US20020195240A1 - Condenser for air cooled chillers - Google Patents
Condenser for air cooled chillers Download PDFInfo
- Publication number
- US20020195240A1 US20020195240A1 US09/881,638 US88163801A US2002195240A1 US 20020195240 A1 US20020195240 A1 US 20020195240A1 US 88163801 A US88163801 A US 88163801A US 2002195240 A1 US2002195240 A1 US 2002195240A1
- Authority
- US
- United States
- Prior art keywords
- heat exchanger
- flow paths
- multiplicity
- coil assembly
- hydraulic diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B1/00—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
- F28B1/06—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/01—Geometry problems, e.g. for reducing size
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2260/00—Heat exchangers or heat exchange elements having special size, e.g. microstructures
- F28F2260/02—Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
Definitions
- the present invention is directed to air cooled condensers for heating, ventilating and air conditioning (HVAC) systems. More specifically, the present invention is directed to aluminum heat exchangers for use in large air cooled air conditioning chillers, such chillers cooling a transport fluid for use in air conditioning elsewhere.
- HVAC heating, ventilating and air conditioning
- the present invention applies to a condenser using microchannel tubing, also known as parallel flow tubing or multi-path tubing.
- HVAC condensers presently use fin and tube coils, primarily with copper tubes and aluminum fins. A significant weight reduction of the overall unit could be accomplished if the tubes were also formed of aluminum and then brazed or glued to the fins. Small sized brazed aluminum heat exchangers as microchannel tubing are used in the automotive industry. However, the application and the sizes are distinct. Automobile radiators are not as concerned about efficiency as the HVAC industry is. Also, simply resizing an automotive heat exchanger does not provide an optimum solution.
- U.S. Pat. No. 4,998,580 to Guntly et al. and U.S. Pat. No. 5,372,188 to Dudley et al. are directed to a condenser with a small diameter hydraulic flow path where hydraulic diameter is conventionally defined as four times the cross sectional area of the flow path divided by the wetted perimeter of the flow path.
- the Guntly et al. patent requires hydraulic diameters of about 0.07 inches and less while the Dudley et al. patent requires a hydraulic diameter in the range of 0.015 to 0.040 inches. This technology is used in the automotive industry and is not optimum for an air cooled chiller application.
- the present invention is directed to solving the problem in the prior art systems.
- the present invention provides a heat exchanger.
- the heat exchanger comprises a first coil assembly including an inlet manifold, an outlet manifold parallel to and spaced from the inlet manifold; and a plurality of tubes each operably connected to and linking the inlet and the outlet manifolds.
- Each tube has a multiplicity of flow paths and a hydraulic diameter in the range of 0.05 ⁇ to HD ⁇ 0.30.
- the present invention also provides an air conditioning system including a compressor, a first heat exchanger, a fan motivating air across the first heat exchanger, an expansion device and a second heat exchanger serially linked into an air conditioning cycle by tubing.
- the first heat exchanger includes an inlet manifold, an outlet manifold, and a multiplicity of adjacent flow paths surrounded by a common tube wall and interconnecting the inlet manifold with the outlet manifold.
- the present invention further provides a method of manufacturing an air cooled chiller.
- the present invention still further provides a method of transferring heat in a heat exchanger.
- the method comprises the steps of: forming a first heat exchanger to include a multiplicity of adjacent flow paths wherein the flow paths are sized and shaped to a preferred hydraulic diameter HD within the range of 0.7 ⁇ HD ⁇ 0.30 inches where hydraulic diameter HD as defined as four times a cross sectional area divided by a total wetted perimeter; and transferring heat thru a wall enclosing said flow paths and to a fluid contained therein.
- FIG. 1 is a block diagram of an air cooled chiller system in accordance with the present invention.
- FIG. 2 shows a first preferred embodiment of the present invention taken along lines 2 - 2 of FIG. 1.
- FIG. 3 is an alternative embodiment of the multi-path tubes shown in FIG. 2.
- FIGS. 4 a and 4 b are diagrams of fins used in the heat exchanger shown in FIG. 1.
- FIG. 5 is a block diagram of a multiple coil assembly configuration as a preferred embodiment of FIG. 1.
- FIG. 1 shows an air conditioning system 10 including a compressor 12 , a first heat exchanger 14 functioning as a condenser, an expansion device 16 such as an expansion valve, and a second heat exchanger 18 functioning as an evaporator.
- the compressor 12 , the first heat exchanger 14 , the expansion device 16 , and the second heat exchanger 18 are serially linked in an air conditioning cycle by tubing 20 .
- the first heat exchanger 14 functions as a condenser in releasing heat from the system, while the second heat exchanger 18 functions as an evaporator in cooling a fluid transported to and from the heat exchanger 18 by means of conduit 22 .
- Such systems are generally well known and are sold by The Trane Company, a Division of American Standard Inc., under the registered trademarks CenTraVac and Series R.
- the present invention is directed to an improved condenser 14 .
- This improved condenser 14 is preferably formed of aluminum and has an inlet manifold 30 receiving hot gaseous refrigerant from the conduit 20 and the compressor 12 .
- This hot gaseous refrigerant is distributed by the inlet manifold 30 to a plurality of tubes 32 .
- These tubes 32 conduct the hot gaseous refrigerant from the inlet manifold 30 through the tubes 32 to an outlet manifold 34 .
- the hot gaseous refrigerant is condensed and returns to the conduit 20 as a liquid where it is modulated through the expansion device 16 to the second heat exchanger 18 .
- the tubes 32 are preferably microchannel or parallel flow tubing. Microchannel tubing is shown by applicant's U.S. Pat. No. 5,967,228 to Bergman et al. which is assigned to the assignee of the present invention and hereby incorporated by reference.
- Air is moved over the tubes 32 by an air moving device 36 such as a fan either to or away from the fan 36 as indicated by arrow 38 .
- an air moving device 36 such as a fan either to or away from the fan 36 as indicated by arrow 38 .
- fins 40 are provided to enhance the heat transfer. These fins 40 will be subsequently described with reference to FIG. 4.
- the preferred embodiment of the tubes 32 is shown in FIG. 2 and an alternative embodiment is shown in FIG. 3.
- the heat transfer tube 32 shown in FIG. 2 includes a multiplicity of adjacent flow paths 40 , 42 , 44 , 46 and 48 throughout the length of the tube 32 and surrounded by a common tube wall 50 .
- the adjacent flow paths 40 through 48 are separated by barrier walls 52 , 54 , 56 and 58 respectively.
- the flow paths 40 and 48 are of similar shape and cross sectional area and the flow paths 42 , 44 and 46 are of similar shape and cross sectional area.
- the flow paths 40 , 42 , 44 , 46 and 48 are sized and shaped to form a preferred hydraulic diameter HD within the range of:
- Empirical study shows that a 100 ton air cooled chiller should have a hydraulic diameter of at least 0.07 whereas a 240 ton air cooled chiller should have a hydraulic diameter of about 0.14 inches.
- Linear extrapolation shows that a 480 ton air cooled chiller should have a hydraulic diameter of about 0.26 inches.
- the preferred range of hydraulic diameters is 0.07 ⁇ HD ⁇ 0.30 with an intermediate range of 0.07 ⁇ HD ⁇ 0.26.
- An optimum range appears to be 0.07 ⁇ HD ⁇ 0.14, with preferred hydraulic diameter of 0.14.
- the total cross sectional area of the flow paths 40 , 42 , 44 , 46 and 48 is either measured or calculated, and the total wetted perimeter for those same flow paths is determined in a similar manner.
- each of the multiplicity of flow paths has an identical size and shape 60 .
- the cross sectional area for these multiplicity of flow paths 60 can be determined by taking an individual flow path 60 a , determining a height 62 and a width 64 , and multiplying the height 62 and width 64 together to determine an area for a single flow path 60 a .
- the total cross sectional area for the tube 32 is determined by multiplying by the number of flow paths, in this case 5 , by the cross-sectional area per flow path leading to the calculation that the total cross sectional area equals 5 times the height 62 time the width 64 .
- the wetted perimeter for any individual flow path 60 can be calculated as two heights ( 62 ) plus two widths ( 64 ).
- Total wetted perimeter can be determined by multiplying the wetted perimeter for any particular flow path by the number of individual flow paths 60 , in this case 5 , to result in a total wetted perimeter of 5 times (2H plus 2W). This results in a hydraulic diameter according to the following formula:
- HD 10( HXW ) ⁇ fraction (4/20) ⁇ ( H+W )
- HD 2 H ⁇ W/ ( H+W )
- FIG. 4 a shows a first fin embodiment where a corrugated fin 40 a is used.
- FIG. 4 b shows the use of a sinusoidal fin 40 b.
- FIG. 5 is directed to a multiple coil assembly embodiment of the invention in contrast to FIG. 1 which shows a single coil assembly 70 .
- multiple coil assemblies 70 , 72 , 74 and 76 might be used.
- the arrangement shown in FIG. 5 is described in applicant's previous U.S. Pat. No. 5,067,560 to Carey et al. which is assigned to the assignee of the present invention and hereby incorporated by reference.
- the control of such a condenser is described in applicant's U.S. Pat. No. 5,138,844 to Clanin et al. which is assigned to the assignee of the present invention and also incorporated by reference.
- the first coil assembly 70 is basically perpendicular to ground and a second coil assembly 76 is spaced from the first coil assembly 70 and is generally arranged in a parallel plane.
- a third coil assembly 72 is positioned between the first and second coil assembly 70 , 76 and lying in a plane which is not parallel to the planes of first and second coil assemblies 70 , 76 .
- a fourth coil assembly 74 also lies between the first and second coil assembly 70 , 76 at a line in a plane which is not parallel to the planes of the first and second coil assembly 70 , 76 .
- the fourth coil assembly 74 preferably is at a complimentary angle to the third coil assembly 72 .
- the potential airflow paths are shown by arrows 80 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A heat exchanger comprising a first coil assembly including an inlet manifold; an outlet manifold parallel to and spaced from the inlet manifold; and a plurality of tubes each operably connected to and linking the inlet and the outlet manifolds, each tube having a multiplicity of flow paths and a hydraulic diameter in the range of 0.05≦ to HD≦0.30.
Description
- The present invention is directed to air cooled condensers for heating, ventilating and air conditioning (HVAC) systems. More specifically, the present invention is directed to aluminum heat exchangers for use in large air cooled air conditioning chillers, such chillers cooling a transport fluid for use in air conditioning elsewhere. In particular the present invention applies to a condenser using microchannel tubing, also known as parallel flow tubing or multi-path tubing.
- HVAC condensers presently use fin and tube coils, primarily with copper tubes and aluminum fins. A significant weight reduction of the overall unit could be accomplished if the tubes were also formed of aluminum and then brazed or glued to the fins. Small sized brazed aluminum heat exchangers as microchannel tubing are used in the automotive industry. However, the application and the sizes are distinct. Automobile radiators are not as concerned about efficiency as the HVAC industry is. Also, simply resizing an automotive heat exchanger does not provide an optimum solution.
- In order to accomplish this, the design of an aluminum heat exchanger with microchannel tubing must be analyzed and optimized.
- U.S. Pat. No. 4,998,580 to Guntly et al. and U.S. Pat. No. 5,372,188 to Dudley et al. are directed to a condenser with a small diameter hydraulic flow path where hydraulic diameter is conventionally defined as four times the cross sectional area of the flow path divided by the wetted perimeter of the flow path. The Guntly et al. patent requires hydraulic diameters of about 0.07 inches and less while the Dudley et al. patent requires a hydraulic diameter in the range of 0.015 to 0.040 inches. This technology is used in the automotive industry and is not optimum for an air cooled chiller application.
- The present invention is directed to solving the problem in the prior art systems.
- It is an object, feature and advantage of the present invention to provide an aluminum heat exchanger with multiple parallel flow paths for use in a large chiller for air conditioning purposes. It is a further object, feature and an advantage of the present invention to significantly reduce the weight of a large chiller.
- It is an object, feature and advantage of the present invention to provide a heat exchanger with multiple parallel flow paths having a hydraulic diameter greater than 0.07 inches and less than 0.30 inches. It is a further object, feature and advantage of the present invention to provide a hydraulic diameter in the range greater than 0.07 inches and less than or equal to 0.26 inches. It is yet a further object, feature and advantage of the present invention to provide a hydraulic diameter in the range greater than 0.07 inches and less than or equal to 0.14 inches. It is a still further object, feature and advantage of the present invention to provide a hydraulic diameter in the range of 0.14 inches less than or equal to 0.26 inches. Finally, in the preferred embodiments of the present invention the hydraulic diameter is either 0.07 inches or 0.14.
- The present invention provides a heat exchanger. The heat exchanger comprises a first coil assembly including an inlet manifold, an outlet manifold parallel to and spaced from the inlet manifold; and a plurality of tubes each operably connected to and linking the inlet and the outlet manifolds. Each tube has a multiplicity of flow paths and a hydraulic diameter in the range of 0.05≦ to HD≦0.30.
- The present invention also provides an air conditioning system including a compressor, a first heat exchanger, a fan motivating air across the first heat exchanger, an expansion device and a second heat exchanger serially linked into an air conditioning cycle by tubing. The first heat exchanger includes an inlet manifold, an outlet manifold, and a multiplicity of adjacent flow paths surrounded by a common tube wall and interconnecting the inlet manifold with the outlet manifold.
- The present invention further provides a method of manufacturing an air cooled chiller. The method comprises the steps of: forming a first heat exchanger to include a multiplicity of adjacent flow paths wherein the flow paths are sized and shaped to a preferred hydraulic diameter within the range of 0.7≦ the hydraulic diameter is <0.30 inches where hydraulic diameter=4 times the cross sectional area divided by the total wetted perimeter; providing a fan to move air across the multiplicity of adjacent flow paths; providing a compressor, a second heat exchanger, and an expansion device; and linking the compressor, the first heat exchanger, the expansion device, and the second heat exchanger serially into an air conditioning cycle by tubing.
- The present invention still further provides a method of transferring heat in a heat exchanger. The method comprises the steps of: forming a first heat exchanger to include a multiplicity of adjacent flow paths wherein the flow paths are sized and shaped to a preferred hydraulic diameter HD within the range of 0.7<HD<0.30 inches where hydraulic diameter HD as defined as four times a cross sectional area divided by a total wetted perimeter; and transferring heat thru a wall enclosing said flow paths and to a fluid contained therein.
- FIG. 1 is a block diagram of an air cooled chiller system in accordance with the present invention.
- FIG. 2 shows a first preferred embodiment of the present invention taken along lines2-2 of FIG. 1.
- FIG. 3 is an alternative embodiment of the multi-path tubes shown in FIG. 2.
- FIGS. 4a and 4 b are diagrams of fins used in the heat exchanger shown in FIG. 1.
- FIG. 5 is a block diagram of a multiple coil assembly configuration as a preferred embodiment of FIG. 1.
- FIG. 1 shows an
air conditioning system 10 including acompressor 12, afirst heat exchanger 14 functioning as a condenser, anexpansion device 16 such as an expansion valve, and asecond heat exchanger 18 functioning as an evaporator. Thecompressor 12, thefirst heat exchanger 14, theexpansion device 16, and thesecond heat exchanger 18 are serially linked in an air conditioning cycle bytubing 20. Thefirst heat exchanger 14 functions as a condenser in releasing heat from the system, while the second heat exchanger 18 functions as an evaporator in cooling a fluid transported to and from theheat exchanger 18 by means ofconduit 22. Such systems are generally well known and are sold by The Trane Company, a Division of American Standard Inc., under the registered trademarks CenTraVac and Series R. - The present invention is directed to an improved
condenser 14. This improvedcondenser 14 is preferably formed of aluminum and has aninlet manifold 30 receiving hot gaseous refrigerant from theconduit 20 and thecompressor 12. This hot gaseous refrigerant is distributed by theinlet manifold 30 to a plurality oftubes 32. Thesetubes 32 conduct the hot gaseous refrigerant from theinlet manifold 30 through thetubes 32 to anoutlet manifold 34. In the process, the hot gaseous refrigerant is condensed and returns to theconduit 20 as a liquid where it is modulated through theexpansion device 16 to thesecond heat exchanger 18. Thetubes 32 are preferably microchannel or parallel flow tubing. Microchannel tubing is shown by applicant's U.S. Pat. No. 5,967,228 to Bergman et al. which is assigned to the assignee of the present invention and hereby incorporated by reference. - Air is moved over the
tubes 32 by anair moving device 36 such as a fan either to or away from thefan 36 as indicated byarrow 38. To enhance heat transfer from thetubes 32,fins 40 are provided to enhance the heat transfer. Thesefins 40 will be subsequently described with reference to FIG. 4. - The preferred embodiment of the
tubes 32 is shown in FIG. 2 and an alternative embodiment is shown in FIG. 3. Theheat transfer tube 32 shown in FIG. 2 includes a multiplicity ofadjacent flow paths tube 32 and surrounded by acommon tube wall 50. Theadjacent flow paths 40 through 48 are separated bybarrier walls - In FIG. 2, the
flow paths flow paths flow paths - 0.7<HD<0.30 inches.
-
- Empirical study shows that a100 ton air cooled chiller should have a hydraulic diameter of at least 0.07 whereas a 240 ton air cooled chiller should have a hydraulic diameter of about 0.14 inches. Linear extrapolation shows that a 480 ton air cooled chiller should have a hydraulic diameter of about 0.26 inches. Thus, the preferred range of hydraulic diameters is 0.07<HD<0.30 with an intermediate range of 0.07<HD≦0.26. An optimum range appears to be 0.07<HD<0.14, with preferred hydraulic diameter of 0.14.
- In determining the hydraulic diameter, the total cross sectional area of the
flow paths - For the sake of expediency, exemplary calculations are performed for the alternative embodiment shown in FIG. 3. In this FIG. 3, like reference numerals are used to denote like elements.
- In the
tube 32 shown in FIG. 3, each of the multiplicity of flow paths has an identical size andshape 60. The cross sectional area for these multiplicity offlow paths 60 can be determined by taking anindividual flow path 60 a, determining aheight 62 and awidth 64, and multiplying theheight 62 andwidth 64 together to determine an area for asingle flow path 60 a. The total cross sectional area for thetube 32 is determined by multiplying by the number of flow paths, in this case 5, by the cross-sectional area per flow path leading to the calculation that the total cross sectional area equals 5 times theheight 62 time thewidth 64. - The wetted perimeter for any
individual flow path 60 can be calculated as two heights (62) plus two widths (64). Total wetted perimeter can be determined by multiplying the wetted perimeter for any particular flow path by the number ofindividual flow paths 60, in this case 5, to result in a total wetted perimeter of 5 times (2H plus 2W). This results in a hydraulic diameter according to the following formula: - HD=10(HXW)×{fraction (4/20)}(H+W)
- which reduces to:
- HD=2H×W/(H+W)
- FIG. 4a shows a first fin embodiment where a corrugated fin 40 a is used. Similarly, FIG. 4b shows the use of a sinusoidal fin 40 b.
- FIG. 5 is directed to a multiple coil assembly embodiment of the invention in contrast to FIG. 1 which shows a
single coil assembly 70. In practice,multiple coil assemblies - In FIG. 5, the
first coil assembly 70 is basically perpendicular to ground and asecond coil assembly 76 is spaced from thefirst coil assembly 70 and is generally arranged in a parallel plane. Athird coil assembly 72 is positioned between the first andsecond coil assembly second coil assemblies fourth coil assembly 74 also lies between the first andsecond coil assembly second coil assembly fourth coil assembly 74 preferably is at a complimentary angle to thethird coil assembly 72. The potential airflow paths are shown byarrows 80. - What has been described is a condenser for use in the large air cooled chiller. It will be apparent to a person of ordinary skill in the art that many alterations and modifications are readily apparent. Such modifications include varying the material from aluminum to other light weight materials having a good heat transfer coefficient as well as modifying the number and shape of the multiple flow paths within each tube. All such modifications and alterations are contemplated to fall within the spirit and scope of the following claims.
Claims (26)
1. A heat exchanger comprising:
a first coil assembly including an inlet manifold;
an outlet manifold parallel to and spaced from the inlet manifold; and
a plurality of tubes each operably connected to and linking the inlet and the outlet manifolds, each tube having a multiplicity of flow paths and a hydraulic diameter HD in the range of 0.07<HD<0.30.
2. The heat exchanger of claim 1 wherein the multiplicity of flow paths are in a parallel arrangement.
3. The heat exchanger of claim 2 further including fins arranged in heat transfer relation between adjacent tubes of the plurality of tubes.
4. The heat exchanger of claim 3 wherein the fins have a sinusoidal shape.
5. The heat exchanger of claim 3 wherein the fins have a corrugated shape.
6. The heat exchanger of claim 3 wherein the multiplicity of flow paths have a similar cross sectional shape.
7. The heat exchanger of claim 3 wherein the multiplicity of flow paths has at least first and second cross sectional shapes.
8. The heat exchanger of claim 3 further including a device moving air across the first coil assembly and the heat exchanger is primarily formed of aluminum.
9. The heat exchanger of claim 3 further including a second coil assembly parallel to and spaced from the first coil assembly, each oil assembly lying in first and second respective planes which are substantially parallel to each other.
10. The heat exchanger of claim 9 including a third coil assembly located between the first and second coil assemblies and lying in a third plane not parallel to the first and second planes.
11. The heat exchanger of claim 10 further including a fourth coil assembly between the first and second coil assemblies and lying in a fourth plane not parallel to the first and second planes wherein the angle of the fourth plane is complementary to the angle of the third plane.
12. An air conditioning system comprising:
a compressor,
a first heat exchanger,
a fan motivating air across the first heat exchanger,
an expansion device and
a second heat exchanger serially linked into an air conditioning cycle by tubing;
the first heat exchanger including an inlet manifold, an outlet manifold, and a multiplicity of adjacent flow paths surrounded by a common tube wall and interconnecting the inlet manifold with the outlet manifold.
13. The system of claim 12 wherein the multiplicity of adjacent flow paths are of similar cross sectional area and are formed of aluminum.
14. The system of claim 13 wherein the flow paths are sized and shaped to form a preferred hydraulic diameter HD within the range of 0.7<HD<to 0.30 inches where hydraulic diameter HD is defined as four times the cross sectional area of the flow paths divided by the total wetted perimeter of the flow paths.
15. The system of claim 14 wherein the first heat exchanger includes first, second, third and fourth coil assemblies, each coil assembly including the multiplicity of flow paths, and said first, second, third and fourth coil assemblies each having a planar dimension such that the coil assemblies form a W shape when viewed in a direction perpendicular to a common plane to first, second, third and fourth coil assemblies.
16. The system of claim 14 wherein the multiplicity of flow paths are of identical size and shape.
17. The system of claim 14 wherein the multiplicity of flow paths are in first and second differing shapes.
18. The system of claim 17 wherein the first shape is rectangular and the second shape includes an arced surface.
19. A method of manufacturing an air cooled chiller comprising the steps of:
forming a first heat exchanger to include a multiplicity of adjacent flow paths wherein the flow paths are sized and shaped to a preferred hydraulic diameter HD within the range of 0.7<HD<0.30 inches;
providing a fan to move air across the multiplicity of adjacent flow paths;
providing a compressor, a second heat exchanger, and an expansion device; and
linking the compressor, the first heat exchanger, the expansion device, and the second heat exchanger serially into an air conditioning cycle by tubing.
20. The method of claim 19 including the further step of:
adaptively configuring the second heat exchanger to chill the temperature of a liquid.
21. The method of claim 19 including the further step of:
forming the first heat exchanger from aluminum.
22. The method of claim 21 including the further step of interconnecting adjacent ones of the multiplicity of flow paths with a corrugated or sinusoidal fin.
23. The method of claim 22 including the step of arranging the multiplicity of flow paths in a common plane.
24. A method of transferring heat in a heat exchanger comprising the steps of:
forming a first heat exchanger to include a multiplicity of adjacent flow paths wherein the flow paths are sized and shaped to a preferred hydraulic diameter HD within the range of 0.7<HD<0.30 inches; and
transferring heat thru a wall enclosing said flow paths and to a fluid contained therein.
25. The method of claim 24 including forming the wall from aluminum.
26. The method of claim 25 including forming the flow paths into first and second distinct cross-sectional shapes.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/881,638 US20020195240A1 (en) | 2001-06-14 | 2001-06-14 | Condenser for air cooled chillers |
CA002450306A CA2450306C (en) | 2001-06-14 | 2002-05-24 | Condenser for air cooled chillers |
CNB028119681A CN1295476C (en) | 2001-06-14 | 2002-05-24 | Condenser for air cooled chillers |
PCT/US2002/016725 WO2002103270A1 (en) | 2001-06-14 | 2002-05-24 | Condenser for air cooled chillers |
EP02739443A EP1395786B1 (en) | 2001-06-14 | 2002-05-24 | Condenser for air cooled chillers |
US10/742,051 US20040134226A1 (en) | 2001-06-14 | 2003-12-18 | Condenser for air cooled chillers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/881,638 US20020195240A1 (en) | 2001-06-14 | 2001-06-14 | Condenser for air cooled chillers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/742,051 Continuation-In-Part US20040134226A1 (en) | 2001-06-14 | 2003-12-18 | Condenser for air cooled chillers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020195240A1 true US20020195240A1 (en) | 2002-12-26 |
Family
ID=25378876
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/881,638 Abandoned US20020195240A1 (en) | 2001-06-14 | 2001-06-14 | Condenser for air cooled chillers |
US10/742,051 Abandoned US20040134226A1 (en) | 2001-06-14 | 2003-12-18 | Condenser for air cooled chillers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/742,051 Abandoned US20040134226A1 (en) | 2001-06-14 | 2003-12-18 | Condenser for air cooled chillers |
Country Status (5)
Country | Link |
---|---|
US (2) | US20020195240A1 (en) |
EP (1) | EP1395786B1 (en) |
CN (1) | CN1295476C (en) |
CA (1) | CA2450306C (en) |
WO (1) | WO2002103270A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040216863A1 (en) * | 2003-04-30 | 2004-11-04 | Valeo, Inc. | Heat exchanger |
EP1557622A2 (en) * | 2004-01-22 | 2005-07-27 | Hussmann Corporation | Microchannel condenser assembly |
US20060130517A1 (en) * | 2004-12-22 | 2006-06-22 | Hussmann Corporation | Microchannnel evaporator assembly |
US20080216493A1 (en) * | 2007-03-08 | 2008-09-11 | Liebert Corporation | Microchannel cooling condenser for precision cooling applications |
US20080250805A1 (en) * | 2005-10-21 | 2008-10-16 | Carrier Corporation | Foul-Resistant Condenser Using Microchannel Tubing |
WO2009149745A1 (en) * | 2008-06-09 | 2009-12-17 | A-Heat Allied Heat Exchange Technology Ag | Heat exchanger block, and a method for wetting a heat exchanger block |
US20100024468A1 (en) * | 2006-10-13 | 2010-02-04 | Carrier Corporation | Refrigeration unit comprising a micro channel heat exchanger |
WO2010037165A1 (en) * | 2008-09-30 | 2010-04-08 | Muller Industries Australia Pty Ltd | Cooling system with microchannel heat exchanger |
WO2010040635A1 (en) * | 2008-10-08 | 2010-04-15 | A-Heat Allied Heat Exchange Technology Ag | Heat exchanger assembly and method for the operation thereof |
US20110219790A1 (en) * | 2010-03-14 | 2011-09-15 | Trane International Inc. | System and Method For Charging HVAC System |
US20140224460A1 (en) * | 2013-02-08 | 2014-08-14 | Trane International Inc. | Microchannel Heat Exchanger |
EP2916087A1 (en) * | 2013-12-17 | 2015-09-09 | Lennox Industries Inc. | Managing high pressure events in air conditioners |
USD763417S1 (en) * | 2012-08-02 | 2016-08-09 | Mitsubishi Electric Corporation | Heat exchanger tube |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7937963B1 (en) * | 2006-10-02 | 2011-05-10 | Thomas Middleton Semmes | Architecturally enhanced chiller unit |
WO2008064247A1 (en) * | 2006-11-22 | 2008-05-29 | Johnson Controls Technology Company | Multi-function multichannel heat exchanger |
WO2008064251A2 (en) | 2006-11-22 | 2008-05-29 | Johnson Controls Technology Company | Space-saving multichannel heat exchanger |
WO2008064219A1 (en) | 2006-11-22 | 2008-05-29 | Johnson Controls Technology Company | Multichannel evaporator with flow mixing manifold |
US20090025405A1 (en) * | 2007-07-27 | 2009-01-29 | Johnson Controls Technology Company | Economized Vapor Compression Circuit |
WO2009018150A1 (en) | 2007-07-27 | 2009-02-05 | Johnson Controls Technology Company | Multichannel heat exchanger |
ATE528598T1 (en) * | 2007-08-24 | 2011-10-15 | Johnson Controls Tech Co | STEAM COMPRESSION SYSTEM AND CONTROL METHOD THEREOF |
US20100011803A1 (en) * | 2008-07-15 | 2010-01-21 | Johnson Controls Technology Company | Horizontal discharge air conditioning unit |
US8234881B2 (en) | 2008-08-28 | 2012-08-07 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar flow |
US8439104B2 (en) | 2009-10-16 | 2013-05-14 | Johnson Controls Technology Company | Multichannel heat exchanger with improved flow distribution |
US10222106B2 (en) * | 2015-03-31 | 2019-03-05 | The Boeing Company | Condenser apparatus and method |
CN104949548A (en) * | 2015-07-03 | 2015-09-30 | 湖南省中达换热装备有限公司 | Combined type air cooler |
US20200333077A1 (en) * | 2019-04-18 | 2020-10-22 | The Babcock & Wilcox Company | Perturbing air cooled condenser fin |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US431193A (en) * | 1890-07-01 | Metallic glazing-bar | ||
US2655181A (en) * | 1949-09-14 | 1953-10-13 | Mccord Corp | Tube construction |
US4034804A (en) * | 1971-09-23 | 1977-07-12 | U.S. Philips Corporation | Motor-car radiator |
US4150720A (en) * | 1976-04-29 | 1979-04-24 | Imperial Chemical Industries Limited | Heat exchanger |
US4328861A (en) * | 1979-06-21 | 1982-05-11 | Borg-Warner Corporation | Louvred fins for heat exchangers |
JPS59129392A (en) * | 1983-01-10 | 1984-07-25 | Nippon Denso Co Ltd | Heat exchanger |
JPS60176375U (en) * | 1984-05-01 | 1985-11-22 | サンデン株式会社 | Heat exchanger |
US5372188A (en) | 1985-10-02 | 1994-12-13 | Modine Manufacturing Co. | Heat exchanger for a refrigerant system |
US5279360A (en) * | 1985-10-02 | 1994-01-18 | Modine Manufacturing Co. | Evaporator or evaporator/condenser |
US4998580A (en) * | 1985-10-02 | 1991-03-12 | Modine Manufacturing Company | Condenser with small hydraulic diameter flow path |
DE3673780D1 (en) * | 1985-12-16 | 1990-10-04 | Akzo Nv | CONNECTING HOLLOW PROFILE BODIES TO A PLASTIC PLATE, ESPECIALLY FOR THE PRODUCTION OF HEAT EXCHANGERS. |
US4805693A (en) * | 1986-11-20 | 1989-02-21 | Modine Manufacturing | Multiple piece tube assembly for use in heat exchangers |
DE3730117C1 (en) * | 1987-09-08 | 1988-06-01 | Norsk Hydro As | Method for producing a heat exchanger, in particular a motor vehicle radiator and tube profile for use in such a method |
US5138844A (en) | 1990-04-03 | 1992-08-18 | American Standard Inc. | Condenser fan control system for use with variable capacity compressor |
US5197539A (en) * | 1991-02-11 | 1993-03-30 | Modine Manufacturing Company | Heat exchanger with reduced core depth |
US5067560A (en) * | 1991-02-11 | 1991-11-26 | American Standard Inc. | Condenser coil arrangement for refrigeration system |
US5197538A (en) * | 1991-04-22 | 1993-03-30 | Zexel Corporation | Heat exchanger apparatus having fluid coupled primary heat exchanger unit and auxiliary heat exchanger unit |
DE4201791A1 (en) * | 1991-06-20 | 1993-07-29 | Thermal Waerme Kaelte Klima | FLAT TUBES FOR INSTALLATION IN A FLAT TUBE HEAT EXCHANGER AND METHOD FOR SEPARATING THE FLAT TUBES |
JP3405997B2 (en) * | 1991-10-23 | 2003-05-12 | 株式会社デンソー | Inner fin and manufacturing method thereof |
DE69310842T2 (en) * | 1992-09-03 | 1997-12-18 | Modine Mfg Co | Heat exchanger |
US5682944A (en) * | 1992-11-25 | 1997-11-04 | Nippondenso Co., Ltd. | Refrigerant condenser |
US5931226A (en) * | 1993-03-26 | 1999-08-03 | Showa Aluminum Corporation | Refrigerant tubes for heat exchangers |
JP3364665B2 (en) * | 1993-03-26 | 2003-01-08 | 昭和電工株式会社 | Refrigerant flow pipe for heat exchanger |
JPH06300473A (en) * | 1993-04-19 | 1994-10-28 | Sanden Corp | Flat refrigerant pipe |
US5323851A (en) * | 1993-04-21 | 1994-06-28 | Wynn's Climate Systems, Inc. | Parallel flow condenser with perforated webs |
US5366007A (en) * | 1993-08-05 | 1994-11-22 | Wynn's Climate Systems, Inc. | Two-piece header |
US5490559A (en) * | 1994-07-20 | 1996-02-13 | Dinulescu; Horia A. | Heat exchanger with finned partition walls |
US5771964A (en) * | 1996-04-19 | 1998-06-30 | Heatcraft Inc. | Heat exchanger with relatively flat fluid conduits |
US6016864A (en) * | 1996-04-19 | 2000-01-25 | Heatcraft Inc. | Heat exchanger with relatively flat fluid conduits |
JPH1144498A (en) * | 1997-05-30 | 1999-02-16 | Showa Alum Corp | Flat porous tube for heat exchanger and heat exchanger using the tube |
US5967228A (en) * | 1997-06-05 | 1999-10-19 | American Standard Inc. | Heat exchanger having microchannel tubing and spine fin heat transfer surface |
JP3131774B2 (en) * | 1997-09-26 | 2001-02-05 | 漢拏空調株式会社 | Multi-flow condenser for vehicle air conditioner |
US5875837A (en) * | 1998-01-15 | 1999-03-02 | Modine Manufacturing Company | Liquid cooled two phase heat exchanger |
US5904206A (en) * | 1998-02-25 | 1999-05-18 | General Motors Corporation | Heat exchanger flow tube with improved header to tube end stress resistance |
DE19845336A1 (en) * | 1998-10-01 | 2000-04-06 | Behr Gmbh & Co | Multi-channel flat tube |
GB2346680A (en) * | 1999-02-11 | 2000-08-16 | Llanelli Radiators Ltd | Condenser |
-
2001
- 2001-06-14 US US09/881,638 patent/US20020195240A1/en not_active Abandoned
-
2002
- 2002-05-24 CA CA002450306A patent/CA2450306C/en not_active Expired - Lifetime
- 2002-05-24 EP EP02739443A patent/EP1395786B1/en not_active Expired - Lifetime
- 2002-05-24 CN CNB028119681A patent/CN1295476C/en not_active Expired - Lifetime
- 2002-05-24 WO PCT/US2002/016725 patent/WO2002103270A1/en active IP Right Grant
-
2003
- 2003-12-18 US US10/742,051 patent/US20040134226A1/en not_active Abandoned
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040216863A1 (en) * | 2003-04-30 | 2004-11-04 | Valeo, Inc. | Heat exchanger |
US7337832B2 (en) * | 2003-04-30 | 2008-03-04 | Valeo, Inc. | Heat exchanger |
EP1557622A2 (en) * | 2004-01-22 | 2005-07-27 | Hussmann Corporation | Microchannel condenser assembly |
EP1557622A3 (en) * | 2004-01-22 | 2006-12-20 | Hussmann Corporation | Microchannel condenser assembly |
EP1557622B1 (en) | 2004-01-22 | 2018-08-22 | Hussmann Corporation | Microchannel condenser assembly |
US20060130517A1 (en) * | 2004-12-22 | 2006-06-22 | Hussmann Corporation | Microchannnel evaporator assembly |
US20080250805A1 (en) * | 2005-10-21 | 2008-10-16 | Carrier Corporation | Foul-Resistant Condenser Using Microchannel Tubing |
US20100024468A1 (en) * | 2006-10-13 | 2010-02-04 | Carrier Corporation | Refrigeration unit comprising a micro channel heat exchanger |
US20080216493A1 (en) * | 2007-03-08 | 2008-09-11 | Liebert Corporation | Microchannel cooling condenser for precision cooling applications |
WO2008112336A2 (en) * | 2007-03-08 | 2008-09-18 | Liebert Corporation | Microchannel cooling condenser for precision cooling applications |
WO2008112336A3 (en) * | 2007-03-08 | 2008-11-06 | Liebert Corp | Microchannel cooling condenser for precision cooling applications |
US20110079371A1 (en) * | 2008-06-09 | 2011-04-07 | A-Heat Allied Heat Exchange Techology Ag | Heat exchanger block and a method for wetting a heat exchanger block |
WO2009149745A1 (en) * | 2008-06-09 | 2009-12-17 | A-Heat Allied Heat Exchange Technology Ag | Heat exchanger block, and a method for wetting a heat exchanger block |
AU2009299103B2 (en) * | 2008-09-30 | 2012-02-02 | Baltimore Aircoil Company Inc. | Modular cooling system |
WO2010037164A1 (en) * | 2008-09-30 | 2010-04-08 | Muller Industries Australia Pty Ltd | Modular cooling system |
US20110168362A1 (en) * | 2008-09-30 | 2011-07-14 | Muller Industries Australia Pty Ltd. | Cooling system with microchannel heat exchanger |
US20110168354A1 (en) * | 2008-09-30 | 2011-07-14 | Muller Industries Australia Pty Ltd. | Modular cooling system |
WO2010037165A1 (en) * | 2008-09-30 | 2010-04-08 | Muller Industries Australia Pty Ltd | Cooling system with microchannel heat exchanger |
AU2009299104B2 (en) * | 2008-09-30 | 2011-11-24 | Baltimore Aircoil Company Inc. | Cooling system with microchannel heat exchanger |
US20110209860A1 (en) * | 2008-10-08 | 2011-09-01 | A-Heat Allied Heat Exchange Technology Ag | Heat exchanger arrangement and method for the operation of same |
WO2010040635A1 (en) * | 2008-10-08 | 2010-04-15 | A-Heat Allied Heat Exchange Technology Ag | Heat exchanger assembly and method for the operation thereof |
US20110219790A1 (en) * | 2010-03-14 | 2011-09-15 | Trane International Inc. | System and Method For Charging HVAC System |
USD763417S1 (en) * | 2012-08-02 | 2016-08-09 | Mitsubishi Electric Corporation | Heat exchanger tube |
US20140224460A1 (en) * | 2013-02-08 | 2014-08-14 | Trane International Inc. | Microchannel Heat Exchanger |
EP2916087A1 (en) * | 2013-12-17 | 2015-09-09 | Lennox Industries Inc. | Managing high pressure events in air conditioners |
US9546807B2 (en) | 2013-12-17 | 2017-01-17 | Lennox Industries Inc. | Managing high pressure events in air conditioners |
EP3457053A1 (en) * | 2013-12-17 | 2019-03-20 | Lennox Industries Inc. | Managing high pressure events in air conditioners |
US10408516B2 (en) | 2013-12-17 | 2019-09-10 | Lennox Industries Inc. | Managing high pressure events in air conditioners |
Also Published As
Publication number | Publication date |
---|---|
CN1295476C (en) | 2007-01-17 |
WO2002103270A1 (en) | 2002-12-27 |
US20040134226A1 (en) | 2004-07-15 |
CA2450306C (en) | 2008-12-16 |
EP1395786B1 (en) | 2006-04-26 |
EP1395786A1 (en) | 2004-03-10 |
CA2450306A1 (en) | 2002-12-27 |
CN1516804A (en) | 2004-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020195240A1 (en) | Condenser for air cooled chillers | |
EP0559983B1 (en) | Evaporator or evaporator/condenser | |
US5341870A (en) | Evaporator or evaporator/condenser | |
AU2012208123B2 (en) | Heat exchanger and air conditioner | |
US4966230A (en) | Serpentine fin, round tube heat exchanger | |
US5086835A (en) | Heat exchanger | |
US20120031601A1 (en) | Multichannel tubes with deformable webs | |
US20110030932A1 (en) | Multichannel heat exchanger fins | |
US20100012307A1 (en) | Multi-channel flat tube evaporator with improved condensate drainage | |
EP2159514A2 (en) | Multichannel heat exchanger with dissimilar flow | |
US20080277095A1 (en) | Heat exchanger assembly | |
US20170130974A1 (en) | Residential outdoor heat exchanger unit | |
US5176200A (en) | Method of generating heat exchange | |
CN102192673A (en) | Flat-tube heat exchanger structure and assembling method thereof | |
US6772602B2 (en) | Cooling system for a vehicle | |
US6749007B2 (en) | Compact cooling system with similar flow paths for multiple heat exchangers | |
US20210231375A1 (en) | Microchannel heat exchanger tube supported bracket | |
EP3062037A1 (en) | Heat exchanger and refrigeration cycle device using said heat exchanger | |
US4892143A (en) | Heat exchanger | |
US7546867B2 (en) | Spirally wound, layered tube heat exchanger | |
US11236946B2 (en) | Microchannel heat exchanger | |
EP2570751A2 (en) | De-super heater chiller system with contra flow and refrigerating fan grill | |
US11988422B2 (en) | Microchannel heat exchanger drain | |
JPH05215482A (en) | Heat exchanger | |
US20210239412A1 (en) | Expansion assembly for heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMERICAN STANDARD INTERNATIONAL INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLAMM, PAUL R.;REEL/FRAME:011913/0535 Effective date: 20010604 Owner name: AMERICAN STANDARD INTERNATIONAL INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRAAY, MICHAEL L. (DECEASED);REEL/FRAME:011913/0530 Effective date: 20010604 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |