US20020198527A1 - Implantable screw for stabilization of a joint or a bone fracture - Google Patents
Implantable screw for stabilization of a joint or a bone fracture Download PDFInfo
- Publication number
- US20020198527A1 US20020198527A1 US10/174,906 US17490602A US2002198527A1 US 20020198527 A1 US20020198527 A1 US 20020198527A1 US 17490602 A US17490602 A US 17490602A US 2002198527 A1 US2002198527 A1 US 2002198527A1
- Authority
- US
- United States
- Prior art keywords
- screw
- implantable screw
- bone
- thread
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/866—Material or manufacture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8685—Pins or screws or threaded wires; nuts therefor comprising multiple separate parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8625—Shanks, i.e. parts contacting bone tissue
- A61B17/863—Shanks, i.e. parts contacting bone tissue with thread interrupted or changing its form along shank, other than constant taper
Definitions
- the present invention relates in general to an implant for augmenting stabilization of bone joints and in particular to an implant for augmenting stabilization of bone joints with a low relative movement and for interfragmentary stabilization of bone fractures, when primarily tensile forces are to be applied.
- the joints of the body have different ranges of movement. In addition to the joints in the main axes of movement of the extremities as well as the mandibular joint, some of which have relative movements of a considerable extent, there are many joints with a low relative range of movement.
- Typical examples of this include the acromioclavicular joint as the connection between the shoulder blade and the collar bone (acromioclavicular joint), the joint between the collar bone and the breastbone or sternum (sternoclavicular joint), the iliosacral joint, the pubic symphysis, the articulated connections between the tibia and fibula (proximal and distal tibiofibular joints), the joints between the wrist (carpal bones) and the foot (tarsal bones) as well as the joints between the bones of the metacarpus (metacarpal joints) and those of the metatarsus (metatarsal joints).
- the best known representative of the first group is the so-called locking screw.
- the two partners in the joint are secured rigidly relative to one another by a direct screw connection, which guarantees congruence of the joint, but blocks relative movement of the joint.
- Similar functions are achieved by bridging the joint with Kirschner's wires, optionally supplemented by wire cerlage or by using rigid osteosynthesis plates (especially in the area of the pelvis).
- Known representatives of the second group include plastic cords or bands made of absorbable or non-absorbable materials (literature: R. W. Fremerey et al. (1996) “Surgical treatment of acute, complete rupture of the AC joint,” Kirchirurg [Trauma Surgeon] 99:341-5), wire cables in the technique proposed by LABITZKE (literature: R. Labitzke (1982) “Wire cables and intraosseous pressure distribution systems in surgery,” Chirurg [Surgeon] 53:741-3) or the use of wire cerclage.
- a typical representative of the fourth group is the joint plate developed by Ramanzadeh for stabilization of ruptures of the acromioclavicular joint.
- this plate has the disadvantage that it is difficult to adjust the correct congruence of the joint, and the axes of rotation of the joint and the implant do not match, so the natural movement of the joint is at least partially blocked.
- this is achieved with an implant which augments the ligament connections reliably in joints with a small relative movement, while causing little or no impairment of the natural range of movement of the joint by providing an implantable screw which has a flexible shaft for stabilization of a joint or a bone.
- the present invention resolves prior art problems by providing the design of an implant which guarantees a transfer of tensile forces almost exclusively, whereas there is little or no transfer of bending torque, compressive forces and transverse forces through the flexible shaft and by providing an implantable screw for stabilization of a joint or a bone fracture comprising an elongated body with a proximal head portion and a distal insertion portion having a thread, wherein the head portion and the insertion portion are interconnected by a flexible shaft.
- Such a screw makes it possible for both bones involved in a joint injury or both fragments involved in a bone injury to be joined by one or more screws which have a flexible shaft.
- This design of the implant guarantees transfer of tensile forces almost exclusively, while bending moments, compressive forces and transverse forces are not transmitted at all by the flexible shaft or only to a slight extent.
- the screw is preferably installed so that the axis of the screw corresponds to the direction of the resultant force of the ligament connection of the joint. Ideal augmentation of the joint can be achieved in this way.
- the screw is introduced at a right angle to the plane of the fracture and causes interfragmentary compression due to the tensile force.
- this invention is suitable for a so-called minimally invasive implantation.
- the screw according to this invention may be designed for use in surgery so that primarily tensile forces are transmitted but no significant bending moment is transmitted.
- the screw according to this invention may be designed so that it can be introduced into the medullary cavity of a fractured bone by way of a so-called creep screw, thereby adapting to the contour of the medullary cavity, which is usually curved.
- planar axial moment of inertia of the screw is 30% less, preferably more than 50% less than that of a screw having the same outside diameter.
- the flexibility in the shaft area can be achieved by a wire cable, a wire bundle, a cord, a spiral or multiple webs and by fibers.
- the wire cable or wire bundle is reinforced on the outside by sleeves or a spiral. Twisting of the wire cable or wire bundle is thereby limited when a torsional moment is applied, and thus the wire cable or wire bundle is stabilized.
- the bending movement of the shaft can be limited by the size of the sleeve or the spiral windings and their spacing relative to one another.
- the threaded part has a bone thread.
- the head part has a wrench socket and has a smooth surface or a bone thread matching the threaded part, depending on the intended application of the implant, said thread having a larger diameter and a smaller thread pitch than the bone thread in the threaded part.
- the implantable screw has wrench sockets in the head part as well as in the threaded part. This allows a stepped wrench to act on these wrench sockets in synchronization.
- FIG. 1 is a bone screw according to the present invention, whose shaft is configured for flexibillity as a wire cable or as a wire bundle;
- FIG. 2 is a bone adjusting screw, whose shaft is configured for flexibility as a wire cable or as a wire bundle;
- FIG. 3 is a bone screw, with a bone thread on the distal side from the head and whose shaft is configured for flexibility as a wire cable or as a wire bundle, with a bone thread at the proximal head side, which has a larger diameter and a smaller thread pitch than the bone thread distal from the head;
- FIG. 4 is a screw, which has a bone thread on one side, with a shaft configured for flexibility as a wire cable, a cord or a wire bundle, and a bolt on the other side with a metal thread and a hexagon socket head nut screwed onto it;
- FIG. 5 is a bone screw, whose shaft is configured to be flexible in the manner of a spiral spring
- FIG. 6 a is a bone screw, which is preferably made of a biocompatible plastic with a flexible shaft composed of multiple webs;
- FIG. 6 b is a hexagon head wrench for use with the bone screw of FIG. 6 a;
- FIG. 7 is a bone screw, wherein the shaft consists of multiple fibers which are anchored alternately in the head part and in the threaded part of the bone screw,
- FIG. 8 is an embodiment of a bone screw according to the present invention for stabilization of the ankle joint (distal tibiofibular joint, syndesmosis);
- FIG. 9 is a further embodiment for stabilization of the acromioclavicular joint
- FIG. 10 is another embodiment for stabilization of the iliosacral joint
- FIG. 11 is another embodiment for stabilization in the area of the wrist with scapholunate dissociation
- FIG. 12 is yet another embodiment for interfragmentary traction screws in the area of the patella with a fracture of the patella;
- FIG. 13 is a bone screw according to FIG. 4, where the wire cable or the wire bundle is reinforced by individual sleeves.
- FIG. 1 there is shown a a bone screw, whose head part 1 and whose threaded part 2 are flexibly interconnected by a wire cable or a wire bundle 3 .
- the wire cable or the wire bundle is fixedly connected in the head part as well as in the threaded part through suitable connection methods (e.g., pressed, glued, soldered or welded connections).
- suitable connection methods e.g., pressed, glued, soldered or welded connections.
- FIG. 2 shows a bone locking screw which has a head part 4 , which is provided with a bone thread, and a threaded part 5 , which are flexibly interconnected by a wire cable or wire bundle 6 analogeous to FIG. 1.
- the thread on the head part and the threaded part are of the same size and the thread flanks are the same. In this way, a previously defined distance between two bones to be joined is established, regardless of the tightening torque of the screw.
- FIG. 3 shows a bone screw with a thread-bearing head part 7 , which is flexibly connected to threaded part 9 by a wire cable or a wire bundle 8 analogeous to FIG. 1.
- the thread on the head part has a larger diameter in comparison with the threaded part and it has a smaller thread pitch.
- FIG. 4 shows a screw which has a threaded part 10 on one side with a bone thread which is connected flexibly by a wire cable, a wire bundle or a cord 11 to a bolt 12 , which has a metal or plastic thread.
- a hexagon socket head nut 13 is screwed onto this bolt.
- the threaded part with the bone thread is screwed into the bone by way of a stud bolt. This is done by means of a cannulated wrench which is pushed over the wire cable or the wire bundle or the cord and the bolt and meshes with the hexagon insert bit 14 of the threaded part.
- the hexagon socket head nut is screwed onto the bolt with a metal thread by means of a cannulated hexagon socket wrench.
- the wire cable or wire bundle that projects on the hexagon socket or the projecting cord is shortened with a knife forceps.
- FIG. 5 shows a variation of a bone screw 15 , whose shaft 16 is designed in the form of a spiral.
- an elastic component is added in this variation.
- the amount of flexibility and elasticity of the shaft depends to a great extent on the design of the spiral. Large spirals have only a low flexibility and elasticity, whereas small spirals are highly elastic and flexible.
- Such a design variant is especially suitable for intramedullary screwing of bones with curved surfaces, e.g., as so-called creep screws in the area of the pelvis.
- the shaft length is limited by a wire cable, a wire bundle, a chain, a fiber or a flexible pin (not shown), preferably arranged in the spiral.
- FIG. 6 a shows a bone screw 17 , which is preferably suitable for being fabricated from absorbable or non-absorbable plastics and is designed so that it can be manufactured by the casting technology.
- the flexibility of the shaft here is achieved due to the fact that it consists of multiple webs 18 .
- the extent of the flexibility of this variant is defined by the number and dimensions of the webs and by the material properties of the material used.
- the webs are capable of transmitting the torsion moments which occur in tightening the screw only to a very limited extent, it is especially advantageous if a hexagon head 21 , 22 (or a different type of wrench socket) is provided in both the threaded part 19 and the head part 20 , so that a torsion load on the webs is prevented when using a corresponding stepped hexagon head wrench according to FIG. 6 b .
- the threaded part is cannulated 23 , so that application of the screw can take place through a corresponding guide wire.
- FIG. 7 shows a bone screw 24 , which is equally suitable for fabrication from an implant metal as well as from absorbable or non-absorbable plastics and which is designed so that the individual components can be manufactured by the casting technology.
- the flexibility of the shaft is achieved by the fact that it consists of multiple fibers 25 which are either held in eyelets 26 , 27 , anchored alternately in the head part 28 and in the threaded part 29 of the screw according to the figure or are each securely anchored in the head part and in the threaded part. Since this variant can transmit only tensile forces, a hexagon head socket 30 , 31 (or a different type of wrench socket) is to be provided in both the head part and in the threaded part, analogeous to FIG. 6 a , permitting the use of a stepped wrench according to FIG. 6 b , with which the head part and threaded part can be screwed equally into the bone.
- syndesmosis ligament connection between the fibula 34 and the tibia 35 in the area of the ankle joint.
- the natural relative movement between the fibula and tibia is preserved due to the flexible shaft.
- the dimensions of the bone screw are selected so that it can be introduced into the bone through the boreholes in a conventional osteosynthesis plate when there is a concomitant fracture of the lateral malleolus.
- FIG. 9 shows another embodiment of a bone screw with a flexible shaft 37 according to FIG. 1 in the area of the ligament connection between the shoulder blade 38 and the collar bone 39 , on the acromioclavicular joint 40 .
- the rupture of all three ligaments involved in this connection is diagramed schematically (acromioclavicular ligament 41 , trapezoid ligament 42 , conoid 43 ).
- the screw is screwed into the coracoid process 44 through the collar bone.
- the natural relative movement between the collar bone and the shoulder blade is maintained due to the flexible shaft.
- a high position of the collar bone which would lead to incongruence of the acromioclavicular joint, is impossible.
- FIG. 10 shows another embodiment of a bone screw having a flexible shaft 45 according to FIG. 4 in the area of the ligament connection between the sacrum 46 and the iliac bone 47 (iliosacral joint 48 ).
- stabilization is accomplished by screwing one or more screws with a flexible shaft into the bone.
- the natural relative movement between the sacrum and the ileum is preserved due to the flexible shaft.
- gaping of the joint gap is reliably prevented due to the screw having a flexible shaft.
- FIG. 11 shows another embodiment of a bone screw having a flexible shaft 49 according to FIG. 4 in the area of the wrist in the case of a ruptured ligament between the scaphoid bone 50 and the lunate bone 51 (scapholunate dissociation).
- Repositioning and stabilization are accomplished by screwing a screw having a flexible shaft into the bone.
- Kirschner's wires the natural relative movement between the scaphoid bone and the lunate bone is preserved due to the flexible shaft.
- the wrist bones that have been screwed together cannot yield laterally.
- FIG. 12 shows another embodiment of bone screws with a flexible shaft 52 , 53 according to FIG. 1 with a transverse fracture of the patella 54 .
- the tensile forces conducted from the quadriceps tendon over the patella and into the patellar tendon are transferred through the two bone screws with a flexible shaft and the two fragments of the patella are compressed together.
- FIG. 13 shows a bone screw according to FIG. 4, where wire cable or wire bundle is reinforced by individual sleeves 55 .
- wire cables tend to twist and coil up when a torsion moment is introduced in the opposite direction to their winding. Due to the fact that sleeves or a spiral are pushed onto the wire cable or the wire bundle, this twisting can be limited, and at the same time, a stabilization of the wire cable can be achieved due to the resulting clamping of the wire cable in the sleeve or the spiral. This allows higher torsion moments to be transmitted than is possible with an unreinforced wire cable or wire bundle.
- the extent of the bending of the flexible screw shaft can be limited.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
- This application claims the priority of German Patent Application Serial No. 101 29 490.5, filed Jun. 21, 2001, pursuant to 35 U.S.C. 119(a)-(d), the subject matter of which is incorporated herein by reference.
- This application claims the benefit of prior filed provisional application, Appl. No. 60/301,267, filed Jun. 27, 2001, pursuant to 35 U.S.C. 119(e), the subject matter of which is incorporated herein by reference.
- The present invention relates in general to an implant for augmenting stabilization of bone joints and in particular to an implant for augmenting stabilization of bone joints with a low relative movement and for interfragmentary stabilization of bone fractures, when primarily tensile forces are to be applied.
- The joints of the body have different ranges of movement. In addition to the joints in the main axes of movement of the extremities as well as the mandibular joint, some of which have relative movements of a considerable extent, there are many joints with a low relative range of movement. Typical examples of this include the acromioclavicular joint as the connection between the shoulder blade and the collar bone (acromioclavicular joint), the joint between the collar bone and the breastbone or sternum (sternoclavicular joint), the iliosacral joint, the pubic symphysis, the articulated connections between the tibia and fibula (proximal and distal tibiofibular joints), the joints between the wrist (carpal bones) and the foot (tarsal bones) as well as the joints between the bones of the metacarpus (metacarpal joints) and those of the metatarsus (metatarsal joints). Likewise, injuries to these joints can in many cases lead to serious physical impairments, where a painful arthrosis develops as a result of a permanent joint incongruence. The therapeutic goal must therefore be to accurately reposition these joints and restore the capsule-ligament apparatus. In most cases, this cannot be accomplished by simply suturing the capsule-ligament apparatus. The sutures would not be able to withstand the stress and would rupture, and the joint would slip back into a false, incongruent position. Instead, the injured joint must be kept in a correct position through a suitable surgical implant by way of an augmentation until the capsule-ligament apparatus has healed to a sufficient level of strength and can again withstand the forces required to move the joint. The same thing is also true of unstable bone fractures, where an implant is supposed to keep the bones in the correct position, after repositioning the fracture, until the fracture has healed to an adequate level of strength.
- Various techniques have been described for augmenting stabilization of a ruptured joint with small relative movements, and these techniques can be divided into roughly four groups: 1. temporary rigid bridging of the joint, 2. bridging with flexible implants, 3. retaining implants, which are bolted to one side of a joint and engage like a hook on the opposite side, 4. implants with an articular connection.
- The best known representative of the first group (rigid implants) is the so-called locking screw. When using this principle, the two partners in the joint are secured rigidly relative to one another by a direct screw connection, which guarantees congruence of the joint, but blocks relative movement of the joint. Similar functions are achieved by bridging the joint with Kirschner's wires, optionally supplemented by wire cerlage or by using rigid osteosynthesis plates (especially in the area of the pelvis).
- Known representatives of the second group (flexible implants) include plastic cords or bands made of absorbable or non-absorbable materials (literature: R. W. Fremerey et al. (1996) “Surgical treatment of acute, complete rupture of the AC joint,”Unfallchirurg [Trauma Surgeon] 99:341-5), wire cables in the technique proposed by LABITZKE (literature: R. Labitzke (1982) “Wire cables and intraosseous pressure distribution systems in surgery,” Chirurg [Surgeon] 53:741-3) or the use of wire cerclage.
- Known representatives of the third group (screw-in implants with hooks) include hook plates proposed by Balser, Wolter or Dreithaler in a similar design for stabilization of ruptures of the acromioclavicular joint or the syndesmosis hooks developed by Engelbrecht (literature: E. Engelbrecht et al. “Syndesmosis hooks for treatment of tibio-fibular syndesmosis ruptures,”Chirurg 42:92) for stabilization of ruptures of the ankle joint. These implants allow good augmentation of the joint and essentially preserve mobility, but it is difficult to adjust the proper congruence of the joint, which can often be achieved only by bending the implant subsequently, because these implants do not have any suitable possibilities for adjustment. In addition, a relatively large surgical access area is required, which necessitates a greater surgical trauma.
- A typical representative of the fourth group (implants with an integrated joint) is the joint plate developed by Ramanzadeh for stabilization of ruptures of the acromioclavicular joint. However, this plate has the disadvantage that it is difficult to adjust the correct congruence of the joint, and the axes of rotation of the joint and the implant do not match, so the natural movement of the joint is at least partially blocked.
- It would therefore be desirable and advantageous to provide an improved implantable screw for stabilizing a joint or a bone fracture to obviate prior art shortcomings.
- According to one aspect of the present invention, this is achieved with an implant which augments the ligament connections reliably in joints with a small relative movement, while causing little or no impairment of the natural range of movement of the joint by providing an implantable screw which has a flexible shaft for stabilization of a joint or a bone.
- The present invention resolves prior art problems by providing the design of an implant which guarantees a transfer of tensile forces almost exclusively, whereas there is little or no transfer of bending torque, compressive forces and transverse forces through the flexible shaft and by providing an implantable screw for stabilization of a joint or a bone fracture comprising an elongated body with a proximal head portion and a distal insertion portion having a thread, wherein the head portion and the insertion portion are interconnected by a flexible shaft.
- The use of one or more such screws with a flexible shaft makes it possible to connect the bones involved in an unstable joint in such a way that there is little or no impairment of the natural joint movement.
- Likewise, it is possible through the use of one or more such screws having a flexible shaft to apply primarily interfragmentary tensile forces when creating screw connections in bone fractures.
- Such a screw makes it possible for both bones involved in a joint injury or both fragments involved in a bone injury to be joined by one or more screws which have a flexible shaft. This design of the implant guarantees transfer of tensile forces almost exclusively, while bending moments, compressive forces and transverse forces are not transmitted at all by the flexible shaft or only to a slight extent. In the case of capsule-ligament injuries of a joint, the screw is preferably installed so that the axis of the screw corresponds to the direction of the resultant force of the ligament connection of the joint. Ideal augmentation of the joint can be achieved in this way. In bone fractures, the screw is introduced at a right angle to the plane of the fracture and causes interfragmentary compression due to the tensile force.
- Widening of the surgical space can be achieved to advantage through this invention. In an advantageous embodiment, this invention is suitable for a so-called minimally invasive implantation.
- In addition, the screw according to this invention may be designed for use in surgery so that primarily tensile forces are transmitted but no significant bending moment is transmitted. Likewise, the screw according to this invention may be designed so that it can be introduced into the medullary cavity of a fractured bone by way of a so-called creep screw, thereby adapting to the contour of the medullary cavity, which is usually curved.
- It is advantageous if the planar axial moment of inertia of the screw is 30% less, preferably more than 50% less than that of a screw having the same outside diameter.
- The flexibility in the shaft area can be achieved by a wire cable, a wire bundle, a cord, a spiral or multiple webs and by fibers.
- When using a wire cable or a wire bundle, it is especially advantageous if the wire cable or wire bundle is reinforced on the outside by sleeves or a spiral. Twisting of the wire cable or wire bundle is thereby limited when a torsional moment is applied, and thus the wire cable or wire bundle is stabilized. In addition, the bending movement of the shaft can be limited by the size of the sleeve or the spiral windings and their spacing relative to one another.
- It is especially advantageous if the threaded part has a bone thread.
- According to a preferred embodiment, the head part has a wrench socket and has a smooth surface or a bone thread matching the threaded part, depending on the intended application of the implant, said thread having a larger diameter and a smaller thread pitch than the bone thread in the threaded part.
- With a high flexibility of the shaft and therefore inadequate transferability of the torsion moments required for the thread to penetrate, it is advantageous if the implantable screw has wrench sockets in the head part as well as in the threaded part. This allows a stepped wrench to act on these wrench sockets in synchronization.
- Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which:
- FIG. 1 is a bone screw according to the present invention, whose shaft is configured for flexibillity as a wire cable or as a wire bundle;
- FIG. 2 is a bone adjusting screw, whose shaft is configured for flexibility as a wire cable or as a wire bundle;
- FIG. 3 is a bone screw, with a bone thread on the distal side from the head and whose shaft is configured for flexibility as a wire cable or as a wire bundle, with a bone thread at the proximal head side, which has a larger diameter and a smaller thread pitch than the bone thread distal from the head;
- FIG. 4 is a screw, which has a bone thread on one side, with a shaft configured for flexibility as a wire cable, a cord or a wire bundle, and a bolt on the other side with a metal thread and a hexagon socket head nut screwed onto it;
- FIG. 5 is a bone screw, whose shaft is configured to be flexible in the manner of a spiral spring;
- FIG. 6a is a bone screw, which is preferably made of a biocompatible plastic with a flexible shaft composed of multiple webs;
- FIG. 6b is a hexagon head wrench for use with the bone screw of FIG. 6a;
- FIG. 7 is a bone screw, wherein the shaft consists of multiple fibers which are anchored alternately in the head part and in the threaded part of the bone screw,
- FIG. 8 is an embodiment of a bone screw according to the present invention for stabilization of the ankle joint (distal tibiofibular joint, syndesmosis);
- FIG. 9 is a further embodiment for stabilization of the acromioclavicular joint;
- FIG. 10 is another embodiment for stabilization of the iliosacral joint;
- FIG. 11 is another embodiment for stabilization in the area of the wrist with scapholunate dissociation;
- FIG. 12 is yet another embodiment for interfragmentary traction screws in the area of the patella with a fracture of the patella;
- FIG. 13 is a bone screw according to FIG. 4, where the wire cable or the wire bundle is reinforced by individual sleeves.
- Throughout all the Figures, same or corresponding elements are generally indicated by same reference numerals.
- Turning now to the drawing, and in particular to FIG. 1, there is shown a a bone screw, whose
head part 1 and whose threadedpart 2 are flexibly interconnected by a wire cable or awire bundle 3. The wire cable or the wire bundle is fixedly connected in the head part as well as in the threaded part through suitable connection methods (e.g., pressed, glued, soldered or welded connections). The use of a wire cable or a wire bundle allows the application of tensile forces and the transfer of torsion moments by way of a flexible shaft. Compressive forces, transverse forces or bending moments, however, are transmitted only to a slight extent. - FIG. 2 shows a bone locking screw which has a
head part 4, which is provided with a bone thread, and a threadedpart 5, which are flexibly interconnected by a wire cable orwire bundle 6 analogeous to FIG. 1. The thread on the head part and the threaded part are of the same size and the thread flanks are the same. In this way, a previously defined distance between two bones to be joined is established, regardless of the tightening torque of the screw. - FIG. 3 shows a bone screw with a thread-bearing
head part 7, which is flexibly connected to threadedpart 9 by a wire cable or awire bundle 8 analogeous to FIG. 1. According to the known function principle of the Herbert screw, the thread on the head part has a larger diameter in comparison with the threaded part and it has a smaller thread pitch. When this screw is screwed into a fractured bone perpendicular to the plane of the fracture, the two fragments are moved toward one another and are braced against one another, where the extent of the movement toward one another per revolution of the screw is obtained from the difference between the two thread pitches. - FIG. 4 shows a screw which has a threaded
part 10 on one side with a bone thread which is connected flexibly by a wire cable, a wire bundle or acord 11 to abolt 12, which has a metal or plastic thread. A hexagonsocket head nut 13 is screwed onto this bolt. In implantation of such a screw, first the threaded part with the bone thread is screwed into the bone by way of a stud bolt. This is done by means of a cannulated wrench which is pushed over the wire cable or the wire bundle or the cord and the bolt and meshes with thehexagon insert bit 14 of the threaded part. Then the hexagon socket head nut is screwed onto the bolt with a metal thread by means of a cannulated hexagon socket wrench. Next, the wire cable or wire bundle that projects on the hexagon socket or the projecting cord is shortened with a knife forceps. - FIG. 5 shows a variation of a
bone screw 15, whoseshaft 16 is designed in the form of a spiral. In addition to the flexibility of the shaft, an elastic component is added in this variation. The amount of flexibility and elasticity of the shaft depends to a great extent on the design of the spiral. Large spirals have only a low flexibility and elasticity, whereas small spirals are highly elastic and flexible. Such a design variant is especially suitable for intramedullary screwing of bones with curved surfaces, e.g., as so-called creep screws in the area of the pelvis. The shaft length is limited by a wire cable, a wire bundle, a chain, a fiber or a flexible pin (not shown), preferably arranged in the spiral. - FIG. 6a shows a
bone screw 17, which is preferably suitable for being fabricated from absorbable or non-absorbable plastics and is designed so that it can be manufactured by the casting technology. The flexibility of the shaft here is achieved due to the fact that it consists ofmultiple webs 18. The extent of the flexibility of this variant is defined by the number and dimensions of the webs and by the material properties of the material used. Since the webs are capable of transmitting the torsion moments which occur in tightening the screw only to a very limited extent, it is especially advantageous if ahexagon head 21, 22 (or a different type of wrench socket) is provided in both the threadedpart 19 and thehead part 20, so that a torsion load on the webs is prevented when using a corresponding stepped hexagon head wrench according to FIG. 6b. Likewise, it is advantageous for many applications if the threaded part is cannulated 23, so that application of the screw can take place through a corresponding guide wire. - FIG. 7 shows a
bone screw 24, which is equally suitable for fabrication from an implant metal as well as from absorbable or non-absorbable plastics and which is designed so that the individual components can be manufactured by the casting technology. The flexibility of the shaft is achieved by the fact that it consists ofmultiple fibers 25 which are either held ineyelets head part 28 and in the threadedpart 29 of the screw according to the figure or are each securely anchored in the head part and in the threaded part. Since this variant can transmit only tensile forces, ahexagon head socket 30, 31 (or a different type of wrench socket) is to be provided in both the head part and in the threaded part, analogeous to FIG. 6a, permitting the use of a stepped wrench according to FIG. 6b, with which the head part and threaded part can be screwed equally into the bone. - FIG. 8 shows an embodiment of a bone screw with a
flexible shaft 32 according to FIG. 4, which is introduced into the area of the ankle for augmentation of a ruptured syndesmosis 33 (syndesmosis=ligament connection between thefibula 34 and thetibia 35 in the area of the ankle joint). In contrast with a conventional rigid screw connection, the natural relative movement between the fibula and tibia is preserved due to the flexible shaft. However, it is impossible for the ankle to yield, which would lead to instability of theankle bone 36. The dimensions of the bone screw are selected so that it can be introduced into the bone through the boreholes in a conventional osteosynthesis plate when there is a concomitant fracture of the lateral malleolus. - FIG. 9 shows another embodiment of a bone screw with a
flexible shaft 37 according to FIG. 1 in the area of the ligament connection between theshoulder blade 38 and thecollar bone 39, on the acromioclavicular joint 40. The rupture of all three ligaments involved in this connection is diagramed schematically (acromioclavicular ligament 41,trapezoid ligament 42, conoid 43). According to the principle described in 1941 by Bosworth for the use of rigid screws, the screw is screwed into thecoracoid process 44 through the collar bone. In contrast with a conventional rigid screw connection, the natural relative movement between the collar bone and the shoulder blade is maintained due to the flexible shaft. However, a high position of the collar bone, which would lead to incongruence of the acromioclavicular joint, is impossible. - FIG. 10 shows another embodiment of a bone screw having a
flexible shaft 45 according to FIG. 4 in the area of the ligament connection between thesacrum 46 and the iliac bone 47 (iliosacral joint 48). In the case of an instability of the posterior pelvic ring due to injury, stabilization is accomplished by screwing one or more screws with a flexible shaft into the bone. In contrast with a conventional rigid screw connection, the natural relative movement between the sacrum and the ileum is preserved due to the flexible shaft. However, gaping of the joint gap is reliably prevented due to the screw having a flexible shaft. - FIG. 11 shows another embodiment of a bone screw having a
flexible shaft 49 according to FIG. 4 in the area of the wrist in the case of a ruptured ligament between thescaphoid bone 50 and the lunate bone 51 (scapholunate dissociation). Repositioning and stabilization are accomplished by screwing a screw having a flexible shaft into the bone. In contrast with a conventional rigid screw connection or stabilization with Kirschner's wires, the natural relative movement between the scaphoid bone and the lunate bone is preserved due to the flexible shaft. However, the wrist bones that have been screwed together cannot yield laterally. - FIG. 12 shows another embodiment of bone screws with a
flexible shaft patella 54. According to the known tension belt principle, the tensile forces conducted from the quadriceps tendon over the patella and into the patellar tendon are transferred through the two bone screws with a flexible shaft and the two fragments of the patella are compressed together. - FIG. 13 shows a bone screw according to FIG. 4, where wire cable or wire bundle is reinforced by
individual sleeves 55. In accordance with their winding, wire cables tend to twist and coil up when a torsion moment is introduced in the opposite direction to their winding. Due to the fact that sleeves or a spiral are pushed onto the wire cable or the wire bundle, this twisting can be limited, and at the same time, a stabilization of the wire cable can be achieved due to the resulting clamping of the wire cable in the sleeve or the spiral. This allows higher torsion moments to be transmitted than is possible with an unreinforced wire cable or wire bundle. In addition, depending on the design of the sleeve and the spacing of the individual sleeves or spiral windings relative to one another, the extent of the bending of the flexible screw shaft can be limited. - While the invention has been illustrated and described as embodied in an implantable bone screw for a joint or bone fracture, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit of the present invention. The embodiments were chosen and described in order to best explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/174,906 US20020198527A1 (en) | 2001-06-21 | 2002-06-18 | Implantable screw for stabilization of a joint or a bone fracture |
US11/100,844 US7625395B2 (en) | 2001-06-21 | 2005-04-07 | Implantable screw for stabilization of a joint or a bone fracture |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10129490A DE10129490A1 (en) | 2001-06-21 | 2001-06-21 | Implantable screw for stabilization of joint or bone fracture, has flexible shaft which interconnects proximal head portion and distal insertion portion of elongated screw body |
DE10129490.5 | 2001-06-21 | ||
US30126701P | 2001-06-27 | 2001-06-27 | |
US10/174,906 US20020198527A1 (en) | 2001-06-21 | 2002-06-18 | Implantable screw for stabilization of a joint or a bone fracture |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/100,844 Continuation US7625395B2 (en) | 2001-06-21 | 2005-04-07 | Implantable screw for stabilization of a joint or a bone fracture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020198527A1 true US20020198527A1 (en) | 2002-12-26 |
Family
ID=7688667
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/174,906 Abandoned US20020198527A1 (en) | 2001-06-21 | 2002-06-18 | Implantable screw for stabilization of a joint or a bone fracture |
US11/100,844 Expired - Lifetime US7625395B2 (en) | 2001-06-21 | 2005-04-07 | Implantable screw for stabilization of a joint or a bone fracture |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/100,844 Expired - Lifetime US7625395B2 (en) | 2001-06-21 | 2005-04-07 | Implantable screw for stabilization of a joint or a bone fracture |
Country Status (8)
Country | Link |
---|---|
US (2) | US20020198527A1 (en) |
EP (1) | EP1273269B1 (en) |
JP (1) | JP4740513B2 (en) |
AU (1) | AU4888102A (en) |
CA (1) | CA2391115A1 (en) |
DE (2) | DE10129490A1 (en) |
ES (1) | ES2278830T3 (en) |
ZA (1) | ZA200204327B (en) |
Cited By (197)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030078584A1 (en) * | 2001-10-18 | 2003-04-24 | Kishore Tipirneni | System and method for fixation of bone fractures |
EP1430845A1 (en) * | 2002-12-19 | 2004-06-23 | Stryker Trauma GmbH | Means for osteosynthesis comprising medullary nail, screw and spring sleeve |
WO2004069065A1 (en) * | 2003-02-10 | 2004-08-19 | Cell Center Cologne Gmbh | Dynamic epiphysial telescopic screw |
US20040225289A1 (en) * | 2003-05-07 | 2004-11-11 | Biedermann Motech Gmbh | Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device |
US20050113929A1 (en) * | 2000-02-16 | 2005-05-26 | Cragg Andrew H. | Spinal mobility preservation apparatus |
US20050143823A1 (en) * | 2003-12-31 | 2005-06-30 | Boyd Lawrence M. | Dynamic spinal stabilization system |
US20050154390A1 (en) * | 2003-11-07 | 2005-07-14 | Lutz Biedermann | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US20050177240A1 (en) * | 2004-02-06 | 2005-08-11 | Jason Blain | Vertebral facet joint prosthesis and method of fixation |
US20050216003A1 (en) * | 2004-03-03 | 2005-09-29 | Biedermann Motech Gmbh | Bone anchoring element for anchoring in a bone or vertebra, and stabilization device with such a bone anchoring element |
WO2005092226A1 (en) * | 2004-03-26 | 2005-10-06 | Synthes Gmbh | Articulated bone screw |
US20060079898A1 (en) * | 2003-10-23 | 2006-04-13 | Trans1 Inc. | Spinal motion preservation assemblies |
US20060155297A1 (en) * | 2003-10-23 | 2006-07-13 | Ainsworth Stephen D | Driver assembly for simultaneous axial delivery of spinal implants |
US20060195099A1 (en) * | 2005-02-15 | 2006-08-31 | Apex Abc, Llc | Bone screw for positive locking but flexible engagement to a bone |
US20060235414A1 (en) * | 2005-04-14 | 2006-10-19 | Sdgi Holdings, Inc. | Intervertebral joint |
WO2006122218A2 (en) | 2005-05-10 | 2006-11-16 | Acumed Sports Medicine Llc | Bone connector with pivotable joint |
EP1786341A2 (en) * | 2004-08-14 | 2007-05-23 | TRANS1, Inc. | Therapy provision to adjacent motion segments |
US20070162026A1 (en) * | 2001-10-18 | 2007-07-12 | Fxdevices Llc | System and method for a cap used in the fixation of bone fractures |
US20070168036A1 (en) * | 2003-10-23 | 2007-07-19 | Trans1 Inc. | Spinal motion preservation assemblies |
US20070260248A1 (en) * | 2001-10-18 | 2007-11-08 | Fxdevices, Llc | Cannulated bone screw system and method |
US20070270804A1 (en) * | 2006-02-02 | 2007-11-22 | Chudik Steven C | Acromioclavicular joint repair system |
US20080004707A1 (en) * | 2003-10-23 | 2008-01-03 | Cragg Andrew H | Prosthetic nucleus apparatus and method |
EP1931287A2 (en) * | 2005-10-06 | 2008-06-18 | Amei Technologies Inc. | Bone alignment implant and method of use |
US20080154316A1 (en) * | 2004-08-09 | 2008-06-26 | Inbone Technologies, Inc. | Systems and methods for the fixation or fusion bone related applications |
US20080177333A1 (en) * | 2006-10-24 | 2008-07-24 | Warsaw Orthopedic, Inc. | Adjustable jacking implant |
US20080177291A1 (en) * | 2006-11-01 | 2008-07-24 | Jensen David G | Orthopedic connector system |
US20080188899A1 (en) * | 2007-02-07 | 2008-08-07 | Apex Biomedical Company, Llc | Rotationally asymmetric bone screw |
US20080213714A1 (en) * | 2005-11-11 | 2008-09-04 | Alexander Knoch | Rotary Furnace Burner |
US20080243191A1 (en) * | 2001-10-18 | 2008-10-02 | Fx Devices, Llc | Adjustable bone plate fixation system and metho |
US20080243132A1 (en) * | 2001-10-18 | 2008-10-02 | Fx Devices, Llc | Tensioning system and method for the fixation of bone fractures |
US20080262502A1 (en) * | 2006-10-24 | 2008-10-23 | Trans1, Inc. | Multi-membrane prosthetic nucleus |
WO2008128662A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
US20080269807A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US20090036893A1 (en) * | 2007-08-02 | 2009-02-05 | Proactive Orthopedic, Llc | Fixation and alignment device and method used in orthopaedic surgery |
US20090048606A1 (en) * | 2001-10-18 | 2009-02-19 | Fxdevices Llc | Guide system and method for the fixation of bone fractures |
US20090062868A1 (en) * | 2005-04-04 | 2009-03-05 | Zimmer Gmbh | Pedicle screw |
US20090112269A1 (en) * | 2007-10-24 | 2009-04-30 | The Cleveland Clinic Foundation | Apparatus and method for affixing body structures |
US20090112177A1 (en) * | 2007-10-31 | 2009-04-30 | Warsaw Orthopedic, Inc. | Implantable Device And Method for Delivering Drug Depots To A Site Beneath the Skin |
US20090131936A1 (en) * | 2001-10-18 | 2009-05-21 | Kishore Tipirneni | System and method for the fixation of bone fractures |
US20090131990A1 (en) * | 2001-10-18 | 2009-05-21 | Kishore Tipirneni | Bone screw system and method |
US20090198287A1 (en) * | 2008-02-04 | 2009-08-06 | Mark Hsien Nien Chiu | Bone fixation device and method of use thereof |
US20090210016A1 (en) * | 2008-02-14 | 2009-08-20 | Champagne Lloyd P | Joint fusion device |
US20100042156A1 (en) * | 2003-10-17 | 2010-02-18 | Biedermann Motech Gmbh | Rod-shaped implant element with flexible section |
US20100145462A1 (en) * | 2006-10-24 | 2010-06-10 | Trans1 Inc. | Preformed membranes for use in intervertebral disc spaces |
US20100292769A1 (en) * | 2009-05-15 | 2010-11-18 | Brounstein Daniel M | Methods, systems and devices for neuromodulating spinal anatomy |
US20100312245A1 (en) * | 2001-10-18 | 2010-12-09 | Orthoip, Llc | Bone screw system and method for the fixation of bone fractures |
US20110054545A1 (en) * | 2009-08-28 | 2011-03-03 | Lloyd Champagne | Distal interphalangeal fusion device and method of use |
US20110118780A1 (en) * | 2007-01-17 | 2011-05-19 | Holmes Jr George B | Bunion repair using suture-button construct |
US20110130789A1 (en) * | 2007-01-17 | 2011-06-02 | Paul Shurnas | Lispranc repair using suture anchor-button construct |
GR1007304B (en) * | 2009-05-27 | 2011-06-08 | Ελευθεριος Σπυριδωνα Νικας | Screw or bolt for the syndesmosis between fibula and tibia |
US20110137356A1 (en) * | 2008-08-12 | 2011-06-09 | Uso-Ck, Llc | Bone compression device and methods |
US8114141B2 (en) | 2007-12-17 | 2012-02-14 | Synthes Usa, Llc | Dynamic bone fixation element and method of using the same |
EP2446842A1 (en) * | 2010-10-26 | 2012-05-02 | Christian Röbling | Device for stabilising a spine |
WO2012064401A1 (en) * | 2010-09-10 | 2012-05-18 | Competitive Global Medical, Llc | Proximal interphalangeal fusion device |
EP2286747A3 (en) * | 2004-03-03 | 2013-01-02 | Biedermann Technologies GmbH & Co. KG | Enchoring element and dynamic stabilisation device for vertebral bodies or bones |
US20130041412A1 (en) * | 2011-08-09 | 2013-02-14 | Depuy Spine, Inc. | Flexible pedicle screws |
US8388667B2 (en) | 2004-08-09 | 2013-03-05 | Si-Bone, Inc. | Systems and methods for the fixation or fusion of bone using compressive implants |
US8414648B2 (en) | 2004-08-09 | 2013-04-09 | Si-Bone Inc. | Apparatus, systems, and methods for achieving trans-iliac lumbar fusion |
US8425570B2 (en) | 2004-08-09 | 2013-04-23 | Si-Bone Inc. | Apparatus, systems, and methods for achieving anterior lumbar interbody fusion |
US8444693B2 (en) | 2004-08-09 | 2013-05-21 | Si-Bone Inc. | Apparatus, systems, and methods for achieving lumbar facet fusion |
US8470004B2 (en) | 2004-08-09 | 2013-06-25 | Si-Bone Inc. | Apparatus, systems, and methods for stabilizing a spondylolisthesis |
US20130172946A1 (en) * | 2011-12-28 | 2013-07-04 | Industrial Technology Research Institute | Implant module and method for repairing avulsion fracture |
WO2013130741A1 (en) * | 2012-02-28 | 2013-09-06 | Synthes Usa, Llc | Expandable fastener |
US8529611B2 (en) | 2010-03-16 | 2013-09-10 | Competitive Global Medical, Llc | Distal interphalangeal fusion method and device |
US20130345783A1 (en) * | 2006-12-06 | 2013-12-26 | Albert G. Burdulis | Hard tissue anchors and delivery devices |
CN103479417A (en) * | 2013-10-14 | 2014-01-01 | 天津正天医疗器械有限公司 | Distal tibiofibular syndesmosis hinge type flexible fixing device |
DE102012106336A1 (en) * | 2012-07-13 | 2014-01-16 | Aesculap Ag | Bone screw for use in bone fixation system for connecting two bone portions, has distal screw part and proximal screw part, where distal screw part has distal bone thread, and proximal screw part has proximal bone thread |
US8652137B2 (en) | 2007-02-22 | 2014-02-18 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
US8685067B2 (en) | 2010-12-21 | 2014-04-01 | Competitive Global Medical, Llc | Compression plate apparatus |
US8740949B2 (en) | 2011-02-24 | 2014-06-03 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
US8740955B2 (en) | 2005-02-15 | 2014-06-03 | Zimmer, Inc. | Bone screw with multiple thread profiles for far cortical locking and flexible engagement to a bone |
US8778026B2 (en) | 2012-03-09 | 2014-07-15 | Si-Bone Inc. | Artificial SI joint |
US8828067B2 (en) | 2001-10-18 | 2014-09-09 | Orthoip, Llc | Bone screw system and method |
US20140305266A1 (en) * | 2011-05-09 | 2014-10-16 | Akoustos Ab | Attachment arrangement |
US8882816B2 (en) | 2007-08-02 | 2014-11-11 | Proactive Orthopedics, Llc | Fixation and alignment device and method used in orthopaedic surgery |
USD724733S1 (en) | 2011-02-24 | 2015-03-17 | Spinal Elements, Inc. | Interbody bone implant |
US8983624B2 (en) | 2006-12-06 | 2015-03-17 | Spinal Modulation, Inc. | Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels |
US8992533B2 (en) | 2007-02-22 | 2015-03-31 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
US9011505B2 (en) | 2009-02-09 | 2015-04-21 | Memometal Technologies | Screw for osteosynthesis and arthrodesis |
US9044592B2 (en) | 2007-01-29 | 2015-06-02 | Spinal Modulation, Inc. | Sutureless lead retention features |
US9044321B2 (en) | 2012-03-09 | 2015-06-02 | Si-Bone Inc. | Integrated implant |
US20150150614A1 (en) * | 2013-11-26 | 2015-06-04 | National Taiwan University Hospital | Bionic fixing apparatus |
US9056197B2 (en) | 2008-10-27 | 2015-06-16 | Spinal Modulation, Inc. | Selective stimulation systems and signal parameters for medical conditions |
US9060809B2 (en) | 2001-10-18 | 2015-06-23 | Orthoip, Llc | Lagwire system and method for the fixation of bone fractures |
US9101399B2 (en) | 2011-12-29 | 2015-08-11 | Proactive Orthopedics, Llc | Anchoring systems and methods for surgery |
US9138219B2 (en) | 2010-12-29 | 2015-09-22 | Tarsus Medical Inc. | Methods and devices for treating a syndesmosis injury |
US20150320450A1 (en) * | 2014-05-12 | 2015-11-12 | DePuy Synthes Products, Inc. | Sacral fixation system |
US20150320451A1 (en) * | 2014-05-12 | 2015-11-12 | DePuy Synthes Products, Inc. | Sacral fixation system |
US9205259B2 (en) | 2004-09-08 | 2015-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Neurostimulation system |
US9205261B2 (en) | 2004-09-08 | 2015-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Neurostimulation methods and systems |
US9220535B2 (en) | 2010-10-26 | 2015-12-29 | Christian Röbling | Process for introducing a stabilizing element into a vertebral column |
US20160051250A1 (en) * | 2002-06-20 | 2016-02-25 | Arthrex, Inc. | Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder |
US9271765B2 (en) | 2011-02-24 | 2016-03-01 | Spinal Elements, Inc. | Vertebral facet joint fusion implant and method for fusion |
US9314618B2 (en) | 2006-12-06 | 2016-04-19 | Spinal Modulation, Inc. | Implantable flexible circuit leads and methods of use |
CN105496531A (en) * | 2016-02-04 | 2016-04-20 | 宝楠生技股份有限公司 | Fixing device for re-fixing broken fibula to tibia |
US9327110B2 (en) | 2009-10-27 | 2016-05-03 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Devices, systems and methods for the targeted treatment of movement disorders |
US9339316B2 (en) | 2012-03-13 | 2016-05-17 | DePuy Synthes Products, Inc. | Dynamic bone fixation element |
DE102014116776A1 (en) * | 2014-11-17 | 2016-05-19 | Aesculap Ag | Bone screw and bone fixation system |
DE102014226493A1 (en) * | 2014-12-18 | 2016-06-23 | Holger Erne | Connecting element for fixing at least two bones or bone fragments of a living being |
US9421044B2 (en) | 2013-03-14 | 2016-08-23 | Spinal Elements, Inc. | Apparatus for bone stabilization and distraction and methods of use |
WO2016133938A1 (en) * | 2015-02-16 | 2016-08-25 | Akros Medical, Inc. | Devices, systems, and methods for semi-rigid bone fixation |
US9427570B2 (en) | 2006-12-06 | 2016-08-30 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Expandable stimulation leads and methods of use |
USD765854S1 (en) | 2011-10-26 | 2016-09-06 | Spinal Elements, Inc. | Interbody bone implant |
USD765853S1 (en) | 2013-03-14 | 2016-09-06 | Spinal Elements, Inc. | Flexible elongate member with a portion configured to receive a bone anchor |
US9456855B2 (en) | 2013-09-27 | 2016-10-04 | Spinal Elements, Inc. | Method of placing an implant between bone portions |
US9468762B2 (en) | 2009-03-24 | 2016-10-18 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Pain management with stimulation subthreshold to paresthesia |
US9480515B2 (en) | 2012-07-12 | 2016-11-01 | Exsomed International IP, LLC | Metacarpal bone stabilization device |
US20160317200A1 (en) * | 2013-12-17 | 2016-11-03 | Stichting Katholieke Universiteit | Intramedullary device for mid-shaft clavicle fractures |
US9486633B2 (en) | 2004-09-08 | 2016-11-08 | The Board Of Trustees Of The Leland Stanford Junior University | Selective stimulation to modulate the sympathetic nervous system |
US9492202B2 (en) | 2005-08-24 | 2016-11-15 | Biedermann Technologies Gmbh & Co. Kg | Rod-shaped implant element for the application in spine surgery or trauma surgery and stabilization device with such a rod-shaped implant element |
US9510877B2 (en) | 2007-11-14 | 2016-12-06 | DePuy Synthes Products, Inc. | Hybrid bone fixation element and methods of using the same |
US9539084B2 (en) | 2012-01-23 | 2017-01-10 | Exsomed International IP. LLC | Devices and methods for tendon repair |
US9622783B2 (en) | 2004-08-09 | 2017-04-18 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
EP3162313A1 (en) * | 2015-10-23 | 2017-05-03 | K2M, Inc. | Semi-constrained bone screw and insertion instrument |
US9662157B2 (en) | 2014-09-18 | 2017-05-30 | Si-Bone Inc. | Matrix implant |
US9662158B2 (en) | 2004-08-09 | 2017-05-30 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint |
US9724149B2 (en) | 2013-03-07 | 2017-08-08 | Warsaw Orhtopedic, Inc. | Surgical implant system and method |
WO2017151629A1 (en) * | 2016-02-29 | 2017-09-08 | Fenner U.S., Inc. | Conveyor belt connector and method for forming a belt |
US9820784B2 (en) | 2013-03-14 | 2017-11-21 | Spinal Elements, Inc. | Apparatus for spinal fixation and methods of use |
US9839448B2 (en) | 2013-10-15 | 2017-12-12 | Si-Bone Inc. | Implant placement |
US9839435B2 (en) | 2011-11-14 | 2017-12-12 | The University Of British Columbia | Intramedullary fixation system for management of pelvic and acetabular fractures |
US9839450B2 (en) | 2013-09-27 | 2017-12-12 | Spinal Elements, Inc. | Device and method for reinforcement of a facet |
US9855036B2 (en) | 2013-11-13 | 2018-01-02 | Arthrex, Inc. | Staples for generating and applying compression within a body |
US9861413B2 (en) | 2013-11-11 | 2018-01-09 | Arthrex, Inc. | Screws for generating and applying compression within a body |
US9907597B2 (en) | 2008-08-12 | 2018-03-06 | Charles E. Kollmer | Bone compression system and associated methods |
US9931142B2 (en) | 2004-06-10 | 2018-04-03 | Spinal Elements, Inc. | Implant and method for facet immobilization |
US20180092681A1 (en) * | 2016-10-05 | 2018-04-05 | Bluewater Medical GmbH | Screw |
US9936983B2 (en) | 2013-03-15 | 2018-04-10 | Si-Bone Inc. | Implants for spinal fixation or fusion |
US9949843B2 (en) | 2004-08-09 | 2018-04-24 | Si-Bone Inc. | Apparatus, systems, and methods for the fixation or fusion of bone |
US10016198B2 (en) | 2014-11-13 | 2018-07-10 | Arthrex, Inc. | Staples for generating and applying compression within a body |
US10064737B2 (en) | 2015-12-07 | 2018-09-04 | Industrial Technology Research Institute | Implant device for osseous integration |
US20180271573A1 (en) * | 2017-02-07 | 2018-09-27 | Syntorr, Inc. | Devices and methods for repairing bone fractures |
US10136929B2 (en) | 2015-07-13 | 2018-11-27 | IntraFuse, LLC | Flexible bone implant |
US10154863B2 (en) | 2015-07-13 | 2018-12-18 | IntraFuse, LLC | Flexible bone screw |
US10166033B2 (en) | 2014-09-18 | 2019-01-01 | Si-Bone Inc. | Implants for bone fixation or fusion |
US10179014B1 (en) | 2012-06-01 | 2019-01-15 | Nuvasive, Inc. | Systems and methods for promoting sacroiliac joint fusion |
US10188161B2 (en) | 2014-01-06 | 2019-01-29 | Exsomed International IP, LLC | Gloves with sensory windows |
US10194923B2 (en) | 2016-05-10 | 2019-02-05 | Exsomed International IP, LLC | Tool for percutaneous joint cartilage destruction and preparation for joint fusion |
US10245091B2 (en) | 2015-12-30 | 2019-04-02 | Exsomed Holding Company, Llc | Dip fusion spike screw |
US10251686B2 (en) | 2010-11-17 | 2019-04-09 | Arthrex, Inc. | Adjustable suture-button construct for ankle syndesmosis repair |
US10258394B2 (en) | 2014-10-14 | 2019-04-16 | The University Of British Columbia | Systems and methods for intermedullary bone fixation |
US10307188B2 (en) | 2014-03-06 | 2019-06-04 | The University Of British Columbia | Shape adaptable intramedullary fixation device |
US10363140B2 (en) | 2012-03-09 | 2019-07-30 | Si-Bone Inc. | Systems, device, and methods for joint fusion |
US10376206B2 (en) | 2015-04-01 | 2019-08-13 | Si-Bone Inc. | Neuromonitoring systems and methods for bone fixation or fusion procedures |
US10384048B2 (en) | 2014-07-25 | 2019-08-20 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having an occluding member |
WO2019168817A1 (en) * | 2018-02-27 | 2019-09-06 | The University Of Toledo | Syndesmosis fixation and reconstruction system and method of using the same |
US10426533B2 (en) | 2012-05-04 | 2019-10-01 | Si-Bone Inc. | Fenestrated implant |
US10434261B2 (en) | 2016-11-08 | 2019-10-08 | Warsaw Orthopedic, Inc. | Drug pellet delivery system and method |
US10441330B2 (en) | 2015-05-19 | 2019-10-15 | Exsomed Holding Company, Llc | Distal radius plate |
US10478603B2 (en) | 2014-07-25 | 2019-11-19 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having a retaining member |
US10485595B2 (en) | 2015-07-13 | 2019-11-26 | IntraFuse, LLC | Flexible bone screw |
US10499960B2 (en) | 2015-07-13 | 2019-12-10 | IntraFuse, LLC | Method of bone fixation |
US10507041B2 (en) | 2013-11-26 | 2019-12-17 | Industrial Technology Research Institute | Bionic fixing apparatus and apparatus for pulling out the same |
US10512734B2 (en) * | 2014-04-03 | 2019-12-24 | Versago Vascular Access, Inc. | Devices and methods for installation and removal of a needle tip of a needle |
US10549081B2 (en) | 2016-06-23 | 2020-02-04 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having a retaining member |
US10575883B2 (en) | 2014-12-15 | 2020-03-03 | Smith & Nephew, Inc. | Active fracture compression implants |
WO2020097482A1 (en) * | 2018-11-08 | 2020-05-14 | Nextremity Solutions, Inc. | Bone fixation device and method |
US10667923B2 (en) | 2016-10-31 | 2020-06-02 | Warsaw Orthopedic, Inc. | Sacro-iliac joint implant system and method |
US10758361B2 (en) | 2015-01-27 | 2020-09-01 | Spinal Elements, Inc. | Facet joint implant |
US10835728B2 (en) | 2009-12-04 | 2020-11-17 | Versago Vascular Access, Inc. | Vascular access port |
US10888363B2 (en) | 2017-12-06 | 2021-01-12 | Stout Medical Group, L.P. | Attachment device and method for use |
WO2021011313A1 (en) * | 2019-07-12 | 2021-01-21 | Stout Medical Group, L.P. | Attachment device and method for use |
US10898249B2 (en) | 2015-01-28 | 2021-01-26 | Arthrex, Inc. | Self-compressing screws for generating and applying compression within a body |
US10905866B2 (en) | 2014-12-18 | 2021-02-02 | Versago Vascular Access, Inc. | Devices, systems and methods for removal and replacement of a catheter for an implanted access port |
US11058815B2 (en) | 2017-12-21 | 2021-07-13 | Versago Vascular Access, Inc. | Medical access ports, transfer devices and methods of use thereof |
US11116519B2 (en) | 2017-09-26 | 2021-09-14 | Si-Bone Inc. | Systems and methods for decorticating the sacroiliac joint |
US11147681B2 (en) | 2017-09-05 | 2021-10-19 | ExsoMed Corporation | Small bone angled compression screw |
US11147688B2 (en) | 2013-10-15 | 2021-10-19 | Si-Bone Inc. | Implant placement |
US11147604B2 (en) | 2016-01-12 | 2021-10-19 | ExsoMed Corporation | Bone stabilization device |
US11154687B2 (en) | 2014-12-18 | 2021-10-26 | Versago Vascular Access, Inc. | Catheter patency systems and methods |
US11191645B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Small bone tapered compression screw |
US11191576B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Intramedullary threaded nail for radial cortical fixation |
US20210401472A1 (en) * | 2016-04-25 | 2021-12-30 | Imds Llc | Joint fusion implant and methods |
US11229781B2 (en) | 2015-07-14 | 2022-01-25 | Versago Vascular Access, Inc. | Medical access ports, transfer devices and methods of use thereof |
US11234830B2 (en) | 2019-02-14 | 2022-02-01 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
US11259849B2 (en) | 2013-10-02 | 2022-03-01 | ExsoMed Corporation | Full wrist fusion device |
US11304733B2 (en) | 2020-02-14 | 2022-04-19 | Spinal Elements, Inc. | Bone tie methods |
US11317956B1 (en) * | 2021-08-26 | 2022-05-03 | University Of Utah Research Foundation | Active compression bone screw |
US11344354B2 (en) | 2019-09-09 | 2022-05-31 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US11369419B2 (en) | 2019-02-14 | 2022-06-28 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
US11413451B2 (en) | 2010-05-10 | 2022-08-16 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Methods, systems and devices for reducing migration |
US11419645B2 (en) | 2016-10-05 | 2022-08-23 | University Of British Columbia | Intramedullary fixation device with shape locking interface |
CN115054358A (en) * | 2016-02-26 | 2022-09-16 | 艾缇沃托公司 | Active compression device, method of assembly and method of use |
US11457959B2 (en) | 2019-05-22 | 2022-10-04 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
US11464552B2 (en) | 2019-05-22 | 2022-10-11 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
US11478275B2 (en) | 2014-09-17 | 2022-10-25 | Spinal Elements, Inc. | Flexible fastening band connector |
WO2022240742A1 (en) * | 2021-05-10 | 2022-11-17 | Trilliant Surgical Llc | Semi-rigid device for orthopedic fixation |
US11564812B2 (en) | 2019-09-09 | 2023-01-31 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US11571245B2 (en) | 2019-11-27 | 2023-02-07 | Si-Bone Inc. | Bone stabilizing implants and methods of placement across SI joints |
US11633292B2 (en) | 2005-05-24 | 2023-04-25 | Si-Bone Inc. | Apparatus, systems, and methods for the fixation or fusion of bone |
US11752011B2 (en) | 2020-12-09 | 2023-09-12 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
US11759614B2 (en) | 2015-11-23 | 2023-09-19 | Warsaw Orthopedic, Inc. | Enhanced stylet for drug depot injector |
US11832856B2 (en) | 2018-10-17 | 2023-12-05 | The University Of British Columbia | Bone-fixation device and system |
WO2023212615A3 (en) * | 2022-04-26 | 2024-01-04 | Rensselaer Polytechnic Institute | Implantable screw and methods for use |
WO2024100494A1 (en) * | 2022-11-09 | 2024-05-16 | DePuy Synthes Products, Inc. | Devices and methods for lateral fixation syndesmosis repair |
US11998255B1 (en) | 2023-08-26 | 2024-06-04 | University Of Utah Research Foundation | Cannulated continuous compression screw |
US12083026B2 (en) | 2019-12-09 | 2024-09-10 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
JP7556918B2 (en) | 2022-08-08 | 2024-09-26 | Necパーソナルコンピュータ株式会社 | Electronics |
Families Citing this family (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7963966B2 (en) * | 2000-06-06 | 2011-06-21 | Cole J Dean | Bone fixation system and method of use |
US9848930B2 (en) | 2013-07-03 | 2017-12-26 | Acumed Llc | Steerable fastener for bone |
US9005245B2 (en) * | 2002-08-30 | 2015-04-14 | Arthrex, Inc. | Acromioclavicular joint fixation technique |
ES2260169T3 (en) * | 2001-12-04 | 2006-11-01 | Synthes Ag Chur | OSTEOLOGICAL SCREW. |
US8216243B2 (en) | 2001-12-04 | 2012-07-10 | Synthes Usa, Llc | Headless compression screw with integrated reduction-compression instrument |
AU2003901971A0 (en) * | 2003-04-23 | 2003-05-15 | Dugal Simon Stewart James | A fixation device and method of fixation |
US7588575B2 (en) | 2003-10-21 | 2009-09-15 | Innovative Spinal Technologies | Extension for use with stabilization systems for internal structures |
US7967826B2 (en) | 2003-10-21 | 2011-06-28 | Theken Spine, Llc | Connector transfer tool for internal structure stabilization systems |
CN100581493C (en) * | 2003-11-07 | 2010-01-20 | 比德曼莫泰赫有限公司 | Spring element for a bone stabilizing device |
DE10351978A1 (en) * | 2003-11-07 | 2005-06-09 | Biedermann Motech Gmbh | Bone fixing unit e.g. bone screw, for stabilizing device, has shaft provided with elastic sections, and head formed to connect rod with unit that receives axial force due to elastic sections toward shaft axis and bending and torsion forces |
US7753937B2 (en) | 2003-12-10 | 2010-07-13 | Facet Solutions Inc. | Linked bilateral spinal facet implants and methods of use |
SE528324C2 (en) * | 2004-02-02 | 2006-10-17 | Braanemark Integration Ab | Fixture as well as tooth fixing elements and tooth fasteners |
WO2006034436A2 (en) | 2004-09-21 | 2006-03-30 | Stout Medical Group, L.P. | Expandable support device and method of use |
US8172855B2 (en) | 2004-11-24 | 2012-05-08 | Abdou M S | Devices and methods for inter-vertebral orthopedic device placement |
US20060264954A1 (en) * | 2005-04-07 | 2006-11-23 | Sweeney Thomas M Ii | Active compression screw system and method for using the same |
AU2006202272B2 (en) | 2005-06-02 | 2011-03-31 | Biomet C.V. | Scapholunate disassociation repair system |
EP1903949A2 (en) | 2005-07-14 | 2008-04-02 | Stout Medical Group, L.P. | Expandable support device and method of use |
FR2894454B1 (en) * | 2005-12-13 | 2008-08-08 | Maurice Bergoin | ORIGINAL PLATE OF SACRED ATTACHMENT LOCKED BY A S1 SCREWDRIVER SCREW AND AN ILIO-SACRED SCREW USING A VERY ORIGINAL VIEWING DEVICE |
JP5542273B2 (en) | 2006-05-01 | 2014-07-09 | スタウト メディカル グループ,エル.ピー. | Expandable support device and method of use |
US8715348B2 (en) * | 2007-04-25 | 2014-05-06 | Alaska Hand Research LLC | Method and device for stabilizing joints with limited axial movement |
US8043333B2 (en) | 2007-06-08 | 2011-10-25 | Synthes Usa, Llc | Dynamic stabilization system |
SE533303C2 (en) * | 2007-07-24 | 2010-08-17 | Henrik Hansson | Device for fixing bone fragments in case of bone fracture |
US8551171B2 (en) * | 2007-10-12 | 2013-10-08 | Globus Medical, Inc. | Methods of stabilizing the sacroiliac joint |
US8808338B2 (en) | 2007-12-05 | 2014-08-19 | Syntorr, Inc. | Flexible bone screw |
US8397417B2 (en) | 2008-04-09 | 2013-03-19 | John R. Jamison | Vibration damping in rifle construction |
US8707605B2 (en) | 2008-04-09 | 2014-04-29 | John R. Jamison | Flexible fasteners for use in rifle construction |
US8409208B2 (en) * | 2008-10-04 | 2013-04-02 | M. Samy Abdou | Device and method to access the anterior column of the spine |
WO2010056895A1 (en) | 2008-11-12 | 2010-05-20 | Stout Medical Group, L.P. | Fixation device and method |
US20100211176A1 (en) | 2008-11-12 | 2010-08-19 | Stout Medical Group, L.P. | Fixation device and method |
US8870876B2 (en) | 2009-02-13 | 2014-10-28 | Tarsus Medical Inc. | Methods and devices for treating hallux valgus |
ES2364412T3 (en) * | 2009-02-16 | 2011-09-01 | Stryker Trauma Ag | BONE SCREW AND CORRESPONDING MANUFACTURING PROCEDURE. |
US8303629B1 (en) * | 2009-03-19 | 2012-11-06 | Abdou M Samy | Spinous process fusion and orthopedic implants and methods |
US8015740B2 (en) * | 2009-04-22 | 2011-09-13 | John R. Jamison | Firearm construction employing three point bearing |
US9204886B2 (en) * | 2009-05-15 | 2015-12-08 | Zimmer, Inc. | Threaded, flexible implant and method for threading a curved hole |
JP5460157B2 (en) * | 2009-07-15 | 2014-04-02 | ナカシマメディカル株式会社 | Clavicle fixation plate |
US8277459B2 (en) | 2009-09-25 | 2012-10-02 | Tarsus Medical Inc. | Methods and devices for treating a structural bone and joint deformity |
CN101695453B (en) * | 2009-10-26 | 2011-07-13 | 杨惠林 | Vertebral arch pedicle extension device |
US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US8357162B2 (en) * | 2010-01-13 | 2013-01-22 | Paul Christopher Frake | Intramedullary mandibular condyle implants and method for application of the same |
US8652141B2 (en) * | 2010-01-21 | 2014-02-18 | Tarsus Medical Inc. | Methods and devices for treating hallux valgus |
US8696719B2 (en) | 2010-06-03 | 2014-04-15 | Tarsus Medical Inc. | Methods and devices for treating hallux valgus |
WO2012027490A2 (en) * | 2010-08-24 | 2012-03-01 | Stout Medical Group, L.P. | Support device and method for use |
WO2012029008A1 (en) * | 2010-08-29 | 2012-03-08 | Bonfix Ltd. | Orthopedic implant for treatment of bone deformities |
EP2661241B1 (en) * | 2011-01-05 | 2016-09-14 | Milux Holding SA | Knee joint device |
US9168076B2 (en) | 2011-01-25 | 2015-10-27 | Bridging Medical, Llc | Bone compression screw |
EP2739223A1 (en) * | 2011-08-02 | 2014-06-11 | NLT Spine Ltd. | Bone screw with deflectable portion |
US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
TWI452993B (en) | 2011-11-17 | 2014-09-21 | Metal Ind Res & Dev Ct | Bone screw, method for manufacturing the bone screw, and tool for mounting and removing the bone screw |
WO2013120082A1 (en) | 2012-02-10 | 2013-08-15 | Kassab Ghassan S | Methods and uses of biological tissues for various stent and other medical applications |
US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
CN102670291B (en) * | 2012-05-29 | 2014-01-29 | 开平市中心医院 | Inferior tibiofibular bolt elastic fixing device |
US20140031934A1 (en) * | 2012-07-26 | 2014-01-30 | Warsaw Orthopedic, Inc. | Sacro-iliac joint implant system and method |
US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
KR101401829B1 (en) | 2012-12-05 | 2014-05-29 | 고려대학교 산학협력단 | Proximal femoral nail with flexible nails apparatus |
EP2749239B1 (en) * | 2012-12-27 | 2016-12-07 | Biedermann Technologies GmbH & Co. KG | Dynamic bone anchor |
CA2900862C (en) | 2013-02-11 | 2017-10-03 | Cook Medical Technologies Llc | Expandable support frame and medical device |
RU2551303C1 (en) * | 2013-11-13 | 2015-05-20 | Государственное автономное учреждение здравоохранения "Республиканская клиническая больница Министерства здравоохранения Республики Татарстан" | Method of treating compound pronation-eversional fractures of distal knee joint |
US10045803B2 (en) | 2014-07-03 | 2018-08-14 | Mayo Foundation For Medical Education And Research | Sacroiliac joint fusion screw and method |
JP2016538938A (en) * | 2014-08-11 | 2016-12-15 | ライト メディカル テクノロジー インコーポレイテッドWright Medical Technology, Inc. | Flexible screw and method for ligament joint repair |
WO2016081528A1 (en) | 2014-11-17 | 2016-05-26 | Bridging Medical, Llc | Bone compression systems |
US10376367B2 (en) | 2015-07-02 | 2019-08-13 | First Ray, LLC | Orthopedic fasteners, instruments and methods |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US10702290B2 (en) | 2015-11-02 | 2020-07-07 | First Ray, LLC | Orthopedic fastener, retainer, and guide |
US11224467B2 (en) | 2016-02-26 | 2022-01-18 | Activortho, Inc. | Active compression apparatus, methods of assembly and methods of use |
US9833321B2 (en) | 2016-04-25 | 2017-12-05 | Imds Llc | Joint fusion instrumentation and methods |
US11013506B2 (en) | 2017-11-01 | 2021-05-25 | Wright Medical Technology, Inc. | Partially assembled knotless suture construct |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
CN106618705B (en) * | 2017-01-23 | 2018-09-21 | 南京鼓楼医院 | A kind of flexible connection pedicle screw |
US11051799B2 (en) | 2017-09-01 | 2021-07-06 | Wright Medical Technology, Inc. | Augmented suture construct for syndesmotic stabilization |
US11179234B2 (en) | 2017-09-15 | 2021-11-23 | Paragon 28, Inc. | Ligament fixation system, implants, devices, and methods of use |
EP3681423A4 (en) * | 2017-09-15 | 2021-06-02 | Paragon 28, Inc. | Ligament fixation system, implants, devices, and methods of use |
EP3691543A1 (en) | 2017-10-06 | 2020-08-12 | Paragon 28, Inc. | Ligament fixation system, implants, devices, and methods of use |
EP3700447B1 (en) | 2017-10-25 | 2023-09-06 | Paragon 28, Inc. | Ligament fixation system, implants, and devices with a compression cap |
AU2018380015A1 (en) * | 2017-12-04 | 2020-07-09 | Conventus Orthopaedics, Inc. | Active compression apparatus, methods of assembly and methods of use |
RU2690613C1 (en) * | 2018-02-01 | 2019-06-04 | Ахметкали Зайнолдаевич Дюсупов | Device for elimination of foot subluxation, diastasis of tibia syndesmosis, displacement of ankle fragments and transarticular fixation of foot to tibia |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US11963675B2 (en) | 2019-07-22 | 2024-04-23 | Emory University | Orthopedic fixation devices and methods |
US11737883B2 (en) | 2021-03-02 | 2023-08-29 | Arthrex, Inc. | Orthopaedic implants including breakaway fastener |
US11553948B2 (en) | 2021-05-20 | 2023-01-17 | University Of Utah Research Foundation | Bone fixation devices, systems, and methods |
DE102021118087A1 (en) | 2021-07-13 | 2023-01-19 | Ot Medizintechnik Gmbh | Symphysis Plate and Set |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4947502A (en) * | 1988-10-07 | 1990-08-14 | Boehringer Mannheim Corporation | Method of making a dynamic tension bone screw |
US4959064A (en) * | 1988-10-07 | 1990-09-25 | Boehringer Mannheim Corporation | Dynamic tension bone screw |
US5152790A (en) * | 1991-03-21 | 1992-10-06 | American Cyanamid Company | Ligament reconstruction graft anchor apparatus |
US5411523A (en) * | 1994-04-11 | 1995-05-02 | Mitek Surgical Products, Inc. | Suture anchor and driver combination |
US5571139A (en) * | 1995-05-19 | 1996-11-05 | Jenkins, Jr.; Joseph R. | Bidirectional suture anchor |
US5735898A (en) * | 1992-10-29 | 1998-04-07 | Medevelop Ab | Anchoring element supporting prosthesis or a joint mechanism for a reconstructed joint |
US5814047A (en) * | 1997-03-04 | 1998-09-29 | Industrial Technology Research Institute | Intramedullary nail fixation apparatus and its fixation method |
US6010507A (en) * | 1998-07-24 | 2000-01-04 | Rudloff; David A. C. | Repair of bone fracture using flexible fully or partially cannulated compression/decompression fixation element |
US6190411B1 (en) * | 1996-04-01 | 2001-02-20 | Kokbing Lo | Fixing element and ligament fixed with fixing element |
US20020013623A1 (en) * | 2000-05-24 | 2002-01-31 | Sklar Joseph H. | Method and apparatus for making a ligament repair using compressed tendons |
US6368326B1 (en) * | 1998-09-28 | 2002-04-09 | Daos Limited | Internal cord fixation device |
US6436124B1 (en) * | 1996-12-19 | 2002-08-20 | Bionx Implants Oy | Suture anchor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH681273A5 (en) * | 1988-12-16 | 1993-02-26 | Sulzer Ag | |
US5061137A (en) * | 1991-04-29 | 1991-10-29 | Ford Motor Company | Fastener with resilient linking means |
US5518351A (en) * | 1991-11-18 | 1996-05-21 | Peil; Eugene D. | Self-tapping screw having threaded nut as a head |
US5584629A (en) * | 1995-05-30 | 1996-12-17 | Crystal Medical Technology, A Division Of Folsom Metal Products, Inc. | Connector for medical implant |
FR2784019B3 (en) * | 1998-10-05 | 2000-08-04 | Jean Louis Audren | LOCKABLE ELASTIC CENTRO-MEDULAR NAIL FOR OSTEOSYNTHESIS OF HUMERUS FRACTURES |
DE29915204U1 (en) * | 1999-08-26 | 1999-12-09 | Hoffmann, Olaf, 17235 Neustrelitz | Spring screw |
US6908275B2 (en) * | 2002-04-29 | 2005-06-21 | Charles Nelson | Fastener having supplemental support and retention capabilities |
-
2001
- 2001-06-21 DE DE10129490A patent/DE10129490A1/en not_active Withdrawn
-
2002
- 2002-04-06 EP EP02007793A patent/EP1273269B1/en not_active Expired - Lifetime
- 2002-04-06 ES ES02007793T patent/ES2278830T3/en not_active Expired - Lifetime
- 2002-04-06 DE DE50209129T patent/DE50209129D1/en not_active Expired - Lifetime
- 2002-05-10 JP JP2002134818A patent/JP4740513B2/en not_active Expired - Fee Related
- 2002-05-30 ZA ZA200204327A patent/ZA200204327B/en unknown
- 2002-06-18 US US10/174,906 patent/US20020198527A1/en not_active Abandoned
- 2002-06-20 AU AU48881/02A patent/AU4888102A/en not_active Abandoned
- 2002-06-21 CA CA002391115A patent/CA2391115A1/en not_active Abandoned
-
2005
- 2005-04-07 US US11/100,844 patent/US7625395B2/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4947502A (en) * | 1988-10-07 | 1990-08-14 | Boehringer Mannheim Corporation | Method of making a dynamic tension bone screw |
US4959064A (en) * | 1988-10-07 | 1990-09-25 | Boehringer Mannheim Corporation | Dynamic tension bone screw |
US5152790A (en) * | 1991-03-21 | 1992-10-06 | American Cyanamid Company | Ligament reconstruction graft anchor apparatus |
US5735898A (en) * | 1992-10-29 | 1998-04-07 | Medevelop Ab | Anchoring element supporting prosthesis or a joint mechanism for a reconstructed joint |
US5411523A (en) * | 1994-04-11 | 1995-05-02 | Mitek Surgical Products, Inc. | Suture anchor and driver combination |
US5571139A (en) * | 1995-05-19 | 1996-11-05 | Jenkins, Jr.; Joseph R. | Bidirectional suture anchor |
US6190411B1 (en) * | 1996-04-01 | 2001-02-20 | Kokbing Lo | Fixing element and ligament fixed with fixing element |
US6436124B1 (en) * | 1996-12-19 | 2002-08-20 | Bionx Implants Oy | Suture anchor |
US5814047A (en) * | 1997-03-04 | 1998-09-29 | Industrial Technology Research Institute | Intramedullary nail fixation apparatus and its fixation method |
US6010507A (en) * | 1998-07-24 | 2000-01-04 | Rudloff; David A. C. | Repair of bone fracture using flexible fully or partially cannulated compression/decompression fixation element |
US6368326B1 (en) * | 1998-09-28 | 2002-04-09 | Daos Limited | Internal cord fixation device |
US20020013623A1 (en) * | 2000-05-24 | 2002-01-31 | Sklar Joseph H. | Method and apparatus for making a ligament repair using compressed tendons |
Cited By (415)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050149191A1 (en) * | 2000-02-16 | 2005-07-07 | Cragg Andrew H. | Spinal mobility preservation apparatus having an expandable membrane |
US7547324B2 (en) * | 2000-02-16 | 2009-06-16 | Trans1, Inc. | Spinal mobility preservation apparatus having an expandable membrane |
US7905905B2 (en) | 2000-02-16 | 2011-03-15 | Trans1, Inc. | Spinal mobility preservation apparatus |
US7905908B2 (en) | 2000-02-16 | 2011-03-15 | Trans1, Inc. | Spinal mobility preservation method |
US7662173B2 (en) * | 2000-02-16 | 2010-02-16 | Transl, Inc. | Spinal mobility preservation apparatus |
US7717958B2 (en) | 2000-02-16 | 2010-05-18 | Trans1, Inc. | Prosthetic nucleus apparatus |
US20050113929A1 (en) * | 2000-02-16 | 2005-05-26 | Cragg Andrew H. | Spinal mobility preservation apparatus |
US8702768B2 (en) | 2001-10-18 | 2014-04-22 | Orthoip, Llc | Cannulated bone screw system and method |
US20090131990A1 (en) * | 2001-10-18 | 2009-05-21 | Kishore Tipirneni | Bone screw system and method |
US8109936B2 (en) | 2001-10-18 | 2012-02-07 | Orthoip, Llc | Cap device for use in the fixation of bone structures |
US7901412B2 (en) | 2001-10-18 | 2011-03-08 | Orthoip, Llc | Method for the fixation of bone structures |
US20040172030A1 (en) * | 2001-10-18 | 2004-09-02 | Kishore Tipirrneni | System and method for the fixation of bone fractures |
US7591823B2 (en) | 2001-10-18 | 2009-09-22 | Lagwire, Llc | System and method for the fixation of bone fractures |
US8679167B2 (en) | 2001-10-18 | 2014-03-25 | Orthoip, Llc | System and method for a cap used in the fixation of bone fractures |
US20030078584A1 (en) * | 2001-10-18 | 2003-04-24 | Kishore Tipirneni | System and method for fixation of bone fractures |
US20090177199A1 (en) * | 2001-10-18 | 2009-07-09 | Lagwire, Llc | Cap device for use in the fixation of bone structures |
US20090171403A1 (en) * | 2001-10-18 | 2009-07-02 | Lagwire, Llc | Method for the fixation of bone structures |
US6736819B2 (en) * | 2001-10-18 | 2004-05-18 | Kishore Tipirneni | System and method for fixation of bone fractures |
US20100312245A1 (en) * | 2001-10-18 | 2010-12-09 | Orthoip, Llc | Bone screw system and method for the fixation of bone fractures |
US20090131936A1 (en) * | 2001-10-18 | 2009-05-21 | Kishore Tipirneni | System and method for the fixation of bone fractures |
US20070162026A1 (en) * | 2001-10-18 | 2007-07-12 | Fxdevices Llc | System and method for a cap used in the fixation of bone fractures |
US8828067B2 (en) | 2001-10-18 | 2014-09-09 | Orthoip, Llc | Bone screw system and method |
US20090048606A1 (en) * | 2001-10-18 | 2009-02-19 | Fxdevices Llc | Guide system and method for the fixation of bone fractures |
US20070260248A1 (en) * | 2001-10-18 | 2007-11-08 | Fxdevices, Llc | Cannulated bone screw system and method |
US9028534B2 (en) | 2001-10-18 | 2015-05-12 | Orthoip, Llc | Bone screw system and method |
US9060809B2 (en) | 2001-10-18 | 2015-06-23 | Orthoip, Llc | Lagwire system and method for the fixation of bone fractures |
US20080243132A1 (en) * | 2001-10-18 | 2008-10-02 | Fx Devices, Llc | Tensioning system and method for the fixation of bone fractures |
US20080243191A1 (en) * | 2001-10-18 | 2008-10-02 | Fx Devices, Llc | Adjustable bone plate fixation system and metho |
US10390816B2 (en) | 2002-06-20 | 2019-08-27 | Arthrex, Inc. | Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder |
US20160051250A1 (en) * | 2002-06-20 | 2016-02-25 | Arthrex, Inc. | Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder |
US10206670B2 (en) * | 2002-06-20 | 2019-02-19 | Arthrex, Inc. | Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder |
US10695049B2 (en) | 2002-06-20 | 2020-06-30 | Arthrex, Inc. | Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder |
US10736622B2 (en) | 2002-06-20 | 2020-08-11 | Arthrex, Inc. | Apparatuses and method for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder |
US10918375B2 (en) | 2002-06-20 | 2021-02-16 | Arthrex, Inc. | Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder |
US7776042B2 (en) | 2002-12-03 | 2010-08-17 | Trans1 Inc. | Methods and apparatus for provision of therapy to adjacent motion segments |
US8167947B2 (en) | 2002-12-03 | 2012-05-01 | Trans1 Inc. | Methods for push distraction and for provision of therapy to adjacent motion segments |
US8328847B2 (en) | 2002-12-03 | 2012-12-11 | Trans1 Inc. | Assemblies for provision of therapy to motion segments |
US8523918B2 (en) | 2002-12-03 | 2013-09-03 | Baxano Surgical, Inc. | Therapy to adjacent motion segments |
EP1430845A1 (en) * | 2002-12-19 | 2004-06-23 | Stryker Trauma GmbH | Means for osteosynthesis comprising medullary nail, screw and spring sleeve |
WO2004069065A1 (en) * | 2003-02-10 | 2004-08-19 | Cell Center Cologne Gmbh | Dynamic epiphysial telescopic screw |
US8562652B2 (en) | 2003-05-07 | 2013-10-22 | Biedermann Technologies Gmbh & Co. Kg | Dynamic anchoring device and dynamic stabilization device for vertebrae |
US20040225289A1 (en) * | 2003-05-07 | 2004-11-11 | Biedermann Motech Gmbh | Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device |
US8721690B2 (en) | 2003-10-17 | 2014-05-13 | Biedermann Technologies GmbH & Co., KG | Rod-shaped implant element with flexible section |
US20100042156A1 (en) * | 2003-10-17 | 2010-02-18 | Biedermann Motech Gmbh | Rod-shaped implant element with flexible section |
US9326794B2 (en) | 2003-10-17 | 2016-05-03 | Biedermann Technologies Gmbh & Co. Kg | Rod-shaped implant element with flexible section |
US7776068B2 (en) | 2003-10-23 | 2010-08-17 | Trans1 Inc. | Spinal motion preservation assemblies |
US20060079898A1 (en) * | 2003-10-23 | 2006-04-13 | Trans1 Inc. | Spinal motion preservation assemblies |
US7938836B2 (en) | 2003-10-23 | 2011-05-10 | Trans1, Inc. | Driver assembly for simultaneous axial delivery of spinal implants |
US20070167951A1 (en) * | 2003-10-23 | 2007-07-19 | Trans1 Inc. | Methods and tools for delivery of spinal motion preservation assemblies |
US20070168036A1 (en) * | 2003-10-23 | 2007-07-19 | Trans1 Inc. | Spinal motion preservation assemblies |
US8038680B2 (en) | 2003-10-23 | 2011-10-18 | Trans1 Inc. | Drivers for inserts to bone anchors |
US20060155297A1 (en) * | 2003-10-23 | 2006-07-13 | Ainsworth Stephen D | Driver assembly for simultaneous axial delivery of spinal implants |
US20080195156A1 (en) * | 2003-10-23 | 2008-08-14 | Trans1 Inc. | Methods for Deploying Spinal Motion Preservation Assemblies |
US20080004707A1 (en) * | 2003-10-23 | 2008-01-03 | Cragg Andrew H | Prosthetic nucleus apparatus and method |
US7601171B2 (en) | 2003-10-23 | 2009-10-13 | Trans1 Inc. | Spinal motion preservation assemblies |
US9345520B2 (en) | 2003-11-07 | 2016-05-24 | Biedermann Technologies Gmbh & Co. Kg | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US20050154390A1 (en) * | 2003-11-07 | 2005-07-14 | Lutz Biedermann | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US8632570B2 (en) | 2003-11-07 | 2014-01-21 | Biedermann Technologies Gmbh & Co. Kg | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
US20050143823A1 (en) * | 2003-12-31 | 2005-06-30 | Boyd Lawrence M. | Dynamic spinal stabilization system |
US7806914B2 (en) * | 2003-12-31 | 2010-10-05 | Spine Wave, Inc. | Dynamic spinal stabilization system |
US7998172B2 (en) | 2004-02-06 | 2011-08-16 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US10085776B2 (en) | 2004-02-06 | 2018-10-02 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US9675387B2 (en) | 2004-02-06 | 2017-06-13 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US8998953B2 (en) | 2004-02-06 | 2015-04-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US20050177240A1 (en) * | 2004-02-06 | 2005-08-11 | Jason Blain | Vertebral facet joint prosthesis and method of fixation |
US8882804B2 (en) | 2004-02-06 | 2014-11-11 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US7846183B2 (en) * | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US8740942B2 (en) | 2004-02-06 | 2014-06-03 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US8858597B2 (en) | 2004-02-06 | 2014-10-14 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US7591839B2 (en) | 2004-03-03 | 2009-09-22 | Biedermann Motech Gmbh | Bone anchoring element for anchoring in a bone or vertebra, and stabilization device with such a bone anchoring element |
EP2286747A3 (en) * | 2004-03-03 | 2013-01-02 | Biedermann Technologies GmbH & Co. KG | Enchoring element and dynamic stabilisation device for vertebral bodies or bones |
US20050216003A1 (en) * | 2004-03-03 | 2005-09-29 | Biedermann Motech Gmbh | Bone anchoring element for anchoring in a bone or vertebra, and stabilization device with such a bone anchoring element |
US9282999B2 (en) | 2004-03-03 | 2016-03-15 | Biedermann Technologies Gmbh & Co. Kg | Anchoring element and stabilization device for the dynamic stabilization of vertebrae or bones using such anchoring elements |
US20070282342A1 (en) * | 2004-03-26 | 2007-12-06 | Alfred Niederberger | Articulated Bone Screw |
WO2005092226A1 (en) * | 2004-03-26 | 2005-10-06 | Synthes Gmbh | Articulated bone screw |
US9931142B2 (en) | 2004-06-10 | 2018-04-03 | Spinal Elements, Inc. | Implant and method for facet immobilization |
US9492201B2 (en) | 2004-08-09 | 2016-11-15 | Si-Bone Inc. | Apparatus, systems and methods for achieving anterior lumbar interbody fusion |
US9956013B2 (en) | 2004-08-09 | 2018-05-01 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
US9820789B2 (en) | 2004-08-09 | 2017-11-21 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
US8840651B2 (en) | 2004-08-09 | 2014-09-23 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
US9743969B2 (en) | 2004-08-09 | 2017-08-29 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
US8858601B2 (en) | 2004-08-09 | 2014-10-14 | Si-Bone Inc. | Apparatus, systems, and methods for achieving lumbar facet fusion |
US9675394B2 (en) | 2004-08-09 | 2017-06-13 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint |
US8734462B2 (en) | 2004-08-09 | 2014-05-27 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone using compressive implants |
US9662158B2 (en) | 2004-08-09 | 2017-05-30 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint |
US8920477B2 (en) | 2004-08-09 | 2014-12-30 | Si-Bone Inc. | Apparatus, systems, and methods for stabilizing a spondylolisthesis |
US9662128B2 (en) | 2004-08-09 | 2017-05-30 | Si-Bone Inc. | Systems and methods for the fusion of the sacral-iliac joint |
US8986348B2 (en) | 2004-08-09 | 2015-03-24 | Si-Bone Inc. | Systems and methods for the fusion of the sacral-iliac joint |
US9949843B2 (en) | 2004-08-09 | 2018-04-24 | Si-Bone Inc. | Apparatus, systems, and methods for the fixation or fusion of bone |
US9622783B2 (en) | 2004-08-09 | 2017-04-18 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
US20100292738A1 (en) * | 2004-08-09 | 2010-11-18 | Inbone Technologies, Inc. | Systems and methods for the fixation or fusion of bone |
US8840623B2 (en) | 2004-08-09 | 2014-09-23 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
US9561063B2 (en) | 2004-08-09 | 2017-02-07 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
US10004547B2 (en) | 2004-08-09 | 2018-06-26 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint |
US20080154316A1 (en) * | 2004-08-09 | 2008-06-26 | Inbone Technologies, Inc. | Systems and methods for the fixation or fusion bone related applications |
US9039743B2 (en) | 2004-08-09 | 2015-05-26 | Si-Bone Inc. | Systems and methods for the fusion of the sacral-iliac joint |
US8414648B2 (en) | 2004-08-09 | 2013-04-09 | Si-Bone Inc. | Apparatus, systems, and methods for achieving trans-iliac lumbar fusion |
US8202305B2 (en) | 2004-08-09 | 2012-06-19 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone |
US9375323B2 (en) | 2004-08-09 | 2016-06-28 | Si-Bone Inc. | Apparatus, systems, and methods for achieving trans-iliac lumbar fusion |
US8388667B2 (en) | 2004-08-09 | 2013-03-05 | Si-Bone, Inc. | Systems and methods for the fixation or fusion of bone using compressive implants |
US8308779B2 (en) | 2004-08-09 | 2012-11-13 | Si-Bone, Inc. | Systems and methods for the fixation or fusion of bone |
US8470004B2 (en) | 2004-08-09 | 2013-06-25 | Si-Bone Inc. | Apparatus, systems, and methods for stabilizing a spondylolisthesis |
US9486264B2 (en) | 2004-08-09 | 2016-11-08 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone using compressive implants |
US8444693B2 (en) | 2004-08-09 | 2013-05-21 | Si-Bone Inc. | Apparatus, systems, and methods for achieving lumbar facet fusion |
US8425570B2 (en) | 2004-08-09 | 2013-04-23 | Si-Bone Inc. | Apparatus, systems, and methods for achieving anterior lumbar interbody fusion |
AU2005272596B2 (en) * | 2004-08-14 | 2010-10-21 | Trans1, Inc. | Therapy provision to adjacent motion segments |
EP1786341A2 (en) * | 2004-08-14 | 2007-05-23 | TRANS1, Inc. | Therapy provision to adjacent motion segments |
EP1786341A4 (en) * | 2004-08-14 | 2010-03-10 | Trans1 Inc | Therapy provision to adjacent motion segments |
US10159838B2 (en) | 2004-09-08 | 2018-12-25 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for stimulating a dorsal root ganglion |
US10232180B2 (en) | 2004-09-08 | 2019-03-19 | The Board Of Trustees Of The Leland Stanford Junior University | Selective stimulation to modulate the sympathetic nervous system |
US9486633B2 (en) | 2004-09-08 | 2016-11-08 | The Board Of Trustees Of The Leland Stanford Junior University | Selective stimulation to modulate the sympathetic nervous system |
US9205259B2 (en) | 2004-09-08 | 2015-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Neurostimulation system |
US9205260B2 (en) | 2004-09-08 | 2015-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for stimulating a dorsal root ganglion |
US9205261B2 (en) | 2004-09-08 | 2015-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Neurostimulation methods and systems |
US8197523B2 (en) * | 2005-02-15 | 2012-06-12 | Apex Biomedical Company, Llc | Bone screw for positive locking but flexible engagement to a bone |
US9314286B2 (en) | 2005-02-15 | 2016-04-19 | Zimmer, Inc. | Bone screw with multiple thread profiles for far cortical locking and flexible engagement to a bone |
US20120215265A1 (en) * | 2005-02-15 | 2012-08-23 | Apex Biomedical Company Llc | Bone screw for positive locking but flexible engagement to a bone |
US8740955B2 (en) | 2005-02-15 | 2014-06-03 | Zimmer, Inc. | Bone screw with multiple thread profiles for far cortical locking and flexible engagement to a bone |
US20060195099A1 (en) * | 2005-02-15 | 2006-08-31 | Apex Abc, Llc | Bone screw for positive locking but flexible engagement to a bone |
US8317846B2 (en) * | 2005-02-15 | 2012-11-27 | Apex Biomedical Company, Llc | Bone screw for positive locking but flexible engagement to a bone |
US20090062868A1 (en) * | 2005-04-04 | 2009-03-05 | Zimmer Gmbh | Pedicle screw |
US7828828B2 (en) | 2005-04-14 | 2010-11-09 | Warsaw Orthopedic, Inc | Intervertebral joint |
US20060235414A1 (en) * | 2005-04-14 | 2006-10-19 | Sdgi Holdings, Inc. | Intervertebral joint |
WO2006122218A2 (en) | 2005-05-10 | 2006-11-16 | Acumed Sports Medicine Llc | Bone connector with pivotable joint |
EP1885262A4 (en) * | 2005-05-10 | 2012-06-06 | Acumed Llc | Bone connector with pivotable joint |
US7951198B2 (en) * | 2005-05-10 | 2011-05-31 | Acumed Llc | Bone connector with pivotable joint |
US20110224738A1 (en) * | 2005-05-10 | 2011-09-15 | Acumed Llc | Bone connector with pivotable joint |
EP1885262A2 (en) * | 2005-05-10 | 2008-02-13 | Acumed Sports Medicine LLC | Bone connector with pivotable joint |
US8617227B2 (en) * | 2005-05-10 | 2013-12-31 | Acumed Llc | Bone connector with pivotable joint |
US20060271054A1 (en) * | 2005-05-10 | 2006-11-30 | Sucec Matthew C | Bone connector with pivotable joint |
US11986397B2 (en) | 2005-05-24 | 2024-05-21 | Si-Bone Inc. | Apparatus, systems, and methods for the fixation or fusion of bone |
US12004961B2 (en) | 2005-05-24 | 2024-06-11 | Si-Bone Inc. | Apparatus, systems, and methods for the fixation or fusion of bone |
US11633292B2 (en) | 2005-05-24 | 2023-04-25 | Si-Bone Inc. | Apparatus, systems, and methods for the fixation or fusion of bone |
US9492202B2 (en) | 2005-08-24 | 2016-11-15 | Biedermann Technologies Gmbh & Co. Kg | Rod-shaped implant element for the application in spine surgery or trauma surgery and stabilization device with such a rod-shaped implant element |
EP1931287A2 (en) * | 2005-10-06 | 2008-06-18 | Amei Technologies Inc. | Bone alignment implant and method of use |
EP1931287A4 (en) * | 2005-10-06 | 2011-04-20 | Amei Technologies Inc | Bone alignment implant and method of use |
US20080213714A1 (en) * | 2005-11-11 | 2008-09-04 | Alexander Knoch | Rotary Furnace Burner |
US20070270804A1 (en) * | 2006-02-02 | 2007-11-22 | Chudik Steven C | Acromioclavicular joint repair system |
US9387011B2 (en) * | 2006-02-02 | 2016-07-12 | Steven C. Chudik | Acromioclavicular joint repair system |
US20100145462A1 (en) * | 2006-10-24 | 2010-06-10 | Trans1 Inc. | Preformed membranes for use in intervertebral disc spaces |
US8328846B2 (en) | 2006-10-24 | 2012-12-11 | Trans1 Inc. | Prosthetic nucleus with a preformed membrane |
US8088147B2 (en) | 2006-10-24 | 2012-01-03 | Trans1 Inc. | Multi-membrane prosthetic nucleus |
US20080177333A1 (en) * | 2006-10-24 | 2008-07-24 | Warsaw Orthopedic, Inc. | Adjustable jacking implant |
US20100137991A1 (en) * | 2006-10-24 | 2010-06-03 | Trans1, Inc. | Prosthetic nucleus with a preformed membrane |
US20080262502A1 (en) * | 2006-10-24 | 2008-10-23 | Trans1, Inc. | Multi-membrane prosthetic nucleus |
US20080177291A1 (en) * | 2006-11-01 | 2008-07-24 | Jensen David G | Orthopedic connector system |
US7955388B2 (en) | 2006-11-01 | 2011-06-07 | Acumed Llc | Orthopedic connector system |
US9427570B2 (en) | 2006-12-06 | 2016-08-30 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Expandable stimulation leads and methods of use |
US20130345783A1 (en) * | 2006-12-06 | 2013-12-26 | Albert G. Burdulis | Hard tissue anchors and delivery devices |
US9623233B2 (en) | 2006-12-06 | 2017-04-18 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels |
US8983624B2 (en) | 2006-12-06 | 2015-03-17 | Spinal Modulation, Inc. | Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels |
US9314618B2 (en) | 2006-12-06 | 2016-04-19 | Spinal Modulation, Inc. | Implantable flexible circuit leads and methods of use |
US9642609B2 (en) * | 2007-01-17 | 2017-05-09 | Arthrex, Inc. | Bunion repair using suture-button construct |
US8888815B2 (en) * | 2007-01-17 | 2014-11-18 | Arthrex, Inc. | Bone fixation using suture-button construct |
US20150073477A1 (en) * | 2007-01-17 | 2015-03-12 | Arthrex, Inc. | Bunion repair using suture-button construct |
US20110118780A1 (en) * | 2007-01-17 | 2011-05-19 | Holmes Jr George B | Bunion repair using suture-button construct |
US8221455B2 (en) * | 2007-01-17 | 2012-07-17 | Arthrex, Inc. | Lispranc repair using suture anchor-button construct |
US20110130789A1 (en) * | 2007-01-17 | 2011-06-02 | Paul Shurnas | Lispranc repair using suture anchor-button construct |
US9044592B2 (en) | 2007-01-29 | 2015-06-02 | Spinal Modulation, Inc. | Sutureless lead retention features |
US8398690B2 (en) * | 2007-02-07 | 2013-03-19 | Apex Biomedical Company, Llc | Rotationally asymmetric bone screw |
US20080188899A1 (en) * | 2007-02-07 | 2008-08-07 | Apex Biomedical Company, Llc | Rotationally asymmetric bone screw |
US8652137B2 (en) | 2007-02-22 | 2014-02-18 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
US9060787B2 (en) | 2007-02-22 | 2015-06-23 | Spinal Elements, Inc. | Method of using a vertebral facet joint drill |
US9743937B2 (en) | 2007-02-22 | 2017-08-29 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
US9517077B2 (en) | 2007-02-22 | 2016-12-13 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
US8992533B2 (en) | 2007-02-22 | 2015-03-31 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
AU2008241022B2 (en) * | 2007-04-19 | 2011-03-10 | Stryker European Holdings I, Llc | Hip fracture device with barrel and end cap for load control |
US9254153B2 (en) | 2007-04-19 | 2016-02-09 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US8734494B2 (en) | 2007-04-19 | 2014-05-27 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
WO2008128662A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
US8398636B2 (en) | 2007-04-19 | 2013-03-19 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
US20080269807A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US20080269752A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
US20090036893A1 (en) * | 2007-08-02 | 2009-02-05 | Proactive Orthopedic, Llc | Fixation and alignment device and method used in orthopaedic surgery |
US8882816B2 (en) | 2007-08-02 | 2014-11-11 | Proactive Orthopedics, Llc | Fixation and alignment device and method used in orthopaedic surgery |
US8696716B2 (en) * | 2007-08-02 | 2014-04-15 | Proactive Orthopedics, Llc | Fixation and alignment device and method used in orthopaedic surgery |
US8066748B2 (en) | 2007-10-24 | 2011-11-29 | The Cleveland Clinic Foundation | Apparatus and method for affixing body structures |
US20090112269A1 (en) * | 2007-10-24 | 2009-04-30 | The Cleveland Clinic Foundation | Apparatus and method for affixing body structures |
US20090112177A1 (en) * | 2007-10-31 | 2009-04-30 | Warsaw Orthopedic, Inc. | Implantable Device And Method for Delivering Drug Depots To A Site Beneath the Skin |
US8029478B2 (en) | 2007-10-31 | 2011-10-04 | Warsaw Orthopedic, Inc. | Implantable device and method for delivering drug depots to a site beneath the skin |
US9510877B2 (en) | 2007-11-14 | 2016-12-06 | DePuy Synthes Products, Inc. | Hybrid bone fixation element and methods of using the same |
US8690931B2 (en) | 2007-12-17 | 2014-04-08 | DePuy Synthes Products, LLC | Dynamic bone fixation element and method of using the same |
US8114141B2 (en) | 2007-12-17 | 2012-02-14 | Synthes Usa, Llc | Dynamic bone fixation element and method of using the same |
US9763712B2 (en) | 2007-12-17 | 2017-09-19 | DePuy Synthes Products, Inc. | Dynamic bone fixation element and method of using the same |
US9414875B2 (en) | 2007-12-17 | 2016-08-16 | DePuy Synthes Products, Inc. | Dynamic bone fixation element and method of using the same |
US20090198287A1 (en) * | 2008-02-04 | 2009-08-06 | Mark Hsien Nien Chiu | Bone fixation device and method of use thereof |
US8597337B2 (en) * | 2008-02-14 | 2013-12-03 | Lloyd P. Champagne | Joint fusion device |
US20090210016A1 (en) * | 2008-02-14 | 2009-08-20 | Champagne Lloyd P | Joint fusion device |
US9907597B2 (en) | 2008-08-12 | 2018-03-06 | Charles E. Kollmer | Bone compression system and associated methods |
US20110137356A1 (en) * | 2008-08-12 | 2011-06-09 | Uso-Ck, Llc | Bone compression device and methods |
US9247963B2 (en) * | 2008-08-12 | 2016-02-02 | Charles Kollmer | Bone compression device and methods |
US11890472B2 (en) | 2008-10-27 | 2024-02-06 | Tc1 Llc | Selective stimulation systems and signal parameters for medical conditions |
US9409021B2 (en) | 2008-10-27 | 2016-08-09 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. | Selective stimulation systems and signal parameters for medical conditions |
US9056197B2 (en) | 2008-10-27 | 2015-06-16 | Spinal Modulation, Inc. | Selective stimulation systems and signal parameters for medical conditions |
US9011505B2 (en) | 2009-02-09 | 2015-04-21 | Memometal Technologies | Screw for osteosynthesis and arthrodesis |
US9504504B2 (en) | 2009-02-09 | 2016-11-29 | Stryker European Holdings I, Llc | Screw for osteosynthesis and arthrodesis |
US9468762B2 (en) | 2009-03-24 | 2016-10-18 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Pain management with stimulation subthreshold to paresthesia |
US9259569B2 (en) | 2009-05-15 | 2016-02-16 | Daniel M. Brounstein | Methods, systems and devices for neuromodulating spinal anatomy |
US20100292769A1 (en) * | 2009-05-15 | 2010-11-18 | Brounstein Daniel M | Methods, systems and devices for neuromodulating spinal anatomy |
GR1007304B (en) * | 2009-05-27 | 2011-06-08 | Ελευθεριος Σπυριδωνα Νικας | Screw or bolt for the syndesmosis between fibula and tibia |
US8715326B2 (en) | 2009-08-28 | 2014-05-06 | Competitive Global Medical, Llc | Distal interphalangeal fusion device and method of use |
US20110054545A1 (en) * | 2009-08-28 | 2011-03-03 | Lloyd Champagne | Distal interphalangeal fusion device and method of use |
US9327110B2 (en) | 2009-10-27 | 2016-05-03 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Devices, systems and methods for the targeted treatment of movement disorders |
US10835728B2 (en) | 2009-12-04 | 2020-11-17 | Versago Vascular Access, Inc. | Vascular access port |
US8529611B2 (en) | 2010-03-16 | 2013-09-10 | Competitive Global Medical, Llc | Distal interphalangeal fusion method and device |
US11413451B2 (en) | 2010-05-10 | 2022-08-16 | St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) | Methods, systems and devices for reducing migration |
WO2012064401A1 (en) * | 2010-09-10 | 2012-05-18 | Competitive Global Medical, Llc | Proximal interphalangeal fusion device |
US9220535B2 (en) | 2010-10-26 | 2015-12-29 | Christian Röbling | Process for introducing a stabilizing element into a vertebral column |
EP2446842A1 (en) * | 2010-10-26 | 2012-05-02 | Christian Röbling | Device for stabilising a spine |
US10835298B2 (en) | 2010-10-26 | 2020-11-17 | Evospine Gmbh | Process for introducing a stabilizing element into a vertebral element |
US11129654B2 (en) | 2010-11-17 | 2021-09-28 | Arthrex, Inc. | Adjustable suture-button construct for ankle syndesmosis repair |
US10251686B2 (en) | 2010-11-17 | 2019-04-09 | Arthrex, Inc. | Adjustable suture-button construct for ankle syndesmosis repair |
US10864028B2 (en) | 2010-11-17 | 2020-12-15 | Arthrex, Inc. | Adjustable suture-button construct for ankle syndesmosis repair |
US11701103B2 (en) | 2010-11-17 | 2023-07-18 | Arthrex, Inc. | Adjustable suture-button construct for ankle syndesmosis repair |
US8685067B2 (en) | 2010-12-21 | 2014-04-01 | Competitive Global Medical, Llc | Compression plate apparatus |
US9138219B2 (en) | 2010-12-29 | 2015-09-22 | Tarsus Medical Inc. | Methods and devices for treating a syndesmosis injury |
US10022161B2 (en) | 2011-02-24 | 2018-07-17 | Spinal Elements, Inc. | Vertebral facet joint fusion implant and method for fusion |
US10368921B2 (en) | 2011-02-24 | 2019-08-06 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
USD748262S1 (en) | 2011-02-24 | 2016-01-26 | Spinal Elements, Inc. | Interbody bone implant |
US9301786B2 (en) | 2011-02-24 | 2016-04-05 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
US9271765B2 (en) | 2011-02-24 | 2016-03-01 | Spinal Elements, Inc. | Vertebral facet joint fusion implant and method for fusion |
USD777921S1 (en) | 2011-02-24 | 2017-01-31 | Spinal Elements, Inc. | Interbody bone implant |
USD748793S1 (en) | 2011-02-24 | 2016-02-02 | Spinal Elements, Inc. | Interbody bone implant |
US9179943B2 (en) | 2011-02-24 | 2015-11-10 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
US9572602B2 (en) | 2011-02-24 | 2017-02-21 | Spinal Elements, Inc. | Vertebral facet joint fusion implant and method for fusion |
US9808294B2 (en) | 2011-02-24 | 2017-11-07 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
US8740949B2 (en) | 2011-02-24 | 2014-06-03 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
US11464551B2 (en) | 2011-02-24 | 2022-10-11 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
USD724733S1 (en) | 2011-02-24 | 2015-03-17 | Spinal Elements, Inc. | Interbody bone implant |
US9862085B2 (en) * | 2011-05-09 | 2018-01-09 | Håkan WERNERSSON | Attachment arrangement |
US20140305266A1 (en) * | 2011-05-09 | 2014-10-16 | Akoustos Ab | Attachment arrangement |
US20130041412A1 (en) * | 2011-08-09 | 2013-02-14 | Depuy Spine, Inc. | Flexible pedicle screws |
USD810942S1 (en) | 2011-10-26 | 2018-02-20 | Spinal Elements, Inc. | Interbody bone implant |
USD765854S1 (en) | 2011-10-26 | 2016-09-06 | Spinal Elements, Inc. | Interbody bone implant |
USD979062S1 (en) | 2011-10-26 | 2023-02-21 | Spinal Elements, Inc. | Interbody bone implant |
USD958366S1 (en) | 2011-10-26 | 2022-07-19 | Spinal Elements, Inc. | Interbody bone implant |
USD857900S1 (en) | 2011-10-26 | 2019-08-27 | Spinal Elements, Inc. | Interbody bone implant |
USD790062S1 (en) | 2011-10-26 | 2017-06-20 | Spinal Elements, Inc. | Interbody bone implant |
USD884896S1 (en) | 2011-10-26 | 2020-05-19 | Spinal Elements, Inc. | Interbody bone implant |
USD926982S1 (en) | 2011-10-26 | 2021-08-03 | Spinal Elements, Inc. | Interbody bone implant |
USD834194S1 (en) | 2011-10-26 | 2018-11-20 | Spinal Elements, Inc. | Interbody bone implant |
US9839435B2 (en) | 2011-11-14 | 2017-12-12 | The University Of British Columbia | Intramedullary fixation system for management of pelvic and acetabular fractures |
US11529148B2 (en) | 2011-11-14 | 2022-12-20 | The University Of British Columbia | Intramedullary fixation system for management of pelvic and acetabular fractures |
US20130172946A1 (en) * | 2011-12-28 | 2013-07-04 | Industrial Technology Research Institute | Implant module and method for repairing avulsion fracture |
US9848931B2 (en) | 2011-12-29 | 2017-12-26 | Proactive Orthopedics, Llc | Anchoring systems and methods for surgery |
US9101399B2 (en) | 2011-12-29 | 2015-08-11 | Proactive Orthopedics, Llc | Anchoring systems and methods for surgery |
US9539084B2 (en) | 2012-01-23 | 2017-01-10 | Exsomed International IP. LLC | Devices and methods for tendon repair |
US9155578B2 (en) | 2012-02-28 | 2015-10-13 | DePuy Synthes Products, Inc. | Expandable fastener |
WO2013130741A1 (en) * | 2012-02-28 | 2013-09-06 | Synthes Usa, Llc | Expandable fastener |
US11337821B2 (en) | 2012-03-09 | 2022-05-24 | Si-Bone Inc. | Integrated implant |
US11471286B2 (en) | 2012-03-09 | 2022-10-18 | Si-Bone Inc. | Systems, devices, and methods for joint fusion |
US10363140B2 (en) | 2012-03-09 | 2019-07-30 | Si-Bone Inc. | Systems, device, and methods for joint fusion |
US8778026B2 (en) | 2012-03-09 | 2014-07-15 | Si-Bone Inc. | Artificial SI joint |
US11672664B2 (en) | 2012-03-09 | 2023-06-13 | Si-Bone Inc. | Systems, devices, and methods for joint fusion |
US10201427B2 (en) | 2012-03-09 | 2019-02-12 | Si-Bone Inc. | Integrated implant |
US9044321B2 (en) | 2012-03-09 | 2015-06-02 | Si-Bone Inc. | Integrated implant |
US9827029B2 (en) | 2012-03-13 | 2017-11-28 | DePuy Synthes Products, Inc. | Dynamic bone fixation element |
US9339316B2 (en) | 2012-03-13 | 2016-05-17 | DePuy Synthes Products, Inc. | Dynamic bone fixation element |
US12023079B2 (en) | 2012-05-04 | 2024-07-02 | Si-Bone Inc. | Fenestrated implant |
US11291485B2 (en) | 2012-05-04 | 2022-04-05 | Si-Bone Inc. | Fenestrated implant |
US11478287B2 (en) | 2012-05-04 | 2022-10-25 | Si-Bone Inc. | Fenestrated implant |
US10426533B2 (en) | 2012-05-04 | 2019-10-01 | Si-Bone Inc. | Fenestrated implant |
US11446069B2 (en) | 2012-05-04 | 2022-09-20 | Si-Bone Inc. | Fenestrated implant |
US11253302B2 (en) | 2012-06-01 | 2022-02-22 | Nuvasive, Inc. | Systems and methods for promoting sacroiliac joint fusion |
US10179014B1 (en) | 2012-06-01 | 2019-01-15 | Nuvasive, Inc. | Systems and methods for promoting sacroiliac joint fusion |
US10098680B2 (en) | 2012-07-12 | 2018-10-16 | Exsomed Holding Company Llc | Metacarpal bone stabilization device |
US9480515B2 (en) | 2012-07-12 | 2016-11-01 | Exsomed International IP, LLC | Metacarpal bone stabilization device |
DE102012106336A1 (en) * | 2012-07-13 | 2014-01-16 | Aesculap Ag | Bone screw for use in bone fixation system for connecting two bone portions, has distal screw part and proximal screw part, where distal screw part has distal bone thread, and proximal screw part has proximal bone thread |
US9724149B2 (en) | 2013-03-07 | 2017-08-08 | Warsaw Orhtopedic, Inc. | Surgical implant system and method |
USD812754S1 (en) | 2013-03-14 | 2018-03-13 | Spinal Elements, Inc. | Flexible elongate member with a portion configured to receive a bone anchor |
US10251679B2 (en) | 2013-03-14 | 2019-04-09 | Spinal Elements, Inc. | Apparatus for bone stabilization and distraction and methods of use |
US9820784B2 (en) | 2013-03-14 | 2017-11-21 | Spinal Elements, Inc. | Apparatus for spinal fixation and methods of use |
US10426524B2 (en) | 2013-03-14 | 2019-10-01 | Spinal Elements, Inc. | Apparatus for spinal fixation and methods of use |
US9421044B2 (en) | 2013-03-14 | 2016-08-23 | Spinal Elements, Inc. | Apparatus for bone stabilization and distraction and methods of use |
USD780315S1 (en) | 2013-03-14 | 2017-02-28 | Spinal Elements, Inc. | Flexible elongate member with a portion configured to receive a bone anchor |
USD765853S1 (en) | 2013-03-14 | 2016-09-06 | Spinal Elements, Inc. | Flexible elongate member with a portion configured to receive a bone anchor |
US11272961B2 (en) | 2013-03-14 | 2022-03-15 | Spinal Elements, Inc. | Apparatus for bone stabilization and distraction and methods of use |
US9936983B2 (en) | 2013-03-15 | 2018-04-10 | Si-Bone Inc. | Implants for spinal fixation or fusion |
US10959758B2 (en) | 2013-03-15 | 2021-03-30 | Si-Bone Inc. | Implants for spinal fixation or fusion |
US11980399B2 (en) | 2013-03-15 | 2024-05-14 | Si-Bone Inc. | Implants for spinal fixation or fusion |
US10194955B2 (en) | 2013-09-27 | 2019-02-05 | Spinal Elements, Inc. | Method of placing an implant between bone portions |
US9456855B2 (en) | 2013-09-27 | 2016-10-04 | Spinal Elements, Inc. | Method of placing an implant between bone portions |
US10624680B2 (en) | 2013-09-27 | 2020-04-21 | Spinal Elements, Inc. | Device and method for reinforcement of a facet |
US9839450B2 (en) | 2013-09-27 | 2017-12-12 | Spinal Elements, Inc. | Device and method for reinforcement of a facet |
US11918258B2 (en) | 2013-09-27 | 2024-03-05 | Spinal Elements, Inc. | Device and method for reinforcement of a facet |
US11517354B2 (en) | 2013-09-27 | 2022-12-06 | Spinal Elements, Inc. | Method of placing an implant between bone portions |
US11272965B2 (en) | 2013-10-02 | 2022-03-15 | ExsoMed Corporation | Full wrist fusion device |
US11259849B2 (en) | 2013-10-02 | 2022-03-01 | ExsoMed Corporation | Full wrist fusion device |
CN103479417A (en) * | 2013-10-14 | 2014-01-01 | 天津正天医疗器械有限公司 | Distal tibiofibular syndesmosis hinge type flexible fixing device |
US11147688B2 (en) | 2013-10-15 | 2021-10-19 | Si-Bone Inc. | Implant placement |
US9839448B2 (en) | 2013-10-15 | 2017-12-12 | Si-Bone Inc. | Implant placement |
US9861413B2 (en) | 2013-11-11 | 2018-01-09 | Arthrex, Inc. | Screws for generating and applying compression within a body |
US10064619B2 (en) | 2013-11-13 | 2018-09-04 | Arthrex, Inc. | Staples for generating and applying compression within a body |
US9931115B2 (en) | 2013-11-13 | 2018-04-03 | Arthrex, Inc. | Delivery device to deliver a staple |
US10610218B2 (en) | 2013-11-13 | 2020-04-07 | Arthrex, Inc. | Staples for generating and applying compression within a body |
US9861357B2 (en) | 2013-11-13 | 2018-01-09 | Arthrex, Inc. | Staples for generating and applying compression within a body |
US9855036B2 (en) | 2013-11-13 | 2018-01-02 | Arthrex, Inc. | Staples for generating and applying compression within a body |
US10507041B2 (en) | 2013-11-26 | 2019-12-17 | Industrial Technology Research Institute | Bionic fixing apparatus and apparatus for pulling out the same |
US20150150614A1 (en) * | 2013-11-26 | 2015-06-04 | National Taiwan University Hospital | Bionic fixing apparatus |
US10357297B2 (en) * | 2013-11-26 | 2019-07-23 | Industrial Technology Research Institute | Bionic fixing apparatus |
US10085779B2 (en) * | 2013-12-17 | 2018-10-02 | Stichting Katholieke Universiteit | Intramedullary device for mid-shaft clavicle fractures |
US20160317200A1 (en) * | 2013-12-17 | 2016-11-03 | Stichting Katholieke Universiteit | Intramedullary device for mid-shaft clavicle fractures |
US10188161B2 (en) | 2014-01-06 | 2019-01-29 | Exsomed International IP, LLC | Gloves with sensory windows |
US10925336B2 (en) | 2014-01-06 | 2021-02-23 | ExsoMed Corporation | Gloves with sensory windows |
US10307188B2 (en) | 2014-03-06 | 2019-06-04 | The University Of British Columbia | Shape adaptable intramedullary fixation device |
US11369421B2 (en) | 2014-03-06 | 2022-06-28 | The University of British Columbia and British Columbia Cancer Agency Branch | Shape adaptable intramedullary fixation device |
US10512734B2 (en) * | 2014-04-03 | 2019-12-24 | Versago Vascular Access, Inc. | Devices and methods for installation and removal of a needle tip of a needle |
US11628261B2 (en) | 2014-04-03 | 2023-04-18 | Primo Medical Group, Inc. | Devices and methods for installation and removal of a needle tip of a needle |
US10064670B2 (en) * | 2014-05-12 | 2018-09-04 | DePuy Synthes Products, Inc. | Sacral fixation system |
US20150320451A1 (en) * | 2014-05-12 | 2015-11-12 | DePuy Synthes Products, Inc. | Sacral fixation system |
US9788862B2 (en) * | 2014-05-12 | 2017-10-17 | DePuy Synthes Products, Inc. | Sacral fixation system |
US20150320450A1 (en) * | 2014-05-12 | 2015-11-12 | DePuy Synthes Products, Inc. | Sacral fixation system |
US11504513B2 (en) | 2014-07-25 | 2022-11-22 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having a retaining member |
US10478603B2 (en) | 2014-07-25 | 2019-11-19 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having a retaining member |
US10384048B2 (en) | 2014-07-25 | 2019-08-20 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having an occluding member |
US11464958B2 (en) | 2014-07-25 | 2022-10-11 | Warsaw Orthopedic, Inc. | Drug delivery methods having an occluding member |
US11998240B2 (en) | 2014-09-17 | 2024-06-04 | Spinal Elements, Inc. | Flexible fastening band connector |
US11478275B2 (en) | 2014-09-17 | 2022-10-25 | Spinal Elements, Inc. | Flexible fastening band connector |
US10166033B2 (en) | 2014-09-18 | 2019-01-01 | Si-Bone Inc. | Implants for bone fixation or fusion |
US11684378B2 (en) | 2014-09-18 | 2023-06-27 | Si-Bone Inc. | Implants for bone fixation or fusion |
US9662157B2 (en) | 2014-09-18 | 2017-05-30 | Si-Bone Inc. | Matrix implant |
US11071573B2 (en) | 2014-09-18 | 2021-07-27 | Si-Bone Inc. | Matrix implant |
US10194962B2 (en) | 2014-09-18 | 2019-02-05 | Si-Bone Inc. | Matrix implant |
US10973559B2 (en) | 2014-10-14 | 2021-04-13 | University Of British Columbia | Systems and methods for intermedullary bone fixation |
US12023074B2 (en) | 2014-10-14 | 2024-07-02 | The University Of British Columbia | Systems and methods for intermedullary bone fixation |
US10258394B2 (en) | 2014-10-14 | 2019-04-16 | The University Of British Columbia | Systems and methods for intermedullary bone fixation |
US10016198B2 (en) | 2014-11-13 | 2018-07-10 | Arthrex, Inc. | Staples for generating and applying compression within a body |
DE102014116776A1 (en) * | 2014-11-17 | 2016-05-19 | Aesculap Ag | Bone screw and bone fixation system |
US10575883B2 (en) | 2014-12-15 | 2020-03-03 | Smith & Nephew, Inc. | Active fracture compression implants |
US11154687B2 (en) | 2014-12-18 | 2021-10-26 | Versago Vascular Access, Inc. | Catheter patency systems and methods |
DE102014226493A1 (en) * | 2014-12-18 | 2016-06-23 | Holger Erne | Connecting element for fixing at least two bones or bone fragments of a living being |
US10905866B2 (en) | 2014-12-18 | 2021-02-02 | Versago Vascular Access, Inc. | Devices, systems and methods for removal and replacement of a catheter for an implanted access port |
DE102014226493B4 (en) * | 2014-12-18 | 2020-11-12 | Holger Erne | Connecting element for fixing at least two bones or bone fragments of a living being |
US10758361B2 (en) | 2015-01-27 | 2020-09-01 | Spinal Elements, Inc. | Facet joint implant |
US10898249B2 (en) | 2015-01-28 | 2021-01-26 | Arthrex, Inc. | Self-compressing screws for generating and applying compression within a body |
WO2016133938A1 (en) * | 2015-02-16 | 2016-08-25 | Akros Medical, Inc. | Devices, systems, and methods for semi-rigid bone fixation |
US10327826B2 (en) | 2015-02-16 | 2019-06-25 | Akros Medical, Inc. | Devices, systems, and methods for semi-rigid bone fixation |
US11864804B2 (en) | 2015-02-16 | 2024-01-09 | DePuy Synthes Products, Inc. | Methods and devices for semi-rigid bone fixation |
US11202667B2 (en) | 2015-02-16 | 2021-12-21 | Akros Medical, Inc. | Methods and devices for semi-rigid bone fixation |
EP3258868A4 (en) * | 2015-02-16 | 2018-10-24 | Akros Medical, Inc. | Devices, systems, and methods for semi-rigid bone fixation |
US10376206B2 (en) | 2015-04-01 | 2019-08-13 | Si-Bone Inc. | Neuromonitoring systems and methods for bone fixation or fusion procedures |
US10441330B2 (en) | 2015-05-19 | 2019-10-15 | Exsomed Holding Company, Llc | Distal radius plate |
US11185357B2 (en) | 2015-05-19 | 2021-11-30 | ExsoMed Corporation | Distal radius plate |
US10136929B2 (en) | 2015-07-13 | 2018-11-27 | IntraFuse, LLC | Flexible bone implant |
US10485595B2 (en) | 2015-07-13 | 2019-11-26 | IntraFuse, LLC | Flexible bone screw |
US10492838B2 (en) | 2015-07-13 | 2019-12-03 | IntraFuse, LLC | Flexible bone implant |
US10154863B2 (en) | 2015-07-13 | 2018-12-18 | IntraFuse, LLC | Flexible bone screw |
US10499960B2 (en) | 2015-07-13 | 2019-12-10 | IntraFuse, LLC | Method of bone fixation |
US11229781B2 (en) | 2015-07-14 | 2022-01-25 | Versago Vascular Access, Inc. | Medical access ports, transfer devices and methods of use thereof |
US10426534B2 (en) | 2015-10-23 | 2019-10-01 | K2M, Inc. | Semi-constrained bone screw and insertion instrument |
EP3162313A1 (en) * | 2015-10-23 | 2017-05-03 | K2M, Inc. | Semi-constrained bone screw and insertion instrument |
US11759614B2 (en) | 2015-11-23 | 2023-09-19 | Warsaw Orthopedic, Inc. | Enhanced stylet for drug depot injector |
US10064737B2 (en) | 2015-12-07 | 2018-09-04 | Industrial Technology Research Institute | Implant device for osseous integration |
US10245091B2 (en) | 2015-12-30 | 2019-04-02 | Exsomed Holding Company, Llc | Dip fusion spike screw |
US11147604B2 (en) | 2016-01-12 | 2021-10-19 | ExsoMed Corporation | Bone stabilization device |
CN105496531A (en) * | 2016-02-04 | 2016-04-20 | 宝楠生技股份有限公司 | Fixing device for re-fixing broken fibula to tibia |
CN115054358A (en) * | 2016-02-26 | 2022-09-16 | 艾缇沃托公司 | Active compression device, method of assembly and method of use |
WO2017151629A1 (en) * | 2016-02-29 | 2017-09-08 | Fenner U.S., Inc. | Conveyor belt connector and method for forming a belt |
US10214359B2 (en) | 2016-02-29 | 2019-02-26 | Fenner U.S., Inc. | Conveyor belt connector and method for forming a belt |
US11883078B2 (en) * | 2016-04-25 | 2024-01-30 | Imds Llc | Joint fusion implant and methods |
US20210401472A1 (en) * | 2016-04-25 | 2021-12-30 | Imds Llc | Joint fusion implant and methods |
US10194923B2 (en) | 2016-05-10 | 2019-02-05 | Exsomed International IP, LLC | Tool for percutaneous joint cartilage destruction and preparation for joint fusion |
US12076519B2 (en) | 2016-06-23 | 2024-09-03 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having a retaining member |
US11413442B2 (en) | 2016-06-23 | 2022-08-16 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having a retaining member |
US10549081B2 (en) | 2016-06-23 | 2020-02-04 | Warsaw Orthopedic, Inc. | Drug delivery device and methods having a retaining member |
US11419645B2 (en) | 2016-10-05 | 2022-08-23 | University Of British Columbia | Intramedullary fixation device with shape locking interface |
US10610276B2 (en) * | 2016-10-05 | 2020-04-07 | Bluewater Medical GmbH | Screw |
US20180092681A1 (en) * | 2016-10-05 | 2018-04-05 | Bluewater Medical GmbH | Screw |
US10667923B2 (en) | 2016-10-31 | 2020-06-02 | Warsaw Orthopedic, Inc. | Sacro-iliac joint implant system and method |
US10434261B2 (en) | 2016-11-08 | 2019-10-08 | Warsaw Orthopedic, Inc. | Drug pellet delivery system and method |
US11478587B2 (en) | 2016-11-08 | 2022-10-25 | Warsaw Orthopedic, Inc. | Drug depot delivery system and method |
US12017050B2 (en) | 2016-11-08 | 2024-06-25 | Warsaw Orthopedic, Inc. | Drug depot delivery system and method |
US10413344B2 (en) * | 2017-02-07 | 2019-09-17 | Simfix Surgical Inc. | Devices and methods for repairing bone fractures |
US20180271573A1 (en) * | 2017-02-07 | 2018-09-27 | Syntorr, Inc. | Devices and methods for repairing bone fractures |
US11147681B2 (en) | 2017-09-05 | 2021-10-19 | ExsoMed Corporation | Small bone angled compression screw |
US12048464B2 (en) | 2017-09-05 | 2024-07-30 | ExsoMed Corporation | Intramedullary threaded nail for radial cortical fixation |
US12042191B2 (en) | 2017-09-05 | 2024-07-23 | ExsoMed Corporation | Intramedullary threaded nail for radial cortical fixation |
US20220117747A1 (en) * | 2017-09-05 | 2022-04-21 | ExsoMed Corporation | Small bone angled compression screw |
US11191576B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Intramedullary threaded nail for radial cortical fixation |
US11191645B2 (en) | 2017-09-05 | 2021-12-07 | ExsoMed Corporation | Small bone tapered compression screw |
US11877756B2 (en) | 2017-09-26 | 2024-01-23 | Si-Bone Inc. | Systems and methods for decorticating the sacroiliac joint |
US11116519B2 (en) | 2017-09-26 | 2021-09-14 | Si-Bone Inc. | Systems and methods for decorticating the sacroiliac joint |
US10888363B2 (en) | 2017-12-06 | 2021-01-12 | Stout Medical Group, L.P. | Attachment device and method for use |
US11737800B2 (en) | 2017-12-06 | 2023-08-29 | Stout Medical Group, L.P. | Attachment device and method for use |
US11058815B2 (en) | 2017-12-21 | 2021-07-13 | Versago Vascular Access, Inc. | Medical access ports, transfer devices and methods of use thereof |
WO2019168817A1 (en) * | 2018-02-27 | 2019-09-06 | The University Of Toledo | Syndesmosis fixation and reconstruction system and method of using the same |
US11832856B2 (en) | 2018-10-17 | 2023-12-05 | The University Of British Columbia | Bone-fixation device and system |
US11464556B2 (en) | 2018-11-08 | 2022-10-11 | Medartis Ag | Bone fixation device and method |
JP2022506812A (en) * | 2018-11-08 | 2022-01-17 | ネクストレミティ ソルーションズ インコーポレイテッド | Bone fixation device and method |
GB2593324A (en) * | 2018-11-08 | 2021-09-22 | Nextremity Solutions Inc | Bone fixation device and method |
GB2593324B (en) * | 2018-11-08 | 2023-03-22 | Nextremity Solutions Inc | Bone fixation device and method |
WO2020097482A1 (en) * | 2018-11-08 | 2020-05-14 | Nextremity Solutions, Inc. | Bone fixation device and method |
US11369419B2 (en) | 2019-02-14 | 2022-06-28 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
US12076251B2 (en) | 2019-02-14 | 2024-09-03 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
US11234830B2 (en) | 2019-02-14 | 2022-02-01 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
US11678997B2 (en) | 2019-02-14 | 2023-06-20 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
US11464552B2 (en) | 2019-05-22 | 2022-10-11 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
US11457959B2 (en) | 2019-05-22 | 2022-10-04 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
WO2021011313A1 (en) * | 2019-07-12 | 2021-01-21 | Stout Medical Group, L.P. | Attachment device and method for use |
US11344354B2 (en) | 2019-09-09 | 2022-05-31 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US11564812B2 (en) | 2019-09-09 | 2023-01-31 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
US11571245B2 (en) | 2019-11-27 | 2023-02-07 | Si-Bone Inc. | Bone stabilizing implants and methods of placement across SI joints |
US11672570B2 (en) | 2019-11-27 | 2023-06-13 | Si-Bone Inc. | Bone stabilizing implants and methods of placement across SI Joints |
US12083026B2 (en) | 2019-12-09 | 2024-09-10 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
US11304733B2 (en) | 2020-02-14 | 2022-04-19 | Spinal Elements, Inc. | Bone tie methods |
US12042402B2 (en) | 2020-12-09 | 2024-07-23 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
US11752011B2 (en) | 2020-12-09 | 2023-09-12 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
WO2022240742A1 (en) * | 2021-05-10 | 2022-11-17 | Trilliant Surgical Llc | Semi-rigid device for orthopedic fixation |
US11523852B1 (en) * | 2021-08-26 | 2022-12-13 | University Of Utah Research Foundation | Active compression bone screw |
US11317956B1 (en) * | 2021-08-26 | 2022-05-03 | University Of Utah Research Foundation | Active compression bone screw |
WO2023212615A3 (en) * | 2022-04-26 | 2024-01-04 | Rensselaer Polytechnic Institute | Implantable screw and methods for use |
JP7556918B2 (en) | 2022-08-08 | 2024-09-26 | Necパーソナルコンピュータ株式会社 | Electronics |
WO2024100494A1 (en) * | 2022-11-09 | 2024-05-16 | DePuy Synthes Products, Inc. | Devices and methods for lateral fixation syndesmosis repair |
US12023080B1 (en) | 2023-08-26 | 2024-07-02 | University Of Utah Research Foundation | Cannulated continuous compression screw |
US11998255B1 (en) | 2023-08-26 | 2024-06-04 | University Of Utah Research Foundation | Cannulated continuous compression screw |
Also Published As
Publication number | Publication date |
---|---|
JP2003010199A (en) | 2003-01-14 |
JP4740513B2 (en) | 2011-08-03 |
EP1273269A3 (en) | 2003-12-17 |
EP1273269A2 (en) | 2003-01-08 |
ES2278830T3 (en) | 2007-08-16 |
EP1273269B1 (en) | 2007-01-03 |
US7625395B2 (en) | 2009-12-01 |
ZA200204327B (en) | 2002-10-24 |
DE10129490A1 (en) | 2003-01-02 |
US20050177167A1 (en) | 2005-08-11 |
AU4888102A (en) | 2003-01-02 |
CA2391115A1 (en) | 2002-12-21 |
DE50209129D1 (en) | 2007-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7625395B2 (en) | Implantable screw for stabilization of a joint or a bone fracture | |
US7410489B2 (en) | Internal cord fixation device | |
US6890333B2 (en) | Method and apparatus for bone fixation with secondary compression | |
US9060820B2 (en) | Segmented intramedullary fracture fixation devices and methods | |
USRE43482E1 (en) | Intramedullary rod apparatus and methods of repairing proximal humerus fractures | |
CA2508172C (en) | Bone fracture fixation systems with both multidirectional and unidirectional stabilization pegs | |
US8821580B2 (en) | System for making a bone repair | |
US8961576B2 (en) | Internal joint bracing system and suture anchoring assembly therefore | |
US20100145339A1 (en) | Bone fixation system and method | |
US20140222087A1 (en) | Orthopedic implant having non-circular cross section and method of use thereof | |
JP2003509107A (en) | Bone plate system | |
WO2010062379A1 (en) | Bone fracture fixation screws, systems and methods of use | |
CN112912022A (en) | Bone fixation device and system | |
EP1104259B1 (en) | Bone fixation apparatus | |
EP3735192B1 (en) | Bone fixation with a plate and a coupler connected by flexible members | |
EP2419047B1 (en) | Internal joint bracing system and suture anchoring assembly therefore | |
US9808236B2 (en) | Internal joint bracing system and suture anchoring assembly therefore | |
WO2010117921A2 (en) | Proximal radius locking plate | |
US12016604B2 (en) | Methods and devices for achieving semi-rigid bone fixation | |
Schatzker et al. | Implants and their application | |
Rex et al. | Tension Banding, Cerclage Wires and Cables in Management of Fractures | |
US20220354557A1 (en) | Semi-rigid device for orthopedic fixation | |
Andreacchio et al. | Implantology of Paediatric Upper Limb Fractures | |
Shanmugasundaram et al. | Titanium Elastic Nails in the Management of Fractures | |
Bhat | Conventional Orthopedic Plating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JUSUNG ENGINEERING CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KWON, GI CHUNG;BYUN, HONG SIK;LEE, SUNG WEON;AND OTHERS;REEL/FRAME:013031/0935 Effective date: 20020605 |
|
AS | Assignment |
Owner name: MUCKTER, HELMUT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MUCKTER, HELMUT;REEL/FRAME:013040/0829 Effective date: 20020602 Owner name: HILDINGER, KARL-HEINZ, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MUCKTER, HELMUT;REEL/FRAME:013040/0829 Effective date: 20020602 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |