US20020115749A1 - Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization - Google Patents
Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization Download PDFInfo
- Publication number
- US20020115749A1 US20020115749A1 US09/975,402 US97540201A US2002115749A1 US 20020115749 A1 US20020115749 A1 US 20020115749A1 US 97540201 A US97540201 A US 97540201A US 2002115749 A1 US2002115749 A1 US 2002115749A1
- Authority
- US
- United States
- Prior art keywords
- scrap
- hdpe
- ldpe
- feedstock
- pulverized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 176
- 239000007787 solid Substances 0.000 title claims abstract description 99
- 238000010298 pulverizing process Methods 0.000 title claims abstract description 86
- 229920005989 resin Polymers 0.000 title description 3
- 239000011347 resin Substances 0.000 title description 3
- 239000010817 post-consumer waste Substances 0.000 title 1
- 229920000642 polymer Polymers 0.000 claims abstract description 74
- 239000000203 mixture Substances 0.000 claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 claims abstract description 26
- 238000011065 in-situ storage Methods 0.000 claims abstract description 23
- 229920001903 high density polyethylene Polymers 0.000 claims description 158
- 239000004700 high-density polyethylene Substances 0.000 claims description 158
- 229920001684 low density polyethylene Polymers 0.000 claims description 131
- 239000004702 low-density polyethylene Substances 0.000 claims description 131
- 239000004743 Polypropylene Substances 0.000 claims description 115
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 45
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 41
- 239000004793 Polystyrene Substances 0.000 claims description 28
- 238000010128 melt processing Methods 0.000 claims description 19
- 239000004800 polyvinyl chloride Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 229920000098 polyolefin Polymers 0.000 claims description 7
- 239000004417 polycarbonate Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 229920001971 elastomer Polymers 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000806 elastomer Substances 0.000 claims description 3
- 229920002959 polymer blend Polymers 0.000 claims description 3
- 229920001169 thermoplastic Polymers 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 239000004416 thermosoftening plastic Substances 0.000 claims description 3
- 229920006942 ABS/PC Polymers 0.000 claims description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 2
- 239000012994 photoredox catalyst Substances 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims 10
- 239000005060 rubber Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 117
- 239000003795 chemical substances by application Substances 0.000 abstract description 10
- 229920001155 polypropylene Polymers 0.000 description 106
- 229920003023 plastic Polymers 0.000 description 56
- 239000004033 plastic Substances 0.000 description 56
- 238000002347 injection Methods 0.000 description 54
- 239000007924 injection Substances 0.000 description 54
- 238000010438 heat treatment Methods 0.000 description 31
- 238000004064 recycling Methods 0.000 description 25
- 239000003086 colorant Substances 0.000 description 23
- 229920002223 polystyrene Polymers 0.000 description 20
- 239000008188 pellet Substances 0.000 description 17
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 238000000227 grinding Methods 0.000 description 11
- 229920000915 polyvinyl chloride Polymers 0.000 description 11
- 239000002826 coolant Substances 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 10
- 230000008025 crystallization Effects 0.000 description 10
- 239000013502 plastic waste Substances 0.000 description 10
- -1 polyethylene Polymers 0.000 description 10
- 238000000113 differential scanning calorimetry Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000005507 spraying Methods 0.000 description 9
- 238000000071 blow moulding Methods 0.000 description 8
- 210000000988 bone and bone Anatomy 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 8
- 238000001175 rotational moulding Methods 0.000 description 8
- 238000004435 EPR spectroscopy Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000005453 pelletization Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000001757 thermogravimetry curve Methods 0.000 description 7
- 244000144730 Amygdalus persica Species 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001362 electron spin resonance spectrum Methods 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 6
- 238000010008 shearing Methods 0.000 description 6
- 241000220317 Rosa Species 0.000 description 5
- 230000032798 delamination Effects 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 239000005022 packaging material Substances 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 101001018064 Homo sapiens Lysosomal-trafficking regulator Proteins 0.000 description 4
- 102100033472 Lysosomal-trafficking regulator Human genes 0.000 description 4
- 244000038561 Modiola caroliniana Species 0.000 description 4
- 235000010703 Modiola caroliniana Nutrition 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 235000006040 Prunus persica var persica Nutrition 0.000 description 4
- 240000001717 Vaccinium macrocarpon Species 0.000 description 4
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 4
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000003570 air Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 235000004634 cranberry Nutrition 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000012744 reinforcing agent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000000804 electron spin resonance spectroscopy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000003845 household chemical Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000006740 morphological transformation Effects 0.000 description 2
- 239000004482 other powder Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 235000014214 soft drink Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920000426 Microplastic Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 235000019642 color hue Nutrition 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 235000012736 patent blue V Nutrition 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/10—Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/535—Screws with thread pitch varying along the longitudinal axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/57—Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
- B29B2017/0424—Specific disintegrating techniques; devices therefor
- B29B2017/0464—Solid state shear extrusion pulverisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to solid state shear pulverization of polymeric material, which may include thermodynamically incompatible polymers, to form without compatibilizing agents pulverized particulates that are directly melt processable as powder feedstock to shaped articles of manufacture by conventional blow molding, rotational molding, extrusion, and spray coating techniques without color streaking in the resulting articles of manufacture.
- plastic materials comprise approximately 20% by volume of the municipal waste stream.
- PE polyethylene
- PP polypropylene
- PS polystyrene
- PVC polyvinyl chloride
- PET polyethylene terephthalate
- Plastic bottles are molded of different polymeric materials depending upon the product they are to contain.
- plastic bottles for water, milk, and household chemicals typically are made of high density polyethylene (HDPE), while soft drink bottles are typically made of polyethylene terephthalate (PET) with or without base caps made from high density polyethylene (HOPE).
- HDPE high density polyethylene
- PET polyethylene terephthalate
- HOPE high density polyethylene
- HOPE bottles account for approximately 50-60% and PET bottles account for approximately 20-30% of the bottles used by consumers.
- the balance of bottles, bottle caps and other containers used by consumers comprises other polymeric materials, such as low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and other resins and multi-layered materials.
- LDPE low density polyethylene
- PP polypropylene
- PS polystyrene
- PVC polyvinyl chloride
- Plastic packaging materials also are made of a wide variety of polymers. For example, according to Plastics Compounding, November/December, 1992, the following polymers were used in packaging material in the %'s set forth: 27% LDPE, 21% HOPE, 16% PS, 16% PP, and 5% PET.
- Post-industrial plastic waste can comprise polyolefins, PS, PET and other polymeric materials used for plastic packaging.
- a typical example of a low value, recycled plastic product is recycled plastic lumber having a dark brown or gray color with noticeable color streaking and inferior mechanical properties compared to components molded of virgin materials.
- recycled plastic lumber is oftentimes painted to improve its appeal to the customer, or expensive pigments and other additives are added to the feedstock during the manufacturing process to this end.
- the cost of the recycled product is increased thereby.
- melt processing techniques such as blow molding, rotational molding, extrusion (e.g. extruded PVC pipe and profiles), and spray coating, require a plastic powder feedstock. That is, the flake scrap material is not directly melt processable to articles of manufacture by such powder feedstock-requiring melt processing techniques.
- sorted or unsorted flake scrap material produced by batch grinding must be pelletized and then ground to powder form. The need to pelletize and grind sorted or unsorted flake scrap polymeric material prior to such melt processing adds considerably to the cost and complexity of recycling scrap plastics as well as the capital equipment expenditures required.
- compatibilizing agents and/or reinforcing agents can be added to flake plastic scrap material comprising chemically incompatible polymers in attempts to produce a recycled plastic product exhibiting more desirable characteristics.
- addition of these agents to the plastic scrap material makes recycling more difficult and adds considerably to its cost.
- the Mavel et al. U.S. Pat. No. 4,250,222 relates to this type of recycling approach and is representative of the disadvantages associated with such an approach to plastic recycling.
- sorted plastic scrap must be subjected to batch grinding to produce flake scrap material that then must be pelletized and ground again to provide powder feedstock for blow molding, rotational molding, some extruding, spray coating and other melt processing techniques that require powder feedstock.
- one or more polymeric materials such as sorted or unsorted, commingled scrap polymeric material
- solid state pulverization to produce pulverized particulates (e.g. powder) that can be directly formed to shape by powder feedstock-using melt processing techniques.
- the present invention provides in one aspect a method of making polymeric particulates (e.g. powder) wherein sorted or unsorted, commingled polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to extruder screw means rotated to transport the material along the length thereof and in the solid state convert the material to pulverized particulates (e.g. powder) that are melt processable directly by conventional blow molding, rotational molding, extrusion, spray coating and other melt processing techniques requiring a powder feedstock. This avoids the need for and costs associated with flake pelletizing and pellet grinding operations heretofore required.
- polymeric particulates e.g. powder
- the solid state pulverized particulates also are melt processable by conventional molding, extruding, spray coating and the like to form articles of manufacture having a substantially homogenous color appearance without color streaking or marbleizing.
- This color homogeneity is achievable regardless of whether the particulates include mixed color polymeric material of the same or different composition. This avoids the need for the addition of pigments and/or compatibilizing agents to the feedstock and the need to paint the molded or extruded product to hide unpleasing colors and color streaking.
- the present invention provides in another aspect a method of making polymeric particulates wherein polymeric material, such as unsorted polymeric scrap material, comprising two or more thermodynamically incompatible polymers is supplied to extruder screw means rotated to transport the material along the length thereof and subject the material to solid state pulverization and in-situ polymer compatibilization.
- polymeric material such as unsorted polymeric scrap material
- thermodynamically incompatible polymers is supplied to extruder screw means rotated to transport the material along the length thereof and subject the material to solid state pulverization and in-situ polymer compatibilization.
- In-situ polymer compatibilization is evidenced, in one instance, by the resulting pulverized polymeric particulates exhibiting a thermogram different from that of the precursor unpulverized material.
- the pulverized particulates of the invention exhibit a melting peak and/or crystallization peak quite different from that (those) of the unpulverized material.
- the polymeric scrap material and/or virgin material can include thermoplastics, polymer blends, polymer alloys, thermosets, elastomers and other polymeric materials.
- the polymeric material is comminuted to flake form by grinding, chopping or shredding using conventional equipment prior to pulverization.
- the pulverization process uses as scrap feedstock a material that is in a physical form (e.g. comminuted flakes) commonly available from scrap collections and municipal recycling centers.
- the polymeric material can be heated during the initial stage of the pulverization operation depending upon the make-up (composition) of the feedstock followed by cooling during subsequent stages of the pulverizing operation to maintain proper temperature control for solid state pulverization, in-situ polymer comptibilization and production of desired powder size.
- the polymeric material is only subjected to frictional heating during the initial stage of the pulverization operation by engagement with the rotating screws. That is, solid state shear pulverization of the polymeric material preferably is conducted without heating of the material by any external extruder barrel heating device. Temperature control of the polymeric material during the pulverization operation is thereby facilitated to reduce degradation of the polymers and dye materials used with the feedstock polymers. Energy consumption during the pulverization operation also is reduced.
- the present invention provides in still another aspect a method of making an article of manufacture having a substantially homogenous color from mixed-color polymeric material, such as sorted or unsorted, commingled polymeric scrap material.
- mixed-color polymeric material of the same or different composition is supplied to extruder screw means rotated to transport the polymeric material along the length thereof to subject the material to solid state pulverization to form pulverized particulates.
- the pulverized particulates are molded, extruded or otherwise melt processed to form a substantially homogeneously colored shape characterized by the absence of color streaking and marbleizing, despite the particulates originating from mixed-color polymeric material.
- the pulverized powder is processable to a substantially homogenous pastel color tone corresponding to a dominant color of a particular scrap component in the feedstock.
- the present invention also provides solid state pulverized particulates produced from scrap polymeric material and/or virgin polymeric material wherein the particulates are suitable as powder feedstock, without conventional melt pelletizing and pellet grinding, for direct melt processing to shape using blow molding, rotational molding, some extrusion, spray coating, and other powder feedstock-using techniques.
- the present invention further provides solid state pulverized polymeric particulates comprising two or more otherwise thermodynamically incompatible polymers produced from commingled, unsorted polymeric scrap materials and/or virgin materials.
- the polymers are in-situ compatibilized by solid state shear pulverization as evidenced by one or more different thermogram characteristics between recycled particulates of the invention and unpulverized polymeric material.
- the solid state pulverized particulates exhibit enhanced reactivity as compared to the unpulverized polymeric material.
- the present invention provides solid state pulverized polymeric particulates that exhibit, pulverized and as-melt processed, a substantially homogenous color despite being pulverized from mixed-color scrap material.
- Articles of manufacture and powder coatings produced from the solid state pulverized particulates of the present invention exhibit mechanical properties generally superior to those exhibited by like processed flake polymeric material of the same composition depending on the polymer components involved. Importantly, they also exhibit a substantially homogeneous color characterized by the absence of color streaking or marbleizing. Typically, the articles of manufacture exhibit a substantially homogeneous pastel color tone corresponding to a dominant color of a scrap component in the polymeric feedstock.
- the recycled, pulverized particulates of the invention made from mixed-color polymeric feedstock can be used in molding a plurality of articles of manufacture that exhibit substantially the same homogeneous pastel color from one article to the next. In contrast, a mixture of unpulverized flake polymeric material of like composition and mixed color produces molded articles exhibiting inconsistent colors from one molded article to the next.
- the present invention is advantageous in that the pulverized particulates are suitable for direct use as powder feedstock for powder feedstock-using melt processing techniques without the need for pelletizing and pellet grinding operations. Moreover, commingled scrap polymer materials, virgin polymeric materials and mixtures thereof can be processed in a manner to achieve in-situ compatibilization of different polymers in a once-through pulverization operation without the need for a compatibilizing agent and without sortation in the case of commingled scrap feedstock.
- the pulverized particulates may be mixed with fillers, reinforcing agents, flame retardants, antioxidants and other additives commonly used in the plastics industry if desired.
- the present invention is advantageous in that sorted or unsorted, commingled mixed-color polymeric materials and/or virgin polymeric materials can be pulverized as polymeric particulates that are melt processable to substantially homogeneous light color without the color streaking or marbleizing heretofore experienced using other recycling procedures.
- the present invention can provide a high value, low cost recycled particulates product, as well as products molded or otherwise melt processed therefrom, thereby increasing utilization of available plastic scrap.
- FIG. 1 is a schematic sectional view of a twin-screw extruder for practicing an embodiment of the invention.
- FIG. 2 represents the morphological transformation of flake-shaped scrap feedstock to powder due to solid state shear pulverization in the extruder in accordance with the invention.
- FIG. 3 is an elevational view of a representative screw used in practicing the invention when the scrap material is heated by heater bands on the extruder barrel (partially shown).
- FIG. 4 is an elevational view of a representative screw used in practicing the invention when the scrap material is subjected only to frictional heat in the extruder barrel (partially shown).
- FIGS. 5A, 6A, 7 A and 8 A are photographs of post-consumer, flake scrap feedstock and specimens injection molded therefrom and FIGS. 5B, 6B, 7 B and 8 B are photographs of pulverized powder of the invention and specimens injection molded therefrom.
- FIGS. 9, 10, and 11 are electron spin resonance (ESR) spectra of various as-received post-consumer, flake scrap samples and pulverized powder samples of the invention of various compositions.
- FIGS. 12 A,B- 18 A,B are DSC (differential scanning calorimetry) thermograms of various as-received post-consumer, flake scrap samples and pulverized powder samples of the invention of various compositions.
- the present invention provides a method of making recycled polymeric particulates, such as powder, from post-consumer and/or post-industrial polymeric scrap material that may be sorted or unsorted, commingled so as to include two or more different scrap polymers.
- Post-consumer polymeric waste typically includes substantial quantities of plastic bottles, containers and packaging materials made of different polymers.
- plastic bottles for water, milk, and household chemicals typically are made of high density polyethylene (HDPE), while soft drink bottles are typically made of polyethylene terephthalate (PET) with or without base cups made of HDPE.
- HDPE bottles account for approximately 50-60% and PET bottles account for approximately 20-30% of the bottles used by consumers.
- PET bottles account for approximately 20-30% of the bottles used by consumers.
- the balance of bottles and other containers used by consumers comprise other polymeric materials, such as low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and other resins and multi-layered materials.
- LDPE low density polyethylene
- PP polypropylene
- PS polystyrene
- PVC polyvinyl chloride
- Post-consumer polymeric waste also includes plastic packaging materials that are made of a wide variety of polymers including LDPE, HDPE, PS, PP, PET and others.
- Post-industrial plastic waste can comprise polyolefins, PS, PET, and other polymeric materials used for plastic packaging.
- Sorted polymeric scrap material typically comprises a single polymer composition collected from one or more sources and sorted pursuant to standard polymer codes now used on plastic bottles, containers and the like. Sorted polymeric scrap material typically includes scrap of different colors since to-date color sorting is not yet common.
- Unsorted, commingled scrap material can include myriad types of polymeric scrap materials including, but not limited to, HDPE, LDPE, PP, PS, PET, PVC, PC (polycarbonate), ABS/PC (acrylonitrile butadiene styrene/polycarbonate), PPO (polyphenylyene oxide)/PS and others.
- commingled, unsorted scrap can include thermoplastics, polymer blends, polymer alloys, thermosets, elastomers and other scrap polymeric materials.
- unsorted, commingled scrap material will include mixtures of incompatible polymers such as mixtures of HDPE and PET, mixtures of HDPE and PS, mixtures of PP and PS, mixtures of HDPE, LDPE with PET and/or PS for purposes of illustration.
- incompatible polymers such as mixtures of HDPE and PET, mixtures of HDPE and PS, mixtures of PP and PS, mixtures of HDPE, LDPE with PET and/or PS for purposes of illustration.
- mutually thermodynamically incompatible is meant that two or more polymers have different glass transition temperatures, Tg, and when processed by melt mixing, separate into distinct microscopic phases which are reflected in mechanical property deficiencies.
- the commingled, unsorted plastic scrap typically will include polymeric scrap materials having various colors as a result of the wide variety of colorants used in the plastic bottling, container and other plastic industries.
- thermodynamic polymer incompatibility readily manifests itself in resulting molded polymeric products that are characterized by one or more of delamination, brittleness, and inconsistent mechanical properties from one molded part to the next.
- parts molded from mutually incompatible, mixed-color polymers are typically characterized by inconsistent color from one molded part to the next and also by color streaking or marbleizing through the same molded part. These characteristics are observed regardless of whether the thermodynamically incompatible polymers are virgin materials or scrap polymer materials.
- sorted plastic scrap material comprising a single polymeric composition is solid state shear pulverized in a once-through operation to produce recycled, polymeric particulates (e.g. powder) that are formable to shape by powder feedstock-using melt processing techniques without the need for pelletizing.
- the sorted scrap material can include polymers of the same composition or type and yet the same or different colors.
- the pulverized particulates of the invention are melt processable to substantially homogeneous light color without color streaking or marbleizing experienced heretofore with other recycled techniques.
- unsorted, commingled plastic scrap materials are solid state shear pulverized to produce recycled, polymeric particulates (e.g. powder) without the need for costly sortation, without the need for pelletization prior to use as feedstock in powder feedstock-using melt processing techniques, and in a manner to achieve in-situ compatibilization of thermodynamically incompatible polymers in a once-through pulverization operation that avoids the need to add a compatibilizing agent.
- commingled, unsorted plastic scrap containing mixed-color scrap polymeric materials can be recycled without sortation to produce recycled, polymeric particulates (e.g., powder) melt processable to substantially homogeneous light color articles of manufacture without the color streaking or marbleizing heretofore experienced with other recycling procedures.
- polymeric particulates e.g., powder
- color is intended to have a broad meaning to include usual color hues and white as well as transparent and translucent appearance.
- the recycled, polymeric pulverized particulates of the invention produced from sorted or unsorted, commingled scrap materials underwent through chemical changes as characterized by DSC (differential scanning calorimetry) and ESR (electron spin resonance spectroscopy) which features are dramatically different from the those exhibited by unpulverized flake scrap material of the same composition.
- molded components produced from the pulverized particulates of the invention generally exhibit increased tensile strengths and lack of delamination upon breaking in mechanical testing depending upon the polymer components involved, these characteristics being indicative of in-situ polymer compatibilization.
- polymeric scrap material is collected from several recycling centers (e.g. municipal recycling facilities commonly known as MRF's and/or industrial recycling centers).
- the collected scrap material may be already sorted by polymer type.
- each polymer type can be individually pulverized in accordance with the invention.
- the collected scrap material may be unsorted and as a result include two or more different polymers which may be thermodynamically incompatible.
- scrap material collected from different centers typically will be at least partially intermixed with scrap material collected from other centers as a result of the usual collection, transportation, storage, and handling procedures for the scrap material prior to recycling. Unsorted, commingled scrap material can result from this situation.
- the as-collected scrap material typically is initially cleaned to remove unwanted contamination. Cleaning of the as-collected scrap material can be effected by water rinsing and/or cleaning solutions to remove contaminants, such as food residue, detergents, oil, and other contaminants. However, the need for and type of cleaning procedure used for initial cleaning of the as-collected scrap material will depend upon the degree and the type of contamination present on the scrap material. Relatively clean as-collected scrap material may not require any cleaning prior to pulverization.
- the as-collected, scrap material Before or after cleaning, the as-collected, scrap material, whether of the sorted or unsorted, commingled type, initially is comminuted by grinding, chopping or shredding prior to pulverization to provide a polymeric scrap feedstock comprising flakes F.
- the flakes F typically have sharp, angular surfaces resulting from the comminution operation and usually have different colors with the number of colors present in the scrap feedstock M depending upon the particular composition of the feedstock.
- the scrap flakes F typically have sizes in the range of 0.10 to 0.30 inches for maximum width dimension and 0.02 to 0.06 inches for thickness dimension, although the as-collected scrap material can be comminuted to other flake sizes and shapes for solid state pulverization pursuant to the invention.
- a conventional scrap chopping machine of the grinder type can be used in practicing the invention, although other comminuting machines also can be used to this end.
- the comminuted sorted or unsorted, commingled scrap flakes F are supplied as feedstock to a twin-screw extruder 10 shown schematically in FIG. 1 to effect solid state shear pulverization of the flake scrap material in accordance with the invention.
- Comminuted unsorted, commingled scrap material from different sources can be fed to the extruder as feedstock.
- comminuted unsorted, commingled scrap material from different sources can be fed to the extruder as distinct, sequential feedstocks.
- comminuted flake scrap material that is sorted so as to have a single polymer composition or generic type e.g. HDPE, PP, etc.
- the extruder 10 includes a feeder 12 for receiving the polymeric flake scrap feedstock M for transport by the twin screws 14 (only one shown) through the extruder barrel zones S 1 -SN TOTAL where SN TOTAL corresponds to the total number of extruder zones.
- the first zone S 1 is a material feed zone communicated to the feeder 12 .
- Extruder barrel zones S 2 -SN each may be heated by external electric heater bands BH on the extruder barrel 16 , depending on the composition and degree of crystallization of the scrap components being fed to the extruder. Zones S 2 -SN are followed by zones SN+1 to S 1 TOTAL that are cooled by coolant manifold bands or collars BC on the extruder barrel 16 (with the exception of certain barrel throttle zones not shown in FIG. 1 which are air cooled).
- the extruder barrel zones S 2 -SN are cooled by coolant bands similar to coolant bands BC followed by the aforementioned cooled downstream extruder zones SN+1-SN TOTAL such that only frictional heating of the scrap material occurs in the extruder.
- Use of the cooled extruder barrel zones S 2 -SN TOTAL is preferred to facilitate temperature control of the scrap material during the pulverization operation and to reduce degradation of the polymer and dye or colorant used with the polymers. Energy consumption during the pulverization operation also is reduced compared to conventional scrap batch grinding processes.
- the flake scrap material feedstock M is supplied by the feeder 12 to the twin-screw extruder 10 having side-by-side, intermeshing, co-rotating screws 14 (only one shown in FIG. 1) in the extrusion barrel 16 , although the invention generally envisions using one or more extruder screws to achieve solid state pulverization.
- the screws 14 are rotated in the same direction by drive motor 18 through a gearbox (not shown) to transport the scrap material along the length of the screws 14 and subject the scrap feedstock to temperature and pressure conditions for a given scrap feed rate effective to achieve solid state shear pulverization thereof (without melting of the polymers) and in-situ compatibilization of any thermodynamically incompatible polymers present in the scrap feedstock.
- the solid state pulverization avoids melting of the polymeric scrap material in the feedstock but can involve softening of one or more of the polymers in the feedstock.
- Uniform pulverized polymeric particulates P are discharged at the open (dieless) discharge end 16 a of the extruder barrel 16 .
- the pulverized particulates P exhibit differential scanning calorimetry (DSC) and electron spin resonance spectroscopy (ESR) characteristics different from those exhibited by the unpulverized flake scrap feedstock M.
- DSC differential scanning calorimetry
- ESR electron spin resonance spectroscopy
- increased tensile strengths and lack of delamination upon breaking of testing specimens molded from the pulverized powder are further indicative of in-situ polymer compatibilization.
- FIG. 2 The morphological transformation of the scrap feedstock M, whether of the sorted or unsorted, commingled type, as it is transported through the typical zones S 1 -SN of the extruder barrel 16 and subjected to solid state shear pulverization therein is illustrated in FIG. 2.
- feedstock M is shown in FIG. 2 including three (3) different flake colors by the three different flake surface shadings shown (i.e. cross-hatched, dotted, and clear flakes).
- the scrap flakes F are transformed first to large fluff having a particle morphology characterized as fibrous, easily-peeled, laminated particles and substantially homogeneous light color based on a dominant color of a particular scrap component in the feedstock M.
- the flakes F appear to be sheared and deformed into elongated strands. These strands break to form roughly spherical (rounded) particles.
- the large fluff is further transformed to coarse fluff, fluff, coarse powder and then powder as illustrated in FIG. 2 in dependence on the location of the scrap feedstock along the length of the extrusion screws 14 . Both the fluff and powder products of solid state pulverization can find use as feedstock in melt and other polymer processing techniques to form shaped articles of manufacture.
- the size of the scrap particulates gets smaller as the feedstock passes along the length of the screws 14 .
- the fragmentation of the feedstock that occurs during pulverization produces powder particles that can be smaller than any of the clearances between barrel and screws of the extruder 10 .
- the color of the scrap particulates typically gets slightly lighter as the feedstock is transported along the length of the screws 14 such that the pulverized powder P has a substantially homogeneous light pastel color tone based on a dominant color of a scrap component in the feedstock.
- the color of the large fluff will be a homogeneous light pastel orange color tone. If the feedstock M includes white, red, blue and yellow colored particulate flakes F in equal proportions, the color of the large fluff will be a homogeneous light pastel rose color tone. As will be explained, the substantially homogeneous light pastel color of the fine recycled polymeric powder persists through subsequent melt processing (e.g. injection molding) to yield a product having a substantially homogeneous, single light pastel color tone without color streaking or marbleizing.
- the pulverized particulates P have a rounded shape and smooth surfaces which are suggestive of a solid state shearing phenomenon.
- the powder particles typically have a size of less than about 500 microns.
- the size range of a particular recycled polymeric powder produced by the invention will depend on composition of the feedstock M, the degree of crystallization of the scrap components of the feedstock M, screw configuration, and the pulverization parameters employed, such as pulverization temperatures, pressures, screw rpm, and feed rates of the feedstock M through the extruder 10 .
- any thermodynamically incompatible polymers present in the feedstock M are in-situ compatibilized during solid state shear pulverization in the extruder 10 as evidenced by production of pulverized polymeric particulates P at the discharge end of the extruder that exhibit DSC and ESR characteristics different from those of the unpulverized flake scrap feedstock M of the same composition.
- the recycled particulates exhibit chemical changes (enhanced reactivity) as compared to the unpulverized flake scrap feedstock M as indicated by changes in the ESR spectra showing presence of free radicals.
- the twin-screw extruder 10 can comprise for purposes of illustration and not limitation the model ZE 40A twin-screw extruder (L/D 40.5) manufactured by Hermann Berstorff Maschinenbau GmbH, PO Box 629, D-3000 Hanover 1 Germany.
- the ZE 40A twin-screw extruder includes twin, side-by-side intermeshing screws having a modular construction wherein each screw includes a series of standard screw elements mounted end-to-end in a selected sequence on a continuous screw shaft.
- the screw elements or stages include fluted transport elements, kneading or shearing elements, and spacer elements mounted in a selected sequence on the continuous shaft to accommodate variations in pulverization parameters and feedstock compositions, as necessary.
- the screws 14 can be modified by selection of appropriate transport elements, kneading or shearing elements, and spacer elements and their sequential arrangement and element lengths along the axis of the screw shaft.
- the ZE 40A twin screw extruder includes an extruder barrel 16 having a modular construction wherein a series of standard barrel sections or zones are secured (e.g. bolted) together end-to-end to provide a continuous extruder barrel 16 .
- the barrel sections are adapted to have the electrical heating bands BH or the liquid cooling manifold bands BC mounted thereon for controlling temperature of the extruded material.
- twin screw extruders of this general type are described and shown in U.S. Pat. No. 4,607,797, the teachings of which are incorporated herein by reference.
- FIG. 3 illustrates the extruder barrel and screw configuration used in practicing the aforementioned embodiment of the invention wherein the scrap material is heated in the zones 2 - 4 by the electrical heating bands BH mounted on those barrel sections or zones. Zones 5 - 9 are cooled by the coolant manifold bands BC. Barrel throttle zones 12 , 13 and 14 are air cooled.
- FIG. 4 illustrates the extruder barrel and screw configuration used in practicing the aforementioned embodiment of the invention wherein the scrap material is heated only by frictional engagement with the twin screws 14 .
- the barrel sections or zones 2 - 9 are cooled by coolant bands BC disposed thereon.
- Barrel throttle zones 12 , 13 and 14 are air cooled.
- the invention is not to be construed as limited to the particular type or sequence of screw elements and barrel sections shown in FIGS. 3 - 4 or the particular twin-screw extruder described.
- Extruder barrel and extruder screw configurations used in practicing the invention can be different from those shown and may depend upon the composition and degree of crystallization of scrap components of the feedstock M as well as other factors in order to achieve solid state shear pulverization and in-situ polymer compatibilization of the feedstock M to pulverized particulates in accordance with the invention.
- the scrap feedstock M is subjected to solid state shear pulverization in the extruder 10 in a once-through operation by rotation of the twin screws 14 in the same directions by motor 18 so as to transport the feedstock M along the length of the screws 14 and subject the feedstock M to temperature and pressure conditions (for a given feedstock feed rate through the extruder) effective to achieve solid state shear pulverization (without melting) of the flake-shaped scrap particulates and in-situ polymer compatibilization of thermodynamically incompatible polymers present in the feedstock M.
- the solid state pulverization avoids melting of the polymeric scrap material in the feedstock but can involve softening of one or more of the polymers in the feedstock.
- the feedstock M can be heated at extruder barrel sections or zones 2 - 4 depending upon the composition of the feedstock M followed by cooling in all subsequent barrel zones of the extruder to maintain proper temperature control for solid state pulverization, in-situ polymer compatibilization, if necessary, and production of desired powder size. Heating of the feedstock M in barrel zones 2 - 4 is achieved by energization of the electrical heater bands or collars BH mounted on the barrel zones 2 - 4 .
- Cooling of the feedstock at barrel zones 5 - 9 is achieved by individual, coolant manifold bands or collars BC mounted on each barrel zone, and supplied (from a common coolant manifold conduit not shown) with a water/glycol mixture that is chilled to nominally 35° F. and pumped by a conventional pump (not shown) at a selected flow rate through the manifold bands BC.
- Barrel throttle zones 12 , 13 and 14 are air cooled by ambient air.
- Heating of the scrap feedstock M in barrel zones 2 - 4 may be effected when pulverizing a feedstock M having a large percentage of amorphous or crystalline scrap polymeric materials. Pulverization occurs in cooled barrel zones where the kneading or shearing elements KE are located. Polymeric material is transported to the kneading or shearing elements by the fluted transport elements appropriately positioned along the lengths of the screws to this end. The screw elements in each zone should be selected appropriately. Spacer elements are used to provide the appropriate screw length for the extruder barrel used.
- the scrap feedstock M is subjected to only frictional heating in barrel zones 2 - 4 by engagement with the rotating screws 14 . That is, solid state pulverization of the scrap feedstock in barrel zones 2 - 4 is conducted without heating of the feedstock by external heater bands BH. Instead, all barrel zones 2 - 9 , are cooled by coolant manifold barrels or collars BC disposed on the extruder barrel. Pulverization occurs in cooled barrel zones where the kneading or shearing elements KE are located. This heatless pulverization of the scrap feedstock M is advantageous to reduce heat degradation of the polymers and dyes (or other colorants) present with the polymers. Energy consumption during the pulverization operation also is substantially reduced.
- the temperature of the scrap feedstock M is maintained at a level below the melting temperature of the individual scrap components or constituents in the feedstock M at all barrel zones of the extruder 10 regardless of whether barrel zones 2 - 4 are heated or cooled. In this way, solid state shear pulverization can be conducted in the solid state at all stages of the extruder 10 .
- the temperature of the feedstock M at each stage of the extruder 10 will depend on the particular feedstock composition being pulverized.
- scrap feedstock temperatures to achieve solid state shear pulverization will depend upon the ratio of various polymers in the feedstock M.
- the feedstock temperature is adjusted to accommodate a relatively high proportion of amorphous, polymeric material (e.g. PS) in the feedstock M.
- amorphous scrap materials For high proportions (e.g. 70 weight %) of amorphous scrap materials, the temperature is lower as compared to the feedstock temperatures used to pulverize a feedstock M having a high proportion of crystalline scrap materials (e.g. PP).
- the feedstock temperature needed for solid state shear pulverization of the feedstock M to powder can be related to glass transition temperature and/or melting temperature for particular feedstock compositions by suitable adjustment to heat output of barrel heater bands BH, if used, and to the coolant flow rate through the extruder coolant manifold bands BC.
- the pressure and shear rate are controlled for a given screw design by the torque and rotational speed (rpm) of the motor 18 rotating the screws 14 .
- the pressure and shear forces on the scrap feedstock M are effective for given feedstock temperatures and feed rates to achieve solid state shear pulverization of the flake-shaped scrap particulates in the manner described hereabove to achieve formation of the rounded powder and in-situ polymer compatibilization.
- the feedstock pressures and shear rates to achieve solid state shear pulverization will depend upon the ratio of various polymers in feedstock M. For high proportions (e.g.
- the energy consumption is higher as compared to the feedstock pressures used to pulverize a feedstock M having a high proportion of crystalline scrap materials.
- the feedstock pressures needed for solid state shear pulverization of the feedstock M to powder can be determined empirically for particular feedstock compositions by suitable adjustment to the torque and rpm of screw drive motor 16 at given feedstock temperatures.
- the through-put (e.g. pounds per hour) of the scrap feedstock M through the extruder is controlled in conjunction with temperature and pressure to achieve solid state shear pulverization of the flake-shaped scrap particulates.
- the through-put for given feedstock temperature/pressure parameters needed for solid state shear pulverization of the feedstock M to fine powder can be determined empirically for particular feedstock compositions by suitable adjustment to the rpm of drive motor 16 for screws 14 .
- the recycled pulverized particulates P of the invention are made without the need for a compatibilizing agent despite the presence of two or more thermodynamically incompatible polymeric scrap materials in the initial feedstock M. Moreover, the recycled pulverized particulates P of the invention can be directly processed (i.e. without pelletization) by conventional rotational molding, blow molding, extrusion (extruded PVC pipe and profiles), spray coating and other melt processing techniques requiring powder feedstock. Further, the recycled particulates P exhibit enhanced reactivity as compared to the unpulverized scrap feedstock M as measured by ESR.
- the recycled polymeric particulates, pulverized and as-melt processed exhibit a substantially homogeneous light pastel color based on a dominant color of a scrap component in the feedstock M, although a color adjustment can be made, if desired, by suitable pigment additive to the feedstock and/or pulverized particulates.
- injection molded articles of manufacture produced from the recycled, pulverized particulates P of the present invention exhibit mechanical properties generally superior to those exhibited by like-molded flake scrap polymer feedstock of the same composition and also a substantially homogeneous color characterized by the absence of color streaking or marbleizing, despite the powder having originated from mixed-color scrap feedstock.
- the homogenous color of molded articles produced from the pulverized particulates is quite surprising and unexpected given the mixed-color nature of the initial feedstock M.
- the Examples set forth herebelow illustrate these advantageous features of the invention.
- the recycled, pulverized particulates P of the invention can be used in molding a plurality of articles that exhibit substantially the same homogeneous pastel color from one molded article to the next as illustrated in the following Examples.
- a mixture of flake scrap of like composition and mixed color produce molded articles exhibiting inconsistent colors from one molded article to the next.
- the recycled particulates P of the invention also can be used in conventional coating procedures wherein powdered coating feedstock is used.
- the recycled powder can be used as feedstock in coating processes, such as thermal spray, to produce homogeneously colored, thin coatings on various substrates.
- scrap materials were dry blended in order to simulate typical scrap feedstock compositions that would be encountered in the recycling of plastic scrap from municipal collection centers and industrial collection centers.
- Binary, ternary, and quaternary blends of different polymeric scrap materials were simulated (See TABLE II below).
- the scrap components of the dry blends are based on weight percentages of the components involved.
- the aforementioned chopped PP scrap flakes (obtained from SEI Recycling in Burlington, Wis.) were solid state pulverized using the aforementioned ZE 40A twin screw extruder. A sample of the scrap flakes is shown in FIG. 5A prior to solid state pulverization in accordance with the invention. Although the flakes all comprised PP, they were of mixed-colors; i.e. white and taupe flakes, red flakes, yellow flakes, blue flakes and a small amount of black flakes.
- the PP scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein in one trial, there was no external heating of the scrap flakes in the extruder (i.e. heatless embodiment) and wherein the heater bands BH were energized to heat the scrap flakes in barrel zones 2 - 4 (i.e. externally heated embodiment).
- TABLE I below sets forth the temperature, rpm (for motor 18 ), and scrap through-put employed in the trials to solid state pulverize the PP scrap flake feedstock. Both the extruder control set temperature and measured temperature of the scrap in the extruder are shown in TABLE I. As is apparent, the trial wherein external heating (“No heat”) involved higher scrap temperatures, lower motor rpm and higher scrap through-put than when heater bands BH were used to heat the scrap flakes (“w/heat”). Pressure in the extruder was not measured in the Examples.
- the heatless trial used the screw configuration shown in FIG. 4.
- the externally heated trial used the screw configuration shown in FIG. 3.
- FIG. 5A shows the flake scrap feedstock and an injection molded specimen made therefrom.
- FIG. 5B shows the pulverized powder of the invention made with external heating and an injection molded specimen made therefrom.
- FIGS. 5A and 5B illustrate that the pulverized powder of the invention made without external heating comprised fine powder particles having a homogeneous light mauve color as opposed to the mixed-color scrap flakes. Moreover, the injection molded pulverized powder specimen exhibited a substantially homogeneous, slightly more intense mauve color without color streaking or marbleizing. In contrast, the injection molded scrap flakes exhibited a non-uniform color with color streaking and marbleizing throughout the specimen, FIG. 5A.
- the pulverized powder of the invention made without external heating of the extruder barrel zones (all barrel zones cooled) exhibited a similar morphology and a uniform purple/cranberry color.
- the injection molded shape made from this powder exhibited a substantially homogeneous, slightly more intense cranberry color without color streaking or marbleizing.
- the aforementioned chopped HDPE scrap flakes (obtained from St. Joseph's Plastics St. Joseph, Mo.) were solid state pulverized using the aforementioned ZE 40A twin screw extruder. Although the flakes all comprised HDPE, they were of mixed-colors; i.e. white and taupe flakes, green flakes, blue flakes, and small amount of yellow flakes.
- the recycled pulverized HDPE powder made from the scrap flake feedstock without external heating exhibited a light blue-green color and powder morphology.
- the pulverized HDPE powder produced with external heating was similar in morphology but had a somewhat lighter green-blue color.
- the injection molded pulverized HDPE powder specimens exhibited a substantially homogeneous, slightly more intense colors without color streaking or marbleizing.
- the injection molded scrap HDPE flakes exhibited a uniform whitest color.
- the aforementioned chopped LDPE scrap flakes (obtained from St. Joseph's Plastics St. Joseph, Mo.) were solid state pulverized using the aforementioned ZE 40A twin screw extruder. Although the flakes all comprised LDPE, they were of mixed-colors; i.e. white flakes, beige flakes, red flakes, and blue flakes.
- the LDPE scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein in one trial, there was no external heating of the scrap flakes in the extruder (i.e. heatless embodiment) and wherein the heater bands BH were energized to heat the scrap flakes in barrel zones 2 - 4 (i.e. externally heated embodiment).
- TABLE I below sets forth the temperature, rpm (for motor 18 ), and through-put employed in the trials to solid state pulverize the LDPE scrap flake feedstock.
- the heatless trial used the screw configuration shown in FIG. 4.
- the externally heated trial used the screw configuration shown in FIG. 3.
- the recycled pulverized LDPE powder made from the scrap flakes without external heating exhibited a uniform light beige color and powder morphology.
- the pulverized LDPE powder made using external extruder barrel heating was a homogeneous light orange-beige color with similar morphology.
- the injection molded pulverized LDPE powder specimen exhibited a substantially homogeneous, slightly more intense beige color (heatless), or orange-beige color (with external barrel heating), without color streaking or marbleizing.
- the injection molded scrap LDPE flakes exhibited a uniform burnt orange color.
- the aforementioned chopped HDPE, LDPE and PP scrap flakes were mixed to simulate a scrap feedstock comprising 60 weight % HDPE, 30 weight % LDPE and 10 weight % PP flakes.
- the feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder.
- the HDPE/LDPE/PP scrap flake feedstock comprised mixed-colors; i.e. white flakes, red flakes, sky blue flakes, and orange flakes.
- FIG. 6A illustrates the HDPE/LDPE/PP scrap flake feedstock.
- the HDPE/LDPE/PP scrap flake feedstock was solid state pulverized pursuant to the embodiment of the invention described above wherein the heater bands BH were energized to heat the scrap flakes in barrel zones 2 - 4 (i.e. externally heated embodiment).
- the screw configuration shown in FIG. 3 was used.
- the recycled pulverized HDPE/LDPE/PP powder made from the scrap flake feedstock is shown in FIG. 6B.
- the pulverized powder was a homogeneous light pastel rose color.
- the injection molded pulverized HDPE/LDPE/PP powder specimen exhibited a substantially homogeneous, slightly more intense pastel rose color without color streaking or marbleizing, FIG. 6B.
- the injection molded scrap HDPE/LDPE/PP flake feedstock exhibited a non-uniform, streaky beige/pink color, FIG. 6A.
- the aforementioned chopped HDPE and PP scrap flakes were mixed to simulate a scrap feedstock comprising 70 weight % HDPE and 30 weight % PP flakes.
- the feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder.
- the HDPE/PP scrap flake feedstock comprised mixed-colors; i.e. white and taupe flakes, green flakes, red flakes, dark blue flakes, and small amounts of yellow flakes and black flakes.
- FIG. 7A illustrates the HDPE/PP scrap flake feedstock.
- the HDPE/PP scrap flake feedstock was solid state pulverized pursuant to the embodiment of the invention described above wherein the heater bands BH were energized to heat the scrap flakes in barrel zones 2 - 4 (i.e. externally heated embodiment).
- the screw configuration shown in FIG. 3 was used.
- the recycled pulverized HDPE/PP powder made from the scrap flake feedstock is shown in FIG. 7B.
- the pulverized powder was a homogeneous light pastel rose color.
- the injection molded pulverized HDPE/PP powder specimen exhibited a substantially homogeneous, slightly more intense pastel rose color without color streaking or marbleizing, FIG. 7B.
- the injection molded scrap HDPE/PP flake feedstock exhibited a non-uniform, streaky green/pink color, FIG. 7A.
- the aforementioned chopped HDPE and PP scrap flakes were mixed to simulate a scrap feedstock comprising 90 weight % HDPE and 10 weight % PP flakes.
- the feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder.
- the HDPE/PP scrap flake feedstock comprised mixed-colors; i.e. white and taupe flakes, green flakes, red flakes, dark blue flakes, and small amounts of yellow flakes. The quantity of red flakes present was less than that in scrap flake feedstock of Example 4.
- FIG. 8A illustrates the HDPE/PP scrap flake feedstock.
- the HDPE/PP scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein the heater bands BH were energized to heat the scrap flakes in barrel zones 2 - 4 (i.e. externally heated embodiment).
- the screw configuration shown in FIG. 3 was used.
- the recycled pulverized HDPE/PP powder made from the scrap flake feedstock is shown in FIG. 8B.
- the pulverized powder was a homogeneous light pastel green color.
- the injection molded pulverized HDPE/PP powder shape exhibited a substantially homogeneous, slightly more intense pastel green color without color streaking or marbleizing, FIG. 8A.
- the injection molded scrap HDPE/PP flakes exhibited a non-uniform, streaky green/pink color, FIG. 8A.
- the aforementioned chopped HDPE and LDPE scrap flakes were mixed to simulate a scrap feedstock comprising 40 weight % HDPE and 60 weight % LDPE flakes.
- the feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder.
- the HDPE/PP scrap flake feedstock comprised mixed-colors; i.e. white flakes, green flakes, blue flakes, red flakes, and small amounts of yellow flakes.
- the HDPE/LDPE scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein all barrel zones were cooled by collars BC.
- the recycled pulverized HDPE/LDPE powder made from the scrap flake feedstock was a homogeneous light pastel peach color.
- the injection molded pulverized HDPE/LDPE powder shape exhibited a substantially homogeneous, slightly more intense light pastel peach color without color streaking or marbleizing.
- the injection molded scrap HDPE/LDPE flakes exhibited a non-uniform, streaky beige/brown color.
- the scrap flake feedstocks were solid state pulverized pursuant to the embodiments of the invention described above wherein in one trial, there was no external heating of the scrap flakes in the extruder (i.e. heatless embodiment) and wherein the heater bands BH were energized to heat the scrap flakes in barrel zones 2 - 4 (i.e. externally heated embodiment).
- the heatless trials are designated “No heat pulv” in TABLE II and used the screw configuration shown in FIG. 4.
- the externally heated trials are designated by the absence of “No heat pulv” and used the screw configuration shown in FIG. 3.
- Examples 1 - 7 are identified by the example number in parenthesis in the left-hand column.
- the temperature, rpm (for motor 18 ), and throughput employed in the trials were selected empirically to achieve solid state pulverization.
- the temperature, motor rpm and through-put used were generally in the same ranges as those described above in Examples 1-3 and 7 for the heatless and externally heated trials.
- molded specimens prepared from the pulverized powder of the invention exhibited a surprisingly and extremely uniform light pastel color based on a dominant color scrap component in the feedstock.
- the achievement of the uniform, light pastel color was surprising and unexpected, given the mixed-color nature of most of the initial scrap flake feedstocks used.
- Specimens molded from pulverized feedstocks including both PET and PVC were the only exceptions to achievement of a light pastel molded color.
- the molded specimens containing both PET and PVC exhibited a homogenous color that was darker than the pastel color tone observed with the other specimens containing either PET or PVC.
- scrap feedstock set forth in Examples 7-25 comprised a plurality of polyolefins (e.g. HDPE, LDPE, PP) that are mutually thermodynamically incompatible, these feedstocks were nevertheless successfully injection molded.
- polyolefins e.g. HDPE, LDPE, PP
- TABLE II summarizes the measured mechanical properties and thermal properties specimens of Examples 1-7 and the aforementioned Other Examples molded from as-received flake feedstocks (Flake) and pulverized powder P of the invention (Pulverized or Pulv).
- the tensile strengths of injection molded specimens made from pulverized ternary HDPE/LDPE/PP and HDPE/LDPE/PET powder of the invention are consistently higher than the tensile strengths of molded specimens molded from the as-received blended flake feedstocks of the same materials. This increase in tensile strength for the pulverized powder molded specimens indicates an increased compatibility of the polymer components in the blend.
- scrap feedstocks set forth in the Examples comprised a plurality of polyolefins (e.g. HDPE, LDPE, PP) that are mutually thermodynamically incompatible, the feedstocks were nevertheless successfully injection molded, and the molded specimens did not exhibit delamination upon breaking in the mechanical property tests, indicating that chemical change occurred during pulverization and the polymers have been in-situ compatibilized during the solid state shear pulverization process of the invention.
- polyolefins e.g. HDPE, LDPE, PP
- the pulverized recycled powders of the invention exhibited enhanced reactivity as compared to the flake feedstock M prior to pulverization.
- small samples (2-3 grams) of powder were collected from the discharge end of the extruder barrel.
- FIG. 11 a simulated ESR spectrum for unpulverized mixture of 70% HDPE/30% PP at room temperature is shown at the top. At the bottom, a simulated ESR spectrum of an incompatible blend of pulverized 70% HDPE/30% PP superimposed over an actual measured ESR spectrum of these pulverized blends are shown at the bottom. All spectra were normalized to the same mass. The simulated spectrum is determined by adding spectra of the individual blend components, each scaled according to their fraction in the blend. Because the actual spectrum is larger (more intense) than the simulated one, it implies an interaction between HDPE and PP during the pulverization process.
- Table III summarizes the DSC results.
- F adjacent the material refers to post-consumer unpulverized flake or chunk material and Pul refers to pulverized material.
- TABLE III CRYSTALLIZATION MELTING Mass Descrip- Onset Peak Data Onset Peak Data Material Sample ID (mg) tion Tm (° C.) Tm (° C.) H (J/g) Tc (° C.) Tc (° C.) H (J/g) THERMAL HISTORY: ORIGINAL LDPE-F 122.269 126.828 78.239 114.402 111.047 ⁇ 108.10 LDPE-Pul 125.187 129.128 75.209 117.334 116.295 ⁇ 108.78 HDPE-F 123.944 131.827 162.512 117.693 114.271 ⁇ 159.98 HDPE-Pul 124.818 128.588 158.309 116.733 114.948 ⁇ 162.71 PP-F 153.063
- FIGS. 12 A,B- 18 A,B DSC thermograms for different as-received flake feedstock and pulverized powder are shown.
- the samples are heated to above their melting temperature and then cooled to ambient temperature at 10° C./minute.
- a striking difference is seen in FIGS. 12 A,B- 13 A,B for as-received PP flake and pulverized PP powder.
- the pulverized sample had two or possibly three distinct melting peaks (FIGS.
- FIGS. 14A,B are thermograms for a 70% HDPE/30% PP blend of as-received flake feedstock and pulverized powder showing crystallization peaks.
- the ⁇ Hc of the pulverized sample is 60% larger than that of the as-received sample.
- FIGS. 17A,B show the crystallization isotherm to be unified and sharpened by solid state shear pulverization pursuant to the invention. The same results were also observed for a 40% HDPE/60% LDPE blend. The data provide strong indication that the solid state shear pulverization of the scrap flake material imparts a high degree of in-situ compatibilization to the polymer components involved.
- FIGS. 18A,B are a thermogram showing melting traces for a ternary blend of 60% HDPE/30% LDPE/10% PP as-received and pulverized. Similar thermogram results as described above are evident in FIGS. 18A,B.
- the above-described embodiment of the present invention is advantageous in that comminuted (e.g. flake) scrap material can be solid state pulverized to particulates (e.g. powder) that are directly usable as powder feedstock in conventional melt processing techniques, such as rotational molding, blow molding, extrusion, spray coating and others requiring powder feedstock. Moreover, commingled, unsorted plastic scrap can be recycled without the need for costly sortation and in a manner to achieve in-situ compatibilization of different polymers present in the scrap in a once-through pulverization operation to produce recycled, polymeric particulates.
- comminuted (e.g. flake) scrap material can be solid state pulverized to particulates (e.g. powder) that are directly usable as powder feedstock in conventional melt processing techniques, such as rotational molding, blow molding, extrusion, spray coating and others requiring powder feedstock.
- commingled, unsorted plastic scrap can be recycled without the need for costly sortation and in a manner to achieve in
- thermodynamically incompatible polymers are present in the scrap.
- This embodiment also is advantageous in that sorted or unsorted, commingled, mixed-color plastic scrap can be recycled to produce recycled, polymeric particulates that are unexpectedly conventionally melt processable to substantially homogeneous light color without color streaking or marbleizing. High value, low cost recycled powder products, as well as products molded or otherwise formed of the powder, from sorted or unsorted, commingled multi-colored polymeric scrap material thus can be provided, increasing utilization of available plastic scrap.
- the embodiment of the invention described in detail hereabove relates to the recycling of sorted or unsorted post-consumer and/or post-industrial polymeric scrap material
- the invention is not so limited.
- the invention also can be practiced to solid state pulverize feedstock comprising mixtures of post-consumer and/or post-industrial polymeric scrap and virgin polymeric material feedstock comprising one or more virgin polymeric materials.
- the weight %'s of the scrap and virgin materials can be varied over wide ranges to suit particular needs and material availability.
- a mixture of 75 weight % of virgin LDPE (translucent white color pellets) and 25 weight % of the aforementioned chopped scrap LDPE flakes (multi-color) was made and solid state pulverized pursuant to the invention using the aforementioned Berstorff ZE-40A twin screw extruder.
- the 75/25 virgin/flake LDPE mixture was solid state pulverized without heating (all barrel zones cooled) using processing parameters similar to those set forth in TABLE I for “No heat” solid state pulverization of a solely scrap flake LDPE feedstock.
- the injection molded pulverized powder LDPE specimens exhibited a translucent white color.
- the injection molded virgin/flake LDPE specimens exhibited a light peach color.
- the present invention also envisions solid state pulverizing of one or more virgin polymeric materials as feedstock. If two or more thermodynamically incompatible virgin polymers are present in the virgin material feedstock, in-situ compatibilization of the virgin polymers should be achievable.
- virgin LDPE pellets were solid state pulverized using the aforementioned Berstorff ZE-40A twin screw extruder with heating (barrel zones 2 - 4 heated) and without heating (all barrel zones cooled) pursuant to the invention.
- the virgin LDPE pellets were solid state pulverized with heating (barrel zones 2 - 4 heated) using processing parameters similar to those set forth in TABLE I for “w/heat” solid state pulverization of the solely scrap flake LDPE feedstock.
- the virgin LDPE pellets were also solid state pulverized without heating (all barrel zones cooled) using processing parameters similar to those set forth in TABLE I for “No heat” solid state pulverization of scrap LDPE feedstock.
- Virgin PC pellets also were solid state pulverized with heating (barrel zones 2 - 4 heated) using the Berstorff ZE-40A twin screw extruder.
- the virgin PC pellets were solid state pulverized using processing parameters similar to those set forth in TABLE I for “W/heat” solid state pulverization of scrap PP thickness (slightly higher temperature).
- the present invention is advantageous in that energy consumption of the solid state pulverization process is lower than that of conventional batch grinding processes.
- the present invention provides a continuous, once-through solid state pulverization process in contrast to conventional batch grinding techniques.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.
Description
- This application is a continuation of prior application Ser. No. 09/013,554 filed Jan. 27, 1998 which is a division of prior application Ser. No. 08/639,344 filed Apr. 26, 1996 now U.S. Pat. No. 5,813,673 issued Sep. 29, 1998 which is a continuation of application Ser. No. 08/163,915 filed Dec. 7, 1993 now abandoned.
- [0002] This invention was made with Government support under Grant No. DE-FG 51-92 R 020215 awarded by the U.S. Department of Energy, Innovative Concepts Program, 392240.
- The present invention relates to solid state shear pulverization of polymeric material, which may include thermodynamically incompatible polymers, to form without compatibilizing agents pulverized particulates that are directly melt processable as powder feedstock to shaped articles of manufacture by conventional blow molding, rotational molding, extrusion, and spray coating techniques without color streaking in the resulting articles of manufacture.
- Decreasing landfill space and rapidly rising disposal costs have forced many municipalities to begin curbside recycling of post-consumer plastic (polymeric) waste. In general, plastic materials comprise approximately 20% by volume of the municipal waste stream. For example,Chem Systems, 1992, reports that municipal solid waste comprises, by weight, 48% polyethylene (PE) (27% being low density PE and 21% being high density PE), 16% polypropylene (PP), 16% polystyrene (PS), 6.5% polyvinyl chloride (PVC), 5% polyethylene terephthalate (PET), 5% polyurethane, and 3.5% other plastics.
- Post-consumer polymeric waste, as opposed to industrial plastic waste, typically includes substantial quantities of plastic bottles, containers and packaging materials. Plastic bottles are molded of different polymeric materials depending upon the product they are to contain. For example, plastic bottles for water, milk, and household chemicals typically are made of high density polyethylene (HDPE), while soft drink bottles are typically made of polyethylene terephthalate (PET) with or without base caps made from high density polyethylene (HOPE). Generally, HOPE bottles account for approximately 50-60% and PET bottles account for approximately 20-30% of the bottles used by consumers. The balance of bottles, bottle caps and other containers used by consumers comprises other polymeric materials, such as low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and other resins and multi-layered materials.
- Plastic packaging materials also are made of a wide variety of polymers. For example, according toPlastics Compounding, November/December, 1992, the following polymers were used in packaging material in the %'s set forth: 27% LDPE, 21% HOPE, 16% PS, 16% PP, and 5% PET.
- Post-industrial plastic waste can comprise polyolefins, PS, PET and other polymeric materials used for plastic packaging.
- Currently, collection of plastic waste material exceeds the market demand for recycled plastic products as a result of the dearth of viable recycling technologies that are low cost and produce high quality recycled plastic products. One recycling approach has involved the high energy consuming batch grinding of commingled, unsorted mixed color plastic waste to form flake scrap material, melt processing and pelletizing the melt processed material to pellets, and extruding the pelletized plastic waste to form recycled plastic products. However, recycled plastic products made in this manner suffer from severe deficiencies that render the products unsatisfactory for many purposes and are of inferior, low value compared to products made of virgin polymeric materials. For example, these recycled plastic products exhibit inferior mechanical properties (e.g. tensile, flexural and impact strength) and inferior appearance in terms of color (dark brown or gray color) with streaking of colors within the molded product as a result of the chemical incompatibility of the different polymers present in the initial plastic waste stream and variations in the plastic waste stream composition over time.
- A typical example of a low value, recycled plastic product is recycled plastic lumber having a dark brown or gray color with noticeable color streaking and inferior mechanical properties compared to components molded of virgin materials. As a result of the less than pleasing appearance, recycled plastic lumber is oftentimes painted to improve its appeal to the customer, or expensive pigments and other additives are added to the feedstock during the manufacturing process to this end. However, the cost of the recycled product is increased thereby.
- Furthermore, certain melt processing techniques, such as blow molding, rotational molding, extrusion (e.g. extruded PVC pipe and profiles), and spray coating, require a plastic powder feedstock. That is, the flake scrap material is not directly melt processable to articles of manufacture by such powder feedstock-requiring melt processing techniques. To be useful as feedstock in such melt processing techniques, sorted or unsorted flake scrap material produced by batch grinding must be pelletized and then ground to powder form. The need to pelletize and grind sorted or unsorted flake scrap polymeric material prior to such melt processing adds considerably to the cost and complexity of recycling scrap plastics as well as the capital equipment expenditures required.
- Currently used injection molding techniques require plastic pellets for high speed production of molded parts. Although unsorted, commingled flake scrap materials could be pelletized to provide feedstock for injection molding, the resultant molded products would suffer from the types of deficiencies discussed above attributable to polymer incompatibility.
- So-called compatibilizing agents and/or reinforcing agents can be added to flake plastic scrap material comprising chemically incompatible polymers in attempts to produce a recycled plastic product exhibiting more desirable characteristics. However, addition of these agents to the plastic scrap material makes recycling more difficult and adds considerably to its cost. The Mavel et al. U.S. Pat. No. 4,250,222 relates to this type of recycling approach and is representative of the disadvantages associated with such an approach to plastic recycling.
- Attempts have been made to sort commingled, post-consumer plastic scrap to overcome the polymer incompatibility problems associated with the recycling of commingled plastic scrap. To-date, HDPE and PET are recovered from plastic waste streams by recycling technologies requiring sorting of the commingled plastic materials. Sorting can require use of costly techniques, such as video cameras, electronic devices, infrared detectors, and organic “markers”, to provide effective segregation of like plastics. However, even sorted plastic waste can present problems in processing as a result of density and chemical differences among polymers falling in the same general class and made by different plastics manufacturers.
- Further, sorted plastic scrap must be subjected to batch grinding to produce flake scrap material that then must be pelletized and ground again to provide powder feedstock for blow molding, rotational molding, some extruding, spray coating and other melt processing techniques that require powder feedstock.
- The high cost of sorting has greatly limited widespread use of recycling approaches that require a sorting step. In particular, collected and sorted post-consumer plastic materials are usually more expensive than the corresponding virgin plastic materials. Thus, users of plastic materials are discouraged from using sorted, recycled plastic materials.
- It is an object of the invention to provide a method of processing one or more polymeric materials, such as sorted or unsorted, commingled scrap polymeric material, by solid state pulverization to produce pulverized particulates (e.g. powder) that can be directly formed to shape by powder feedstock-using melt processing techniques.
- It is another object of the invention to provide a method of processing polymeric materials, such as sorted or unsorted, commingled scrap polymeric materials, having mixed colors by solid state pulverization to produce pulverized particulates that are melt processable to a substantially homogeneous light color without color streaking or marbleizing despite being produced from the mixed color scrap materials.
- It is a further object of the invention to provide a method of processing polymeric materials in a manner to achieve in-situ compatibilization of different polymers present.
- It is a further object of the present invention to provide a method of recycling commingled scrap polymeric materials without sortation and in a manner to achieve in-situ compatibilization of different polymers present and produce recycled polymeric particulates without the need for a compatibilizing agent.
- It is still another object of the present invention to provide a method of recycling commingled, mixed-color scrap polymeric materials without sortation and in a manner to produce recycled polymeric particulates that are melt processable to homogeneous light color without color streaking or marbleizing.
- It is still another object of the present invention to provide solid state pulverized polymeric particulates that are suitable as powder feedstock for melt processing by blow molding, rotational molding, some extruding, spray coating and other powder feedstock-using melt processing techniques.
- It is still a further object of the present invention to provide solid state pulverized polymeric particulates that are melt processable to a homogenous light color, despite being produced from mixed-color polymers.
- It is still a further object of the invention to produce articles of manufacture, including molded parts and coatings, made from the aforementioned solid state pulverized polymeric particulates.
- The present invention provides in one aspect a method of making polymeric particulates (e.g. powder) wherein sorted or unsorted, commingled polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to extruder screw means rotated to transport the material along the length thereof and in the solid state convert the material to pulverized particulates (e.g. powder) that are melt processable directly by conventional blow molding, rotational molding, extrusion, spray coating and other melt processing techniques requiring a powder feedstock. This avoids the need for and costs associated with flake pelletizing and pellet grinding operations heretofore required.
- The solid state pulverized particulates also are melt processable by conventional molding, extruding, spray coating and the like to form articles of manufacture having a substantially homogenous color appearance without color streaking or marbleizing. This color homogeneity is achievable regardless of whether the particulates include mixed color polymeric material of the same or different composition. This avoids the need for the addition of pigments and/or compatibilizing agents to the feedstock and the need to paint the molded or extruded product to hide unpleasing colors and color streaking.
- The present invention provides in another aspect a method of making polymeric particulates wherein polymeric material, such as unsorted polymeric scrap material, comprising two or more thermodynamically incompatible polymers is supplied to extruder screw means rotated to transport the material along the length thereof and subject the material to solid state pulverization and in-situ polymer compatibilization. In-situ polymer compatibilization is evidenced, in one instance, by the resulting pulverized polymeric particulates exhibiting a thermogram different from that of the precursor unpulverized material. For example, the pulverized particulates of the invention exhibit a melting peak and/or crystallization peak quite different from that (those) of the unpulverized material. Moreover, molded articles produced from the pulverized particulates of the invention exhibit increased tensile strengths and lack of delamination upon breaking in mechanical testing, this being a further indication of in-situ polymer compatibilization.
- In practicing the present invention, the polymeric scrap material and/or virgin material can include thermoplastics, polymer blends, polymer alloys, thermosets, elastomers and other polymeric materials. Typically, the polymeric material is comminuted to flake form by grinding, chopping or shredding using conventional equipment prior to pulverization. The pulverization process uses as scrap feedstock a material that is in a physical form (e.g. comminuted flakes) commonly available from scrap collections and municipal recycling centers.
- Also, in practicing the present invention, the polymeric material can be heated during the initial stage of the pulverization operation depending upon the make-up (composition) of the feedstock followed by cooling during subsequent stages of the pulverizing operation to maintain proper temperature control for solid state pulverization, in-situ polymer comptibilization and production of desired powder size. Preferably, however, the polymeric material is only subjected to frictional heating during the initial stage of the pulverization operation by engagement with the rotating screws. That is, solid state shear pulverization of the polymeric material preferably is conducted without heating of the material by any external extruder barrel heating device. Temperature control of the polymeric material during the pulverization operation is thereby facilitated to reduce degradation of the polymers and dye materials used with the feedstock polymers. Energy consumption during the pulverization operation also is reduced.
- The present invention provides in still another aspect a method of making an article of manufacture having a substantially homogenous color from mixed-color polymeric material, such as sorted or unsorted, commingled polymeric scrap material. In this embodiment of the invention, mixed-color polymeric material of the same or different composition is supplied to extruder screw means rotated to transport the polymeric material along the length thereof to subject the material to solid state pulverization to form pulverized particulates. The pulverized particulates are molded, extruded or otherwise melt processed to form a substantially homogeneously colored shape characterized by the absence of color streaking and marbleizing, despite the particulates originating from mixed-color polymeric material. Typically, the pulverized powder is processable to a substantially homogenous pastel color tone corresponding to a dominant color of a particular scrap component in the feedstock.
- The present invention also provides solid state pulverized particulates produced from scrap polymeric material and/or virgin polymeric material wherein the particulates are suitable as powder feedstock, without conventional melt pelletizing and pellet grinding, for direct melt processing to shape using blow molding, rotational molding, some extrusion, spray coating, and other powder feedstock-using techniques.
- The present invention further provides solid state pulverized polymeric particulates comprising two or more otherwise thermodynamically incompatible polymers produced from commingled, unsorted polymeric scrap materials and/or virgin materials. The polymers are in-situ compatibilized by solid state shear pulverization as evidenced by one or more different thermogram characteristics between recycled particulates of the invention and unpulverized polymeric material. Typically, the solid state pulverized particulates exhibit enhanced reactivity as compared to the unpulverized polymeric material.
- Moreover, the present invention provides solid state pulverized polymeric particulates that exhibit, pulverized and as-melt processed, a substantially homogenous color despite being pulverized from mixed-color scrap material.
- Articles of manufacture and powder coatings produced from the solid state pulverized particulates of the present invention exhibit mechanical properties generally superior to those exhibited by like processed flake polymeric material of the same composition depending on the polymer components involved. Importantly, they also exhibit a substantially homogeneous color characterized by the absence of color streaking or marbleizing. Typically, the articles of manufacture exhibit a substantially homogeneous pastel color tone corresponding to a dominant color of a scrap component in the polymeric feedstock. Importantly, the recycled, pulverized particulates of the invention made from mixed-color polymeric feedstock can be used in molding a plurality of articles of manufacture that exhibit substantially the same homogeneous pastel color from one article to the next. In contrast, a mixture of unpulverized flake polymeric material of like composition and mixed color produces molded articles exhibiting inconsistent colors from one molded article to the next.
- The present invention is advantageous in that the pulverized particulates are suitable for direct use as powder feedstock for powder feedstock-using melt processing techniques without the need for pelletizing and pellet grinding operations. Moreover, commingled scrap polymer materials, virgin polymeric materials and mixtures thereof can be processed in a manner to achieve in-situ compatibilization of different polymers in a once-through pulverization operation without the need for a compatibilizing agent and without sortation in the case of commingled scrap feedstock. The pulverized particulates may be mixed with fillers, reinforcing agents, flame retardants, antioxidants and other additives commonly used in the plastics industry if desired.
- Moreover, the present invention is advantageous in that sorted or unsorted, commingled mixed-color polymeric materials and/or virgin polymeric materials can be pulverized as polymeric particulates that are melt processable to substantially homogeneous light color without the color streaking or marbleizing heretofore experienced using other recycling procedures.
- The present invention can provide a high value, low cost recycled particulates product, as well as products molded or otherwise melt processed therefrom, thereby increasing utilization of available plastic scrap.
- The aforementioned objects and advantages will become more readily apparent from the following detailed description and drawings.
- The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawings will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.
- FIG. 1 is a schematic sectional view of a twin-screw extruder for practicing an embodiment of the invention.
- FIG. 2 represents the morphological transformation of flake-shaped scrap feedstock to powder due to solid state shear pulverization in the extruder in accordance with the invention.
- FIG. 3 is an elevational view of a representative screw used in practicing the invention when the scrap material is heated by heater bands on the extruder barrel (partially shown).
- FIG. 4 is an elevational view of a representative screw used in practicing the invention when the scrap material is subjected only to frictional heat in the extruder barrel (partially shown).
- FIGS. 5A, 6A,7A and 8A are photographs of post-consumer, flake scrap feedstock and specimens injection molded therefrom and FIGS. 5B, 6B, 7B and 8B are photographs of pulverized powder of the invention and specimens injection molded therefrom.
- FIGS. 9, 10, and11 are electron spin resonance (ESR) spectra of various as-received post-consumer, flake scrap samples and pulverized powder samples of the invention of various compositions.
- FIGS.12A,B-18A,B are DSC (differential scanning calorimetry) thermograms of various as-received post-consumer, flake scrap samples and pulverized powder samples of the invention of various compositions.
- In one embodiment, the present invention provides a method of making recycled polymeric particulates, such as powder, from post-consumer and/or post-industrial polymeric scrap material that may be sorted or unsorted, commingled so as to include two or more different scrap polymers.
- Post-consumer polymeric waste typically includes substantial quantities of plastic bottles, containers and packaging materials made of different polymers. For example, plastic bottles for water, milk, and household chemicals typically are made of high density polyethylene (HDPE), while soft drink bottles are typically made of polyethylene terephthalate (PET) with or without base cups made of HDPE. Generally, HDPE bottles account for approximately 50-60% and PET bottles account for approximately 20-30% of the bottles used by consumers. The balance of bottles and other containers used by consumers comprise other polymeric materials, such as low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and other resins and multi-layered materials.
- Post-consumer polymeric waste also includes plastic packaging materials that are made of a wide variety of polymers including LDPE, HDPE, PS, PP, PET and others.
- Post-industrial plastic waste can comprise polyolefins, PS, PET, and other polymeric materials used for plastic packaging.
- Sorted polymeric scrap material typically comprises a single polymer composition collected from one or more sources and sorted pursuant to standard polymer codes now used on plastic bottles, containers and the like. Sorted polymeric scrap material typically includes scrap of different colors since to-date color sorting is not yet common.
- Unsorted, commingled scrap material can include myriad types of polymeric scrap materials including, but not limited to, HDPE, LDPE, PP, PS, PET, PVC, PC (polycarbonate), ABS/PC (acrylonitrile butadiene styrene/polycarbonate), PPO (polyphenylyene oxide)/PS and others. In general, commingled, unsorted scrap can include thermoplastics, polymer blends, polymer alloys, thermosets, elastomers and other scrap polymeric materials.
- Typically, unsorted, commingled scrap material will include mixtures of incompatible polymers such as mixtures of HDPE and PET, mixtures of HDPE and PS, mixtures of PP and PS, mixtures of HDPE, LDPE with PET and/or PS for purposes of illustration. By mutually thermodynamically incompatible is meant that two or more polymers have different glass transition temperatures, Tg, and when processed by melt mixing, separate into distinct microscopic phases which are reflected in mechanical property deficiencies.
- The presence of these incompatible polymers has rendered previous attempts at reclamation of unsorted, commingled scrap highly costly due to the need for sortation and/or addition of one or more of compatibilizing agents, reinforcing agents, fillers, and pigments and also ineffective in yielding a high value recycled product having aesthetic characteristics and mechanical properties approaching those achievable with virgin plastic material.
- The commingled, unsorted plastic scrap typically will include polymeric scrap materials having various colors as a result of the wide variety of colorants used in the plastic bottling, container and other plastic industries.
- Thermodynamic polymer incompatibility readily manifests itself in resulting molded polymeric products that are characterized by one or more of delamination, brittleness, and inconsistent mechanical properties from one molded part to the next. Moreover, parts molded from mutually incompatible, mixed-color polymers are typically characterized by inconsistent color from one molded part to the next and also by color streaking or marbleizing through the same molded part. These characteristics are observed regardless of whether the thermodynamically incompatible polymers are virgin materials or scrap polymer materials.
- In accordance with one particular illustrative embodiment of the present invention, sorted plastic scrap material comprising a single polymeric composition is solid state shear pulverized in a once-through operation to produce recycled, polymeric particulates (e.g. powder) that are formable to shape by powder feedstock-using melt processing techniques without the need for pelletizing. The sorted scrap material can include polymers of the same composition or type and yet the same or different colors. The pulverized particulates of the invention are melt processable to substantially homogeneous light color without color streaking or marbleizing experienced heretofore with other recycled techniques.
- In accordance with another particular illustrative embodiment of the present invention, unsorted, commingled plastic scrap materials are solid state shear pulverized to produce recycled, polymeric particulates (e.g. powder) without the need for costly sortation, without the need for pelletization prior to use as feedstock in powder feedstock-using melt processing techniques, and in a manner to achieve in-situ compatibilization of thermodynamically incompatible polymers in a once-through pulverization operation that avoids the need to add a compatibilizing agent. Moreover, commingled, unsorted plastic scrap containing mixed-color scrap polymeric materials can be recycled without sortation to produce recycled, polymeric particulates (e.g., powder) melt processable to substantially homogeneous light color articles of manufacture without the color streaking or marbleizing heretofore experienced with other recycling procedures.
- As used herein, the term color is intended to have a broad meaning to include usual color hues and white as well as transparent and translucent appearance.
- As will become apparent herebelow, the recycled, polymeric pulverized particulates of the invention produced from sorted or unsorted, commingled scrap materials underwent through chemical changes as characterized by DSC (differential scanning calorimetry) and ESR (electron spin resonance spectroscopy) which features are dramatically different from the those exhibited by unpulverized flake scrap material of the same composition. Moreover, molded components produced from the pulverized particulates of the invention generally exhibit increased tensile strengths and lack of delamination upon breaking in mechanical testing depending upon the polymer components involved, these characteristics being indicative of in-situ polymer compatibilization.
- In practicing the aforementioned illustrative embodiments of the present invention, polymeric scrap material is collected from several recycling centers (e.g. municipal recycling facilities commonly known as MRF's and/or industrial recycling centers). The collected scrap material may be already sorted by polymer type. In this event, each polymer type can be individually pulverized in accordance with the invention.
- On the other hand, the collected scrap material may be unsorted and as a result include two or more different polymers which may be thermodynamically incompatible. Moreover, scrap material collected from different centers typically will be at least partially intermixed with scrap material collected from other centers as a result of the usual collection, transportation, storage, and handling procedures for the scrap material prior to recycling. Unsorted, commingled scrap material can result from this situation.
- The as-collected scrap material, whether of the sorted or unsorted, commingled type, typically is initially cleaned to remove unwanted contamination. Cleaning of the as-collected scrap material can be effected by water rinsing and/or cleaning solutions to remove contaminants, such as food residue, detergents, oil, and other contaminants. However, the need for and type of cleaning procedure used for initial cleaning of the as-collected scrap material will depend upon the degree and the type of contamination present on the scrap material. Relatively clean as-collected scrap material may not require any cleaning prior to pulverization.
- Before or after cleaning, the as-collected, scrap material, whether of the sorted or unsorted, commingled type, initially is comminuted by grinding, chopping or shredding prior to pulverization to provide a polymeric scrap feedstock comprising flakes F. The flakes F typically have sharp, angular surfaces resulting from the comminution operation and usually have different colors with the number of colors present in the scrap feedstock M depending upon the particular composition of the feedstock. The scrap flakes F typically have sizes in the range of 0.10 to 0.30 inches for maximum width dimension and 0.02 to 0.06 inches for thickness dimension, although the as-collected scrap material can be comminuted to other flake sizes and shapes for solid state pulverization pursuant to the invention. A conventional scrap chopping machine of the grinder type can be used in practicing the invention, although other comminuting machines also can be used to this end.
- The comminuted sorted or unsorted, commingled scrap flakes F are supplied as feedstock to a twin-screw extruder10 shown schematically in FIG. 1 to effect solid state shear pulverization of the flake scrap material in accordance with the invention. Comminuted unsorted, commingled scrap material from different sources can be fed to the extruder as feedstock. Still further, comminuted unsorted, commingled scrap material from different sources can be fed to the extruder as distinct, sequential feedstocks. Alternately, comminuted flake scrap material that is sorted so as to have a single polymer composition or generic type (e.g. HDPE, PP, etc.) can be fed to the extruder as feedstock.
- The extruder10 includes a
feeder 12 for receiving the polymeric flake scrap feedstock M for transport by the twin screws 14 (only one shown) through the extruder barrel zones S1-SN TOTAL where SN TOTAL corresponds to the total number of extruder zones. The first zone S1 is a material feed zone communicated to thefeeder 12. Extruder barrel zones S2-SN each may be heated by external electric heater bands BH on theextruder barrel 16, depending on the composition and degree of crystallization of the scrap components being fed to the extruder. Zones S2-SN are followed by zones SN+1 to S1 TOTAL that are cooled by coolant manifold bands or collars BC on the extruder barrel 16 (with the exception of certain barrel throttle zones not shown in FIG. 1 which are air cooled). - Alternately, the extruder barrel zones S2-SN are cooled by coolant bands similar to coolant bands BC followed by the aforementioned cooled downstream extruder zones SN+1-SN TOTAL such that only frictional heating of the scrap material occurs in the extruder. Use of the cooled extruder barrel zones S2-SN TOTAL is preferred to facilitate temperature control of the scrap material during the pulverization operation and to reduce degradation of the polymer and dye or colorant used with the polymers. Energy consumption during the pulverization operation also is reduced compared to conventional scrap batch grinding processes.
- In FIG. 1, the flake scrap material feedstock M is supplied by the
feeder 12 to the twin-screw extruder 10 having side-by-side, intermeshing, co-rotating screws 14 (only one shown in FIG. 1) in theextrusion barrel 16, although the invention generally envisions using one or more extruder screws to achieve solid state pulverization. Thescrews 14 are rotated in the same direction bydrive motor 18 through a gearbox (not shown) to transport the scrap material along the length of thescrews 14 and subject the scrap feedstock to temperature and pressure conditions for a given scrap feed rate effective to achieve solid state shear pulverization thereof (without melting of the polymers) and in-situ compatibilization of any thermodynamically incompatible polymers present in the scrap feedstock. The solid state pulverization avoids melting of the polymeric scrap material in the feedstock but can involve softening of one or more of the polymers in the feedstock. - Uniform pulverized polymeric particulates P (e.g. powder) are discharged at the open (dieless) discharge end16 a of the
extruder barrel 16. The pulverized particulates P exhibit differential scanning calorimetry (DSC) and electron spin resonance spectroscopy (ESR) characteristics different from those exhibited by the unpulverized flake scrap feedstock M. Moreover, increased tensile strengths and lack of delamination upon breaking of testing specimens molded from the pulverized powder are further indicative of in-situ polymer compatibilization. - The morphological transformation of the scrap feedstock M, whether of the sorted or unsorted, commingled type, as it is transported through the typical zones S1-SN of the
extruder barrel 16 and subjected to solid state shear pulverization therein is illustrated in FIG. 2. For purposes of illustration and not limitation, feedstock M is shown in FIG. 2 including three (3) different flake colors by the three different flake surface shadings shown (i.e. cross-hatched, dotted, and clear flakes). - Referring to FIG. 2, the scrap flakes F are transformed first to large fluff having a particle morphology characterized as fibrous, easily-peeled, laminated particles and substantially homogeneous light color based on a dominant color of a particular scrap component in the feedstock M. During the pulverization process, the flakes F appear to be sheared and deformed into elongated strands. These strands break to form roughly spherical (rounded) particles. The large fluff is further transformed to coarse fluff, fluff, coarse powder and then powder as illustrated in FIG. 2 in dependence on the location of the scrap feedstock along the length of the extrusion screws14. Both the fluff and powder products of solid state pulverization can find use as feedstock in melt and other polymer processing techniques to form shaped articles of manufacture.
- As is apparent, the size of the scrap particulates gets smaller as the feedstock passes along the length of the
screws 14. The fragmentation of the feedstock that occurs during pulverization produces powder particles that can be smaller than any of the clearances between barrel and screws of the extruder 10. Moreover, although not apparent from FIG. 2, the color of the scrap particulates typically gets slightly lighter as the feedstock is transported along the length of thescrews 14 such that the pulverized powder P has a substantially homogeneous light pastel color tone based on a dominant color of a scrap component in the feedstock. For example, if the feedstock M includes white, blue and orange colored particulate flakes F in equal proportions, the color of the large fluff will be a homogeneous light pastel orange color tone. If the feedstock M includes white, red, blue and yellow colored particulate flakes F in equal proportions, the color of the large fluff will be a homogeneous light pastel rose color tone. As will be explained, the substantially homogeneous light pastel color of the fine recycled polymeric powder persists through subsequent melt processing (e.g. injection molding) to yield a product having a substantially homogeneous, single light pastel color tone without color streaking or marbleizing. - The pulverized particulates P (powder particles) have a rounded shape and smooth surfaces which are suggestive of a solid state shearing phenomenon. The powder particles typically have a size of less than about 500 microns. The size range of a particular recycled polymeric powder produced by the invention will depend on composition of the feedstock M, the degree of crystallization of the scrap components of the feedstock M, screw configuration, and the pulverization parameters employed, such as pulverization temperatures, pressures, screw rpm, and feed rates of the feedstock M through the extruder10.
- Importantly, as mentioned, any thermodynamically incompatible polymers present in the feedstock M are in-situ compatibilized during solid state shear pulverization in the extruder10 as evidenced by production of pulverized polymeric particulates P at the discharge end of the extruder that exhibit DSC and ESR characteristics different from those of the unpulverized flake scrap feedstock M of the same composition. Moreover, the recycled particulates exhibit chemical changes (enhanced reactivity) as compared to the unpulverized flake scrap feedstock M as indicated by changes in the ESR spectra showing presence of free radicals.
- In practicing the invention to achieve solid state shear pulverization of the scrap feedstock M in the manner described hereabove, the twin-screw extruder10 can comprise for purposes of illustration and not limitation the model ZE 40A twin-screw extruder (L/D 40.5) manufactured by Hermann Berstorff Maschinenbau GmbH, PO Box 629, D-3000
Hanover 1 Germany. The ZE 40A twin-screw extruder includes twin, side-by-side intermeshing screws having a modular construction wherein each screw includes a series of standard screw elements mounted end-to-end in a selected sequence on a continuous screw shaft. The screw elements or stages include fluted transport elements, kneading or shearing elements, and spacer elements mounted in a selected sequence on the continuous shaft to accommodate variations in pulverization parameters and feedstock compositions, as necessary. In particular, thescrews 14 can be modified by selection of appropriate transport elements, kneading or shearing elements, and spacer elements and their sequential arrangement and element lengths along the axis of the screw shaft. - Moreover, the ZE 40A twin screw extruder includes an
extruder barrel 16 having a modular construction wherein a series of standard barrel sections or zones are secured (e.g. bolted) together end-to-end to provide acontinuous extruder barrel 16. The barrel sections are adapted to have the electrical heating bands BH or the liquid cooling manifold bands BC mounted thereon for controlling temperature of the extruded material. - The ZE 40A twin screw extruder is described in detail in product brochure entitled “Berstorff High Performance Twin Screw Extruders ZE * ZE-A * ZE/ZE-A” available from Berstorff Corporation, 8200 Arrowridge Blvd., PO Box 240357, Charlotte, N.C., 28224. In addition, twin screw extruders of this general type are described and shown in U.S. Pat. No. 4,607,797, the teachings of which are incorporated herein by reference.
- FIG. 3 illustrates the extruder barrel and screw configuration used in practicing the aforementioned embodiment of the invention wherein the scrap material is heated in the zones2-4 by the electrical heating bands BH mounted on those barrel sections or zones. Zones 5-9 are cooled by the coolant manifold bands BC.
Barrel throttle zones - FIG. 4 illustrates the extruder barrel and screw configuration used in practicing the aforementioned embodiment of the invention wherein the scrap material is heated only by frictional engagement with the twin screws14. In FIG. 4, the barrel sections or zones 2-9 are cooled by coolant bands BC disposed thereon.
Barrel throttle zones - Only one
screw 14 is shown in FIGS. 3 and 4; however, theother screw 14 is identical and in inter-meshing relation thereto as is known and shown in the aforementioned U.S. Pat. No. 4,607,797. - The invention is not to be construed as limited to the particular type or sequence of screw elements and barrel sections shown in FIGS.3-4 or the particular twin-screw extruder described. Extruder barrel and extruder screw configurations used in practicing the invention can be different from those shown and may depend upon the composition and degree of crystallization of scrap components of the feedstock M as well as other factors in order to achieve solid state shear pulverization and in-situ polymer compatibilization of the feedstock M to pulverized particulates in accordance with the invention.
- The scrap feedstock M is subjected to solid state shear pulverization in the extruder10 in a once-through operation by rotation of the twin screws 14 in the same directions by
motor 18 so as to transport the feedstock M along the length of thescrews 14 and subject the feedstock M to temperature and pressure conditions (for a given feedstock feed rate through the extruder) effective to achieve solid state shear pulverization (without melting) of the flake-shaped scrap particulates and in-situ polymer compatibilization of thermodynamically incompatible polymers present in the feedstock M. The solid state pulverization avoids melting of the polymeric scrap material in the feedstock but can involve softening of one or more of the polymers in the feedstock. - With respect to the temperature parameter at a given feedstock feed rate, the feedstock M can be heated at extruder barrel sections or zones2-4 depending upon the composition of the feedstock M followed by cooling in all subsequent barrel zones of the extruder to maintain proper temperature control for solid state pulverization, in-situ polymer compatibilization, if necessary, and production of desired powder size. Heating of the feedstock M in barrel zones 2-4 is achieved by energization of the electrical heater bands or collars BH mounted on the barrel zones 2-4. Cooling of the feedstock at barrel zones 5-9 is achieved by individual, coolant manifold bands or collars BC mounted on each barrel zone, and supplied (from a common coolant manifold conduit not shown) with a water/glycol mixture that is chilled to nominally 35° F. and pumped by a conventional pump (not shown) at a selected flow rate through the manifold bands BC.
Barrel throttle zones - Heating of the scrap feedstock M in barrel zones2-4 may be effected when pulverizing a feedstock M having a large percentage of amorphous or crystalline scrap polymeric materials. Pulverization occurs in cooled barrel zones where the kneading or shearing elements KE are located. Polymeric material is transported to the kneading or shearing elements by the fluted transport elements appropriately positioned along the lengths of the screws to this end. The screw elements in each zone should be selected appropriately. Spacer elements are used to provide the appropriate screw length for the extruder barrel used.
- Preferably, the scrap feedstock M is subjected to only frictional heating in barrel zones2-4 by engagement with the rotating screws 14. That is, solid state pulverization of the scrap feedstock in barrel zones 2-4 is conducted without heating of the feedstock by external heater bands BH. Instead, all barrel zones 2-9, are cooled by coolant manifold barrels or collars BC disposed on the extruder barrel. Pulverization occurs in cooled barrel zones where the kneading or shearing elements KE are located. This heatless pulverization of the scrap feedstock M is advantageous to reduce heat degradation of the polymers and dyes (or other colorants) present with the polymers. Energy consumption during the pulverization operation also is substantially reduced.
- In general, the temperature of the scrap feedstock M is maintained at a level below the melting temperature of the individual scrap components or constituents in the feedstock M at all barrel zones of the extruder10 regardless of whether barrel zones 2-4 are heated or cooled. In this way, solid state shear pulverization can be conducted in the solid state at all stages of the extruder 10. The temperature of the feedstock M at each stage of the extruder 10 will depend on the particular feedstock composition being pulverized.
- For example, scrap feedstock temperatures to achieve solid state shear pulverization will depend upon the ratio of various polymers in the feedstock M. In particular, the feedstock temperature is adjusted to accommodate a relatively high proportion of amorphous, polymeric material (e.g. PS) in the feedstock M. For high proportions (e.g. 70 weight %) of amorphous scrap materials, the temperature is lower as compared to the feedstock temperatures used to pulverize a feedstock M having a high proportion of crystalline scrap materials (e.g. PP). The feedstock temperature needed for solid state shear pulverization of the feedstock M to powder can be related to glass transition temperature and/or melting temperature for particular feedstock compositions by suitable adjustment to heat output of barrel heater bands BH, if used, and to the coolant flow rate through the extruder coolant manifold bands BC.
- Illustrative extruder barrel temperatures at various stages of the extruder10 are described in certain Examples set forth below for various feedstock compositions for purposes of illustration and not limitation.
- With respect to the pulverization pressure and shear rate, the pressure and shear rate are controlled for a given screw design by the torque and rotational speed (rpm) of the
motor 18 rotating thescrews 14. The pressure and shear forces on the scrap feedstock M are effective for given feedstock temperatures and feed rates to achieve solid state shear pulverization of the flake-shaped scrap particulates in the manner described hereabove to achieve formation of the rounded powder and in-situ polymer compatibilization. The feedstock pressures and shear rates to achieve solid state shear pulverization will depend upon the ratio of various polymers in feedstock M. For high proportions (e.g. 70 weight %) of amorphous scrap materials, the energy consumption is higher as compared to the feedstock pressures used to pulverize a feedstock M having a high proportion of crystalline scrap materials. The feedstock pressures needed for solid state shear pulverization of the feedstock M to powder can be determined empirically for particular feedstock compositions by suitable adjustment to the torque and rpm ofscrew drive motor 16 at given feedstock temperatures. - The through-put (e.g. pounds per hour) of the scrap feedstock M through the extruder is controlled in conjunction with temperature and pressure to achieve solid state shear pulverization of the flake-shaped scrap particulates. The through-put for given feedstock temperature/pressure parameters needed for solid state shear pulverization of the feedstock M to fine powder can be determined empirically for particular feedstock compositions by suitable adjustment to the rpm of
drive motor 16 forscrews 14. - Illustrative through-puts of the scrap feedstock M through the extruder are described in certain Examples set forth below for various feedstock compositions and temperature/pressure parameters for purposes of illustration and not limitation.
- By proper selection of the pulverization temperatures, pressures, through-puts, and screw configuration and rpm, pulverized polymeric particulates P (e.g. powder) are discharged at the open (dieless) discharge end16 a (i.e. open end without the usual extrusion die) of the
extruder barrel 16. The particulates P typically are discharged onto a conventional endless conveyor (not shown) or other cooling/transport device, such as a spiral cooling device, capable of cooling powders and transporting powders to a storage location. During transport on the conveyor, the recycled pulverized powder can be allowed to cool to ambient temperature preferably in an atmosphere inert to the powder, such as a nitrogen blanket. Use of an inert blanket avoids oxidation of the pulverized powder. - The recycled pulverized particulates P of the invention are made without the need for a compatibilizing agent despite the presence of two or more thermodynamically incompatible polymeric scrap materials in the initial feedstock M. Moreover, the recycled pulverized particulates P of the invention can be directly processed (i.e. without pelletization) by conventional rotational molding, blow molding, extrusion (extruded PVC pipe and profiles), spray coating and other melt processing techniques requiring powder feedstock. Further, the recycled particulates P exhibit enhanced reactivity as compared to the unpulverized scrap feedstock M as measured by ESR. If produced from mixed-color scrap feedstock M, the recycled polymeric particulates, pulverized and as-melt processed, exhibit a substantially homogeneous light pastel color based on a dominant color of a scrap component in the feedstock M, although a color adjustment can be made, if desired, by suitable pigment additive to the feedstock and/or pulverized particulates.
- As the Examples below will illustrate, injection molded articles of manufacture produced from the recycled, pulverized particulates P of the present invention exhibit mechanical properties generally superior to those exhibited by like-molded flake scrap polymer feedstock of the same composition and also a substantially homogeneous color characterized by the absence of color streaking or marbleizing, despite the powder having originated from mixed-color scrap feedstock. The homogenous color of molded articles produced from the pulverized particulates is quite surprising and unexpected given the mixed-color nature of the initial feedstock M. The Examples set forth herebelow illustrate these advantageous features of the invention.
- Importantly, the recycled, pulverized particulates P of the invention can be used in molding a plurality of articles that exhibit substantially the same homogeneous pastel color from one molded article to the next as illustrated in the following Examples. In contrast, a mixture of flake scrap of like composition and mixed color produce molded articles exhibiting inconsistent colors from one molded article to the next.
- The recycled particulates P of the invention also can be used in conventional coating procedures wherein powdered coating feedstock is used. For example, the recycled powder can be used as feedstock in coating processes, such as thermal spray, to produce homogeneously colored, thin coatings on various substrates.
- The following Examples are offered for purposes of illustrating the invention in greater detail without in any way limiting the invention. These Examples involve sorted, washed, and chopped polymeric post-consumer flake scrap material obtained from several recycling sources throughout the United States; namely, HDPE and chopped LDPE flake scrap was obtained from St. Josepn Plastics in St. Joseph, Mo.; chopped PP scrap flake was obtained from SEI Recycling in Burlington, Wis.; and chopped PET scrap flake was obtained from Plastic Recyclers Southeast, Inc. in Athens, Ala. These scrap materials were obtained in 700 pound quantities. PVC scrap in flake form was obtained from Oxychem Corp. in Dallas, Tex. PS scrap in flake form was obtained from Maine Plastics in North Chicago, Ill. various proportions of these scrap materials were dry blended in order to simulate typical scrap feedstock compositions that would be encountered in the recycling of plastic scrap from municipal collection centers and industrial collection centers. Binary, ternary, and quaternary blends of different polymeric scrap materials were simulated (See TABLE II below). The scrap components of the dry blends are based on weight percentages of the components involved.
- Various mechanical property test specimens were prepared by injection molding 1) the as-received individual flake scrap materials and their blends (referred to as “Flake” in Table II below) and 2) the pulverized powder P of the invention (referred to as “Pulverized” or “Pulv” in Table II below). A 4-cavity MUD family mold was used for injection molding with a 1 oz. Battenfield injection molding machine. Specimens were of the standard ASTM “dog bone” shape, approximately 5 inches long and 0.125 inch thick. Izod bars (2.5 inches long and 0.125 inch thick) and five-inch heat distortion temperature (HDT) bars were also similarly molded.
- The injection molded specimens were used in the indicated ASTM tests of tensile strength/elongation (D638), notched Izod impact strength (D256), heat distortion temperature measurements (D648), and Shore D hardness (D2240). Tensile strengths are reported as ultimate tensile strengths for most specimens (yield strength being reported for the LDPE and PP specimens). Tensile tests were measured with an Instron test machine (crosshead speed=2 inches/minute, gauge length=2.25 inches, strain rate=0.9 in./in.-min.). Elongations are reported at the breaking point.
- The aforementioned chopped PP scrap flakes (obtained from SEI Recycling in Burlington, Wis.) were solid state pulverized using the aforementioned ZE 40A twin screw extruder. A sample of the scrap flakes is shown in FIG. 5A prior to solid state pulverization in accordance with the invention. Although the flakes all comprised PP, they were of mixed-colors; i.e. white and taupe flakes, red flakes, yellow flakes, blue flakes and a small amount of black flakes.
- The PP scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein in one trial, there was no external heating of the scrap flakes in the extruder (i.e. heatless embodiment) and wherein the heater bands BH were energized to heat the scrap flakes in barrel zones2-4 (i.e. externally heated embodiment).
- TABLE I below sets forth the temperature, rpm (for motor18), and scrap through-put employed in the trials to solid state pulverize the PP scrap flake feedstock. Both the extruder control set temperature and measured temperature of the scrap in the extruder are shown in TABLE I. As is apparent, the trial wherein external heating (“No heat”) involved higher scrap temperatures, lower motor rpm and higher scrap through-put than when heater bands BH were used to heat the scrap flakes (“w/heat”). Pressure in the extruder was not measured in the Examples.
- With respect to the configuration of the twin screws14, the heatless trial used the screw configuration shown in FIG. 4. The externally heated trial used the screw configuration shown in FIG. 3.
- FIG. 5A shows the flake scrap feedstock and an injection molded specimen made therefrom. FIG. 5B shows the pulverized powder of the invention made with external heating and an injection molded specimen made therefrom.
- FIGS. 5A and 5B illustrate that the pulverized powder of the invention made without external heating comprised fine powder particles having a homogeneous light mauve color as opposed to the mixed-color scrap flakes. Moreover, the injection molded pulverized powder specimen exhibited a substantially homogeneous, slightly more intense mauve color without color streaking or marbleizing. In contrast, the injection molded scrap flakes exhibited a non-uniform color with color streaking and marbleizing throughout the specimen, FIG. 5A.
- The pulverized powder of the invention made without external heating of the extruder barrel zones (all barrel zones cooled) exhibited a similar morphology and a uniform purple/cranberry color. The injection molded shape made from this powder exhibited a substantially homogeneous, slightly more intense cranberry color without color streaking or marbleizing.
- The mechanical properties measured from the aforementioned injection molded dog bone specimens made from the PP scrap flake feedstock and PP pulverized powder are set forth in TABLE II. These mechanical properties are discussed below.
- The aforementioned chopped HDPE scrap flakes (obtained from St. Joseph's Plastics St. Joseph, Mo.) were solid state pulverized using the aforementioned ZE 40A twin screw extruder. Although the flakes all comprised HDPE, they were of mixed-colors; i.e. white and taupe flakes, green flakes, blue flakes, and small amount of yellow flakes.
- The HDPE scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein in one trial, there was no external heating of the scrap flakes in the extruder (i.e. heatless embodiment) and wherein the heater bands BH were energized to heat the scrap flakes in barrel zones2-4 (i.e. externally heated embodiment).
- TABLE I below sets forth the temperature, rpm (for motor18), and through-put employed in the trials to solid state pulverize the HDPE scrap flake feedstock. The heatless trial used the screw configuration shown in FIG. 4. The externally heated trial used the screw configuration shown in FIG. 3.
- The recycled pulverized HDPE powder made from the scrap flake feedstock without external heating exhibited a light blue-green color and powder morphology. The pulverized HDPE powder produced with external heating was similar in morphology but had a somewhat lighter green-blue color.
- The injection molded pulverized HDPE powder specimens exhibited a substantially homogeneous, slightly more intense colors without color streaking or marbleizing. In contrast, the injection molded scrap HDPE flakes exhibited a uniform whitest color.
- The mechanical properties measured from the aforementioned injection molded dog bone specimens made from the HDPE scrap flake feedstock and HDPE pulverized powder are set forth in TABLE II and are discussed below.
- The aforementioned chopped LDPE scrap flakes (obtained from St. Joseph's Plastics St. Joseph, Mo.) were solid state pulverized using the aforementioned ZE 40A twin screw extruder. Although the flakes all comprised LDPE, they were of mixed-colors; i.e. white flakes, beige flakes, red flakes, and blue flakes.
- The LDPE scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein in one trial, there was no external heating of the scrap flakes in the extruder (i.e. heatless embodiment) and wherein the heater bands BH were energized to heat the scrap flakes in barrel zones2-4 (i.e. externally heated embodiment).
- TABLE I below sets forth the temperature, rpm (for motor18), and through-put employed in the trials to solid state pulverize the LDPE scrap flake feedstock. The heatless trial used the screw configuration shown in FIG. 4. The externally heated trial used the screw configuration shown in FIG. 3.
- The recycled pulverized LDPE powder made from the scrap flakes without external heating exhibited a uniform light beige color and powder morphology. The pulverized LDPE powder made using external extruder barrel heating was a homogeneous light orange-beige color with similar morphology.
- The injection molded pulverized LDPE powder specimen exhibited a substantially homogeneous, slightly more intense beige color (heatless), or orange-beige color (with external barrel heating), without color streaking or marbleizing. The injection molded scrap LDPE flakes exhibited a uniform burnt orange color.
- The mechanical properties measured from the aforementioned injection molded dog bone specimens made from the LDPE scrap flake feedstock and LDPE pulverized powder are set forth in TABLE II and are discussed below.
- The aforementioned chopped HDPE, LDPE and PP scrap flakes were mixed to simulate a scrap feedstock comprising 60 weight % HDPE, 30 weight % LDPE and 10 weight % PP flakes. The feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder. The HDPE/LDPE/PP scrap flake feedstock comprised mixed-colors; i.e. white flakes, red flakes, sky blue flakes, and orange flakes. FIG. 6A illustrates the HDPE/LDPE/PP scrap flake feedstock.
- The HDPE/LDPE/PP scrap flake feedstock was solid state pulverized pursuant to the embodiment of the invention described above wherein the heater bands BH were energized to heat the scrap flakes in barrel zones2-4 (i.e. externally heated embodiment). The screw configuration shown in FIG. 3 was used.
- The recycled pulverized HDPE/LDPE/PP powder made from the scrap flake feedstock is shown in FIG. 6B. The pulverized powder was a homogeneous light pastel rose color.
- The injection molded pulverized HDPE/LDPE/PP powder specimen exhibited a substantially homogeneous, slightly more intense pastel rose color without color streaking or marbleizing, FIG. 6B. In contrast, the injection molded scrap HDPE/LDPE/PP flake feedstock exhibited a non-uniform, streaky beige/pink color, FIG. 6A.
- The mechanical properties measured from the aforementioned injection molded dog bone specimens made from the HDPE/LDPE/PP scrap flake feedstock and HDPE/LDPE/PP pulverized powder are set forth in TABLE II and are discussed below.
- The aforementioned chopped HDPE and PP scrap flakes were mixed to simulate a scrap feedstock comprising 70 weight % HDPE and 30 weight % PP flakes. The feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder. The HDPE/PP scrap flake feedstock comprised mixed-colors; i.e. white and taupe flakes, green flakes, red flakes, dark blue flakes, and small amounts of yellow flakes and black flakes. FIG. 7A illustrates the HDPE/PP scrap flake feedstock.
- The HDPE/PP scrap flake feedstock was solid state pulverized pursuant to the embodiment of the invention described above wherein the heater bands BH were energized to heat the scrap flakes in barrel zones2-4 (i.e. externally heated embodiment). The screw configuration shown in FIG. 3 was used.
- The recycled pulverized HDPE/PP powder made from the scrap flake feedstock is shown in FIG. 7B. The pulverized powder was a homogeneous light pastel rose color.
- Moreover, the injection molded pulverized HDPE/PP powder specimen exhibited a substantially homogeneous, slightly more intense pastel rose color without color streaking or marbleizing, FIG. 7B. In contrast, the injection molded scrap HDPE/PP flake feedstock exhibited a non-uniform, streaky green/pink color, FIG. 7A.
- The mechanical properties measured from the aforementioned injection molded dog bone specimens made from the HDPE/PP scrap flake feedstock and HDPE/PP pulverized powder are set forth in TABLE II and are discussed below.
- The aforementioned chopped HDPE and PP scrap flakes were mixed to simulate a scrap feedstock comprising 90 weight % HDPE and 10 weight % PP flakes. The feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder. The HDPE/PP scrap flake feedstock comprised mixed-colors; i.e. white and taupe flakes, green flakes, red flakes, dark blue flakes, and small amounts of yellow flakes. The quantity of red flakes present was less than that in scrap flake feedstock of Example 4. FIG. 8A illustrates the HDPE/PP scrap flake feedstock.
- The HDPE/PP scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein the heater bands BH were energized to heat the scrap flakes in barrel zones2-4 (i.e. externally heated embodiment). The screw configuration shown in FIG. 3 was used.
- The recycled pulverized HDPE/PP powder made from the scrap flake feedstock is shown in FIG. 8B. The pulverized powder was a homogeneous light pastel green color.
- Moreover, the injection molded pulverized HDPE/PP powder shape exhibited a substantially homogeneous, slightly more intense pastel green color without color streaking or marbleizing, FIG. 8A. In contrast, the injection molded scrap HDPE/PP flakes exhibited a non-uniform, streaky green/pink color, FIG. 8A.
- The mechanical properties measured from the aforementioned injection molded dog bone specimens made from the HDPE/PP scrap flake feedstock and HDPE/PP pulverized powder are set forth in TABLE II and are discussed below.
- The aforementioned chopped HDPE and LDPE scrap flakes were mixed to simulate a scrap feedstock comprising 40 weight % HDPE and 60 weight % LDPE flakes. The feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder. The HDPE/PP scrap flake feedstock comprised mixed-colors; i.e. white flakes, green flakes, blue flakes, red flakes, and small amounts of yellow flakes.
- The HDPE/LDPE scrap flake feedstock was solid state pulverized pursuant to the embodiments of the invention described above wherein all barrel zones were cooled by collars BC.
- TABLE I below sets forth the temperature, rpm (for motor18), and through-put employed in the trials to solid state pulverize the feedstock. The screw configuration shown in FIG. 4 was used.
- The recycled pulverized HDPE/LDPE powder made from the scrap flake feedstock was a homogeneous light pastel peach color.
- Moreover, the injection molded pulverized HDPE/LDPE powder shape exhibited a substantially homogeneous, slightly more intense light pastel peach color without color streaking or marbleizing. In contrast, the injection molded scrap HDPE/LDPE flakes exhibited a non-uniform, streaky beige/brown color.
- The mechanical properties measured from the aforementioned injection molded dog bone specimens made from the HDPE/LDPE scrap flake feedstock and HDPE/LDPE pulverized powder are set forth in TABLE II and are discussed below.
Color Injection Barrel zone temperature, ° C. Motor molded Plastic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 RPN Powder samples PP A — 19 87 54 31 52 38 24 18 52 43 31 150 light more No heat S — 0 0 0 0 0 0 0 0 0 0 0 mauve intense (deeper) mauve PP A 19 224 220 221 152 92 85 54 33 179 99 60 40 cranberry more W/heat S 0 220 220 220 0 0 0 0 0 0 0 0 intense (deeper) cranberry HDPE A — 14 71 32 19 32 30 18 15 0 0 0 80 light more No heat S — 0 0 0 0 0 0 0 0 0 0 0 green/ intense blue (deeper) green/blue HDPE A 18 120 120 122 117 88 74 47 29 119 91 51 40 blue/ more W/heat S 0 125 125 125 0 0 0 0 0 0 0 0 green intense (deeper) blue/green LDPE A — 26 67 47 27 43 29 21 17 40 36 28 80 light more No heat S — 0 0 0 0 0 0 0 0 0 0 0 beige intense (deeper) beige LDPE A 19 159 158 178 139 80 60 44 27 167 97 55 40 orange/ more W/heat S 0 175 175 175 0 0 0 0 0 0 0 0 beige intense (deeper) orange/ beige HDPE/LDPE A 19 175 179 159 52 30 21 19 17 107 27 31 20 light light 40/60 peach peach W/heat S 0 175 175 160 0 0 0 0 0 0 0 0 HDPE/LDPE A — 75 21 26 20 21 21 14 15 22 22 26 113 light light 40/60 peach peach No heat S — 0 0 0 0 0 0 0 0 0 0 0 - The aforementioned chopped scrap flakes alone or mixed together were used to simulate other scrap feedstocks listed in TABLE II below. Each simulated scrap flake feedstock was solid state pulverized using the aforementioned ZE 40A twin screw extruder. The scrap flake feedstocks of all Examples comprised mixed-colors in myriad combinations of color.
- The scrap flake feedstocks were solid state pulverized pursuant to the embodiments of the invention described above wherein in one trial, there was no external heating of the scrap flakes in the extruder (i.e. heatless embodiment) and wherein the heater bands BH were energized to heat the scrap flakes in barrel zones2-4 (i.e. externally heated embodiment). The heatless trials are designated “No heat pulv” in TABLE II and used the screw configuration shown in FIG. 4. The externally heated trials are designated by the absence of “No heat pulv” and used the screw configuration shown in FIG. 3. In Table II, Examples 1-7 are identified by the example number in parenthesis in the left-hand column.
- The temperature, rpm (for motor18), and throughput employed in the trials were selected empirically to achieve solid state pulverization. The temperature, motor rpm and through-put used were generally in the same ranges as those described above in Examples 1-3 and 7 for the heatless and externally heated trials.
- In Other Examples, molded specimens prepared from the pulverized powder of the invention exhibited a surprisingly and extremely uniform light pastel color based on a dominant color scrap component in the feedstock. The achievement of the uniform, light pastel color was surprising and unexpected, given the mixed-color nature of most of the initial scrap flake feedstocks used.
- In contrast, the color of molded specimens prepared from the as-received flake feedstocks exhibited a streaking or marbleizing effect with the presence of light and dark color swirling patterns readily apparent.
- Specimens molded from pulverized feedstocks including both PET and PVC were the only exceptions to achievement of a light pastel molded color. The molded specimens containing both PET and PVC exhibited a homogenous color that was darker than the pastel color tone observed with the other specimens containing either PET or PVC.
- All of the specimens molded from the pulverized powder of the invention exhibited a very smooth, homogenous colored surface. In contrast, the specimens molded from the as-received flake feedstocks exhibited a non-uniform, streaky surface.
- It is noteworthy that even though some of the scrap feedstock set forth in Examples 7-25 comprised a plurality of polyolefins (e.g. HDPE, LDPE, PP) that are mutually thermodynamically incompatible, these feedstocks were nevertheless successfully injection molded.
- TABLE II summarizes the measured mechanical properties and thermal properties specimens of Examples 1-7 and the aforementioned Other Examples molded from as-received flake feedstocks (Flake) and pulverized powder P of the invention (Pulverized or Pulv).
TABLE II Tensile Properties Notched Ulti- Izod HDT Yield mate % Impact Deg C Shore Materials PSI PSI Elong Ft-Lb/In 66 PSI D PP Flake (1) 4840 330 0.7 102 72 PP Pulverized (1) 4730 100 0.8 93 72 PP-No heat pulv (1) 5060 300 0.6 97 74 HDPE Flake (2) 3240 12 0.5 60 63 HDPE Pulverized (2) 2870 7.5 0.5 60 63 HDPE-No heat 3400 14 0.5 57 57 pulv (2) LDPE Flake (3) 1980 33 0.8 49 56 LDPE Pulverized (3) 2060 60 0.7 50 57 LDPE-No heat 2060 32 0.7 49 57 pulv (3) HDPE/LDPE/PP 2680 9 0.4 58 62 60/30/10 Flake (4) HDPE/LDPE/PP 2970 9 0.4 58 64 60/30/10 Pulv (4) HDPE/PP 3740 11 0.4 68 67 70/30 Flake (5) HDPE/PP 3850 12 0.4 68 67 70/30 Pulv (5) HDPE/PP 3530 13 0.4 67 66 90/10 Flake (6) HDPE/PP 3480 12 0.4 63 65 90/10 Pulv (6) HDPE/LDPE 2550 15 0.6 45 59 40/60 Pulv (7) HDPE/PET 3710 6 0.7 70 68 50/50 Flake HDPE/PET 3600 4 0.5 70 69 50/50 Pulv HDPE/PET 2870 4 0.4 72 68 60/40 Flake HDPE/PET 2790 3 0.2 70 68 60/40 Pulv HDPE/PET 4680 7 1.1 69 71 40/60 Flake HDPE/PET 4100 5 0.7 68 70 40/60 Pulv HDPE/LDPE/PET 2010 4 0.4 62 64 30/30/40 Flake HDPE/LDPE/PET 2520 5 0.3 62 65 30/30/40 Pulv HDPE/LDPE/PET 1880 4 0.3 63 64 40/30/30 Flake HDPE/LDPE/PET 2450 5 0.2 63 65 40/30/30 Pulv HDPE/LDPE/PET 2330 4 0.3 67 66 60/10/30 Flake HDPE/LDPE/PET 3020 5 0.2 67 68 60/10/30 Pulv HDPE/LDPE 2530 17 0.5 47 59 40/60 Flake HDPE/LDPE 2500 90 0.6 51 60 40/60-No heat pulv HDPE/LDPE 2840 13 0.4 57 62 60/40 Flake HDPE/LDPE 2860 13 0.5 57 63 60/40 Pulv PP/PS 70/30 Flake 5320 16 0.6 93 76 PP/PS 70/30 Pulv 5120 10 0.4 90 76 PP/PS 70/30-No 5200 8 0.4 91 75 heat pulv PP/PS 30/70 Flake 5880 5 0.6 90 79 PP/PS 30/70 Pulv 5780 4 0.45 88 79 PP/PS 30/70-No 5950 5 0.4 90 80 heat pulv HDPE/LDPE/PP/PET 2300 6 0.2 59 65 40/30/10/20 Flake HDPE/LDPE/PP/PET 2710 10 0.3 59 65 40/30/10/20 Pulv HDPE/LDPE/PP/PET/ 2020 4 0.2 63 64 PS 40/30/5/20/5 Flake HDPE/LDPE/PP/PET/ 2610 8 0.2 64 64 PS 40/30/5/20/5 Pulv HDPE/LDPE/PP/PVC 2540 7 0.3 55 63 55/30/10/5 Flake HDPE/LDPE/PP/PVC 2390 6 0.3 65 63 55/30/10/5 Pulv HDPE/LDPE/PP/PET/ 2290 5 0.2 65 65 PVC 40/30/5/20/5 Pulv HDPE/LDPE/PP/PET/ 2210 5 0.2 61 65 PS/PVC 40/30/5/15/5/5 Pulv - It is noteworthy that the tensile strengths of injection molded specimens made from pulverized ternary HDPE/LDPE/PP and HDPE/LDPE/PET powder of the invention are consistently higher than the tensile strengths of molded specimens molded from the as-received blended flake feedstocks of the same materials. This increase in tensile strength for the pulverized powder molded specimens indicates an increased compatibility of the polymer components in the blend.
- It is further noteworthy that even though some of the scrap feedstocks set forth in the Examples comprised a plurality of polyolefins (e.g. HDPE, LDPE, PP) that are mutually thermodynamically incompatible, the feedstocks were nevertheless successfully injection molded, and the molded specimens did not exhibit delamination upon breaking in the mechanical property tests, indicating that chemical change occurred during pulverization and the polymers have been in-situ compatibilized during the solid state shear pulverization process of the invention.
- Furthermore, as mentioned above, the pulverized recycled powders of the invention exhibited enhanced reactivity as compared to the flake feedstock M prior to pulverization. To facilitate studies of the chemical state (reactivity) of the pulverized powder, small samples (2-3 grams) of powder were collected from the discharge end of the extruder barrel.
- Powder samples were loaded into quartz tubes for electron spin resonance (ESR) measurements. ESR spectra were acquired at room temperature on a modified continuous wave Varian E-4 spectrometer operating in the X-band (microwave frequency near 9 GHz).
- Initial ESR studies were made of unpulverized flake LDPE and pulverized LDPE powder of the invention pulverized from the flake in accordance with the invention. It appears that reactive sites (free radicals) are formed by polymer bond rupture during the solid state shear pulverization process and have lifetimes that can be estimated as several hours at ambient conditions. In general, ESR spectra of unpulverized feedstock flakes and pulverized powder stored at ambient conditions indicate the presence of stable peroxy radicals in both the LDPE, PP, and 70% HDPE/30% PP flakes and powder. However, the pulverized powders have greater free radical densities than the as-received (unpulverized) flakes in accordance with the invention, as shown in FIGS. 9, 10 and11.
- In FIG. 11, a simulated ESR spectrum for unpulverized mixture of 70% HDPE/30% PP at room temperature is shown at the top. At the bottom, a simulated ESR spectrum of an incompatible blend of pulverized 70% HDPE/30% PP superimposed over an actual measured ESR spectrum of these pulverized blends are shown at the bottom. All spectra were normalized to the same mass. The simulated spectrum is determined by adding spectra of the individual blend components, each scaled according to their fraction in the blend. Because the actual spectrum is larger (more intense) than the simulated one, it implies an interaction between HDPE and PP during the pulverization process.
- Furthermore, differential scanning calorimetry (DSC) using a Perkin-Elmer DSC-7 unit provided unambiguous evidence that solid state shear pulverization in accordance with the invention produces significant chemical changes suggesting a compatibilizing effect. Dramatic changes in the melting and crystallization peaks of HDPE/LDPE and HDPE/PP blends were observed after pulverization of dry blends of these incompatible polyolefins, as shown in FIGS.12-18.
- Table III summarizes the DSC results. In Table III, F adjacent the material refers to post-consumer unpulverized flake or chunk material and Pul refers to pulverized material.
TABLE III CRYSTALLIZATION MELTING Mass Descrip- Onset Peak Data Onset Peak Data Material Sample ID (mg) tion Tm (° C.) Tm (° C.) H (J/g) Tc (° C.) Tc (° C.) H (J/g) THERMAL HISTORY: ORIGINAL LDPE-F 122.269 126.828 78.239 114.402 111.047 −108.10 LDPE-Pul 125.187 129.128 75.209 117.334 116.295 −108.78 HDPE-F 123.944 131.827 162.512 117.693 114.271 −159.98 HDPE-Pul 124.818 128.588 158.309 116.733 114.948 −162.71 PP-F 153.063 183.379 76.431 127.389 123.691 −93.97 PP-Pul 152.376 162.793 88.787 122.751 120.058 −89.81 PP-Pul 156.883 188.022 76.919 124.834 121.69 −81.7 THERMAL HISTORY: COOLED AT 10° C./min LDPE-F 122.759 128.828 78.239 LDPE-Pul 124.392 128.161 90.859 HDPE-F 123.679 131.895 190.123 HDPE-Pul 121.573 127.777 158.829 PP-F 153.852 162.61 83.58 PP-Pul 149.058* 160.175* 78.933 PP-Pul 159.196* 164.461* 63.727 Material Onset Peak Data Onset Peak Data (Composition) Peak Tm (° C.) Tm (° C.) H (J/g) To (° C.) Tc (° C.) H (Jg) THERMAL HISTORY: ORIGINAL HDPE/PP (70/30)-F HDPE 123.428 130.06 170.703 118.125 114.185 −140.942 PP 152.397 162.927 71.215 129.05 125.37 −49.51 HDPE/PP (70/30)-Pul HDPE 121.779 128.873 174.046 116.975 114.847 −158.279 PP 131.288 162.454 73.882 123.387 122.342 −81.961 HDPE/LDPE/PP HDPE/LDPE 124.153 134.265 154.237 118.401 115.466 −179.478 (60/30/10)-F PP 156.104 163.736 49.94 No polypropylene crystallization peak observed HDPE/LDPE/PP HDPE/LDPE 123.399 129.199 188.284 118.659 116.837 −134.321 (60/30/10)-Pul PP 182.287 167.356 −109.35 127.829 124.932 −74.87 HDPE/LDPE HDPE/LDPE 122.419 127.927 108.324 118.42 114.388 −123.248 (40/60)-F HDPE/LDPE HDPE/LDPE 121.257 128.404 114.038 117.351 115.384 −155.204 (40/60)-Pul HDPE/LDPE HDPE/LDPE 124.338 131.84 123.379 118.939 114.382 −132.388 (60/40)-F HDPE/LDPE HDPE/LDPE 122.887 127.80 110.813 117.871 115.784 −107.01 (60/40)-Pul THERMAL HISTORY: COOLED AT 10° C./min HDPE/PP HDPE 122.184 128.008 183.304 (70/30)-F PP 140.671 160.881 88.5 HDPE/PP HDPE 121.188 128.142 188.148 (70/30)-Pul PP 155.211 160.277 77.150 HDPE/LDPE/PP HDPE/LDPE 124.856 132.305 165.523 (60/30/10)-F PP 155.903 161.812 70.05 HDPE/LDPE/PP HDPE/LDPE 123.706 128.83 134.731 (60/30/10)-Pul PP 138.317 162.036 38.84 HDPE/LDPE HDPE/LDPE 120.073 127.865 108.289 (40/60)-F HDPE/LDPE HDPE/LDPE 122.691 127.973 107.050 (40/60)-Pul HDPE/LDPE HDPE/LDPE 121.099 130.166 120.345 (60/40)-F HDPE/LDPE HDPE/LDPE 122.907 128.321 105.858 (60/40)-Pul - Referring to FIGS.12A,B-18A,B, DSC thermograms for different as-received flake feedstock and pulverized powder are shown. Before measuring the thermogram, the samples are heated to above their melting temperature and then cooled to ambient temperature at 10° C./minute. A striking difference is seen in FIGS. 12A,B-13A,B for as-received PP flake and pulverized PP powder. In particular, there is a large difference in the melting peaks of as-received PP flakes and pulverized PP powder as shown in FIGS. 12A,B. Despite identical thermal histories, the pulverized sample had two or possibly three distinct melting peaks (FIGS. 12A,B) not observed in the as-received PP flake sample. The crystallization peak is shifted to lower temperature for a pulverized material as shown in FIGS. 13A,B. There is observed a change in the crystalline PP phase after pulverization as shown by a 4 degree C. decrease in the onset of Tc and a much sharper peak.
- FIGS. 14A,B are thermograms for a 70% HDPE/30% PP blend of as-received flake feedstock and pulverized powder showing crystallization peaks. The ΔHc of the pulverized sample is 60% larger than that of the as-received sample.
- Surprisingly, the largest degree of difference in thermal behavior was observed with as-received 60% HDPE/40% LDPE feedstock flake blends and similar pulverized blends. It is known that these polyolefins are incompatible because of their different densities. Referring to FIGS. 15A,B, a double melting peak observed for the as-received sample is changed into a single, narrower peak for the pulverized sample. After heating to the melt state and cooling to ambient temperature at 10° C./minute, a similar narrowing of the melting peak is evident from the as-received sample to the pulverized sample, FIGS. 16A,B. This shows that permanent change has occurred and that the DSC is not detecting temporary mixing effects caused by the extruder. FIGS. 17A,B show the crystallization isotherm to be unified and sharpened by solid state shear pulverization pursuant to the invention. The same results were also observed for a 40% HDPE/60% LDPE blend. The data provide strong indication that the solid state shear pulverization of the scrap flake material imparts a high degree of in-situ compatibilization to the polymer components involved.
- FIGS. 18A,B are a thermogram showing melting traces for a ternary blend of 60% HDPE/30% LDPE/10% PP as-received and pulverized. Similar thermogram results as described above are evident in FIGS. 18A,B.
- The above-described embodiment of the present invention is advantageous in that comminuted (e.g. flake) scrap material can be solid state pulverized to particulates (e.g. powder) that are directly usable as powder feedstock in conventional melt processing techniques, such as rotational molding, blow molding, extrusion, spray coating and others requiring powder feedstock. Moreover, commingled, unsorted plastic scrap can be recycled without the need for costly sortation and in a manner to achieve in-situ compatibilization of different polymers present in the scrap in a once-through pulverization operation to produce recycled, polymeric particulates. Furthermore, the need for compatibilizing and/or reinforcing agent additions in the event two or more thermodynamically incompatible polymers are present in the scrap is avoided, thereby reducing the cost of recycling. This embodiment also is advantageous in that sorted or unsorted, commingled, mixed-color plastic scrap can be recycled to produce recycled, polymeric particulates that are unexpectedly conventionally melt processable to substantially homogeneous light color without color streaking or marbleizing. High value, low cost recycled powder products, as well as products molded or otherwise formed of the powder, from sorted or unsorted, commingled multi-colored polymeric scrap material thus can be provided, increasing utilization of available plastic scrap.
- Although the embodiment of the invention described in detail hereabove relates to the recycling of sorted or unsorted post-consumer and/or post-industrial polymeric scrap material, the invention is not so limited. For example, the invention also can be practiced to solid state pulverize feedstock comprising mixtures of post-consumer and/or post-industrial polymeric scrap and virgin polymeric material feedstock comprising one or more virgin polymeric materials.
- In solid state pulverizing mixtures of one or more scrap polymeric materials and one or more virgin polymeric material, the weight %'s of the scrap and virgin materials can be varied over wide ranges to suit particular needs and material availability. For purposes of illustration and not limitation, a mixture of 75 weight % of virgin LDPE (translucent white color pellets) and 25 weight % of the aforementioned chopped scrap LDPE flakes (multi-color) was made and solid state pulverized pursuant to the invention using the aforementioned Berstorff ZE-40A twin screw extruder. The 75/25 virgin/flake LDPE mixture was solid state pulverized without heating (all barrel zones cooled) using processing parameters similar to those set forth in TABLE I for “No heat” solid state pulverization of a solely scrap flake LDPE feedstock.
- The solid state pulverized particulates (powder) were injection molded in the manner described hereabove for the pulverized scrap particulates. The initial 75/25 virgin/flake LDPE feedstock also was injection molded for comparison purposes.
- The physical properties of the injection molded specimens are shown in TABLE IV below. It can be seen that the physical properties of the injection molded pulverized powder specimens are generally comparable to those exhibited by the injection molded 75/25 virgin/flake LDPE specimens.
- The injection molded pulverized powder LDPE specimens exhibited a translucent white color. The injection molded virgin/flake LDPE specimens exhibited a light peach color.
- Moreover, a mixture of 60 weight % virgin LOPE (pellets) and 40 weight % chopped scrap LDPE flakes was made and solid state pulverized using the Berstorff ZE-40A twin screw extruder with barrel heating (barrel zones2-4 heated) using processing parameters similar to those set forth in TABLE I for “w/heat” solid state pulverization of a solely scrap flake LDPE feedstock.
- The physical properties of injection molded pulverized powder specimens and injection molded 60/40 virgin/flake specimens also are shown in TABLE IV below. It can be seen that the physical properties of injection molded pulverized powder specimens are generally comparable to those exhibited by the injection molded 60/40 virgin/flake specimens.
- The injection molded pulverized powder LDPE specimens exhibited a translucent white color. The injection molded virgin/flake LDPE specimens exhibited a medium peach color.
TABLE IV TENSILE PROPERTIES NOTCHED HOT HARDNESS Yield Ultimate IZOD DEG. C. SHORE MATERIALS PSI PSI % Elong IMPACT 66 PSI D LDPE-V/LDPE-F 1450 120 NA NA 48 75/25 Pulv 1440 130 NA NA 50 No heat LDPE-V/LDPE-F 1420 135 NA NA 51 60/40 Pulv 1440 150 NA NA 51 Heat - As mentioned, the present invention also envisions solid state pulverizing of one or more virgin polymeric materials as feedstock. If two or more thermodynamically incompatible virgin polymers are present in the virgin material feedstock, in-situ compatibilization of the virgin polymers should be achievable.
- For purposes of illustration and not limitation, virgin LDPE pellets were solid state pulverized using the aforementioned Berstorff ZE-40A twin screw extruder with heating (barrel zones2-4 heated) and without heating (all barrel zones cooled) pursuant to the invention.
- The virgin LDPE pellets were solid state pulverized with heating (barrel zones2-4 heated) using processing parameters similar to those set forth in TABLE I for “w/heat” solid state pulverization of the solely scrap flake LDPE feedstock. The virgin LDPE pellets were also solid state pulverized without heating (all barrel zones cooled) using processing parameters similar to those set forth in TABLE I for “No heat” solid state pulverization of scrap LDPE feedstock.
- The solid state pulverized virgin LDPE particulates (powder) were injection molded in the manner described hereabove for the pulverized scrap particulates. The virgin LDPE pellets were similarly injection molded.
- The physical properties of the injection molded specimens are shown in TABLE V below. It can be seen that the physical properties of injection molded pulverized specimens are generally comparable to those of injection molded pellet specimens.
- Virgin PC pellets also were solid state pulverized with heating (barrel zones2-4 heated) using the Berstorff ZE-40A twin screw extruder. The virgin PC pellets were solid state pulverized using processing parameters similar to those set forth in TABLE I for “W/heat” solid state pulverization of scrap PP thickness (slightly higher temperature).
- The pulverized particulates and virgin pellets were injection molded as described hereabove. Thy physical properties of the injection molded specimens are shown in TABLE V. It can be seen that injection molded pulverized powder PC specimens and injection molded pellet specimens exhibited comparable physical properties.
TABLE V TENSILE PROPERTIES NOTCHED HDT Yield Ultimate IZOD DEG. C. HARDNESS MATERIALS PSI PSI % Elong IMPACT 66 PSI SHORE D LDPE-V (pellets) 2120 170 NA NA 49 LDPE w/heat 2030 160 NA NA 52 pulv LDPE pulv 2040 140 NA NA 50 no heat PC-V (pellets) 8850 105 13.8 140 83 PC-V pulv 8920 100 11.2 140 84 w/heat - Regardless of the composition of the polymeric feedstock supplied to the extruder, the present invention is advantageous in that energy consumption of the solid state pulverization process is lower than that of conventional batch grinding processes. In addition, the present invention provides a continuous, once-through solid state pulverization process in contrast to conventional batch grinding techniques.
- While the invention has been described in terms of specific embodiments thereof, it is not intended to be limited thereto but rather only to the extent set forth hereafter in the following claims.
Claims (7)
1. A method of making an article of manufacture, comprising:
a) supplying polymeric materials including two or more thermodynamically incompatible polymers to screw means of an extruder,
b) rotating the screw means to transport said polymeric material along the length thereof and solid state pulverize said polymeric material with in-situ polymer compatibilization to product particulates, and
c) melt processing said pulverized particulates to form an article of manufacture.
2. A method for manufacture of melt processible polymeric particulates, said method comprising the steps of:
(a) selecting a mixture of at least two thermodynamically incompatible materials selected from a group consisting of polyolefins, thermoplastics, polymer blends, polymer alloys, thermosets, elastomers excluding rubbers, HDPE, PET, LDPE, PP, PS, PVC, LDPE, PC, ABS, ABS/PC, and PPO/PS;
(b) introducing said selected materials to a pulverization device of the type having an inlet for the materials and means for pulverizing the materials to effect chemical change to at least one of said materials by means of solid state shear pulverization bond rupture thereof while cooling the materials to maintain the materials in the solid state during the entire pulverization process; and
(c) collecting the pulverized mixture discharged from the device for subsequent melt processing.
3. The process of claim 2 wherein the mixture is subsequently melt processed.
4. The process of claim 2 wherein the pulverization is effected by co-rotating screws of an extruder.
5. The process of claim 2 wherein the materials comprise virgin materials.
6. The process of claim 2 wherein the materials are further selected from a group consisting of virgin materials, scrap materials and mixtures thereof.
7. The process of claim 2 wherein the materials are further selected from a group consisting of HDPE and PP; LDPE and HDPE; HDPE, LDPE and PP; HDPE and PET; HDPE, LDPE and PET; PP/PS; HDPE, LDPE, PP and PET; HDPE, LDPE, PP, PET and PS; HDPE, LDPE, PP and PVC; HDPE, LDPE, PP, PET and PVC; and HDPE, LDPE, PP, PET, PS and PVC.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/975,402 US20020115749A1 (en) | 1993-12-07 | 2001-10-11 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
US10/277,980 US6849215B2 (en) | 1993-12-07 | 2002-10-23 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16391593A | 1993-12-07 | 1993-12-07 | |
US08/639,344 US5814673A (en) | 1993-12-07 | 1996-04-26 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization |
US1355498A | 1998-01-27 | 1998-01-27 | |
US09/975,402 US20020115749A1 (en) | 1993-12-07 | 2001-10-11 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US1355498A Continuation | 1993-12-07 | 1998-01-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/277,980 Continuation US6849215B2 (en) | 1993-12-07 | 2002-10-23 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020115749A1 true US20020115749A1 (en) | 2002-08-22 |
Family
ID=22592156
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/639,344 Expired - Lifetime US5814673A (en) | 1993-12-07 | 1996-04-26 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization |
US09/013,180 Expired - Lifetime US6180685B1 (en) | 1993-12-07 | 1998-01-26 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
US09/975,402 Abandoned US20020115749A1 (en) | 1993-12-07 | 2001-10-11 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
US10/277,980 Expired - Fee Related US6849215B2 (en) | 1993-12-07 | 2002-10-23 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/639,344 Expired - Lifetime US5814673A (en) | 1993-12-07 | 1996-04-26 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization |
US09/013,180 Expired - Lifetime US6180685B1 (en) | 1993-12-07 | 1998-01-26 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/277,980 Expired - Fee Related US6849215B2 (en) | 1993-12-07 | 2002-10-23 | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization |
Country Status (4)
Country | Link |
---|---|
US (4) | US5814673A (en) |
EP (1) | EP0731733A4 (en) |
CA (1) | CA2192336C (en) |
WO (1) | WO1995015819A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040196462A1 (en) * | 2001-05-23 | 2004-10-07 | Klaus Schultheiss | Method for coloring plastic by using plastic recycling material |
US20050148732A1 (en) * | 2003-12-30 | 2005-07-07 | Thomas Oomman P. | Elastomer compositions and method of making them |
US8722163B2 (en) | 2011-09-16 | 2014-05-13 | Pepsico, Inc. | Recyclable colorants in plastic beverage containers |
CN106867248A (en) * | 2017-02-23 | 2017-06-20 | 陈耿龙 | A kind of secondary material modified technique of engineering plastics |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA976292B (en) * | 1996-07-29 | 1998-02-03 | Aeci Ltd | Process for decomposing a polymer to its monomer or monomers. |
ES2160291T3 (en) * | 1996-11-07 | 2001-11-01 | Bock Healthcare Gmbh | PROCEDURE FOR THE MANUFACTURE OF MOLDED PARTS FROM A POLYMER ALLOY. |
US6180203B1 (en) * | 1997-04-09 | 2001-01-30 | Peter J. Unkles | Rotational moulding process |
DE19802142A1 (en) * | 1998-01-22 | 1999-07-29 | Otto Geb Kg | Polymeric composition useful for storage, transport and disposal containers, especially for food or bio-waste |
US6479003B1 (en) * | 1998-11-18 | 2002-11-12 | Northwestern University | Processes of mixing, compatibilizing, and/or recylcing blends of polymer materials through solid state shear pulverization, and products by such processes |
GB0012281D0 (en) * | 2000-05-22 | 2000-07-12 | Uponor Ltd | Recycled pipe |
US6494390B1 (en) * | 2000-05-24 | 2002-12-17 | Northwestern University | Solid state shear pulverization of multicomponent polymeric waste |
US6818173B1 (en) * | 2000-08-10 | 2004-11-16 | Northwestern University | Polymeric blends formed by solid state shear pulverization and having improved melt flow properties |
US6786988B1 (en) * | 2001-02-14 | 2004-09-07 | Mohawk Brands Inc. | Use of waste carpet as filler |
US7045590B2 (en) * | 2001-02-14 | 2006-05-16 | Mohawk Brands, Inc. | Use of waste carpet as filler |
US6513737B2 (en) | 2001-03-09 | 2003-02-04 | Illinois Institute Of Technology | Apparatus and process for pulverization of a polymeric material |
US7081217B2 (en) * | 2002-06-13 | 2006-07-25 | Dan Treleaven | Method for making plastic materials using recyclable plastics |
KR20050058506A (en) * | 2002-08-28 | 2005-06-16 | 제이에프이 엔지니어링 가부시키가이샤 | Method for recycling foamed polystyrol resin |
GB2394225A (en) * | 2002-10-16 | 2004-04-21 | Colormatrix Europe Ltd | Polymer colourant additive composition |
US20040075193A1 (en) * | 2002-10-18 | 2004-04-22 | Applied Polymer Sciences Llc. | Process for the use of polymeric materials to produce molded products |
US20040075194A1 (en) * | 2002-10-18 | 2004-04-22 | Applied Polymer Sciences Llc | Process for the use of polymeric materials to produce molded foam products |
US7087655B2 (en) * | 2002-12-16 | 2006-08-08 | Kimberly-Clark Worldwide, Inc. | Separation process for multi-component polymeric materials |
US6814826B1 (en) | 2003-03-03 | 2004-11-09 | Mohawk Brands, Inc. | Use of waste carpet as backing filler for floor coverings |
CA2527410A1 (en) * | 2003-05-27 | 2004-12-09 | Environmental Technologies Capital Partners, Llc | Liquid fertilizer incorporating biosolids and high concentrations of ammonium |
KR100501682B1 (en) * | 2003-06-20 | 2005-07-18 | 현대자동차주식회사 | Structure and manufacturing method of gasket for fuel cell |
US20050213423A1 (en) * | 2004-03-25 | 2005-09-29 | Ferencz Joseph M | Apparatus for manufacturing thermosetting powder coating compositions with dynamic control including low pressure injection system |
US7605194B2 (en) * | 2003-06-24 | 2009-10-20 | Ppg Industries Ohio, Inc. | Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates |
US20050212159A1 (en) * | 2004-03-25 | 2005-09-29 | Richards George E | Process for manufacturing powder coating compositions introducing hard to incorporate additives and/or providing dynamic color control |
US7666338B2 (en) * | 2004-03-25 | 2010-02-23 | Ppg Industries Ohio, Inc. | Focused heat extrusion process for manufacturing powder coating compositions |
US20100184911A1 (en) * | 2009-01-22 | 2010-07-22 | Ppg Industries Ohio, Inc. | Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates |
EP1741536A1 (en) * | 2005-07-06 | 2007-01-10 | Purac Biochem BV | Method for comminuting polymeric shaped articles by milling |
US20070161719A1 (en) * | 2006-01-12 | 2007-07-12 | Rauh James T | Recycling cross-linked and/or immiscible polymers through shear mastication |
CA2664587A1 (en) * | 2006-10-30 | 2008-05-08 | University Of Utah Research Foundation | Blending plastic and cellulose waste products for alternative uses |
US7758961B2 (en) * | 2007-03-22 | 2010-07-20 | Milliken & Company | Functionalized nanoparticles and their use in particle/bulk material systems |
US20080287586A1 (en) * | 2007-03-22 | 2008-11-20 | Jones Jamie N | Functionalized nanoparticles and their use in particle/bulk material systems |
JP4903808B2 (en) * | 2007-05-01 | 2012-03-28 | パナソニック株式会社 | Resin separation method |
US7968022B1 (en) | 2007-07-19 | 2011-06-28 | Advanced Environmental Recycling Technologies, Inc. | Method for processing and analyzing contaminated mixed waste plastics to produce reformulated blended feed materials having a desired rheology |
CN101468447B (en) * | 2007-12-29 | 2012-01-25 | 鸿富锦精密工业(深圳)有限公司 | Clamping fixture |
US9873770B2 (en) | 2008-01-31 | 2018-01-23 | Northwester University | Enhancing the physical properties of semi-crystalline polymers via solid state shear pulverization |
US8410245B2 (en) * | 2008-01-31 | 2013-04-02 | Northwestern University | Enhancing the physical properties of semi-crystalline polymers via solid-state shear pulverization |
US7906053B1 (en) | 2008-02-21 | 2011-03-15 | Northwestern University | Polymer-graphite nanocomposites via solid-state shear pulverization |
US8597557B1 (en) | 2008-05-05 | 2013-12-03 | Northwestern University | Solid-state shear pulverization/melt-mixing methods and related polymer-carbon nanotube composites |
US20090300982A1 (en) * | 2008-06-05 | 2009-12-10 | Chemical Products Corporation | Calcium carbonate soil amendment and industrial filler derived from carpet backing |
US8304460B2 (en) * | 2008-07-11 | 2012-11-06 | Rohm And Haas Company | Methods for making composites having thermoplastic properties from recycled crosslinked polymer |
US8597563B2 (en) * | 2008-07-11 | 2013-12-03 | Rohm And Haas Company | Recycled thermoplastic composition comprising waste thermoset material and methods of making |
US8550386B2 (en) | 2010-12-22 | 2013-10-08 | Kimberly-Clark Worldwide, Inc. | Oil absorbing material and processes of recycling absorbent articles to produce the same |
US20130099160A1 (en) * | 2011-10-19 | 2013-04-25 | Vasily A. Topolkaraev | Materials from Post-Industrial Absorbent Product Waste |
US10093035B1 (en) * | 2012-03-30 | 2018-10-09 | Northwestern University | Colorant dispersion in polymer materials using solid-state shear pulverization |
US10814529B1 (en) | 2012-03-30 | 2020-10-27 | Northwestern University | Polymer-organic matter composites using solid-state shear pulverization |
WO2014047589A1 (en) | 2012-09-21 | 2014-03-27 | Northwestern University | Peroxy-derivative functionalization of polypropylene via solid-state shear pulverization |
WO2014047591A1 (en) | 2012-09-21 | 2014-03-27 | Northwestern University | Maleic anhydride functionalization of polypropylene via solid-state shear pulverization |
US20150027037A1 (en) * | 2013-07-25 | 2015-01-29 | Mark A. McMillan | Process for treating municipal solid waste |
WO2015019212A1 (en) | 2013-08-09 | 2015-02-12 | Kimberly-Clark Worldwide, Inc. | Polymeric material for three-dimensional printing |
US9957366B2 (en) | 2013-08-09 | 2018-05-01 | Kimberly-Clark Worldwide, Inc. | Technique for selectively controlling the porosity of a polymeric material |
MX364997B (en) | 2013-08-09 | 2019-05-16 | Kimberly Clark Co | Anisotropic polymeric material. |
RU2634255C2 (en) | 2013-08-09 | 2017-10-24 | Кимберли-Кларк Ворлдвайд, Инк. | Delivery system for active means |
WO2015019213A1 (en) | 2013-08-09 | 2015-02-12 | Kimberly-Clark Worldwide, Inc. | Microparticles having a multimodal pore distribution |
WO2015034889A2 (en) | 2013-09-04 | 2015-03-12 | Zzyzx Polymers LLC | Methods for increasing throughput rates of solid-state extrusion devices |
US10975228B2 (en) | 2015-06-15 | 2021-04-13 | Imertech Sas | Compositions for injection moulding |
WO2017035367A1 (en) | 2015-08-25 | 2017-03-02 | Northwestern University | Direct use of natural antioxidant-rich agro-wastes as thermal stabilizers for polymers |
US10633506B2 (en) * | 2015-09-01 | 2020-04-28 | Stuart D. Frenkel | Reconstituted composite materials derived from waste made by solid state pulverization |
EP3439846A1 (en) | 2016-04-06 | 2019-02-13 | Zzyzx Polymers LLC | Processable polymers and methods of making and using |
RS57664B1 (en) * | 2016-12-23 | 2018-11-30 | Miroslav Filep | A filled plastic profile |
BR112020000831A2 (en) | 2017-07-28 | 2020-07-21 | Kimberly-Clark Worldwide, Inc. | absorbent article. |
EP3706927A4 (en) * | 2017-11-08 | 2021-07-21 | Continuus Materials Holdings, LLC | Converting recyclable materials into manufacturing products |
KR102294696B1 (en) | 2018-06-27 | 2021-08-30 | 킴벌리-클라크 월드와이드, 인크. | Nanopore Superabsorbent Particles |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3102716A (en) * | 1955-06-22 | 1963-09-03 | Frenkel Ag C D | Apparatus for mixing |
US3104426A (en) * | 1961-01-05 | 1963-09-24 | Wellman Combing Company | Method for forming wool slivers |
US3161437A (en) * | 1963-01-08 | 1964-12-15 | Robert G Letourneau | Operating mechanism for dump vehicle |
US3342901A (en) * | 1963-01-28 | 1967-09-19 | Phillips Petroleum Co | Blending of thermoplastic material |
GB1132898A (en) * | 1965-08-13 | 1968-11-06 | Werner & Pfleiderer | Multi-stage screw treatment device |
CH512987A (en) * | 1969-09-04 | 1971-09-30 | Buehler Ag Geb | Method and device for the injection molding of plastic into foamed objects |
US3874835A (en) * | 1971-04-02 | 1975-04-01 | Welding Engineers | Face-cutting apparatus for forming pellets |
US3976730A (en) * | 1972-03-23 | 1976-08-24 | Deerfield Plastics Co., Inc. | Method of employing a high percentage of reground thermoplastic scrap resin in an extruder |
GB1424768A (en) * | 1972-08-14 | 1976-02-11 | Kobe Steel Ltd | Process and an apparatus for pulverizing materials |
US3814566A (en) * | 1972-10-31 | 1974-06-04 | Union Carbide Corp | Apparatus for continuously converting mesophase pitch into a highly oriented structure |
US4181647A (en) * | 1973-01-11 | 1980-01-01 | Phillips Cables Limited | Process for extrusion coating of a wire with a cellular thermoplastic resin material |
FR2280492A1 (en) * | 1974-07-31 | 1976-02-27 | Emery Guy | PROCESS AND INSTALLATION FOR RECOVERING MIXED PLASTIC MATERIALS, FROM ALL SOURCES |
FR2296513A1 (en) * | 1974-12-31 | 1976-07-30 | Inst Nat Rech Chimique | MANUFACTURING PROCESS OF FINISHED OR SEMI-FINISHED PRODUCTS FROM MIXTURES OF WASTE OF DIFFERENT SYNTHETIC RESINS |
US5026512A (en) * | 1975-08-30 | 1991-06-25 | Chang Shao C | Method for manufacturing molded products of thermoplastic and inorganic materials |
BE833543A (en) * | 1975-09-18 | 1976-03-18 | PROCESS FOR MAKING THERMOPLASTIC POLYMER ALLOYS | |
GB1554858A (en) * | 1975-10-08 | 1979-10-31 | Dunlop Ltd | Method and apparatus for the recovery of vulcanised elastomeric material |
CA1074780A (en) * | 1976-07-14 | 1980-04-01 | Frenkel C-D Aktiengesellschaft | Opposite handed variable groove threaded screw and barrel transfer mixer |
US4098463A (en) * | 1977-02-03 | 1978-07-04 | Metals & Plastics, Inc. | Temperature-controlled comminuting method and apparatus |
US4118163A (en) * | 1977-07-11 | 1978-10-03 | Owens-Illinois, Inc. | Plastic extrusion and apparatus |
CA1161231A (en) * | 1980-12-10 | 1984-01-31 | Phillips Cables Limited | Screw extruder |
JPS5887013A (en) * | 1981-11-18 | 1983-05-24 | Japan Steel Works Ltd:The | Continuous kneading and granulating apparatus |
US4511091A (en) * | 1983-01-06 | 1985-04-16 | Augusto Vasco | Method and apparatus for recycling thermoplastic scrap |
RU1213612C (en) * | 1983-05-05 | 1993-11-15 | Институт Химической Физики Ан Ссср | Method of producing powder materials from thermoplasts |
DE3332629A1 (en) * | 1983-09-09 | 1985-03-28 | Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover | METHOD AND DEVICE FOR POWDERING POLYMERS |
US4875847A (en) * | 1984-04-23 | 1989-10-24 | Wenger Manufacturing, Inc. | Twin-screw extruder having respective conical nose screw sections |
FI854087L (en) * | 1984-10-22 | 1986-04-23 | Rosendahl Masch Gmbh | FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV EN FOERNAETAD EXTRUDERAD ELLER SPRUTGJUTEN PRODUKT. |
US4607796A (en) * | 1984-11-30 | 1986-08-26 | Nauchno-Proizvodstvennoe Obiedinenie "Norplast" | Method of making powder from rubber and vulcanization products |
US4650126A (en) * | 1984-12-26 | 1987-03-17 | E. I. Du Pont De Nemours And Company | Process for ambient temperature grinding of soft polymers |
US4772430A (en) * | 1985-01-11 | 1988-09-20 | Jgc Corporation | Process for compacting and solidifying solid waste materials, apparatus for carrying out the process and overall system for disposal of such waste materials |
US4708617A (en) * | 1986-06-06 | 1987-11-24 | Mobil Oil Corporation | Screw extruder with a rotatable barrel section |
FR2622833B1 (en) * | 1987-11-06 | 1990-04-27 | Omnium Traitement Valorisa | PROCESS AND INSTALLATION FOR THE MANUFACTURE OF MOLDED OR EXTRUDED OBJECTS FROM WASTE CONTAINING PLASTIC MATERIALS |
IT1223646B (en) * | 1988-03-21 | 1990-09-29 | Tecnocolor Sas Di Celebrano A | PROCEDURE FOR THE USE OF MIXED THERMOPLASTIC MATERIALS COMING FROM SOLID URBAN WASTE AND / OR INDUSTRIAL WASTE |
US4917834A (en) * | 1988-11-16 | 1990-04-17 | General Technology Applications, Inc. | Method for forming homogeneous blends of particulate materials |
US4997131A (en) * | 1989-09-07 | 1991-03-05 | L. R. Nelson Corporation | Ball valve pistol nozzle |
DE3931652A1 (en) * | 1989-09-22 | 1991-04-04 | Basf Ag | METHOD FOR PRODUCING THERMOPLASTIC PLASTICS FILLED WITH CERAMIC POWDERS |
US5088914A (en) * | 1990-05-11 | 1992-02-18 | Romano Brambilla | Double flighted extrusion screw |
DE4130315C1 (en) * | 1991-03-18 | 1993-01-14 | Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De | Prodn. of mono:dispersed thermoplastic fine powder - by feeding to extruder and grinding while controlling temp., cooling in vortex zone and re-grinding coarse particles |
US5397065A (en) * | 1992-11-03 | 1995-03-14 | Illinois Institute Of Technology | Solid state shear extrusion pulverization |
EP0596835B1 (en) * | 1992-11-03 | 1997-08-06 | Illinois Institute Of Technology | Solid state shear extrusion pulverization |
US5395055A (en) * | 1992-11-03 | 1995-03-07 | Illinois Institute Of Technology | Solid state shear extrusion pulverization |
US5704555A (en) | 1993-08-02 | 1998-01-06 | Illinois Institute Of Technology | Single-screw extruder for solid state shear extrusion pulverization and method |
US6494390B1 (en) * | 2000-05-24 | 2002-12-17 | Northwestern University | Solid state shear pulverization of multicomponent polymeric waste |
-
1994
- 1994-12-01 WO PCT/US1994/013972 patent/WO1995015819A1/en not_active Application Discontinuation
- 1994-12-01 CA CA 2192336 patent/CA2192336C/en not_active Expired - Fee Related
- 1994-12-01 EP EP95904236A patent/EP0731733A4/en not_active Ceased
-
1996
- 1996-04-26 US US08/639,344 patent/US5814673A/en not_active Expired - Lifetime
-
1998
- 1998-01-26 US US09/013,180 patent/US6180685B1/en not_active Expired - Lifetime
-
2001
- 2001-10-11 US US09/975,402 patent/US20020115749A1/en not_active Abandoned
-
2002
- 2002-10-23 US US10/277,980 patent/US6849215B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040196462A1 (en) * | 2001-05-23 | 2004-10-07 | Klaus Schultheiss | Method for coloring plastic by using plastic recycling material |
US20050148732A1 (en) * | 2003-12-30 | 2005-07-07 | Thomas Oomman P. | Elastomer compositions and method of making them |
US7247675B2 (en) | 2003-12-30 | 2007-07-24 | Kimberly-Clark Worldwide, Inc. | Elastomer compositions and method of making them |
US8722163B2 (en) | 2011-09-16 | 2014-05-13 | Pepsico, Inc. | Recyclable colorants in plastic beverage containers |
CN106867248A (en) * | 2017-02-23 | 2017-06-20 | 陈耿龙 | A kind of secondary material modified technique of engineering plastics |
Also Published As
Publication number | Publication date |
---|---|
US6180685B1 (en) | 2001-01-30 |
US20030141623A1 (en) | 2003-07-31 |
EP0731733A1 (en) | 1996-09-18 |
CA2192336A1 (en) | 1995-06-15 |
CA2192336C (en) | 1999-10-26 |
EP0731733A4 (en) | 1997-07-09 |
WO1995015819A1 (en) | 1995-06-15 |
US5814673A (en) | 1998-09-29 |
US6849215B2 (en) | 2005-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6849215B2 (en) | Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization | |
US6797216B2 (en) | Processes of mixing, compatibilizing, and/or recycling blends of polymer materials through solid state shear pulverization, and products by such processes | |
US6494390B1 (en) | Solid state shear pulverization of multicomponent polymeric waste | |
US20200199324A1 (en) | Reconstituted composite materials derived from waste made by solid state pulverization | |
US6818173B1 (en) | Polymeric blends formed by solid state shear pulverization and having improved melt flow properties | |
KR101427816B1 (en) | Method and device for injection molding plastic material | |
CA2153450C (en) | Method for preparing automobile shredder residue-synthetic plastic material composite | |
Khait et al. | Solid-state shear pulverization of plastics: a green recycling process | |
Tesfaw et al. | Evaluation of tensile and flexural strength properties of virgin and recycled high-density polyethylene (HDPE) for pipe fitting application | |
US20070161719A1 (en) | Recycling cross-linked and/or immiscible polymers through shear mastication | |
CN100592979C (en) | Polyolefin complete transparent master batch and preparation thereof | |
KR0139884B1 (en) | Waste-crosslink-polyethylene resin composition | |
JP3220141B2 (en) | Direct manufacturing | |
Khait et al. | A New Polymer Processing Technology for Polymer Blends with Unmatched Viscosity: Solid-State Shear Pulverization (S3P) | |
KR100451055B1 (en) | Method for preparing injection molding material having low expansion and superior heat-resistance properties | |
KR102645523B1 (en) | Method for manufacturing recycled polypropylene composite material for automobile parts | |
CN205364303U (en) | Compound regeneration facility of waste plastic recovery | |
CARR | CONVENTIONAL METHODS OF POWDER PRODUCTION: of its variability, contaminants, and presence of different types of single | |
Tall | Recycling of mixed plastic waste | |
Khait | Environmentally Sound, Cost Effective Technology for Recycling Mixed Plastic and Rubber Waste | |
Khait et al. | S3P TECHNOLOGY AND VIRGIN POLYMERS: of applications from decorative of deep-draw hollow parts of these methods and their high use of energy. These | |
KR19980055638A (en) | Recycling Car Carpet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |