US20020149340A1 - Method and system for motor velocity measurement - Google Patents
Method and system for motor velocity measurement Download PDFInfo
- Publication number
- US20020149340A1 US20020149340A1 US10/116,284 US11628402A US2002149340A1 US 20020149340 A1 US20020149340 A1 US 20020149340A1 US 11628402 A US11628402 A US 11628402A US 2002149340 A1 US2002149340 A1 US 2002149340A1
- Authority
- US
- United States
- Prior art keywords
- velocity
- tachometer
- signal
- signals
- derived
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000005259 measurement Methods 0.000 title description 2
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 17
- 230000003044 adaptive effect Effects 0.000 claims abstract description 12
- 230000004044 response Effects 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 230000008569 process Effects 0.000 claims description 45
- 238000001914 filtration Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000001427 coherent effect Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 abstract description 15
- 238000004804 winding Methods 0.000 description 19
- 238000012545 processing Methods 0.000 description 16
- 238000001514 detection method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/487—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
- G01D5/145—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/2006—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
- G01D5/2033—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils controlling the saturation of a magnetic circuit by means of a movable element, e.g. a magnet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24457—Failure detection
- G01D5/24461—Failure detection by redundancy or plausibility
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24471—Error correction
- G01D5/2448—Correction of gain, threshold, offset or phase control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24471—Error correction
- G01D5/24495—Error correction using previous values
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S310/00—Electrical generator or motor structure
- Y10S310/06—Printed-circuit motors and components
Definitions
- the invention relates to a tachometer apparatus and methodology for determining the velocity of a motor as applied to a vehicle steering system.
- Speed sensors or detectors of various types are well known in the art. In recent years the application of speed detection to motor control functions has stimulated demands on the sophistication of those sensors.
- Rotational speed sensors are commonly configured in the same manner as an electric machine, for example, a coil is placed in proximity to rotating magnets whereby the magnetic field induces a voltage on the passing coil in accordance with Faraday's Law. The rotating permanent magnets induce a voltage on the coil and ultimately a voltage whose frequency and magnitude are proportional to the rotational speed of the passing magnets.
- the apparatus includes a set of sense magnets affixed to a rotating shaft of a rotating device and a circuit assembly, which interact to form an air core electric machine.
- the circuit assembly includes a circuit interconnection having a plurality of sense coils and sensors affixed thereto. The circuit assembly is adapted to be in proximity to the set of sense magnets on the rotating part.
- a controller is coupled to the circuit assembly, where the controller is adapted to execute an adaptive algorithm that determines the velocity of the rotating device.
- the algorithm is a method of combining a derived velocity with a velocity from the tachometer.
- the algorithm includes a plurality of functions including: receiving a position signal related to the rotational position of the shaft; determining a derived velocity from the position signal; generating a plurality of tachometer velocity signals; determining a compensated velocity in response to the plurality tachometer velocity signals; and blending the compensated velocity with derived velocity to generate a blended velocity output.
- FIG. 1 depicts the cross-section of the fixed and rotating parts of a tachometer
- FIG. 2 depicts the sense magnet end-view illustrating the low and high-resolution poles
- FIG. 3 depicts a partial view of a tachometer coil arrangement in the circuit interconnection
- FIG. 4 depict the expected output waveform from the low-resolution tachometer coils
- FIG. 5 depicts a partial view of an alternative embodiment of the tachometer coil arrangement in the circuit interconnection board
- FIG. 7 depicts a top-level functional block diagram of a method for determination of the rotational speed
- FIG. 8 depicts the Speed Estimation process
- FIG. 9 depicts the Offset Compensation process
- FIG. 10 depicts the Get Phase process
- FIG. 12 depicts the AlignToPolled process
- FIG. 13 depicts the Gain process.
- the present invention may be utilized in various types of motors and other rotational devices such as, for example, motors employed in a vehicle steering system.
- a preferred embodiment of the invention by way of illustration is described herein as it may be applied to a motor tachometer in an electronic steering system. While a preferred embodiment is shown and described, it will be appreciated by those skilled in the art that the invention is not limited to the motor speed and rotation but also to any device where rotational motion and velocity are to be detected.
- a preferred embodiment of the invention provides a structure and method by which the rotational position and velocity of a motor are determined.
- the invention employs a tachometer structure 10 comprised of rotational part 20 and a fixed circuit assembly 30 .
- the rotational part, 20 includes a rotating shaft 22 and sense magnet 24 .
- the rotating shaft 22 is connected to, or an element of the device, (not shown) whose rotational speed is to be determined.
- an axial (end) view of the sense magnet 24 is depicted.
- the sense magnet 24 is attached to the rotating shaft 22 and arranged in two concentric, annular configurations, a first of smaller radius surrounded by the second of larger radius.
- the concentric, annular configurations may be coplanar.
- the low-resolution magnet 26 comprising the inner annulus of sense magnet 24 is constructed as a six-pole permanent magnet. While the preferred embodiment utilizes the stated configuration, other configurations are reasonable. The magnet structure need only be sufficient to allow adequate detection in light of the sensing elements utilized, processing employed, and operational constraints.
- the high-resolution magnet 28 comprising the outer annulus of sense magnet 24 is configured as a 72-pole permanent magnet 28 . Again, the magnet structure need only be sufficient to allow adequate detection in light of the sensing elements, processing employed, and operational constraints.
- Each of the magnets 26 and 28 is comprised of alternating north and south poles equally distributed around each respective annulus.
- the tachometer coils 40 are located on the circuit assembly 30 in such an orientation as to be concentric with the sense magnet 24 in close proximity to the inner annulus low resolution poles 26 .
- the conductive tachometer coils 40 are an integral part of the circuit interconnection 38 .
- the tachometer coils 40 include two or more spiraling conductor coils 42 - 48 concentrically wound in a serpentine fashion such that each conductor comprises a twelve turn winding on each of two layers. Coil A is comprised of windings 42 and 48 and coil B is comprised of windings 46 and 44 .
- Each of the windings is configured such that it spirals inward toward the center on one layer and outward from the center on the second layer. Thereby, the effects of the windings' physical construction variances on the induced voltages are minimized.
- the tachometers coils 40 are physically arranged such that each has an equivalent effective depth on the circuit assembly 30 . That is, the windings are stacked within the circuit assembly 30 such that the average axial distance from the magnets is maintained constant.
- the first layer of coil A, winding 42 could be the most distant from the magnets
- the second layer of coil A, winding 48 the closest to the magnets
- the two layers of coil B 46 and 44 could be sandwiched between the two layered windings of coil A.
- winding is uniquely configured as described to provide maximum voltage generation with each passing pole of the low-resolution magnet 26 in the active segments 50 and minimal or no voltage generation with each passing pole of the low resolution magnet 26 in the inactive segments 52 .
- a preferred embodiment employs two coils, on two layers each with 144 active and 144 inactive segments.
- only the quantity of active segments 50 not the inactive segments 52 is relevant. Any number of inactive segments 52 is feasible, only dictated by the physical constraints of interconnecting the active segments 50 .
- the tachometer coils 40 are comprised of two (or more) complete spiral serpentine windings 42 - 48 , 46 - 44 .
- the windings 42 - 48 and 46 - 44 may be oriented relative to one another in such a way that the voltages generated by the two coils would possess differing phase relationships. Further, that the orientation may be configured in such a way as to cause the generated voltages to be in quadrature.
- the low-resolution poles are comprised of six magnets of sixty degree segments
- the two coils are rotated concentrically relative to one another by thirty degrees. This rotation results in a phase difference of 90 degrees between the two generated voltages generated on each coil.
- the two generated voltages are ideally configured such that the voltage amplitude is discernable for all positions and velocities.
- the two generated voltages are trapezoidal.
- FIGS. 4 and 6 depicts the output voltage generated on the two coils as a function of rotation angle of the rotating shaft 22 for a given speed.
- the windings may be individually serpentine but not necessarily concentric. Again, the coil configuration need only be sufficient to allow adequate detection in light of the magnetic field strength, processing employed, physical and operational constraints. One skilled in the art would recognize that the coil could be comprised of many other configurations of windings. FIG. 5 depicts one such a possible embodiment of the invention.
- the Hall sensor set 34 is located on the circuit assembly 30 in an orientation concentric with the tachometer coils 40 and concentric with the rotating part 20 . Additionally, the Hall sensor set is placed at the same radius as the active segments 50 of the tachometer coils 40 to be directly in line axially with the low-resolution poles 26 of the sense magnet 24 .
- the Hall sensor set 34 is comprised of multiple sensors equidistantly separated along an arc length where two such sensors are spaced equidistant from the sensor between them.
- the Hall sensor set 34 is comprised of three Hall effect sensors, 34 a , 34 b , and 34 c , separated by 40 degrees and oriented along the described circumference relative to a predetermined reference position so that absolute rotational position of the rotating part 20 may be determined. Further, the Hall sensor set 34 is positioned to insure that the active segments 50 of the tachometer coils 40 do not interfere with any of the Hall sensors 34 a , 34 b , and 34 c or vice versa. It is also noteworthy to consider that in FIG. 1, the Hall sensor set 34 is depicted on the distant side of the circuit assembly 30 relative to the low-resolution magnet 26 .
- This configuration addresses the trade between placing the Hall sensor set 34 or the tachometer coils 40 closest to the low-resolution magnet 26 .
- such a configuration is selected because the signals from the Hall sensor set 34 are more readily compensated for the additional displacement when compared to the voltages generated on the tachometer coils 40 .
- the Hall sensor set 34 detects the passing of the low-resolution magnet 26 and provides a signal voltage corresponding to the passing of each pole. This position sensing provides a signal accurately defining the absolute position of the rotational part 20 .
- the three signals generated by the Hall sensor set 34 with the six-pole low-resolution magnet facilitate processing by ensuring that certain states of the three signals are never possible.
- One skilled in the art will appreciate that such a configuration facilitates error and failure detection and ensures that the trio of signals always represents a deterministic solution for all possible rotational positions.
- the position sensor 36 is located on the circuit assembly 30 in such an orientation as to be directly in line, axially with the magnets of the outer annulus of the sense magnet 24 , yet outside the effect of the field of the low-resolution magnet 26 .
- the position sensor 36 detects the passing of the high-resolution magnet 28 and provides a signal voltage corresponding to the passing of each pole.
- the position sensor 36 includes two Hall effect sensors in a single package separated by a distance equivalent to one half the width of the poles on the high-resolution magnet 28 .
- the position signals generated by the position sensor 36 are in quadrature.
- FIG. 6 depicts the output voltage as a function of rotational angle of the position sensor 36 for a given speed. It is noteworthy to point out that the processing of the high-resolution position allows only a relative determination of rotational position. It is however, acting in conjunction with the information provided by the low-resolution position signals from the Hall sensor set 34 that a determination of the absolute position of the rotating part 20 is achieved. Other applications of the low-resolution position sensor are possible.
- the structure described above is constructed in such a fashion that the active segments of the tachometer coils 40 are at a radial proximity to the sense magnets instead of axial.
- the prior description is applicable except the rotational part 20 would include magnets that are coaxial but not coplanar and are oriented such that their magnetic fields radiate in the radial direction rather than the axial direction.
- the circuit assembly 30 may be formed cylindrically rather than planar and coaxial with the rotational part 20 .
- the tachometer coils 40 , Hall sensor set 34 , and position sensor 36 would again be oriented such that the active segments 50 would be oriented in the axial direction in order to detect the passing magnetic field of the low-resolution magnet 26 .
- FIG. 7 depicts the top-level block diagram of the processing functions employed on the various signals sensed to determine the rotational speed of a rotating device.
- the processing defined would be typical of what may be performed in a controller.
- a controller may include, without limitation, a processor, logic, memory, storage, registers, timing, interrupts, and the input/output signal interfaces as required to perform the processing prescribed by the invention.
- the blocks 100 - 1000 depict the adaptive algorithm executed by the abovementioned controller in order to generate the tachometer output.
- the first four blocks 100 , 200 , 400 , 600 perform the “forward” processing of the tachometer coil signals to arrive at the final blended output. While, the last two 800 , 1000 comprise a “feedback” path thereby constructing the adaptive nature of the algorithm.
- the function labeled Speed Estimation 100 generates a digital, derived velocity signal.
- the process utilizes Motor_Position_HR the high-resolution position sensed by 36 , and a processor clock signal for timing.
- the process outputs a signal Motor_Vel_Der_ 144 which is proportional to the velocity of the motor over the sample period of the controller.
- Offset Compensation 200 processing is performed to generate filtered tachometer signals to remove offsets and bias.
- the process utilizes the two tachometer coil signals HallTachVoltX 1 , HallTachVoltX 2 , the derived velocity Motor_Vel_Der_ 144 and two phase related feedback signals int_Phase 0 and int_Phase 1 as inputs and generates compensated velocity outputs X 1 _Corr and X 2 _Corr.
- Processing is performed to ascertain magnitude and phase relationships of the two compensated velocities.
- Inputs processed include the compensated velocities X 1 _Corr, X 2 _Corr, and the motor position Motor_Position_SPI as derived from the high-resolution position detected by sensor 36 .
- the process generates two primary outputs, the selected tachometer magnitude tach 13 vel_mag and the selected tachometer phase tach_vel_sign.
- Blend 600 where predetermined algorithms determine a blended velocity output.
- the process utilizes the selected tachometer magnitude tach_vel_mag and the selected tachometer phase tach_vel 13 sign to generate two outputs; the blended velocity Blend_Vel_Signed and the velocity sign OutputSign.
- the AlignToPolled 800 process wherein the tachometer magnitude tach_vel_mag is time shifted based upon the magnitude of the derived velocity Motor_Vel_Der_ 144 .
- the selected signal is filtered and supplied as an output as Filtered_Tach.
- Gain 1000 where the process generates an error command resultant from the difference between the derived velocity and filtered tachometer under predetermined conditions.
- the error signal is integrated and utilized as an error command signal for gain adjustment feedback
- the process utilizes the derived velocity Motor_Vel_Der_ 144 and the Filtered_Tach signal as inputs to generate two outputs int_Phase 0 and int_Phase 1 . These two signals form the gain adjustment feedback that is then utilized as an input in the abovementioned Offset Compensation 200 .
- FIG. 8 depicts the functions that comprise the Speed Estimation 100 process block.
- This process is a method of extracting a digital, derived velocity based on the per sample period of change of the position signal.
- the process utilizes as an input Motor_Position_HR the high-resolution position detected by sensor 36, and outputs a signal Motor_Vel_Der _ 144 , which is proportional to the derived velocity of the motor.
- the process computes the velocity by employing two main functions.
- the first is the Deltact calculation process 102 where a position change DELTA_POSITION is computed by subtracting the high-resolution position Motor_Position_HR delayed by one sample from the current high-resolution position Motor_Position_HR. That is, subtracting the last position from the current position. The position difference is then divided by the difference in time between the two samples.
- a preferred embodiment of the above equation evaluates a changing measured position over a fixed interval of time to perform the computation. It will be appreciated by those skilled in the art, that the computation may be performed with several variations. An alternative embodiment, evaluates a changing measured time interval for a fixed position change to perform the computation. Further, in yet another embodiment, both the interval of time and interval position could be measured and compared with neither of the parameters occurring at a fixed interval.
- a filter 104 further processes the calculated Deltact value. Where the filtering characteristics are selected and determined such that the filter yields a response sufficiently representative of the true velocity of the motor without adding excessive delay.
- a preferred embodiment employed a four-state moving average filter. The signal is labeled Motor_Vel_Der, which is then scaled at gain 106 and output from the process as the value labeled Motor_Vel_Der_ 144 . This parameter is utilized throughout the invention as a highly accurate representation of the velocity.
- FIG. 9 depicts the functions that comprise the Offset Compensation process 200 .
- the process extracts the respective offset and bias from each of the two tachometer coil signals HallTachVoltX 1 and HallTachVoltX 2 resulting in compensated velocity outputs X 1 _Corr and X 2 _Corr.
- the extraction is accomplished by an algorithm that under predetermined conditions subtracts from each of the tachometer signals its low frequency spectral components.
- the algorithm is characterized by scaling 202 ; a selective, adaptive, filter 204 ; and a gain schedule/modulator Apply Gain 210 .
- the scaling 202 provides gain and signal level shifting resultant from the embodiment with an analog to digital conversion;
- the adaptive filter 204 comprises dual selective low pass filters 206 and summers 208 enabled only when the tachometer signals' levels are valid; and gain scheduling, which is responsive to feedback signals int_Phase 0 and int_Phase 1 from the Gain process 1000 .
- the adaptive filter 204 is characterized by conditionally enabled low pass filters 206 , and summers 208 .
- the low pass filters 206 under established conditions, are activated and deactivated. When activated, the filter's 206 results are the low frequency spectral content of the tachometer signals to a predetermined bandwidth. When deactivated, the filter 206 yields the last known filter value of the low frequency spectral content of the tachometer signals. It is important to consider that the filter 206 is activated when the tachometer signals are valid and deactivated when they are not. In a preferred embodiment, this occurs when the tachometer signals saturate at a high velocity. Various conditions may dictate the validity of the tachometer signals.
- a summer 208 subtracts the low pass filter 206 outputs to the original tachometer signals thereby yielding compensated tachometer signals with the steady state components eliminated.
- the filter 206 characteristics are established to ensure that the filter response when added to the original signals sufficiently attenuates the offsets and biases in the tachometer signals.
- a preferred embodiment employs an integrating loop low pass filter.
- the gain scheduling function Apply Gain 210 is responsive to feedback signals int_Phase 0 and int_Phase 1 from the Gain process 1000 (discussed below).
- the Apply Gain 210 process scales the compensated velocity outputs X 1 _Corr and X 2 _Corr as a function of the feedback signals int_Phase 0 and int_Phase 1 . Thereby providing a feedback controlled correction of the velocity signal for accuracy and speed correction.
- FIG. 10 depicts the internal process of Get Phase 400 where processing is performed to ascertain magnitude and phase relationships of the two compensated velocities.
- Inputs processed include the offset compensated velocities X 1 _Corr, X 2 _Corr, the motor position Motor Position SPI, and a calibration adjustment signal TachOffset.
- the motor position signal Motor_Position_SPI derived from the high-resolution position as detected by sensor 36 and indexed to the absolute position as described earlier.
- the TachOffset input allows for an initial fabrication based adjustment to address differences or variations in the orientation of the tachometer coils 40 (FIGS. 1 and 3) and the low-resolution Hall sensor set 34 (FIG. 1).
- the process generates two primary outputs, the selected tachometer magnitude tach_vel_mag and the selected tachometer phase tach_vel_sign.
- the process independently determines which tachometer signal magnitude and phase to select by making a comparison with the high-resolution position Motor_Position_SPI.
- the process determines the magnitude of the two velocities X 1 _Corr and X 2 _Corr at 402 .
- comparator 404 determines the larger of the two and then generates a discrete, Phase_Sel, indicative of which velocity has the larger magnitude.
- the larger magnitude velocity is selected because by the nature of the two trapezoidal signals, one is guaranteed to be at its maximum.
- the discrete Phase_Sel controls a switch 406 , which in turn passes the selected tachometer velocity magnitude termed tach_vel_mag.
- the discrete Phase_Sel is also utilized in later processes.
- a second and separate comparison at 408 with the high-resolution position Motor_Position_SPI extracts the respective sign associated with the velocity.
- FIG. 11 depicts the Blend 600 process function where predetermined algorithms determine a blended velocity output.
- the process utilizes the selected tachometer magnitude tach_vel_mag, the derived velocity Motor_Vel Der_ 144 and the selected tachometer phase tach_vel_sign to generate two outputs; the blended velocity Blend_Vel_Signed and the velocity sign OutputSign.
- a blended velocity solution is utilized to avoid the potential undesirable effects of transients resultant from rapid transitions between the derived velocity and the tachometer-measured velocity.
- the process selects based upon the magnitude of the derived velocity Motor_Vel_Der_ 144 a level of scheduling at gain scheduler 602 of the derived velocity with the compensated, measured, and selected velocity, tach_vel_mag.
- Summer 604 adds the scheduled velocities, which are then multiplied at 606 by the appropriate sign as determined from the tachometer phase tach_vel_sign to generate the blended composite signal.
- the blended composite signal comprises a combination of the tachometer measured velocity and the derived velocity yet without the negative effects of saturation or excessive time delays.
- FIG. 12 depicts the AlignToPolled 800 process, which time shifts (delays) the tachometer magnitude tach_vel_mag to facilitate a coherent comparison with the derived velocity Motor_Vel_Der_ 144 .
- the filtering is only employed when the tachometer magnitude tach_vel_mag is within a valid range as determined in processes 802 and 804 .
- the valid range is determined based upon the magnitude of the derived velocity Motor_Vel_Der_ 144 .
- the validity of the tachometer signals is related to high speed saturation, while for the derived velocity it is a function of filtering latency at very low speed.
- a selection switch 804 responsive to the magnitude of the derived velocity Motor_Vel_Der_ 144 controls the application of the tach_vel_mag signal to the filter.
- the multiplication at 808 applies the appropriate sign to the tach_vel_mag signal.
- a filter 806 is employed to facilitate generation of the time delay.
- the appropriate time delay is determined based upon the total time delay that the derived velocity signals experience relative to the tachometer signals.
- the time shift accounts for the various signal and filtering effects on the analog signals and the larger time delay associated with filtering the derived velocity signal.
- the derived velocity signal experiences a significant filtering lag, especially at lower speeds. Introducing this shift yields a result that makes the tachometer signals readily comparable to the derived velocity.
- the selected signal is delivered as an output as Filtered_Tach.
- the resultant filter 806 is a four state moving average filter similar to the filter 104 (FIG. 8) implemented in the Speed Estimation process.
- the filter 104 FIG. 8
- the resultant filter 806 is a four state moving average filter similar to the filter 104 (FIG. 8) implemented in the Speed Estimation process.
- the Gain 1000 process block where an error command is generated and subsequently utilized as a gain correction in the adaptive algorithm of the present invention.
- the error command is resultant from a ratiometric comparison 1002 of the magnitudes of the derived velocity to the filtered tachometer velocity. The ratio is then utilized to generate an error signal at summer 1004 .
- error modulator 1008 Under predetermined conditions, controlled by state controller 1006 , error modulator 1008 enables or disables the error signal. That is, modulator 1008 acts as a gate whereby the error signal is either passed or not.
- the state controller 1006 allows the error signal to be passed only when the error signal is valid. For example, when both the filtered tachometer velocity and the derived velocity are within a valid range.
- the error signal is passed when the magnitude of the Motor_Vel_Der_ 144 signal is between 16 and 66.4 radians per second. However, the modulator is disabled and the error signal does not pass if the magnitude of the Motor_Vel_Der_ 144 signal exceeds 72 or is less than 10.4 radians per second. Under these later conditions, the ratiometric comparison of the two velocities and the generation of an error signal is not valid. At very small velocities, the signal Motor_Vel_Der_ 144 exhibits excessive delay, while at larger velocities, that is in excess of 72 radians per second, the tachometer signals are saturated.
- the error signal when enabled is passed to the error integrator 1010 , is integrated, and is utilized as an error command signal for gain adjustment feedback.
- the error integrators 1010 selectively integrate the error passed by the modulator 1008 .
- the selection of which integrator to pass the error signal to is controlled by the time shifted Phase_Sel signal at delay 1012 .
- These two correction signals int_Phase 0 and int_Phase 1 form the gain adjustment feedback that is then utilized as an input in the abovementioned Offset Compensation 200 process.
- the disclosed invention may be embodied in the form of computer-implemented processes and apparatuses for practicing those processes.
- the present invention can also be embodied in the form of computer program code containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention.
- the present invention can also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention.
- computer program code segments configure the microprocessor to create specific logic circuits.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 09/661,657, the contents of which are incorporated herein by reference. This application claims the benefit of U.S.
Provisional Application 60/154,279 filed Sep. 16, 1999, the contents of which are incorporated herein by reference. - The invention relates to a tachometer apparatus and methodology for determining the velocity of a motor as applied to a vehicle steering system.
- Speed sensors, or detectors of various types are well known in the art. In recent years the application of speed detection to motor control functions has stimulated demands on the sophistication of those sensors. Rotational speed sensors are commonly configured in the same manner as an electric machine, for example, a coil is placed in proximity to rotating magnets whereby the magnetic field induces a voltage on the passing coil in accordance with Faraday's Law. The rotating permanent magnets induce a voltage on the coil and ultimately a voltage whose frequency and magnitude are proportional to the rotational speed of the passing magnets.
- Many of the tachometers that are currently available in the art exhibit a trade off between capabilities and cost. Those with sufficient resolution and accuracy are often very expensive and perhaps cost prohibitive for mass production applications. Those that are inexpensive enough to be considered for such applications are commonly inaccurate or provide insufficient resolution or bandwidth for the application.
- Thus, there is a need, in the art for a low cost robust tachometer that provides sufficient accuracy and resolution for motor control applications and yet is inexpensive enough to be cost effective in mass production.
- The above-identified drawbacks of the prior art are alleviated by the method described in the invention.
- A method and apparatus for determining the velocity of a rotating device is described herein. The apparatus includes a set of sense magnets affixed to a rotating shaft of a rotating device and a circuit assembly, which interact to form an air core electric machine. The circuit assembly includes a circuit interconnection having a plurality of sense coils and sensors affixed thereto. The circuit assembly is adapted to be in proximity to the set of sense magnets on the rotating part.
- A controller is coupled to the circuit assembly, where the controller is adapted to execute an adaptive algorithm that determines the velocity of the rotating device. The algorithm is a method of combining a derived velocity with a velocity from the tachometer. The algorithm includes a plurality of functions including: receiving a position signal related to the rotational position of the shaft; determining a derived velocity from the position signal; generating a plurality of tachometer velocity signals; determining a compensated velocity in response to the plurality tachometer velocity signals; and blending the compensated velocity with derived velocity to generate a blended velocity output.
- Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:
- FIG. 1 depicts the cross-section of the fixed and rotating parts of a tachometer;
- FIG. 2 depicts the sense magnet end-view illustrating the low and high-resolution poles;
- FIG. 3 depicts a partial view of a tachometer coil arrangement in the circuit interconnection;
- FIG. 4 depict the expected output waveform from the low-resolution tachometer coils;
- FIG. 5 depicts a partial view of an alternative embodiment of the tachometer coil arrangement in the circuit interconnection board;
- FIG. 6 depict the expected output waveform from the high-resolution position sensor;
- FIG. 7 depicts a top-level functional block diagram of a method for determination of the rotational speed;
- FIG. 8 depicts the Speed Estimation process;
- FIG. 9 depicts the Offset Compensation process;
- FIG. 10 depicts the Get Phase process;
- FIG. 11 depicts the Blend process;
- FIG. 12 depicts the AlignToPolled process; and
- FIG. 13 depicts the Gain process.
- The present invention may be utilized in various types of motors and other rotational devices such as, for example, motors employed in a vehicle steering system. A preferred embodiment of the invention, by way of illustration is described herein as it may be applied to a motor tachometer in an electronic steering system. While a preferred embodiment is shown and described, it will be appreciated by those skilled in the art that the invention is not limited to the motor speed and rotation but also to any device where rotational motion and velocity are to be detected.
- A preferred embodiment of the invention provides a structure and method by which the rotational position and velocity of a motor are determined. Referring to FIG. 1, the invention employs a
tachometer structure 10 comprised ofrotational part 20 and afixed circuit assembly 30. Where the rotational part, 20 includes arotating shaft 22 andsense magnet 24. The rotatingshaft 22 is connected to, or an element of the device, (not shown) whose rotational speed is to be determined. Referring to FIG. 2, an axial (end) view of thesense magnet 24 is depicted. Thesense magnet 24 is attached to the rotatingshaft 22 and arranged in two concentric, annular configurations, a first of smaller radius surrounded by the second of larger radius. The concentric, annular configurations may be coplanar. The low-resolution magnet 26 comprising the inner annulus ofsense magnet 24 is constructed as a six-pole permanent magnet. While the preferred embodiment utilizes the stated configuration, other configurations are reasonable. The magnet structure need only be sufficient to allow adequate detection in light of the sensing elements utilized, processing employed, and operational constraints. The high-resolution magnet 28 comprising the outer annulus ofsense magnet 24 is configured as a 72-polepermanent magnet 28. Again, the magnet structure need only be sufficient to allow adequate detection in light of the sensing elements, processing employed, and operational constraints. Each of themagnets - FIGS. 1 and 3 depict the
circuit assembly 30. Thecircuit assembly 30 includes; a plurality oftachometer coils 40, low-resolution Hall sensor set 34, and high-resolution position sensor 36. Thecircuit assembly 30 is placed parallel to and in close proximity to the axial end of the rotatingsense magnet 24. Acircuit interconnection 38 provides electrical interconnection of thecircuit assembly 30 components and may be characterized by various technologies such as hand wiring, a printed card, flexible circuit, lead frame, ceramic substrate, or other circuit connection fabrication or methodology. A preferred embodiment for thecircuit assembly 30 comprises the abovementioned elements affixed to a printed circuitboard circuit interconnection 38 of multiple layers. - Referring to FIGS. 1 and 3, the
tachometer coils 40 are located on thecircuit assembly 30 in such an orientation as to be concentric with thesense magnet 24 in close proximity to the inner annuluslow resolution poles 26. In a preferred embodiment of the invention, theconductive tachometer coils 40 are an integral part of thecircuit interconnection 38. The tachometer coils 40 include two or more spiraling conductor coils 42-48 concentrically wound in a serpentine fashion such that each conductor comprises a twelve turn winding on each of two layers. Coil A is comprised ofwindings windings circuit assembly 30. That is, the windings are stacked within thecircuit assembly 30 such that the average axial distance from the magnets is maintained constant. For example, the first layer of coil A, winding 42 could be the most distant from the magnets, and the second layer of coil A, winding 48 the closest to the magnets, while the two layers ofcoil B - FIG. 3 depicts a partial view of a preferred embodiment. Three turns of the first layer of coil A, winding42 are shown. Each winding is comprised of six active 50 and six inactive 52 segments per turn. The
active segments 50 are oriented approximately on radials from the center of the spiral while theinactive segments 52 are orientated as arcs of constant radius. Theactive segments 50 are strategically positioned equidistant about the circumference of the spiral and directly cutting the flux lines of the field generated by thelow resolution magnet 26. Theinactive segments 52 are positioned at equal radial distances and are strategically placed to be outside the magnetic flux lines from thelow resolution magnet 26. One skilled in the art will appreciate that the winding is uniquely configured as described to provide maximum voltage generation with each passing pole of the low-resolution magnet 26 in theactive segments 50 and minimal or no voltage generation with each passing pole of thelow resolution magnet 26 in theinactive segments 52. This results in predictable voltage outputs on the tachometer coils 40 for each rotation of the low-resolution magnet 26. A preferred embodiment employs two coils, on two layers each with 144 active and 144 inactive segments. However, it will be understood that only the quantity ofactive segments 50 not theinactive segments 52 is relevant. Any number ofinactive segments 52 is feasible, only dictated by the physical constraints of interconnecting theactive segments 50. - Additionally, the tachometer coils40 are comprised of two (or more) complete spiral serpentine windings 42-48, 46-44. The windings 42-48 and 46-44 may be oriented relative to one another in such a way that the voltages generated by the two coils would possess differing phase relationships. Further, that the orientation may be configured in such a way as to cause the generated voltages to be in quadrature. In a preferred embodiment where the low-resolution poles are comprised of six magnets of sixty degree segments, the two coils are rotated concentrically relative to one another by thirty degrees. This rotation results in a phase difference of 90 degrees between the two generated voltages generated on each coil. In an exemplary embodiment, the two generated voltages are ideally configured such that the voltage amplitude is discernable for all positions and velocities. In an exemplary embodiment, the two generated voltages are trapezoidal. FIGS. 4 and 6 depicts the output voltage generated on the two coils as a function of rotation angle of the
rotating shaft 22 for a given speed. - In another embodiment of the invention, the windings may be individually serpentine but not necessarily concentric. Again, the coil configuration need only be sufficient to allow adequate detection in light of the magnetic field strength, processing employed, physical and operational constraints. One skilled in the art would recognize that the coil could be comprised of many other configurations of windings. FIG. 5 depicts one such a possible embodiment of the invention.
- Referring again to FIG. 1, in a preferred embodiment, the Hall sensor set34 is located on the
circuit assembly 30 in an orientation concentric with the tachometer coils 40 and concentric with therotating part 20. Additionally, the Hall sensor set is placed at the same radius as theactive segments 50 of the tachometer coils 40 to be directly in line axially with the low-resolution poles 26 of thesense magnet 24. The Hall sensor set 34 is comprised of multiple sensors equidistantly separated along an arc length where two such sensors are spaced equidistant from the sensor between them. In a preferred embodiment, the Hall sensor set 34 is comprised of three Hall effect sensors, 34 a, 34 b, and 34 c, separated by 40 degrees and oriented along the described circumference relative to a predetermined reference position so that absolute rotational position of therotating part 20 may be determined. Further, the Hall sensor set 34 is positioned to insure that theactive segments 50 of the tachometer coils 40 do not interfere with any of theHall sensors circuit assembly 30 relative to the low-resolution magnet 26. This configuration addresses the trade between placing the Hall sensor set 34 or the tachometer coils 40 closest to the low-resolution magnet 26. In a preferred embodiment, such a configuration is selected because the signals from the Hall sensor set 34 are more readily compensated for the additional displacement when compared to the voltages generated on the tachometer coils 40. It will be appreciated by those skilled in the art that numerous variations on the described arrangement may be contemplated and within the scope of this invention. The Hall sensor set 34 detects the passing of the low-resolution magnet 26 and provides a signal voltage corresponding to the passing of each pole. This position sensing provides a signal accurately defining the absolute position of therotational part 20. Again, in the preferred embodiment, the three signals generated by the Hall sensor set 34 with the six-pole low-resolution magnet facilitate processing by ensuring that certain states of the three signals are never possible. One skilled in the art will appreciate that such a configuration facilitates error and failure detection and ensures that the trio of signals always represents a deterministic solution for all possible rotational positions. - The
position sensor 36 is located on thecircuit assembly 30 in such an orientation as to be directly in line, axially with the magnets of the outer annulus of thesense magnet 24, yet outside the effect of the field of the low-resolution magnet 26. Theposition sensor 36 detects the passing of the high-resolution magnet 28 and provides a signal voltage corresponding to the passing of each pole. To facilitate detection at all instances and enhance detectability, theposition sensor 36 includes two Hall effect sensors in a single package separated by a distance equivalent to one half the width of the poles on the high-resolution magnet 28. Thus, with such a configuration the position signals generated by theposition sensor 36 are in quadrature. One skilled in the art will appreciate that the quadrature signal facilitates processing by ensuring that one of the two signals is always deterministic for all possible positions. Further, such a signal configuration allows secondary processing to assess signal validity. FIG. 6 depicts the output voltage as a function of rotational angle of theposition sensor 36 for a given speed. It is noteworthy to point out that the processing of the high-resolution position allows only a relative determination of rotational position. It is however, acting in conjunction with the information provided by the low-resolution position signals from the Hall sensor set 34 that a determination of the absolute position of therotating part 20 is achieved. Other applications of the low-resolution position sensor are possible. - In another embodiment of the invention, the structure described above is constructed in such a fashion that the active segments of the tachometer coils40 are at a radial proximity to the sense magnets instead of axial. In such an embodiment, the prior description is applicable except the
rotational part 20 would include magnets that are coaxial but not coplanar and are oriented such that their magnetic fields radiate in the radial direction rather than the axial direction. Further, thecircuit assembly 30 may be formed cylindrically rather than planar and coaxial with therotational part 20. Finally, the tachometer coils 40, Hall sensor set 34, andposition sensor 36, would again be oriented such that theactive segments 50 would be oriented in the axial direction in order to detect the passing magnetic field of the low-resolution magnet 26. - FIG. 7 depicts the top-level block diagram of the processing functions employed on the various signals sensed to determine the rotational speed of a rotating device. The processing defined would be typical of what may be performed in a controller. Such a controller may include, without limitation, a processor, logic, memory, storage, registers, timing, interrupts, and the input/output signal interfaces as required to perform the processing prescribed by the invention. Referring again to FIG. 7, where the blocks100-1000 depict the adaptive algorithm executed by the abovementioned controller in order to generate the tachometer output. The first four
blocks - In FIG. 7, the function labeled
Speed Estimation 100 generates a digital, derived velocity signal. The process utilizes Motor_Position_HR the high-resolution position sensed by 36, and a processor clock signal for timing. The process outputs a signal Motor_Vel_Der_144 which is proportional to the velocity of the motor over the sample period of the controller. Continuing to OffsetCompensation 200 where processing is performed to generate filtered tachometer signals to remove offsets and bias. The process utilizes the two tachometer coil signals HallTachVoltX1, HallTachVoltX2, the derived velocity Motor_Vel_Der_144 and two phase related feedback signals int_Phase0 and int_Phase1 as inputs and generates compensated velocity outputs X1_Corr and X2_Corr. Continuing to GetPhase 400 where processing is performed to ascertain magnitude and phase relationships of the two compensated velocities. Inputs processed include the compensated velocities X1_Corr, X2_Corr, and the motor position Motor_Position_SPI as derived from the high-resolution position detected bysensor 36. The process generates two primary outputs, the selected tachometer magnitude tach13 vel_mag and the selected tachometer phase tach_vel_sign. Moving to theBlend 600 process where predetermined algorithms determine a blended velocity output. The process utilizes the selected tachometer magnitude tach_vel_mag and the selected tachometer phase tach_vel13 sign to generate two outputs; the blended velocity Blend_Vel_Signed and the velocity sign OutputSign. Considering now theAlignToPolled 800 process wherein the tachometer magnitude tach_vel_mag is time shifted based upon the magnitude of the derived velocity Motor_Vel_Der_144. The selected signal is filtered and supplied as an output as Filtered_Tach. Finally, looking to Gain 1000 where the process generates an error command resultant from the difference between the derived velocity and filtered tachometer under predetermined conditions. The error signal is integrated and utilized as an error command signal for gain adjustment feedback The process utilizes the derived velocity Motor_Vel_Der_144 and the Filtered_Tach signal as inputs to generate two outputs int_Phase0 and int_Phase1. These two signals form the gain adjustment feedback that is then utilized as an input in the abovementioned OffsetCompensation 200. - Referring now to FIG. 7 and FIG. 8 for a more detailed description of the functional operation of each of the processes identified above. FIG. 8 depicts the functions that comprise the
Speed Estimation 100 process block. This process is a method of extracting a digital, derived velocity based on the per sample period of change of the position signal. The process utilizes as an input Motor_Position_HR the high-resolution position detected bysensor 36, and outputs a signal Motor_Vel_Der _144, which is proportional to the derived velocity of the motor. The process computes the velocity by employing two main functions. The first is the Deltact calculation process 102 where a position change DELTA_POSITION is computed by subtracting the high-resolution position Motor_Position_HR delayed by one sample from the current high-resolution position Motor_Position_HR. That is, subtracting the last position from the current position. The position difference is then divided by the difference in time between the two samples. An equation illustrating the computation is as follows: - A preferred embodiment of the above equation evaluates a changing measured position over a fixed interval of time to perform the computation. It will be appreciated by those skilled in the art, that the computation may be performed with several variations. An alternative embodiment, evaluates a changing measured time interval for a fixed position change to perform the computation. Further, in yet another embodiment, both the interval of time and interval position could be measured and compared with neither of the parameters occurring at a fixed interval.
- A
filter 104 further processes the calculated Deltact value. Where the filtering characteristics are selected and determined such that the filter yields a response sufficiently representative of the true velocity of the motor without adding excessive delay. One skilled in the art will appreciate and understand that there can be numerous combinations, configurations, and topologies of filters that can satisfy such requirements. A preferred embodiment employed a four-state moving average filter. The signal is labeled Motor_Vel_Der, which is then scaled atgain 106 and output from the process as the value labeled Motor_Vel_Der_144. This parameter is utilized throughout the invention as a highly accurate representation of the velocity. - FIG. 9 depicts the functions that comprise the Offset
Compensation process 200. The process extracts the respective offset and bias from each of the two tachometer coil signals HallTachVoltX1 and HallTachVoltX2 resulting in compensated velocity outputs X1_Corr and X2_Corr. The extraction is accomplished by an algorithm that under predetermined conditions subtracts from each of the tachometer signals its low frequency spectral components. The algorithm is characterized by scaling 202; a selective, adaptive, filter 204; and a gain schedule/modulator Apply Gain 210. Where, the scaling 202 provides gain and signal level shifting resultant from the embodiment with an analog to digital conversion; the adaptive filter 204 comprises dual selective low pass filters 206 andsummers 208 enabled only when the tachometer signals' levels are valid; and gain scheduling, which is responsive to feedback signals int_Phase0 and int_Phase1 from theGain process 1000. - The adaptive filter204 is characterized by conditionally enabled low pass filters 206, and
summers 208. The low pass filters 206 under established conditions, are activated and deactivated. When activated, the filter's 206 results are the low frequency spectral content of the tachometer signals to a predetermined bandwidth. When deactivated, thefilter 206 yields the last known filter value of the low frequency spectral content of the tachometer signals. It is important to consider that thefilter 206 is activated when the tachometer signals are valid and deactivated when they are not. In a preferred embodiment, this occurs when the tachometer signals saturate at a high velocity. Various conditions may dictate the validity of the tachometer signals. In a preferred embodiment, within certain hardware constraints, to satisfy low speed resolution and bandwidth requirements, high speed sensing capability with the tachometer signals is purposefully ignored. This results in the tachometer signals saturating under high speed operating conditions. As such, it is desirable to deactivate thefilters 206 under such a condition to avoid filtering erroneous information. Asummer 208 subtracts thelow pass filter 206 outputs to the original tachometer signals thereby yielding compensated tachometer signals with the steady state components eliminated. Thefilter 206 characteristics are established to ensure that the filter response when added to the original signals sufficiently attenuates the offsets and biases in the tachometer signals. One skilled in the art will appreciate that there can be numerous combinations, configurations, and topologies of filters that can satisfy such requirements. A preferred embodiment employs an integrating loop low pass filter. - The gain scheduling
function Apply Gain 210 is responsive to feedback signals int_Phase0 and int_Phase1 from the Gain process 1000 (discussed below). TheApply Gain 210 process scales the compensated velocity outputs X1_Corr and X2_Corr as a function of the feedback signals int_Phase0 and int_Phase1. Thereby providing a feedback controlled correction of the velocity signal for accuracy and speed correction. - FIG. 10 depicts the internal process of
Get Phase 400 where processing is performed to ascertain magnitude and phase relationships of the two compensated velocities. Inputs processed include the offset compensated velocities X1_Corr, X2_Corr, the motor position Motor Position SPI, and a calibration adjustment signal TachOffset. The motor position signal Motor_Position_SPI derived from the high-resolution position as detected bysensor 36 and indexed to the absolute position as described earlier. The TachOffset input allows for an initial fabrication based adjustment to address differences or variations in the orientation of the tachometer coils 40 (FIGS. 1 and 3) and the low-resolution Hall sensor set 34 (FIG. 1). The process generates two primary outputs, the selected tachometer magnitude tach_vel_mag and the selected tachometer phase tach_vel_sign. The process independently determines which tachometer signal magnitude and phase to select by making a comparison with the high-resolution position Motor_Position_SPI. The process determines the magnitude of the two velocities X1_Corr and X2_Corr at 402. Then atcomparator 404 determines the larger of the two and then generates a discrete, Phase_Sel, indicative of which velocity has the larger magnitude. The larger magnitude velocity is selected because by the nature of the two trapezoidal signals, one is guaranteed to be at its maximum. The discrete Phase_Sel controls aswitch 406, which in turn passes the selected tachometer velocity magnitude termed tach_vel_mag. The discrete Phase_Sel is also utilized in later processes. A second and separate comparison at 408 with the high-resolution position Motor_Position_SPI extracts the respective sign associated with the velocity. Again, it will be understood that those skilled in the art may conceive of variations and modifications to the preferred embodiment shown above. For example, one skilled in the art would recognize that the phase information could have also been acquired merely by utilizing the position information alone. Such an approach however, suffers in that it would be highly sensitive to the precise positioning and timing on the trapezoidal waveforms to insure an accurate measurement. Such a restriction is avoided in the preferred embodiment, thereby simplifying the processing necessary. - FIG. 11 depicts the
Blend 600 process function where predetermined algorithms determine a blended velocity output. The process utilizes the selected tachometer magnitude tach_vel_mag, the derived velocity Motor_Vel Der_144 and the selected tachometer phase tach_vel_sign to generate two outputs; the blended velocity Blend_Vel_Signed and the velocity sign OutputSign. A blended velocity solution is utilized to avoid the potential undesirable effects of transients resultant from rapid transitions between the derived velocity and the tachometer-measured velocity. The process selects based upon the magnitude of the derived velocity Motor_Vel_Der_144 a level of scheduling atgain scheduler 602 of the derived velocity with the compensated, measured, and selected velocity, tach_vel_mag.Summer 604 adds the scheduled velocities, which are then multiplied at 606 by the appropriate sign as determined from the tachometer phase tach_vel_sign to generate the blended composite signal. The blended composite signal comprises a combination of the tachometer measured velocity and the derived velocity yet without the negative effects of saturation or excessive time delays. - FIG. 12 depicts the
AlignToPolled 800 process, which time shifts (delays) the tachometer magnitude tach_vel_mag to facilitate a coherent comparison with the derived velocity Motor_Vel_Der_144. The filtering is only employed when the tachometer magnitude tach_vel_mag is within a valid range as determined inprocesses selection switch 804 responsive to the magnitude of the derived velocity Motor_Vel_Der_144 controls the application of the tach_vel_mag signal to the filter. The multiplication at 808 applies the appropriate sign to the tach_vel_mag signal. Afilter 806 is employed to facilitate generation of the time delay. The appropriate time delay is determined based upon the total time delay that the derived velocity signals experience relative to the tachometer signals. The time shift accounts for the various signal and filtering effects on the analog signals and the larger time delay associated with filtering the derived velocity signal. As stated earlier, the derived velocity signal experiences a significant filtering lag, especially at lower speeds. Introducing this shift yields a result that makes the tachometer signals readily comparable to the derived velocity. The selected signal is delivered as an output as Filtered_Tach. - In a preferred embodiment, the
resultant filter 806 is a four state moving average filter similar to the filter 104 (FIG. 8) implemented in the Speed Estimation process. One skilled in the art will recognize that there can be numerous combinations, configurations, and topologies of filters that can satisfy such requirements. - Referring now to FIG. 13, the
Gain 1000 process block where an error command is generated and subsequently utilized as a gain correction in the adaptive algorithm of the present invention. In a preferred embodiment, the error command is resultant from aratiometric comparison 1002 of the magnitudes of the derived velocity to the filtered tachometer velocity. The ratio is then utilized to generate an error signal atsummer 1004. Under predetermined conditions, controlled bystate controller 1006,error modulator 1008 enables or disables the error signal. That is, modulator 1008 acts as a gate whereby the error signal is either passed or not. Thestate controller 1006 allows the error signal to be passed only when the error signal is valid. For example, when both the filtered tachometer velocity and the derived velocity are within a valid range. In a preferred embodiment, the error signal is passed when the magnitude of the Motor_Vel_Der_144 signal is between 16 and 66.4 radians per second. However, the modulator is disabled and the error signal does not pass if the magnitude of the Motor_Vel_Der_144 signal exceeds 72 or is less than 10.4 radians per second. Under these later conditions, the ratiometric comparison of the two velocities and the generation of an error signal is not valid. At very small velocities, the signal Motor_Vel_Der_144 exhibits excessive delay, while at larger velocities, that is in excess of 72 radians per second, the tachometer signals are saturated. The error signal when enabled is passed to theerror integrator 1010, is integrated, and is utilized as an error command signal for gain adjustment feedback. Theerror integrators 1010 selectively integrate the error passed by themodulator 1008. The selection of which integrator to pass the error signal to is controlled by the time shifted Phase_Sel signal atdelay 1012. These two correction signals int_Phase0 and int_Phase1 form the gain adjustment feedback that is then utilized as an input in the abovementioned OffsetCompensation 200 process. - The disclosed invention may be embodied in the form of computer-implemented processes and apparatuses for practicing those processes. The present invention can also be embodied in the form of computer program code containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. The present invention can also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.
- It will be understood that those skilled in the art may conceive variations and modifications to the preferred embodiment shown herein within the scope and intent of the claims. While the present invention has been described as carried out in a specific embodiment thereof, it is not intended to be limited thereby but is intended to cover the invention broadly within the scope and spirit of the claims.
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/116,284 US6791217B2 (en) | 1999-09-16 | 2002-04-04 | Method and system for motor velocity measurement |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15427999P | 1999-09-16 | 1999-09-16 | |
US09/661,657 US6498409B1 (en) | 1999-09-16 | 2000-09-14 | Tachometer apparatus and method for motor velocity measurement |
US10/116,284 US6791217B2 (en) | 1999-09-16 | 2002-04-04 | Method and system for motor velocity measurement |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/661,657 Division US6498409B1 (en) | 1999-09-16 | 2000-09-14 | Tachometer apparatus and method for motor velocity measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020149340A1 true US20020149340A1 (en) | 2002-10-17 |
US6791217B2 US6791217B2 (en) | 2004-09-14 |
Family
ID=22550723
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/661,657 Expired - Lifetime US6498409B1 (en) | 1999-09-16 | 2000-09-14 | Tachometer apparatus and method for motor velocity measurement |
US10/116,284 Expired - Lifetime US6791217B2 (en) | 1999-09-16 | 2002-04-04 | Method and system for motor velocity measurement |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/661,657 Expired - Lifetime US6498409B1 (en) | 1999-09-16 | 2000-09-14 | Tachometer apparatus and method for motor velocity measurement |
Country Status (4)
Country | Link |
---|---|
US (2) | US6498409B1 (en) |
EP (1) | EP1219005A4 (en) |
JP (1) | JP4750990B2 (en) |
WO (1) | WO2001020342A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040186640A1 (en) * | 2003-01-08 | 2004-09-23 | Yasuji Norito | Electric power steering apparatus |
DE102005060330A1 (en) * | 2005-12-16 | 2007-06-21 | Zf Friedrichshafen Ag | Electric vehicle motor rotation speed sensor measures directly on drive pinion with angularly separated sensors and XOR combination of signals |
DE102008042961A1 (en) | 2008-10-20 | 2010-04-22 | Zf Friedrichshafen Ag | Speed measuring device for measuring speed of shaft in gear of vehicle, has two sensor cells arranged opposite to each other for scanning counting traces that are arranged to each other in different planes |
US20110179055A1 (en) * | 2006-11-22 | 2011-07-21 | Shai Geva | Controlling Presentation of Refinement Options in Online Searches |
CN107743574A (en) * | 2015-06-18 | 2018-02-27 | 罗伯特·博世有限公司 | Method and apparatus for process signal |
US11125837B2 (en) * | 2020-01-14 | 2021-09-21 | Allegro Microsystems, Llc | Magnetic field sensor offset and gain adjustment |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1219005A4 (en) | 1999-09-16 | 2012-01-25 | Gm Global Tech Operations Inc | Tachometer apparatus and method for motor velocity measurement |
US7075290B2 (en) * | 2001-07-27 | 2006-07-11 | Delphi Technologies, Inc. | Tachometer apparatus and method for motor velocity measurement |
US6876194B2 (en) * | 2003-02-26 | 2005-04-05 | Delphi Technologies, Inc. | Linear velocity sensor and method for reducing non-linearity of the sensor output signal |
WO2005064623A2 (en) | 2003-12-30 | 2005-07-14 | Nct Engineering Gmbh | Method and an array for adjusting a magnetization of a magnetizable object |
TWM246600U (en) * | 2003-12-31 | 2004-10-11 | Taigene Metal Industry Co Ltd | Magnetic sensor |
DE102004010362B4 (en) * | 2004-03-03 | 2010-11-25 | Austriamicrosystems Ag | Sensor, in particular magnetic field sensor, with noise compensation and method for noise compensation of a sensor |
DE102004064185B4 (en) * | 2004-03-03 | 2013-04-11 | Austriamicrosystems Ag | Sensor e.g. for magnetic field, has element which provides signal, containing interference signal for analyzer and connected to element with subtractor subtracts interference signal from signal |
US20070293331A1 (en) * | 2004-05-26 | 2007-12-20 | Fredrik Tuxen | Method of and an Apparatus for Determining Information Relating to a Projectile, Such as a Golf Ball |
WO2006002639A1 (en) | 2004-07-02 | 2006-01-12 | Interactive Sports Games A/S | A method and apparatus for determining a deviation between an actual direction of a launched projectile and a predetermined direction |
WO2006013093A2 (en) * | 2004-08-02 | 2006-02-09 | Nctengineering Gmbh | Sensor electronic |
US7307416B2 (en) * | 2004-10-22 | 2007-12-11 | Delphi Technologies, Inc. | Position sensor and assembly |
US9645235B2 (en) | 2005-03-03 | 2017-05-09 | Trackman A/S | Determination of spin parameters of a sports ball |
US10393870B2 (en) | 2005-03-03 | 2019-08-27 | Trackman A/S | Determination of spin parameters of a sports ball |
EP2218483B1 (en) * | 2005-03-03 | 2017-03-01 | Trackman A/S | Determination of spin parameters of a sports ball |
US7187142B2 (en) * | 2005-05-25 | 2007-03-06 | Rockwell Automation Technologies, Inc. | Motor drive with velocity noise filter |
KR100684475B1 (en) | 2005-11-01 | 2007-02-22 | 동아전기부품 주식회사 | A terminal structure of vehicle speed sensor |
JP4708992B2 (en) | 2005-12-12 | 2011-06-22 | 日立オートモティブシステムズ株式会社 | Position detecting apparatus and synchronous motor driving apparatus using the same |
US7725227B2 (en) | 2006-12-15 | 2010-05-25 | Gm Global Technology Operations, Inc. | Method, system, and apparatus for providing enhanced steering pull compensation |
KR102408358B1 (en) | 2009-01-29 | 2022-06-14 | 트랙맨 에이/에스 | An assembly comprising a radar and an imaging element |
US7886863B2 (en) | 2009-02-12 | 2011-02-15 | American Axle & Manufacturing, Inc. | Driveshaft assembly with torque sensor |
KR101592958B1 (en) * | 2010-03-05 | 2016-02-11 | 한온시스템 주식회사 | Tachometer Operating System and Method using Power Generation of Fan |
DE102010036941B4 (en) * | 2010-08-11 | 2012-09-13 | Sauer-Danfoss Gmbh & Co. Ohg | Method and device for determining the state of an electrically controlled valve |
IT1406245B1 (en) * | 2010-09-20 | 2014-02-14 | Psc Engineering S R L | SYSTEM AND PROCEDURE FOR DETERMINING DERIVATIONS (OFFSET) OF MEASURING INSTRUMENTS. |
CN103134970B (en) * | 2011-11-29 | 2015-12-16 | 上海汽车集团股份有限公司 | Be suitable for integrated hall sensors and the current sensing means of automobile application |
KR101252218B1 (en) * | 2011-12-12 | 2013-04-05 | 현대자동차주식회사 | Apparatus for controlling actuator for openning and shutting air intake valve |
EP2605036B1 (en) | 2011-12-16 | 2019-10-23 | Trackman A/S | A method and a sensor for determining a direction-of-arrival of impingent radiation |
KR101354758B1 (en) | 2011-12-19 | 2014-01-23 | 삼성전기주식회사 | Fault Diagnosis apparatus for motor multi-sensor and method thereof |
DE102014207139A1 (en) * | 2014-04-14 | 2015-10-15 | Robert Bosch Gmbh | Measuring device for a contactless rotation angle detection |
US9829501B2 (en) * | 2014-04-25 | 2017-11-28 | Texas Instruments Incorporated | Rotational sensing based on inductive sensing |
US10379214B2 (en) | 2016-07-11 | 2019-08-13 | Trackman A/S | Device, system and method for tracking multiple projectiles |
US10444339B2 (en) | 2016-10-31 | 2019-10-15 | Trackman A/S | Skid and roll tracking system |
US10989791B2 (en) | 2016-12-05 | 2021-04-27 | Trackman A/S | Device, system, and method for tracking an object using radar data and imager data |
US10141803B2 (en) * | 2017-01-11 | 2018-11-27 | Infinitum Electric Inc. | System and apparatus for axial field rotary energy device |
JP6877170B2 (en) * | 2017-02-14 | 2021-05-26 | 日本電産サンキョー株式会社 | Rotary encoder and its absolute angle position detection method |
JP6877168B2 (en) * | 2017-02-14 | 2021-05-26 | 日本電産サンキョー株式会社 | Rotary encoder and its absolute angle position detection method |
DE102018215796A1 (en) * | 2018-09-18 | 2020-03-19 | Robert Bosch Gmbh | Position detection system and method for detecting a movement of a machine |
DE102018215783A1 (en) * | 2018-09-18 | 2020-03-19 | Robert Bosch Gmbh | Position detection system and method for detecting a movement of a machine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4305025A (en) * | 1980-05-12 | 1981-12-08 | The Singer Company | Velocity servo with adaptive tachometer feedback |
US4853604A (en) * | 1984-10-19 | 1989-08-01 | Kollmorgen Technologies Corporation | Position and speed sensors |
US4868497A (en) * | 1986-11-10 | 1989-09-19 | Vdo Adolf Schindling Ag | Determining angular velocity from two quadrature signals by squaring the derivative of each signal and taking the square root of the sum |
US4901015A (en) * | 1988-09-21 | 1990-02-13 | Sundstrand Corporation | Ambient electromagnetic field compensating magnetic pick-up circuit for integrated drive generators |
US5062064A (en) * | 1989-09-01 | 1991-10-29 | Berkeley Process Control, Inc. | Method and apparatus for measuring velocity in servo systems |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1484796U (en) | ||||
US3731533A (en) * | 1969-10-16 | 1973-05-08 | Dresser Ind | Electrical generator having non-salient poles for metering shaft rotation of a turbine assembly |
US4008378A (en) | 1973-05-14 | 1977-02-15 | Ns Electronics | Multi-radix digital communications system with time-frequency and phase-shift multiplexing |
DE2416113C2 (en) * | 1974-04-03 | 1984-09-27 | Quick-Rotan Becker & Notz Kg, 6100 Darmstadt | Actual value encoder for speed-controlled drives |
JPS5731353A (en) * | 1980-07-31 | 1982-02-19 | Matsushita Electric Ind Co Ltd | Speed detector for sewing machine |
US4396884A (en) | 1980-12-30 | 1983-08-02 | Toalson David C | Ultra slow speed tachometer |
SU974273A1 (en) | 1981-05-04 | 1982-11-15 | Львовский Ордена Ленина Политехнический Институт Им.Ленинского Комсомола | Rotation speed converter |
JPS58156857A (en) * | 1982-03-15 | 1983-09-17 | Tokai T R W Kk | Rotation detector |
JPS58215560A (en) | 1982-06-09 | 1983-12-15 | Secoh Giken Inc | Rotating speed detector |
US4562399A (en) * | 1983-06-14 | 1985-12-31 | Kollmorgen Technologies Corporation | Brushless DC tachometer |
USRE32857E (en) | 1984-08-21 | 1989-02-07 | Resolvex Corporation | Brushless tachometer/synchro |
US4710683A (en) | 1985-12-05 | 1987-12-01 | Secoh Geiken Inc. | Rotation detecting apparatus |
US4836319A (en) | 1986-07-22 | 1989-06-06 | Nippondenso Co., Ltd. | Steering control apparatus for motor vehicles |
US4838074A (en) | 1987-04-06 | 1989-06-13 | Mitsubishi Denki Kabushiki Kaisha | Steering torque detecting device |
DE3713304A1 (en) * | 1987-04-18 | 1988-11-03 | Heldt & Rossi Servoelektronik | DEVICE FOR DETECTING TURNING ANGLE POSITION IN ROTARY DRIVES |
US4961017A (en) * | 1987-09-28 | 1990-10-02 | Akai Electric Co., Ltd. | Stator for use in a brushless motor |
US4803425A (en) | 1987-10-05 | 1989-02-07 | Xerox Corporation | Multi-phase printed circuit board tachometer |
JPH0747682Y2 (en) | 1987-12-03 | 1995-11-01 | 株式会社東海理化電機製作所 | Rotation detection device for automobile steering wheel |
US4897603A (en) | 1988-02-29 | 1990-01-30 | Siemens Aktiengesellschaft | Arrangement for determining the speed and rotor position of an electric machine |
JPH067056B2 (en) | 1988-04-06 | 1994-01-26 | 日本ビクター株式会社 | Position and speed detector |
FR2633889B1 (en) | 1988-07-05 | 1993-08-13 | Bendix Electronics Sa | METHOD AND DEVICE FOR MEASURING THE ROTATION ANGLE OF THE STEERING SHAFT OF A MOTOR VEHICLE |
US4922197A (en) | 1988-08-01 | 1990-05-01 | Eaton Corporation | High resolution proximity detector employing magnetoresistive sensor disposed within a pressure resistant enclosure |
US5223760A (en) * | 1988-08-24 | 1993-06-29 | Rockwell International Corporation | Wheel speed sensor for drive axle |
WO1990015968A1 (en) | 1989-06-19 | 1990-12-27 | Siemens Aktiengesellschaft | Process for generating a voltage proportional to a rotation speed with a resolver and circuit for implementing the process |
JP2620977B2 (en) | 1989-07-13 | 1997-06-18 | 本田技研工業株式会社 | Abnormality detection device for steering angle sensor |
US4924696A (en) | 1989-07-24 | 1990-05-15 | General Motors Corporation | Noncontacting position sensor for an automotive steering system |
US5045784A (en) | 1989-08-21 | 1991-09-03 | Rockwell International Corporation | Tachometer noise reduction system using a pickup coil to cancel the noise from the tachometer signal |
JPH0391908U (en) | 1989-12-29 | 1991-09-19 | ||
JP2796391B2 (en) | 1990-01-08 | 1998-09-10 | 株式会社日立製作所 | Physical quantity detection method and physical quantity detection device, servo motor using these methods and devices, and power steering device using this servo motor |
US5298841A (en) | 1990-04-18 | 1994-03-29 | Hitachi, Ltd. | Apparatus for controlling the speed of a moving object |
JPH047316A (en) * | 1990-04-25 | 1992-01-10 | Osaka Gas Co Ltd | Organic ferromagnetic precursor, its preparation and preparation of organic ferromagnetic material |
JP2503659Y2 (en) * | 1990-04-28 | 1996-07-03 | ソニー株式会社 | Device mounting device |
JPH04325375A (en) | 1991-04-25 | 1992-11-13 | Honda Motor Co Ltd | Steering angle sensor for vehicle |
US5408153A (en) * | 1991-07-05 | 1995-04-18 | Canon Denshi Kabushiki Kaisha | Index position detecting apparatus for an electromagnetic rotary machine |
US5294968A (en) | 1991-07-09 | 1994-03-15 | Konica Corporation | Developing unit and drive transmission attachment |
US5406267A (en) | 1991-07-22 | 1995-04-11 | Curtis; Stephen J. | Method and apparatus for the monitoring of the operation of linear and rotary encoders |
US5293125A (en) | 1992-01-17 | 1994-03-08 | Lake Shore Cryotronics, Inc. | Self-aligning tachometer with interchangeable elements for different resolution outputs |
US5329195A (en) * | 1992-11-02 | 1994-07-12 | Seiberco Incorporated | Sensor motor |
JP3282269B2 (en) * | 1993-03-04 | 2002-05-13 | ソニー株式会社 | Rotation detection device |
US5422570A (en) | 1993-12-30 | 1995-06-06 | Whirlpool Corporation | Speed sensing for the third harmonic stator voltage signal |
US5541488A (en) | 1994-04-11 | 1996-07-30 | Sundstrand Corporation | Method and apparatus for controlling induction motors |
JPH07315196A (en) | 1994-05-24 | 1995-12-05 | Nissan Motor Co Ltd | Nonskid control device |
JP3862302B2 (en) * | 1994-08-11 | 2006-12-27 | 日本精工株式会社 | Rolling bearing unit with rotational speed detector |
EP0732252A3 (en) | 1995-03-17 | 1997-05-28 | Nippon Denso Co | Electric power steering apparatus |
DE69623076T2 (en) | 1995-06-05 | 2003-04-17 | Kollmorgen Corp., Waltham | System and method for controlling brushless permanent magnet motors |
US5736852A (en) * | 1995-06-21 | 1998-04-07 | Alliedsignal Truck Brake Systems Co. | Circuit and method for conditioning a wheel speed sensor signal |
US5717268A (en) | 1996-06-17 | 1998-02-10 | Philips Electronics North America Corp. | Electric motor with tachometer signal generator |
US6051951A (en) | 1997-02-20 | 2000-04-18 | Honda Giken Kogyo Kabushiki Kaisha | Generator motor for internal combustion engine |
US5902342A (en) | 1997-03-27 | 1999-05-11 | Abb Daimler-Benz Transportation (North America) Inc. | Detection of vibration in an AC traction system |
JPH1164354A (en) | 1997-08-25 | 1999-03-05 | Aisin Seiki Co Ltd | Rotational speed detector |
JP3418098B2 (en) | 1997-08-27 | 2003-06-16 | 本田技研工業株式会社 | Electric power steering device |
JP3452299B2 (en) * | 1997-09-03 | 2003-09-29 | 本田技研工業株式会社 | Electric power steering device |
US6246197B1 (en) | 1997-09-05 | 2001-06-12 | Mitsubishi Denki Kabushiki Kaisha | Electric power steering controller |
US6155106A (en) | 1997-10-29 | 2000-12-05 | Alps Electric Co., Inc. | Steering angle sensor unit |
JP3412492B2 (en) | 1998-02-02 | 2003-06-03 | トヨタ自動車株式会社 | Wheel speed detection device |
JP3344463B2 (en) | 1998-04-27 | 2002-11-11 | トヨタ自動車株式会社 | Vehicle steering control device |
JP3648619B2 (en) | 1998-05-18 | 2005-05-18 | 光洋精工株式会社 | Power steering device |
GB9811151D0 (en) | 1998-05-22 | 1998-07-22 | Scient Generics Ltd | Rotary encoder |
JP3648392B2 (en) | 1998-09-18 | 2005-05-18 | 光洋精工株式会社 | Power steering device |
WO2000033088A1 (en) * | 1998-12-02 | 2000-06-08 | Mts Systems Corporation | Blended velocity estimation |
EP1219005A4 (en) | 1999-09-16 | 2012-01-25 | Gm Global Tech Operations Inc | Tachometer apparatus and method for motor velocity measurement |
US6483293B1 (en) | 2000-06-29 | 2002-11-19 | Ford Global Technologies, Inc. | System and method for cancelling the effects of stray magnetic fields from the output of a variable reluctance sensor |
-
2000
- 2000-09-14 EP EP00964996A patent/EP1219005A4/en not_active Withdrawn
- 2000-09-14 US US09/661,657 patent/US6498409B1/en not_active Expired - Lifetime
- 2000-09-14 JP JP2001523877A patent/JP4750990B2/en not_active Expired - Fee Related
- 2000-09-14 WO PCT/US2000/025151 patent/WO2001020342A2/en active Application Filing
-
2002
- 2002-04-04 US US10/116,284 patent/US6791217B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4305025A (en) * | 1980-05-12 | 1981-12-08 | The Singer Company | Velocity servo with adaptive tachometer feedback |
US4853604A (en) * | 1984-10-19 | 1989-08-01 | Kollmorgen Technologies Corporation | Position and speed sensors |
US4868497A (en) * | 1986-11-10 | 1989-09-19 | Vdo Adolf Schindling Ag | Determining angular velocity from two quadrature signals by squaring the derivative of each signal and taking the square root of the sum |
US4901015A (en) * | 1988-09-21 | 1990-02-13 | Sundstrand Corporation | Ambient electromagnetic field compensating magnetic pick-up circuit for integrated drive generators |
US5062064A (en) * | 1989-09-01 | 1991-10-29 | Berkeley Process Control, Inc. | Method and apparatus for measuring velocity in servo systems |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040186640A1 (en) * | 2003-01-08 | 2004-09-23 | Yasuji Norito | Electric power steering apparatus |
US7366599B2 (en) * | 2003-01-08 | 2008-04-29 | Jtekt Corporation | Electric power steering apparatus |
DE102005060330A1 (en) * | 2005-12-16 | 2007-06-21 | Zf Friedrichshafen Ag | Electric vehicle motor rotation speed sensor measures directly on drive pinion with angularly separated sensors and XOR combination of signals |
US20110179055A1 (en) * | 2006-11-22 | 2011-07-21 | Shai Geva | Controlling Presentation of Refinement Options in Online Searches |
DE102008042961A1 (en) | 2008-10-20 | 2010-04-22 | Zf Friedrichshafen Ag | Speed measuring device for measuring speed of shaft in gear of vehicle, has two sensor cells arranged opposite to each other for scanning counting traces that are arranged to each other in different planes |
CN107743574A (en) * | 2015-06-18 | 2018-02-27 | 罗伯特·博世有限公司 | Method and apparatus for process signal |
US11125837B2 (en) * | 2020-01-14 | 2021-09-21 | Allegro Microsystems, Llc | Magnetic field sensor offset and gain adjustment |
Also Published As
Publication number | Publication date |
---|---|
US6791217B2 (en) | 2004-09-14 |
EP1219005A4 (en) | 2012-01-25 |
WO2001020342A3 (en) | 2001-10-04 |
JP4750990B2 (en) | 2011-08-17 |
US6498409B1 (en) | 2002-12-24 |
WO2001020342A2 (en) | 2001-03-22 |
JP2003509694A (en) | 2003-03-11 |
EP1219005A2 (en) | 2002-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6791217B2 (en) | Method and system for motor velocity measurement | |
EP1417496B1 (en) | Tachometer apparatus and method for motor velocity measurement | |
US11079291B2 (en) | Inductive position sensor | |
KR101433784B1 (en) | Induction position sensor using reference signal | |
JP4901856B2 (en) | Inductive position sensor with common mode correction winding and simplified signal processing | |
US7965004B2 (en) | Electric motor | |
JP6484008B2 (en) | Encoder and rotation angle position calculation method | |
US6232739B1 (en) | High-resolution incremental position sensor with pulse switching strategy | |
US6940269B2 (en) | Meter unit having magnetic pointer position detector | |
US11493364B2 (en) | Sensor system for determining at least one rotation characteristic of an element rotating around at least one rotation axis | |
EP3151017B1 (en) | Amr speed and direction sensor for use with magnetic targets | |
US7915888B2 (en) | Systems and methods for detecting angular position | |
US10775196B2 (en) | System for determining at least one rotation parameter of a rotary member | |
US8121811B2 (en) | Systems and methods for detecting angular position | |
US20060006864A1 (en) | Integrated magnetoresitive speed and direction sensor | |
US8892395B2 (en) | Detecting angular position of a rotating device | |
JPS60162920A (en) | Resolver device using magnetism sensing element | |
JP4230249B2 (en) | Throttle opening detector | |
JP2002048508A (en) | Detector for relative rotational position | |
JP2017215184A (en) | Rotation angle detector | |
JPH0734382Y2 (en) | Drive device for crossed coil type instrument | |
JP2005172441A (en) | Angle and angular velocity integrated detector | |
JP2021189041A (en) | Rotation angle detector | |
JP2020153981A (en) | System for determining at least one rotation parameter of rotating member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI TECHNOLOGIES, INC.;REEL/FRAME:023449/0065 Effective date: 20091002 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI TECHNOLOGIES, INC.;REEL/FRAME:023449/0065 Effective date: 20091002 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI TECHNOLOGIES, INC.;REEL/FRAME:023988/0754 Effective date: 20091002 Owner name: UNITED STATES DEPARTMENT OF THE TREASURY,DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023990/0349 Effective date: 20090710 Owner name: UAW RETIREE MEDICAL BENEFITS TRUST,MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023990/0831 Effective date: 20090710 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI TECHNOLOGIES, INC.;REEL/FRAME:023988/0754 Effective date: 20091002 Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023990/0349 Effective date: 20090710 Owner name: UAW RETIREE MEDICAL BENEFITS TRUST, MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023990/0831 Effective date: 20090710 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:025386/0591 Effective date: 20100420 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UAW RETIREE MEDICAL BENEFITS TRUST;REEL/FRAME:025386/0503 Effective date: 20101026 |
|
AS | Assignment |
Owner name: PACIFIC CENTURY MOTORS, INC., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:027842/0918 Effective date: 20101130 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:027842/0918 Effective date: 20101130 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: STEERING SOLUTIONS IP HOLDING CORPORATION, MICHIGA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PACIFIC CENTURY MOTORS, INC.;NEXTEER (BEIJING) TECHNOLOGY CO., LTD.;REEL/FRAME:027870/0666 Effective date: 20120126 |
|
FPAY | Fee payment |
Year of fee payment: 12 |