1.3 equivalents) and DIAD (diisopropyl-azo-dicarboxylate, 1.3 equivalents). The reaction is heated to 80° C. for 3 hours and then diluted with ether (2×) and washed with 0.5 M aqueous NaOH (2×). The organic layer is dried over MgSO4 and evaporated. Purification by flash column chromatography affords compound 201. scheme 22 step j
-
- A solution of 201 (1.0 equivalents) is dissolved in ethanol (0.01 M total) at 25° C. The mixture is next exposed to 10% Pd/C (0.1 equivalents) and is then subsequently capped with a hydrogen balloon at I atmosphere. The reaction is stirred for 72 hours and is then filtered through celite. The crude mixture is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Next. to a solution of crude amine (1.0 equivalents) in methylene chloride (0.10 Molar). is added sodium bicarbonate (2.0 equivalents) at 0° C. Subsequent addition of 9-fluorenylmethvl chloroformate (FMOC—Cl. 1.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 202. scheme 22 step e
-
- To a solution of 202 (1.0 equivalents) in methylene chloride (0.10 Molar) is added 10% HCOOH from Aldrich chemical company (1.2 equivalents) at 0° C. Subsequent stirring for 2 hours is followed by dilution with diethylether and washing with sodium bicarbonate (2×), brine (1×) and then MgSO4. The solution is then resuspended in t-BuOH (0.10 M) and pH 7 buffer (0.10 M) and is then exposed to KMnO4 (1.2 equivalents) for 2 hours at 0° C. The reaction mixture is next washed with sodium bicarbonate (2×), brine (1×) and then MgSO4. The organic layer is then concentrated and purified by flash column chromatography to afford compound 204. scheme 22 step k
-
- To Tetrol 205 (1.0 equivalents) (as disclosed by Petrus, L. et al.Chem. zvesti. 1982, 36, 103) in pyridine (0.10 Molar), is added dimethyoxytritylchloride (DMT chloride) (2.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×) copper sulfate (2×), brine (1×), dried over MgSO4 and concentrated. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diisopropylethylamine (3.3 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 206. scheme 23 step a
-
- To a solution of 206 (1.0 equivalents) in diethylether (0.08 M), is added lithiumaluminumhydride (LAH) (1.5 equivalents) at 30° C. The reaction is refluxed for 2 hours and then quenched with methanol and diluted with ether. The reaction is next worked-up with sodium potassium tartrate (2×), brine (1×) and is then dried (MgSO4 ) and concentrated. The crude mixture is resuspended in mcthylene chloride (0.10 Molar) and to it is added sodium bicarbonate (2.0 equivalents) at 0° C. Subsequent addition of 9-fluorenvlmethyl chloroformate (FMOC—Cl, 1.2 equivalcnt.s) is followed by stirrin for 2 hours and then the reaction is, diluted with diethvlether and washed with ammonium chloride (2×). brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 207. scheme 23 step b
-
- To a solution of 207 (1.0 equivalents) in methylene chloride (0.10 Molar) is added10% HCOOH (1.1 equivalents). The reaction is stirred at 0° C. for 2 minutes and is then diluted with ether and washed with sodium bicarbonate (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 208. scheme 23 step c
-
- To solution of 208 in CCl4 (0.33 M), CH3CN (0.33 M) and water (0.22 M) at 20° C. is added RuCl3 (0.03 equiv.) and NaIO4 (4.0 equiv.) and the muddy black mixture is allowed to stir for 10 min. The mixture is then diluted with ether (25 mL). washed with water (2×5.0 mL) and brine (1×5 mL). The aqueous layer is back extracted (2×), recombined, and the organic layer iss then dried MgSO4 and evaporated. Purification by flash column chromatography affords the compound 209. scheme 23 step d
-
- To a solution of 205 (1.0 equivalents) in methylene chloride (0.10 Molar) is added tosylchloride (1.2 equivalents) at 0° C. Subsequent addition of triethylamine (1.5 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×). brine (1×) and then dried (MgSO4) and concentrated to afford the crude tosylate. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diusopropylethylamine (3.3 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirrina for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 210. scheme 23 step e
-
- To a solution of 210 (1.0 equivalents) in methylene chloride (0.10 Molar) is added sodium azide from Aldrich chemical company (1.2 equivalents) at 0° C. Subsequent stirring for 2 hours is followed by dilution with diethylether and washing with ammonium chloride (2×), brine (1×) and then M gSO4. The solution is then concentrated and purification by flash column chromatography affords compound 211. scheme 23 step f
-
- To solution of 211 in CCl4 (0.33 M), CH3CN (0.33 M) and water (0.22 M) at 20° C. is added RuCl3 (0.03 equiv.) and NaIO4 (4.0 equiv.) and the muddy black mixture is allowed to stir for 10 min. The mixture is then diluted with ether (25 mL), washed with water (2×5.0 mL) and brine (1×5 mL). The aqueous layer is back extracted (2×), recombined, and the organic layer iss then dried MgSO4 and evaporated. Purification by flash column chromatography affords the compound 212. scheme 23 step
-
- A solution of 212 (1.0 equivalents) in ethanol (0.01 M total) at 25° C. is exposed to 10% Pd/C (0.1 equivalents) and is then subsequently capped with a hydrogen balloon at 1 atmosphere. The reaction is stirred for 72 hours and is then filtered through celite. The crude mixture is subsequently diluted with ether and washed with NaHCO3 (3×), brine (1×) and dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 213. scheme 23 step h
-
- Compound 213 is suspended in methylene chloride (0.10 Molar) and to it is added sodium bicarbonate (2.0 equivalents) at 0° C. Subsequent addition of 9-fluorenylmethyl chloroformate (FMOC—Cl, 1.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 214. scheme 23 step i
-
- To a solution of 205 (1.0 equivalents) in pyridine (0.10 Molar), is added trimethylacetyl chloride (pivaloyl chloride) (2.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×). copper sulfate (2×), brine (1×), dried over MgSO4 and concentrated. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diusopropylethylamine (3.3 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×). brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 215. scheme 23 step j
-
- To solution of 215 in CCl4 (0.33 M), CH3CN (0.33 M) and water (0.22 M) at 20° C. is added RuCl3 (0.03 equiv.) and NaIO4 (4.0 equiv.) and the muddy black mixture is allowed to stir for 10 min. The mixture is then diluted with ether (25 mL), washed with water (2×5.0 mL) and brine (1×5 mL). The aqueous layer is back extracted (2×), recombined. and the organic laver is then dried MgSO4 and evaporated. The crude is then resuspended in a mixture of methylene chloride/water (1:1,0.1 M total) and diazomethane (1.2 equivalents) is gradually dropped into the flask via an addition funnel at the rate of 1 drop/10 seconds. After complete addition the mixture is diluted with ether. washed with brine (2×) and the aqueous layer is back extracted (2×) recombined. and the organic layer is then dried MgSO4 and evaporated. Purification by flash column chromatography affords the compound 216. scheme 23 step k
-
- To a solution of 216 (1.0 equivalents) in methylene chloride (0.10 Molar) is added a 1.0 M solution of DIBALH in methylene chloride from Aldrich chemical company (1.2 equivalents) at 0° C. Subsequent stirring for 2 hours is followed by dilution with diethylether and washing with sodium—potassium tartrate (2×), brine (i×) and then MgSO4. The solution is then concentrated and purification by flash column chromatography affords compound 217. scheme 23 step I
-
- To 217 (1.0 equivalents) in pyridine (0.10 Molar), is added dimethyoxvtritvlchloride (DMT chloride) (1.1 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×), copper sulfate (2×), brine (1×), dried over MgSO4 and concentrated. Purification by flash column chromatography affords compound 218. scheme 23 step m
-
- To a solution of 218 (1.0 equivalents) in diethylether (0.08 M), is added lithiumaluminumhydride (LAH) (1.5 equivalents) at 30° C. The reaction is refluxed for 2 hours and then quenched with methanol and diluted with ether. The reaction is next worked-up with sodium potassium tartrate (2×), brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 220. scheme 23 step n
-
- To Tetrol 205 (1.0 equivalents) in pyridine (0.10 Molar), is added dimethyoxytritylchloride (DMT chloride) (2.5 equivalents) at 0° C. The reaction is stirred for 2 hours and then diluted with diethylether and washed with ammonium chloride (2×). copper sulfate (2×), brine (1×). dried over MgSO4 and concentrated. Next a solution of the crude intermediate (1.0 equivalents) is dissolved in methylene chloride (0.10 Molar) and diisopropylethylamine (3.3 equivalents) is added at 0° C. Subsequent addition of triethylsilyl trifluoromethanesulfonate (3.3 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×). brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 221. scheme 23 step a
-
- To solution of 221 in CCl4 (0.33 M), CH3CN (0.33 M) and water (0.22 M) at 20° C. is added RuCl3 (0.03 equiv.) and NaIO4 (4.0 equiv.) and the muddy black mixture is allowed to stir for 10 min. The mixture is then diluted with ether (25 mL), washed with water (2×5.0 mL) and brine (1×5 mL). The aqueous layer is back extracted (2×), recombined, and the organic layer iss then dried MgSO4 and evaporated. Purification by flash column chromatography affords the compound 222. scheme 23 step o.
-
- To a solution of 222 (1.0 equivalents) in diethvlether (0.08 M), is added lithiumaluminumhydride (LAH) (1.5 equivalents) at 30° C. The reaction is refluxed for 2 hours and then quenched with methanol and diluted with ether. The reaction is next worked-up with sodium potassium tartrate (2×), brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography affords compound 224. scheme 23 step p
- Preparation of 216
- To a stirred solution of the acid 214 (1.0 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added 1-hydroxybenzotriazole (HOBT; 1.1 equivalents). Next dicyclohexylcarbodiimide (1.2 equivalents) is added and the reaction is stirred for 1 hour in the presence of an appropriately substituted solid support (N-(2-Aminoethyl)-3-amino-propyl glass; aminopolystyrene resin; aminopropyl glass; isothiocyanato glass, all with or without a linker extending from the amino group on the support etc. from Sigma Company). The mixture is then diluted with ether, filtered and the filtrate is washed with aqueous NaHCO3 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated.
- Preparation of 226; 228; 230 or 232
- To a stirred solution of the acid 214; 62; 215 or 62 ( 1.0 equivalents) and the amine 216; 226; 228 or 230 (1.1 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added 1-hydroxybenzotriazole (HOBT; 1.1 equivalents). Next dicyclohexylcarbodiimide (1.2 equivalents) is added and the reaction is stirred for 14 hours. The mixture is diluted with ether, filtered and the filtrate is washed with aqueous NaHCO3 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography and then reexposure of the intermediate compound (1.0 equivalents) in dimethy)-formamide (0.10 Molar) at 25° C., is added piperidine (1.1 equivalents). The reaction is stirred for 1 hour and is then diluted with ether, and washed with aqueous CuSO4 (2×), water (2×), and brine (2×). The organic phase is dried over MgSO4 and then concentrated. Purification by flash column chromatography affords compound 226; 228; 230 or 232, respectively. scheme 24
- Preparation of 234
- To a stirred solution of 232 (1.0 equivalents) in acetonitrile (0.50 Molar) is added an HFEpyridine solution (0.50 M) from Aldrich chemical company. The reaction is allowed to stir for five hours and is then condensed. The crude 234 oligomer is then resuspended in p-dioxane (0.50 Molar) to which is added a 3.0 Molar solution of NaOH (3.0 equivalents). The reaction is stirred for 1 hour at 50° C. and is then quenched with aqueous NH4Cl (2×) and subsequently lyophilized. Purification by HPLC chromatography affords compound 234. scheme 24
- A depiction of the generation of a combinatorial library for oligopeptoid compounds is shown in scheme 500. The example uses an alphabet of eight D-aldose hexose sugars (other sugars groups such as the D/L ketoses and L-configurations of aldose hexoses, may be used) and carries the synthesis to a degree of three or 512 compounds. (The process can repeat itself to afford the library of desired size). Standard chemistry is shown and follows the reaction conditions as described above herein for peptoid synthesis. The solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass: isothiocyanato glass and others as purchased from Sigma company. All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage. amide, ether. alkyl chain with terminal carbon activated as free alcohol. bromide etc.).
- A depiction of the generation of a combinatorial library for oligonucleotoid compounds is shown in scheme 550. The example uses an alphabet of eight D-aldose hexose sugars (other sugars groups such as the D/L ketoses and L-configurations of aldose hexoses, may be used) and carries the synthesis to a degree of three or 512 compounds. (The process can repeat itself to afford the library of desired size). Standard chemistry is shown and follows the reaction conditions as described above herein for carbonucleotoid synthesis. The solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass; isothiocyanato glass and others as purchased from Sigma company. All -supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage, amide. ether. alkyl chain with terminal carbon activated as free alcohol. bromide etc.).
- Preparation of compound 2000.
- To a solution of 76 (1.0 equiv) was added methylene chloride (.1 M) and benzaldehvde (1.1 equiv). and the solution was exposed to ZnCI (1.1 equiv) at 25° C. and allowed to stir for 2.5 hour. The solution is then diluted with ether and then washed with a saturated solution of sodium bicarbonate (2×), water (2×), brine (1×) and then dried over MgSO4. The compound is purified by flash column chromatography to yield the desired benzylidene.
-
-
- The benzylidene is then azeotroped with benzene (2×100 mL) and then dried overnight under vacuum over P2O5. A mixture of benzylidene, dibutyl tin oxide (1.2 equiv.) and dry methanol (0.25 M) are heated at reflux for 4 h until the solution became clear and homogeneous. (An automatic stirring apparatus may be necessary.) The solvent is next removed in vacuo to give a foamy white tin complex which was then azeotroped with benzene (2×) and dried (2 h to overnight) under vacuum over P2O5. Next, anhydrous DMF (0.2M) is added to redissolve the tin complex and then CsF (1.2 equiv.) and finally Benzyl bromide (1.5 equiv.) are added and then heated (40° C.) overnight. The clear solution is partially distilled -under vacuum, (3.3 mm Hg, 75-100° C.) to obtain ⅕ the original volume of solvent. Reaction mixture was then diluted with ethyl acetate (2L) and washed with a small amount of water (2×) to remove cesium salts. Aqueous layer is back extracted with ethyl acetate (3×) and then recombined with the organic layer which was then dried over MgSO4 and evaporated. Purification by flash column chromatography yields the desired benzyl ether 2000. For related chemistry see Nagashima, N.; Ohno. M. Chemistry Letters, Chem. Soc. of Japan 1987. 141.
- Preparation of Compound 2010.
- Procedure adopted from Johansson R.; Samuelsson; B.J. Chem. Soc., Chem. Commun., 1984, 201. To a solution of the benzylidene acetal (1 equiv) and sodium cyanoborohydride (5 equiv.) in DMF (0.125 M) containing powedered 3 angtrsom molecular sieves is added trifluoroacetic acid (10 equiv) and the reaction is allowed to stir at 0° C. until no starting material remains. Reaction mixture is then diluted with ethyl acetate (2L) and washed with a small amount of water (2×) and brine (2×). Aqueous layer is back extracted with ethyl acetate (3×) and then recombined with the organic layer which was then dried over MgSO4 and evaporated. Purification by flash column chromatography yields the desired benzyl ether 2010.
- Preparation of Compound 2020.
- To a solution of 2010 (1.0 equiv) was added methylene chloride (0.1 M) and benzaldehyde ( 1.1 equiv), and the solution was exposed to ZnCl (1.1 equiv) at 25° C. and allowed to stir for 2.5 hour. The solution is then diluted with ether and then washed with a saturated solution of sodium bicarbonate (2×), water (2×), brine (1×) and then dried over MgSO4. The compound is purified by flash column chromatography to yield the desired benzylidene 2020.
- Preparation of Compound 2030.
- To a solution of alcohol 2020 (22.0 g, 0.1068 mol, 1.0 equiv.) in THF (0.5 M) at 0° C., is added NaH (1.0 equiv., 35% dispersion in mineral oil) over several portions. The reaction mixture is warmed to room temperature and stirred 1h. Next, the reaction iss cooled to 0° C. and treated with benzyl bromide (1.0 equiv.) and stirred for 1.5 h. A saturated solution of ammonium chloride (50 mL) is added dropwise to quench the reaction mixture at 0° C. and the mixture was diluted with ethyl acetate, washed with water (2×), brine (1×), dried over MgSO4 and evaporated. Purification by flash column chromatography yields tribenzyl ether 2030.
- Preparation of Compound 2040.
- Procedure as adopted from Hanessian S.;Organic Syntheses 1987. 243. To a suspension containing 1.0 equivalent of benzylidene 2030 in one molar carbon tetrachloride and 1,1,2,2-tetrachloroethane (1.5 equivalent) is added 1.2 equivalents of N-bromosuccinimide and 0.5 equivalents of barium carbonate. The resulting suspension is heated at the reflux temperature of the mixture with mechanical stirring for a period of 2.5 hour and filtered while hot. The solution is washed with water (3×). then dried over anhydrous sodium sulfate and evaporated. Purification by flash column chromatography yields tribenzyl ether 2040.
- Preparation of Compound 2050.
- To a solution of 2040 (1.0 equivalents) in methylene chloride (0.10 M), is added dilsopropylethylamine (4.0 equivalents) at 25° C. The reaction is stirred for 5 minutes and then 2-cyanoethyl-N, N-diisopropyl-chlorophosphoramidite (1.5 equiv) is added, as prepared from the procedures of Sinha et al.Nucl. Acids Res. 1984, 12, 4539. After 15 minutes the reaction is
-
- brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 30% ethyl acetate in petroleum ether) affords compound 2050 (as shown in scheme 2000).
- Preparation of Compound 2060
- To a solution of alcohol 2040 (1.0 equiv.) in THF (0.5 M) at 0° C., is added NaH (1.0 equiv., 35% dispersion in mineral oil) over several portions. The reaction mixture is warmed to room temperature and stirred 1h. Next, the reaction is cooled to 0° C. and exposed to the solid support functionalized with a bromide linker or any reasonable leaving group attached (1.0 equiv.) and stirred for 2 hours. A saturated solution of ammonium chloride (50 mL) is added dropwise to quench the reaction mixture at 0° C. and the support was washed with ethyl acetate, 1% NaOH in methanol (2×) to remove the benzoate and finally brine (1×) to give 2060. The solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass; isothiocyanato glass and others as purchased from Sigma company. All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage, amide, ether, alkyl chain with terminal carbon activated as free alcohol, bromide etc.).
-
-
- Preparation of Compound 2070
- To a solution of 76 (1.0 equiv) was added methylene chloride (0.1 M) and benzaldehyde ( 1.1 equiv), and the solution was exposed to ZnCl (1.1 equiv) at 25° C. and allowed to stir for 2.5 hour. The solution is then diluted with ether and then washed with a saturated solution of sodium bicarbonate (2×), water (2×), brine (1×) and then dried over MgSO4. The compound is purified by flash column chromatography to yield the desired benzylidene. Procedure adopted from Johansson R.; Samuelsson; B. J. Chem. Soc., Chem. Commun., 1984, 201. To a solution of the benzylidene acetal (1 equiv) and sodium cyanoborohydride (5 equiv.) in DMF (0.125 M) containing powedered 3 angtrsom molecular sieves is added trifluoroacetic acid (10 equiv) and the reaction is allowed to stir at 0° C. until no starting material remains. Reaction mixture is then diluted with ethyl acetate (2L) and washed with a small amount of water (2×) and brine (2×). Aqueous layer is back extracted with ethyl acetate (3×) and then recombined with the organic layer which was then dried over MgSO4 and evaporated. Purification by flash column chromatography yields the desired benzyl ether 2070.
- Preparation of Compound 2080
- To a solution of 2070 (1.0 equivalents) in methylene chloride (0.10 Molar), is added triethylamine (1.1 equivalents) at 0° C.
- Subsequent addition of tertbutyldiphenylsilylchloride (1.1 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords the TBDPS ether which is subsequently carried on as follows:
- The TBDPS ether is then azeotroped with benzene (2×100 mL) and then dried overnight under vacuum over P2O5. A mixture of benzylidene, dibutyl tin oxide (1.2 equiv.) and dry methanol (0.25 M) are heated at reflux for 4 h until the solution became clear and homogeneous. (An automatic stirring apparatus may be necessary.) The solvent is next removed in vacuo to give a foamy white tin complex which was then azeotroped with benzene (2×) and dried- (2h to overnight) under vacuum over P2O5. Next, anhydrous DMF (0.2M) is added to redissolve the tin complex and then CsF (1.2 equiv.) and finally Benzoyl bromide for the benzoate formation, (1.5 equiv.) are added and then heated (40° C.) overnight. The clear solution is partially distilled under vacuum, (3.3 mm Hg, 75-100° C.) to obtain ⅕ the original volume of solvent. Reaction mixture was then diluted with ethyl acetate (2L) and washed with a small amount of water (2×) to remove cesium salts. Aqueous layer is back extracted with ethyl acetate (3×) and then recombined with the organic layer which was then dried over MgSO4 and evaporated. Purification by flash column chromatography yields the desired benzyl ether 2080. For related chemistry see Nagashima, N.; Ohno, M. Chemistry Letters, Chem. Soc. of Japan 1987, 141.
- Preparation of Compound 2090
- To a solution of alcohol 2080 (1.0 equiv.) in THF (0.5 M) at 0° C., is added NaH (1.0 equiv., 35% dispersion in mineral oil) over several portions. The reaction mixture is warmed to room temperature and stirred 1 h. Next, the reaction is cooled to 0° C. and treated with benzyl bromide (1.0 equiv.) and stirred for 1.5 h. The compound is then treated with tetrabutylammonium fluoride (2.0 equivalents) and allowed to stir for an additional 2 hours. A saturated solution of ammonium chloride (50 mL) is then added dropwise to quench the reaction mixture at 0° C. and the mixture was diluted with ethyl acetate, washed with water (2×), brine (1×), dried over MgSO4 and evaporated. Purification by flash column chromatography yields tribenzyl ether 2090.
- Preparation of Compound 2100
- To a solution of 2090 (1.0 equivalents) in methylene chloride (0.10 M), is added diisopropylethylamine (4.0 equivalents) at 25° C. The reaction is stirred for 5 minutes and then 2-cyanoethyl-N,N-diisopropyl-chlorophosphoramidite (1.5 equiv) is added. as prepared from the procedures of Sinha et al.Nucl. Acids Res. 1984, 12, 4539. After 15 minutes the reaction is complete and is next diluted with ether and next washed with brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica, 30% ethyl acetate in petroleum ether) affords compound 2100 (as shown in scheme 2002).
-
- Preparation of Compound 2110
- To a solution of alcohol 2090 (1.0 equiv.) in THF (0.5 M) at 0° C., is added NaH (1.0 equiv., 35% dispersion in mineral oil) over several portions. The reaction mixture is warmed to room temperature and stirred 1 h. Next, the reaction is cooled to 0° C. and exposed to the solid support functionalized with a bromide linker or any reasonable leaving group attached (1.0 equiv.) and stirred for 2 hours. A saturated solution of ammonium chloride (50 mL) is added dropwise to quench the reaction mixture at 0° C. and the support was washed with ethyl acetate, 1% NaOH in methanol (2×) to remove the benzoate and finally brine (1×) to give 2110 The solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass; isothiocyanato glass and others as purchased from Sigma company. All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage. amide, ether, alkyl chain with terminal carbon activated as tree alcohol, bromide etc.).
- Preparation of Compound 2120
- To a solution of 76 (1.0 equiv) was added methylene chloride (0.1 M) and benzaldehyde ( 1.1 equiv). and the solution was exposed to ZnCI ( 1.1 equiv) at 25° C. and allowed to stir for 2.5 hour. The solution is then diluted with ether and then washed with a saturated solution of sodium bicarbonate (2×), water (2×), brine (1×) and then dried over MgSO4. The compound is purified by flash column chromatography to yield the desired
-
-
- benzylidene and carried on as follows:
- To a solution of benzylidene (1.0 equiv.) in THF (0.5 M) at 0° C., is added NaH (1.0 equiv., 35% dispersion in mineral oil) over several portions. The reaction mixture is warmed to room temperature and stirred 1h. Next, the reaction is cooled to 0° C. and treated with benzyl bromide (1.0 equiv.) and stirred for 1.5 h. A saturated solution of ammonium chloride (50 mL) is then added dropwise to quench the reaction mixture at 0° C. and the mixture was diluted with ethyl acetate, washed with water (2×), brine (1×), dried over MgSO4 and evaporated. Purification by flash column chromatography yields tribenzyl ether 2120.
- Preparation of compound 2130
- Procedure adopted from Johansson R.; Samuelsson; B.J. Chem. Soc., Chem. Commun., 1984,-201. To a solution of the benzylidene acetal 2120 (1 equiv) and sodium cyanoborohydride (5 equiv.) in DMF (0.125 M) containing powedered 3 angtrsom molecular sieves is added trifluoroacetic acid (10 equiv) and the reaction is allowed to stir at 0° C. until no starting material remains. Reaction mixture is then diluted with ethyl acetate (2L) and washed with a small amount of water (2×) and brine (2×). Aqueous layer is back extracted with ethyl acetate (3×) and then recombined with the organic layer which was then dried over MgSO4 and evaporated. Purification by
- flash column chromatography yields the desired benzyl ether 2130.
- Preparation of Compound 2140
- To a solution of 2130 (1.0 equivalents) in methylene chloride (0.10 Molar), is added triethylamine (1.1 equivalents) at 0° C. Subsequent addition of tertbutyldiphenylsilylchloride (1.1 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords the TBDPS ether which is subsequently carried on as follows:
- To a solution of TBDPS ether (1.0 equiv.) in THF (0.5 M) at 0° C., is added NaH (1.0 equiv., 35% dispersion in mineral oil) over several portions. The reaction mixture is warmed to room temperature and stirred 1 h. Next, the reaction is cooled to 0° C. and treated with benzoyl bromide to afford benzoate formation (1.0 equine.) and stirred for 1.5 h. A saturated solution of ammonium chloride (50 mL) is then added dropwise to quench the reaction mixture at 0° C. and the mixture was diluted with ethyl acetate, washed with water (2×), brine (1×), dried over MgSO4 and evaporated. Purification by flash column chromatography yields tribenzyl ether 2140.
- Preparation of Compound 2150
- The compound 2140 is then treated with tetrabutylammonium fluoride (2.0 equivalents) in THF (0.1 Molar) and allowed to stir for an additional 2 hours at 25° C. A saturated solution of ammonium chloride (50 mL) is then added dropwise to quench the reaction mixture at 0° C. and the mixture was diluted with ethyl acetate, washed with water (2×), brine (1×), dried over MgSO4 and evaporated. Purification by flash column chromatography yields tribenzyl ether 2150.
- Preparation of Compound 2160
- To a solution of 2150 (1.0 equivalents) in methylene chloride (0.10 M), is added diisopropylethylamine (4.0 equivalents) at 25° C. The reaction is stirred for 5 minutes and then 2-cyanoethyl-N, N-diisopropyl-chlorophosphoramidite (1.5 equiv) is added. as prepared from the procedures of Sinha et at.Nucl. Acids Res. 1984, 12, 4539. After 15 minutes the reaction is complete and is next diluted with ether and next washed with brine (1×) and is then dried (MgSO4) and concentrated. Purification by flash column chromatography (silica. 30% ethyl acetate in petroleum ether) affords compound 2160 (as shown in scheme 2004).
- Preparation of Compound 2170
- To a solution of alcohol 2150 (1.0 equiv.) in THF (0.5 M) at 0° C., is added NaH (1.0 equiv., 35% dispersion in mineral oil) over several portions. The reaction mixture is warmed to room temperature and stirred 1h. Next, the reaction is cooled to 0° C. and exposed to the solid support functionalized with a bromide linker or any reasonable leaving group attached (1.0 equiv.)
-
- and stirred for 2 hours. A saturated solution of ammonium chloride (50 mL) is added dropwise to quench the reaction mixture at 0° C. and the support was washed with ethyl acetate, 1 % NaOH in methanol (2×) to remove the benzoate and finally brine (1×) to give 2170. The solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass; isothiocyanato glass and others as purchased from Sigma company. All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage, amide, ether, alkyl chain with terminal carbon activated as free alcohol, bromide etc.).
- Preparation of Compound 3010
- Procedure as described in Methods in Carbohydrate chemistry, Whistler, R.,II, 1963, p. 327. A mixture of 80 g anhydrous D-glucosamine hydrochloride or D-galactosamine hydrochloride from Aldrich chemical company, in 200 mL. methanol and 20 g Dowex 50 (H+) acidic resin, is stirred at the boiling point in a round bottom flask. After 24-hr. reaction time, the resin is removed by filtration and ished three times with 20 ml. of methanol. The filrate and washings are combined and concentrated to about 125 ml by rotovap. The concentrate is allowed to cool to room temperature and the product crystallizes overnight and carried on as follows:
- The methyl glycoside is dissolved in chloroform (0.5 M) and to it, is added phthalic anhydride (1.5 equiv.) and the reaction mixture is allowed to reflux at 70° C. for 4 h. The product
-
- 3010 is then crystallized and carried onto the next step.
- Preparation of Compound 3020
- To a solution of alcohol 3010 (1.0 equiv.) in THF (0.5 M) at 0° C., is added NaH (3.3equiv., 35% dispersion in mineral oil) over several portions. The reaction mixture is warmed to room temperature and stirred 1 h. Next, the reaction is cooled to 0° C. and treated with benzyl bromide (3.3 equiv.) and stirred for 1.5 h. A saturated solution of ammonium chloride (50 mL) is then added dropwise to quench the reaction mixture at 0° C. and the mixture was diluted with ethyl acetate, washed with water (2×), brine (1×), dried over MgSO4 and evaporated. Purification by flash column chromatography yields tribenzyl ether and is carried on as follows:
- To a solution of tribenzyl ether in nitromethane is added trimethylsilyl cyanide (3.0 equivalents) and then SnCl4 (0.02 equivalents). The mixture is stirred for one hour and then an aqueous solution of sodium acetate was added to hydrolyze the remaining trimethylsilyl cyanide. The mixture is evaporated and the remaining oil is resuspended in dichloromethane and washed with sodium acetate solution (1×), water (1×), brine (1×) and then dried over magnesium sulphate and concentrated. The crude solid is then recrystallized from methanol is next dissolved in ethanol (0.15 M) and then concentrated H2SO4 (0.01 equivalents-catalytic) is added. The reaction mixture is heated to 85° C. for eight hours. The solution is next concentrated in vacuo and purification by flash column chromatography affords compound 3020 scheme 3000.
- Preparation of Compound 3030
- To a solution of 3020 (1.0 equivalents) in methylene chloride (0.10 Molar), is added potassium carbonate (2.0 equivalents) at 0° C. Subsequent addition of 9-fluorenylmethyl chloroformate (FMOC-Cl, 1.2 equivalents) is followed by stirring for 2 hours and then the reaction is diluted with diethylether and washed with ammonium chloride (2×), brine (1×) and then dried (MgSO4) and concentrated. Purification by flash column chromatography affords product which is carried on as follows:
- To a solution of ester in ethanol (0.13 Molar), is added sodium ethoxide (0.3 equivalents) and the reaction mixture is stirred for two hours at room temperature. The solution is then concentrated in vacuo and purification by flash column chromatography affords compound 3030 scheme 3000.
- Preparation of Compound 3040
- To a stirred solution of the acid 3030 ( 1.0 equivalents) and the (1.1 equivalents) in dimethylformamide (0.10 Molar) at 25° C., is added 1-hydroxybenzotriazole (HOBT; 1.1 equivalents). Next dicyclohexylcarbodiimide (1.2 equivalents) is added and the reaction is stirred for 2 hours. The mixture is then exposed to the solid support and mixed for 24 hours. (The solid support used is the standard N-(2-Aminoethyl)-3-amino-propyl glass support; amino-polystyrene resin; aminopropyl glass; isothiocyanato glass and others as purchased from Sigma company. All supports may be with or without a linker extending from the amino group on the support (eg. succinate linkage, amide, ether, alkyl chain with terminal carbon activated as free alcohol, bromide etc.)). The mixture is then diluted with ether, washed with aqueous NaHCO3 (2×), water (2×), and brine (2×). Next, the compound/support (1.0 equivalents) in dimethyl-formamide (0.10 Molar) at 25° C., is added piperidine (1.1 equivalents). The support is stirred or exposed for 1 hour and is then diluted with-ether, and washed with aqueous CuSO4 (2×), water (2×), and brine (2×). The final step affords compound 3040.
- Physical Data for scheme 9.
- Phosphoramidate 138 (2 diastereomers): IR, (neat) cm−1: 3089, 2964, 2927, 2856, 2253, 1497, 1455, 1396, 1363, 1253, 1184, 1156, 1094, 1028, 978, 876, 836, 779, 735, 1H—NM (400 MHz, C6D6): δ 7.34 (m, 5 H. Ph), 7.14 (m, 10 H, Ph), 4.97 (m, 4 H, CH2Ph), 4.78 (m, 2 H, CH2Ph), 4.07-3.24 (m, 13 H, OCH, OCH2, CH2CN), 1. 81 (m, 2 H, CH(CH3)2), 1.16 (m, 12 H, CH3CH), 1.03, 1.02 (2 s, 9 H, 1BuSi), 0.20, 0.18, 0.16, 0.15, (4 s, 6 H, Me2Si); HRMS: C43H63O7N2PSi, Calc. (M+Cs+) : 911.3197; found: 911.3185.
- Naphthoylester136 IR, (neat) cm−1: 3494, 3062, 2919, 1716, 1630, 1600, 1454, 1355, 1284, 1228, 1197, 1091, 779, 736; 1H—NMR (250 MHz, CDCI3): δ 8.58 (s, 1 H, Ar), 8.00 (m, 2 H, Ar), 7.89 (m, 2 H, Ar), 7.59 (m, 2 H, Ar), 7.32 (m, 15 H, Ph), 4.95 (m, 3 H), 4.90 (d, J=4.5 Hz, 1 H), 4.69 (m, 3 H), 4.52 (dd, J=3.9, 12.0 Hz, 1 H), 3.91 (dd J=2.6, 12.0, 1 H), 3.83 (d, J=8.3, 1 H), 3.70 (m, 4 H), 3.96 (m, 1 H), 2.25 (s, 1 H, OH). HRMS: C39H38O7 Calc. (M+Cs+) : 751.1672; found: 751.1668.
- Dimer142 IR, (neat) cm−1: 3397, 3030, 2923, 2254, 1718, 1653, 1629, 1497, 1453, 1355, 1284, 1227, 1197, 1094, 1029, 780. 1H—NMR (400 MHz, C6D6): δ 8.82 (s, 1 H, Ar), 8.26 (d, 1 H, Ar), 7.72 (m, 1 H, Ar), 7.61 (m, 1 H, Ar), 7.48 (m, 1 H, Ar), 7.37-6.95 (m, 32 H, Ar, Ph), 4.89-4.18 (m, 21 H, CH2Ph, CH2-Ar, —CH2CH2CN, CHCH2—Ar and CH2OH), 3.95-3.45 (m, 13 H, CH— and CH2-sugar), 1.71 (s, 1 H, OH); HRMS: C170H72O5NP calc. (M+H+): 1198.4718; found: 1198.4715.
- Tetramer150 IR, (neat) cm−1: 3420, 3064, 2924, 2255, 1721, 1497, 1455, 1357, 1278, 1028, 737. 1H—NMR (400 MHz, CDCI3): δ 8.41 (s, 1 H, Ar), 8.00 (m, 2 H, Ar), 7.91 (m, 2 H, Ar), 7.55 (m, 2 H, Ar), 7.30 (m, 60 H, Ph), 4.93-4.05 (m, 39 H, CH2Ph, CH2—Ar, CH2CH2CN and CH2OH), 3.88-3.27 (m, 23 H, CH— and CH2-sugar), 2.58 (s, 1 H, OH). HRMS: C132H140O31N3P3 Calc. (M+Cs+) 2488.7738; found: 2488.7758.
- Tetramer154 IRp, (neat) cm−1: 3376, 2934, 1450, 1244, 1110, 1088. 1H—NMR (400 MHz, D2O): δ 8.41 (s, 1 H, Ar), 8.00 (m, 2 H, Ar), 7.91 (m, 2 H, Ar), 7.55 (m, 2 H, Ar), 4.93-4.05 (m, 4 H, CH2—Ar and CH2OH), 3.88-3.27 (m, 32 H, CH— and CH2-sugar); HRMS: C39H59O31P3 Calc. (M+H+): 1117.2331; found: 1117.2350.
Claims (12)
1. An oligomeric carbopeptoid compound comprising carbohydrate amino acid subunits (CA's) coupled to one another via an amide linkage having a carbonyl carbon and an amido nitrogen represented by the following formula:
CA1—(CO—NH)—CA2
wherein:
CA1 is a first carbohydrate amino acid subunit having an anomeric carbon bonded to the carbonyl carbon of said amide linkage for forming a C-glycosidic linkage therewith and
CA2 is a second carbohydrate amino acid subunit having a non-anomeric carbon bonded to the amido nitrogen of said amide linkage.
2. In a process for synthesizing an oligomeric carbopeptoid compound, a coupling step wherein two or more carbohydrate amino acid subunits (CA's) are coupled by means of an amide linkage having a carbonyl carbon and an amido nitrogen for synthesizing said oligomeric carbopeptoid compound, said amide linkage being represented by a formula as follows:
CA1—(CO—NH)—CA2
wherein:
CA1 is a first carbohydrate amino acid subunit having an anomeric carbon bonded to the carbonyl carbon of said amide linkage for forming a C-glycosidic linkage therewith; and
CA2 is a second carbohydrate amino acid subunit having a non-anomeric carbon bonded to the amido nitrogen of said amide linkage.
3. A library of oligomeric carbopeptoid compounds employable for drug screening, each oligomeric carbopeptoid compound including at least two carbohydrate amino acid subunits (CA's) coupled to one another via an amide linkage having a carbonyl carbon and an amido nitrogen, said amide linkage being represented by the following formula:
CA1—(CO—NH)—CA2
wherein:
CA1 is a first carbohydrate amino acid subunit having an anomeric carbon bonded to the carbonyl carbon of said amide linkage for forming a C-glycosidic linkage therewith; and
CA2 is a second carbohydrate amino acid subunit having a non-anomeric carbon bonded to the amido nitrogen of said amide linkage.
4. An improved process for synthesizing a library of oligomers, the process employing an elongation step wherein subunits are coupled to one another to produce the oligomers, wherein the improvement comprises:
in said elongation step the oligomer includes at least two carbohydrate amino acid subunits (CA's) coupled to one another via an amide linkage having a carbonyl carbon and an amido nitrogen represented by the following formula:
CA1—(CO—NH)—CA2
wherein:
CA1 is a first carbohydrate amino acid subunit having an anomeric carbon bonded to the carbonyl carbon of said amide linkage for forming a C-glycosidic linkage therewith; and
CA2 is a second carbohydrate amino acid subunit having a non-anomeric carbon bonded to the amido nitrogen of said amide linkage.
5. A derived carbohydrate amino acid having an anomeric carbon and non-anomeric carbons,
said anomeric carbon being substituted with a carboxyl radical,
each of said non-anomeric carbons being substituted with a radical selected from the group consisting of blocked hydroxyl, blocked amino, differentially protected amino, and hydrogen, with the proviso that at least one radical is a differentially protected amino.
6. A derived carbohydrate amino acid having an anomeric carbon and non-anomeric carbons,
said anomeric carbon being substituted with a carboxyl radical,
each of said non-anomeric carbons being substituted with a radical selected from the group consisting of blocked hydroxyl, blocked amino, unprotected amino, and hydrogen, with the proviso that at least one radical is an unprotected amino and at least one radical is a blocked hydroxyl or amino.
7. An oligomeric carbonucleotoid molecule comprising carbohydrate C-glycoside subunits (CG's) coupled to one another via a phosphodiester linkage represented by the following structure:
CG1—C1—(O—PO(OH)—O)—CG2
wherein:
(O—PO(OH)—O) is said phosphodiester linkage;
CG1—C1′ is a first carbohydrate C-glycoside subunit having an anomeric carbon forming a C-glycosidic bond with a carbon C1′, said carbon C1′ being bonded to said phosphodiester linkage; and
CG2 is a second carbohydrate C-glycoside subunit having a non-anomeric carbon bonded to said phosphodiester linkage.
8. In a process for synthesizing an oligomeric carbonucleotoid molecule, a coupling step wherein two or more carbohydrate C-glycoside subunits (CG's) are coupled by means of a phosphodiester linkage, said phosphodiester linkage being represented by a formula as follows:
CG1—C1′—(O—PO (OH)—O)—CG2
wherein:
(O—PO(OH)—O) is said phosphodiester linkage;
CG1—C1′ is a first carbohydrate C-glycoside subunit having an anomeric carbon forming a C-glycosidic bond with a carbon C1′, said carbon C1′ being bonded to said phosphodiester linkage; and
CG2 is a second carbohydrate C-glycoside subunit having a non-anomeric carbon bonded to said phosphodiester linkage.
9. A library of oligomeric carbonucleotoid molecules employable for drug screening, each oligomeric carbonucleotoid molecule including at least two carbohydrate
C-glycoside subunits (CG's) coupled to one another by means of a phosphodiester linkage, said phosphodiester linkage being represented by a formula as follows:
CG1—C1′—(O—PO (OH)—O)—CG2
wherein:
(O—PO(OH)—O) is said phosphodiester linkage;
CG1—C1′ is a first carbohydrate C-glycoside subunit having an anomeric carbon forming a C-glycosidic bond with a carbon C1′, said carbon C1′ being bonded to said phosphodiester linkage; and
CG2 is a second carbohydrate C-glycoside subunit having a non-anomeric carbon bonded to said phosphodiester linkage.
10. An improved process for synthesizing a library of oligomers, the process employing an elongation step wherein subunits are coupled to one another to produce the oligomers, wherein the improvement comprises:
in said elongation step the oligomer is a carbonucleotoid including at least two carbohydrate C-glycoside subunits (CG's) are coupled by means of a phosphodiester linkage, said phosphodiester linkage being represented by a formula as follows:
CG1—C1′—(O—PO (OH)—O)—CG2
wherein:
(O—PO(OH)—O) is said phosphodiester linkage;
CG1—C1′ is a first carbohydrate C-glycoside subunit having an anomeric carbon forming a C-glycosidic bond with a carbon C1′, said carbon C1′ being bonded to said phosphodiester linkage; and
CG2 is a second carbohydrate C-glycoside subunit having a non-anomeric carbon bonded to said phosphodiester linkage.
11. A derived carbohydrate C-glycoside having an anomeric carbon and non-anomeric carbons,
said anomeric carbon forming a C-glycosidic bond with a carbon C1′, said carbon C1′ being bonded to an activated phosphite,
each of said non-anomeric carbons being substituted with a radical selected from the group consisting of blocked hydroxyl, differentially protected hydroxyl, and hydrogen, with the proviso that at least one radical is a differentially protected hydroxyl.
12. A derived carbohydrate C-glycoside having an anomeric carbon and non-anomeric carbons,
said anomeric carbon forming a C-glycosidic bond with a carbon C1′, said carbon C1′ being bonded to an activated phosphite,
each of said non-anomeric carbons being substituted with a radical selected from the group consisting of blocked hydroxyl, unprotected hydroxyl, and hydrogen, with the proviso that at least one radical is an unprotected hydroxyl and at least one radical is a blocked hydroxyl.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/140,597 US20030013870A1 (en) | 1996-03-08 | 2002-05-07 | Carbopeptoids and carbonucleotoids |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/003227 WO1996027379A1 (en) | 1995-03-08 | 1996-03-08 | Carbopeptoids and carbonucleotoids |
US08/913,035 US6204376B1 (en) | 1996-03-08 | 1996-03-08 | Carbopeptoids and carbonucleotoids |
US09/417,877 US6384211B1 (en) | 1997-11-20 | 1999-10-13 | Carbopeptoids and carbo-nucleotoids |
US10/140,597 US20030013870A1 (en) | 1996-03-08 | 2002-05-07 | Carbopeptoids and carbonucleotoids |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/417,877 Division US6384211B1 (en) | 1996-03-08 | 1999-10-13 | Carbopeptoids and carbo-nucleotoids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030013870A1 true US20030013870A1 (en) | 2003-01-16 |
Family
ID=25432875
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/913,035 Expired - Fee Related US6204376B1 (en) | 1996-03-08 | 1996-03-08 | Carbopeptoids and carbonucleotoids |
US09/417,877 Expired - Fee Related US6384211B1 (en) | 1996-03-08 | 1999-10-13 | Carbopeptoids and carbo-nucleotoids |
US10/140,597 Abandoned US20030013870A1 (en) | 1996-03-08 | 2002-05-07 | Carbopeptoids and carbonucleotoids |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/913,035 Expired - Fee Related US6204376B1 (en) | 1996-03-08 | 1996-03-08 | Carbopeptoids and carbonucleotoids |
US09/417,877 Expired - Fee Related US6384211B1 (en) | 1996-03-08 | 1999-10-13 | Carbopeptoids and carbo-nucleotoids |
Country Status (1)
Country | Link |
---|---|
US (3) | US6204376B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300112A (en) * | 2003-04-01 | 2004-10-28 | Yokohama Kokusai Bio Kenkyusho:Kk | Sugar ester and method for producing the same |
US10566949B2 (en) | 2014-05-09 | 2020-02-18 | Chirp Microsystems, Inc. | Micromachined ultrasound transducer using multiple piezoelectric materials |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6204376B1 (en) * | 1996-03-08 | 2001-03-20 | The Scripps Research Institute | Carbopeptoids and carbonucleotoids |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5625030A (en) * | 1994-01-06 | 1997-04-29 | Metabolix, Inc. | Methods for synthesizing oligomers containing hydroxy acid units |
US5637683A (en) * | 1995-07-13 | 1997-06-10 | Cornell Research Foundation, Inc. | Nucleic acid analog with amide linkage and method of making that analog |
US5705621A (en) * | 1995-11-17 | 1998-01-06 | Isis Pharmaceuticals, Inc. | Oligomeric phosphite, phosphodiester, Phosphorothioate and phosphorodithioate compounds and intermediates for preparing same |
US5756712A (en) * | 1997-01-23 | 1998-05-26 | E. I. Du Pont De Nemours And Company | Peptidodisaccharides as oligosaccharide mimetics |
US6204376B1 (en) * | 1996-03-08 | 2001-03-20 | The Scripps Research Institute | Carbopeptoids and carbonucleotoids |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5212298A (en) | 1989-08-16 | 1993-05-18 | Monsanto Company | Method for producing synthetic N-linked glycoconjugates |
-
1996
- 1996-03-08 US US08/913,035 patent/US6204376B1/en not_active Expired - Fee Related
-
1999
- 1999-10-13 US US09/417,877 patent/US6384211B1/en not_active Expired - Fee Related
-
2002
- 2002-05-07 US US10/140,597 patent/US20030013870A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5625030A (en) * | 1994-01-06 | 1997-04-29 | Metabolix, Inc. | Methods for synthesizing oligomers containing hydroxy acid units |
US5637683A (en) * | 1995-07-13 | 1997-06-10 | Cornell Research Foundation, Inc. | Nucleic acid analog with amide linkage and method of making that analog |
US5705621A (en) * | 1995-11-17 | 1998-01-06 | Isis Pharmaceuticals, Inc. | Oligomeric phosphite, phosphodiester, Phosphorothioate and phosphorodithioate compounds and intermediates for preparing same |
US6204376B1 (en) * | 1996-03-08 | 2001-03-20 | The Scripps Research Institute | Carbopeptoids and carbonucleotoids |
US5756712A (en) * | 1997-01-23 | 1998-05-26 | E. I. Du Pont De Nemours And Company | Peptidodisaccharides as oligosaccharide mimetics |
US6384211B1 (en) * | 1997-11-20 | 2002-05-07 | The Scripps Research Institute | Carbopeptoids and carbo-nucleotoids |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300112A (en) * | 2003-04-01 | 2004-10-28 | Yokohama Kokusai Bio Kenkyusho:Kk | Sugar ester and method for producing the same |
US10566949B2 (en) | 2014-05-09 | 2020-02-18 | Chirp Microsystems, Inc. | Micromachined ultrasound transducer using multiple piezoelectric materials |
US11711067B2 (en) | 2014-05-09 | 2023-07-25 | Invensense, Inc. | Micromachined ultrasound transducer using multiple piezoelectric materials |
Also Published As
Publication number | Publication date |
---|---|
US6204376B1 (en) | 2001-03-20 |
US6384211B1 (en) | 2002-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU606909B2 (en) | Sialic acid derivatives having active carbonyl group | |
CN113527388B (en) | Method for stereoselective synthesis of beta-2-deoxy sugar, 2-deoxy-2-azido sugar and glucosidic bond | |
CN107955082B (en) | The preparation method of outer eight sugar of core of Helicobacter pylori lipopolysaccharide | |
Knapp et al. | Reactions of some pyranoside diol monotriflates with nucleophiles and bases | |
WO1996027379A1 (en) | Carbopeptoids and carbonucleotoids | |
WO1996027379A9 (en) | Carbopeptoids and carbonucleotoids | |
US6204376B1 (en) | Carbopeptoids and carbonucleotoids | |
EP0401800A2 (en) | Acylated derivatives of etoposide | |
JP5238822B2 (en) | Process for synthesizing docetaxel, its intermediate and its synthesis | |
EP0828729A1 (en) | Collection of activated glycoside compounds and their biological use | |
WO2000042057A1 (en) | Protecting groups for carbohydrate synthesis | |
CA1300532C (en) | Covalent oligonucleotide-horseradish peroxidase conjugate | |
JP4253858B2 (en) | Fullerene derivative and method for producing the same | |
CN114163483B (en) | Synthesis method of stereoselective alpha-glycosylation product | |
JP4555466B2 (en) | Substituted tetrahydropyran derivatives, processes for their preparation, their use as medicaments or diagnostics and medicaments containing them | |
Johnson et al. | An efficient synthesis of 6, 6′-DI-O-acylated α, α-trehaloses | |
CN110041377B (en) | Synthetic method of O-mannan core structure | |
CN104693252A (en) | Glycosidic taxane compound and preparation method thereof | |
Ledvina et al. | New Effective Synthesis of (N-Acetyl-and N-Stearoyl-2-amino-2-deoxy-β-D-glucopyranosyl)-(1→ 4)-N-acetylnormuramoyl-L-2-aminobutanoyl-D-isoglutamine, Analogs of GMDP with Immunopotentiating Activity | |
JP4102263B2 (en) | Compound having protected hydroxyl group, process for producing the same, and use thereof | |
Ogawa et al. | An efficient synthesis of sulfo Lewis X analog containing 1-deoxynojirimycin | |
US7456309B2 (en) | Reusable universal polymer support for repetitive oligonucleotide synthesis | |
WO2003095478A1 (en) | Thermostable and monoconjugatable gold cluster complexes | |
US20020002274A1 (en) | Process for the production of perbenzylated 1-0-glycosides | |
参r | which appear to be more reactive than salts prepared by conventional procedures.! 9 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE;ASSIGNOR:SCRIPPS RESEARCH INSTITUTE;REEL/FRAME:021717/0266 Effective date: 20020619 |