US20020110560A1 - Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals - Google Patents
Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals Download PDFInfo
- Publication number
- US20020110560A1 US20020110560A1 US10/117,022 US11702202A US2002110560A1 US 20020110560 A1 US20020110560 A1 US 20020110560A1 US 11702202 A US11702202 A US 11702202A US 2002110560 A1 US2002110560 A1 US 2002110560A1
- Authority
- US
- United States
- Prior art keywords
- mammals
- inhibitor
- dipeptidyl peptidase
- activity
- blood glucose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 45
- 239000008103 glucose Substances 0.000 title claims abstract description 45
- 239000008280 blood Substances 0.000 title claims abstract description 32
- 210000004369 blood Anatomy 0.000 title claims abstract description 31
- 241000124008 Mammalia Species 0.000 title claims abstract description 23
- 239000012636 effector Substances 0.000 title abstract description 20
- 102000016622 Dipeptidyl Peptidase 4 Human genes 0.000 title description 8
- 101000930822 Giardia intestinalis Dipeptidyl-peptidase 4 Proteins 0.000 title description 8
- 102000004190 Enzymes Human genes 0.000 claims abstract description 37
- 108090000790 Enzymes Proteins 0.000 claims abstract description 37
- 230000000694 effects Effects 0.000 claims abstract description 33
- 239000000859 incretin Substances 0.000 claims abstract description 17
- 102000003779 Dipeptidyl-peptidases and tripeptidyl-peptidases Human genes 0.000 claims abstract description 15
- 108090000194 Dipeptidyl-peptidases and tripeptidyl-peptidases Proteins 0.000 claims abstract description 15
- 238000001727 in vivo Methods 0.000 claims abstract description 10
- 230000000291 postprandial effect Effects 0.000 claims abstract 3
- 239000003112 inhibitor Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 12
- 206010012601 diabetes mellitus Diseases 0.000 claims description 8
- 230000004060 metabolic process Effects 0.000 claims description 6
- -1 pseudosubstrates Substances 0.000 claims description 6
- 230000005856 abnormality Effects 0.000 claims description 5
- 201000001421 hyperglycemia Diseases 0.000 claims description 5
- 208000010444 Acidosis Diseases 0.000 claims description 4
- 206010018473 Glycosuria Diseases 0.000 claims description 4
- 206010027417 Metabolic acidosis Diseases 0.000 claims description 4
- 108091008324 binding proteins Proteins 0.000 claims description 4
- 230000035780 glucosuria Effects 0.000 claims description 4
- 230000001575 pathological effect Effects 0.000 claims description 4
- 208000031226 Hyperlipidaemia Diseases 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- MGXWVYUBJRZYPE-YUGYIWNOSA-N incretin Chemical class C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=C(O)C=C1 MGXWVYUBJRZYPE-YUGYIWNOSA-N 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 4
- 102000014914 Carrier Proteins Human genes 0.000 claims 2
- 229940088598 enzyme Drugs 0.000 description 24
- ARNUPLMOASAEAN-ASLNEKEESA-N (2s,3s)-2-amino-3-methyl-1-(1,3-thiazolidin-2-yl)pentan-1-one Chemical compound CC[C@H](C)[C@H](N)C(=O)C1NCCS1 ARNUPLMOASAEAN-ASLNEKEESA-N 0.000 description 20
- 108090000765 processed proteins & peptides Proteins 0.000 description 20
- 102000004196 processed proteins & peptides Human genes 0.000 description 17
- 241001465754 Metazoa Species 0.000 description 15
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 13
- 230000009467 reduction Effects 0.000 description 13
- 230000015556 catabolic process Effects 0.000 description 10
- 238000006731 degradation reaction Methods 0.000 description 10
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 9
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 9
- 230000036772 blood pressure Effects 0.000 description 8
- NJFKAKRPIBPWCO-ZICNZCGDSA-N (2s,3s)-2-amino-3-methyl-1-(1,3-thiazolidin-2-yl)pentan-1-one;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.CC[C@H](C)[C@H](N)C(=O)C1NCCS1 NJFKAKRPIBPWCO-ZICNZCGDSA-N 0.000 description 7
- 108010004460 Gastric Inhibitory Polypeptide Proteins 0.000 description 7
- 102100039994 Gastric inhibitory polypeptide Human genes 0.000 description 7
- 102000035195 Peptidases Human genes 0.000 description 7
- 108091005804 Peptidases Proteins 0.000 description 7
- 230000001684 chronic effect Effects 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 229940125396 insulin Drugs 0.000 description 7
- 102000004877 Insulin Human genes 0.000 description 6
- 108090001061 Insulin Proteins 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000011680 zucker rat Methods 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000003914 insulin secretion Effects 0.000 description 5
- 230000002473 insulinotropic effect Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 230000035488 systolic blood pressure Effects 0.000 description 5
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 5
- 108010016626 Dipeptides Proteins 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108010088406 Glucagon-Like Peptides Proteins 0.000 description 3
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 description 3
- 102000056251 Prolyl Oligopeptidases Human genes 0.000 description 3
- 101710178372 Prolyl endopeptidase Proteins 0.000 description 3
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000002532 enzyme inhibitor Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 230000006362 insulin response pathway Effects 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 239000000813 peptide hormone Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 229940123208 Biguanide Drugs 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 102000005927 Cysteine Proteases Human genes 0.000 description 2
- 108010005843 Cysteine Proteases Proteins 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 102000012479 Serine Proteases Human genes 0.000 description 2
- 108010022999 Serine Proteases Proteins 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 150000004283 biguanides Chemical class 0.000 description 2
- 102000023732 binding proteins Human genes 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000003305 oral gavage Methods 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 238000011552 rat model Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 108010087967 type I signal peptidase Proteins 0.000 description 2
- YPTJKHVBDCRKNF-UHFFFAOYSA-N 2',6'-Dihydroxyacetophenone Chemical compound CC(=O)C1=C(O)C=CC=C1O YPTJKHVBDCRKNF-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 244000302413 Carum copticum Species 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 102000018389 Exopeptidases Human genes 0.000 description 1
- 108010091443 Exopeptidases Proteins 0.000 description 1
- 102400000322 Glucagon-like peptide 1 Human genes 0.000 description 1
- 101800000224 Glucagon-like peptide 1 Proteins 0.000 description 1
- 108010010369 HIV Protease Proteins 0.000 description 1
- FRJIAZKQGSCKPQ-FSPLSTOPSA-N His-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CN=CN1 FRJIAZKQGSCKPQ-FSPLSTOPSA-N 0.000 description 1
- 108010016183 Human immunodeficiency virus 1 p16 protease Proteins 0.000 description 1
- 101150031639 IV gene Proteins 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- 206010054805 Macroangiopathy Diseases 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- 102000003797 Neuropeptides Human genes 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 108010067035 Pancrelipase Proteins 0.000 description 1
- 108010084214 Peptide PHI Proteins 0.000 description 1
- 239000000132 Peptide PHI Substances 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 108050005913 Proline-specific peptidases Proteins 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000001980 alanyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- XXXHSQBVHSJQKS-UHFFFAOYSA-N amino benzoate Chemical compound NOC(=O)C1=CC=CC=C1 XXXHSQBVHSJQKS-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940127088 antihypertensive drug Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000001609 comparable effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 108010040030 histidinoalanine Proteins 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940124589 immunosuppressive drug Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229950003188 isovaleryl diethylamide Drugs 0.000 description 1
- 210000001821 langerhans cell Anatomy 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000006371 metabolic abnormality Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 238000007410 oral glucose tolerance test Methods 0.000 description 1
- YLBIOQUUAYXLJJ-WZUUGAJWSA-N peptide histidine methionine Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)C(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 YLBIOQUUAYXLJJ-WZUUGAJWSA-N 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000029537 positive regulation of insulin secretion Effects 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/426—1,3-Thiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/401—Proline; Derivatives thereof, e.g. captopril
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/02—Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
Definitions
- the present invention relates to a novel method for the reduction in the concentration of circulating blood glucose and blood pressure by applying activity lowering effectors (substrates, pseudosubstrates, inhibitors, binding proteins, antibodies and the like) of enzymes with similar or identical activity to the enzymatic activity of the enzyme Dipeptidyl Peptidase IV.
- activity lowering effectors substrates, pseudosubstrates, inhibitors, binding proteins, antibodies and the like
- proteases resulting in the specific degradation of proteins are known which are involved in the functional regulation (activation, deactivation or modulation) of endogenous peptides.
- KIRSCHKE, H., LANGNER, J., RIEMANN, S., WIEDERANDERS, B., ANSORGE, S. and BOHLEY P., Lysosomal cysteine proteases. Excerpta Medica (Ciba Foundation Symposium 75), 15 (1980); KR ⁇ USSLICH, H. -G. and WIMMER, E., Viral Proteinases. Ann. Rev. Biochem. 57, 701 (1987)].
- proline-specific peptidases have been discussed as having a similar function to the signal peptidases in the regulation of biologically active peptides.
- YARON, A. The Role of Proline in the Proteolytic Regulation of Biologically Active Peptides. Biopolymers 26, 215 (1987); WALTER, R., SIMMONS, W. H. and YOSHIMOTO, T., Proline Specific Endo- and Exopeptidases. Mol. Cell. Biochem.
- proline determines in such peptides both their conformation and stability, preventing degradation by non-specific proteases., [KESSLER, H., Conformation and biological activity. Angew. Chem. 94, 509 (1982)].
- enzymes that are capable of highly specific actions on proline-containing sequences are attractive targets of medicinal chemistry.
- PEP Prolyl Endopeptidase
- DP IV Dipeptidyl Peptidase IV
- DP IV or DP IV-like activity i.e. the cytosolic DP II possesses almost identical substrate specificity to DP IV
- present in the circulation is highly specific in releasing dipeptides from the N-terminal end of biologically active peptides with proline or alanine in the penultimate position of the N-terminal sequence of the peptide substrate.
- this enzyme is involved in the regulation of the activity of polypeptides in vivo [VANHOOF, G., GOOSSENS, F., DE MEESTER, I., HENDRIKS, D. and SCHARPÉ, S., Proline motifs and their biological processing, FASEB Journal 9, 736 (1995)].
- the glucose-dependent insulinotropic polypeptides Gastric Inhibitory Polypeptide 1-42 (GIP- 1-42 ) and Glucagon-Like Peptide Amide-1 7-36 (GLP-1 7-36 ), are hormones which potentiate glucose-induced insulin secretion from the pancreas (incretins), and are substrates of DP IV.
- the enzyme releases the dipeptides tyrosinyl-alanine and histidylalanine, respectively from the N-termini of these peptides both in vitro and in vivo.
- GIP- 1-42 Gastric Inhibitory Polypeptide 1-42
- GLP-1 7-36 Glucagon-Like Peptide Amide-1 7-36
- the enzyme releases the dipeptides tyrosinyl-alanine and histidylalanine, respectively from the N-termini of these peptides both in vitro and in vivo.
- Dipeptidyl Peptidase IV hydrolyzes gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829 (1993)].
- non-insulin dependent Diabetes mellitus is associated with insulin resistance and insulin secretion which is inappropriate for the prevailing glucose concentration, and which may be partially related to protease-mediated abnormalities in the concentration of circulating incretins [BROWN, J. C., DAHL, M., KWAWK, S., MCINTOSH, C. H. S., OTTE, S. C. and PEDERSON, R. A. Peptides 2, 241 (1981); SCHMIDT, W. E., SIEGEL, E. G., GALLWITZ, B. KUMMEL, H., EBERT, R.
- Insulin-dependent Diabetes mellitus is currently treated through the administration of insulin (isolated from bovine or porcine pancreases or produced as a recombinant molecule) to patients using different forms of administration.
- Non-insulin-dependent Diabetes mellitus NIDDM
- NIDDM Non-insulin-dependent Diabetes mellitus
- NIDDM is treated by diet, administration of sulphonylureas to stimulate insulin secretion or with biguanides to increase glucose uptake.
- Resistant individuals may need insulin therapy.
- Traditional, as well as more modern, methods for the treatment of IDDM are characterized by a great deal of effort on behalf of the patient, high costs, and usually a drastic reduction in the quality of living of the patient. Standard therapy (daily i.v.
- the present invention relates to a novel method in which reduction of the activity of the enzyme Dipeptidyl Peptidase (DP IV or CD 26), or of DP IV-like enzyine activity, in the blood of mammals by specific enzyme effectors will result in a reduced degradation of the endogenous, or exogenously administrated, insulinotropic peptides (incretins), Gastric Inhibitory Polypeptide/Glucose-dependent Insulinotropic Polypeptide 1-42 (GIP 1-42 ) and Glucagon-like Peptide-1 7-36 amide (GLP-1 7-36 ) (or analogs of these peptides).
- the decrease in concentration of these peptides or their analogs, resulting from degradation by DP IV and DP IV-like enzymes, will be thus be reduced or delayed.
- metabolic abnormalities associated with Diabetes mellitus including abnormalities of carbohydrate and lipid metabolism, glucosuria and severe metabolic acidosis, and chronic alterations such as microvascular and macrovascular disease and polyneuropathy, which are the consequence of prolonged, elevated circulating glucose concentrations, are prevented or alleviated and in particular blood pressure levels are reduced.
- the present invention is a new approach to lowering elevated concentrations of blood glucose. It is simple, commercially useful, and is suitable to be used in the therapy, especially of human diseases, which are caused by elevated or extraordinary blood glucose and/or blood pressure levels.
- FIG. 1 shows MALDI-TOF—analysis of the DP IV-catalyzed hydrolysis of GIP 1-42 (a) and GLP- 7-36 and their inhibition by isoleucyl thiazolidine (b).
- FIG. 2 shows HPLC—analysis of the serum presence of GLP-1 metabolites in presence of the DP IV inhibitor isoleucyl thiazolidine in vivo.
- FIG. 3 shows influence of the DP IV-inhibitor isoleucyl thiazolidine on different blood parameter of the i.d.—glucose-stimulated rat.
- FIG. 4 shows influence of chronic oral treatment of fatty (fa/fa) VDF Zucker rats by the DP IV-inhibitor isoleucyl thiazolidine on the fasting blood glucose during 12 weeks of drug application.
- FIG. 5 Influence of chronic treatment of fatty (fa/fa) VDF Zucker rats by the DP IV-inhibitor isoleucyl thiazolidine on the systolic blood pressure within 8 weeks of drug application (systolic blood pressure was measured using the tail-cuff procedure).
- the aim of the present invention is a simple and new method to lower the level of blood glucose and/or blood pressure in which reduction in the activity of the enzyme Dipeptidyl Peptidase (DP IV or CD 26) or of DP IV-like enzyme activity in the blood of mammals induced by effectors of the enzyme will lead to a reduced degradation of the endogenous (or exogenously administrated) insulinotropic peptides Gastric Inhibitory Polypeptide 1-42 (GIP 1-42 ) and Glucagon-Like Peptide Amide-1 7-36 (GLP-1 7-36 ) (or analogs of these peptides). The decrease in concentration of these peptides or their analogs, normally resulting from degradation by DP IV and DP IV-like enzymes, will thus be reduced or delayed.
- Dipeptidyl Peptidase DP IV or CD 26
- DP IV-like enzyme activity in the blood of mammals induced by effectors of the enzyme will lead to a reduced degradation of the endogenous (or exogenously administrate
- the present invention is based on the striking finding that a reduction in the circulating enzymatic activity of Dipeptidyl Peptidase (DP IV or CD 26) or of DP IV-like enzyme activity in the blood of mammals results in an improved glucose tolerance.
- the invention concerns the use of effectors of Dipeptidyl Peptidase (DP IV) or of DP IV-like enzyme activity, for lowering of elevated blood glucose and/or blood pressure levels, such as those found in mammals demonstrating clinically inappropriate basal and post-prandial hyperglycemia.
- the use according to the invention is more specifically characterized by the administration of effectors of DP IV or of DP IV-analogous enzyme activity in the prevention or alleviation of pathological abnormalities of Metabolism of mammals such as glucosuria, hyperlipidaemia, metabolic acidosis and diabetes mellitus.
- the invention concerns a method of lowering elevated blood glucose levels in mammals.
- DP IV Dipeptidyl Peptidase
- the invention concerns effectors of Dipeptidyl Peptidase (DP IV) or of DP IV-like enzyme activity for use in a method of lowering elevated blood glucose and/or blood pressure levels in mammals, such as those found in mammals demonstrating clinically inappropriate basal and post-prandial hyperglycemia.
- DP IV Dipeptidyl Peptidase
- DP IV-like enzyme activity for use in a method of lowering elevated blood glucose and/or blood pressure levels in mammals, such as those found in mammals demonstrating clinically inappropriate basal and post-prandial hyperglycemia.
- the administered effectors of DP IV and DP IV-like enzymes according to this invention may be employed in pharmaceutical formulations as enzyme inhibitors, substrates, pseudosubstrates, inhibitors of DP IV gene expression, binding proteins or antibodies of the target enzyme proteins or as a combination of such different compounds, which reduce DP IV and DP IV-like protein concentration or enzyme activity in mammals.
- Effectors according to the invention are, for instance, DP IV-inhibitors such as dipeptide derivatives or dipeptide mimetics as alanyl pyrolidide, isoleucyl thiazolidine as well as the pseudosubstrate N-valyl prolyl, O-benzoyl hydroxylamin.
- DP IV-inhibitors such as dipeptide derivatives or dipeptide mimetics as alanyl pyrolidide, isoleucyl thiazolidine as well as the pseudosubstrate N-valyl prolyl, O-benzoyl hydroxylamin.
- Such compounds are known
- the method according to the present invention is a new approach to the reduction of elevated circulating glucose concentration in the blood of mammals and to reducing blood pressure levels.
- the method is simple, commercially useful and appropriate for use in therapy, especially of human diseases, which are caused by elevated or inappropriate blood glucose levels.
- the effectors are administrated in the form of pharmaceutical preparations containing the effector in combination with state-of-the-art materials for drug delivery.
- the effectors are administered either parenterally (i.v. in physiological saline solution) or enterally oral, formulated with usual carrier materials, like e.g., glucose.
- Such dosage range may vary from 0.1 mg to 10.0 mg of effector compound per kilogram, e.g. in the case of the aminoacyl thiazolidines as inhibitors of DP IV.
- Samples of the incubation assays (in the case of GIP 1-42 2.5 pmol and in the case of GLP-1 7-36 7.5 pmol) have been withdrawn after different time intervals. Samples were cocrystallized using 2′,6′-dihydroxyacetophenon as matrix and analyzed by MALDI-TOF-mass spectrometry. Spectra (FIG. 1) display accumulations of 250 single laser shots per sample.
- test and control animals received a further i.v. injection of 50-100 pM 125 I-GLP-1 7-36 (specific activity about 1 ⁇ Ci/pM) 20 min after an initial i.v.-inhibitor and/or saline administration. Blood samples were collected after 2-5 min incubation time and the plasma was extracted using 20% acetonitrile. Subsequently, the peptide extract was separated on RP-HPLC. Multiple fractions of eluent were collected between 12-18 min and counted on a ⁇ -counter. Data are expressed as counts per minute (cpm) relative to the maximum.
- cpm counts per minute
- the figure shows circulating glucose and insulin responses to intraduodenal (i.d.) administration of glucose to rats in the presence or absence of isoleucyl thiazolidine (0.1 mg per kg).
- i.d. intraduodenal
- B plasma-activated protein
- C blood glucose level
- Protocol for daily monitoring and drug administration The treatment group received 10 mg/kg isoleucyl thiazolidine fumarate by oral gavage twice daily (8:00 a.m. and 5:00 p.m.) for 100 days, while the control animals received concurrent doses of vehicle consisting of a 1% cellulose solution. Every two days, body weight, morning and evening blood glucose, and food and water intake were assessed. Blood samples for glucose determination were acquired from tail bleeds, and measured using a SureStep glucose analyzer (Lifescan Canada Ltd., Burnaby).
- Protocol for monthly assessment of glucose tolerance Every four weeks from the start of the experiment, an oral glucose tolerance test (OGTT) was performed: animals were fasted for 18 hours following the 1700 h dosing and administered 1 g/kg glucose orally. This time period is equivalent to ⁇ 12 circulating half-lives of isoleucyl thiazolidine fumarate.
- OGTT oral glucose tolerance test
- Protocol for daily monitoring and drug administration The treatment group received 10 mg/kg isoleucyl thiazolidine fumarate by oral gavage twice daily (8:00 a.m. and 5:00 p.m.) for 100 days, while the control animals received concurrent doses of vehicle consisting of a 1% cellulose solution. Systolic blood pressure was measured weekly using the tail-cuff procedure.
- the test group additionally obtained an infusion of the inhibitor of 0.75 M/min over 30 min experimental time (*).
- the control group received during the same time interval an infusion of inhibitor-free 0.9% saline solution.
- At starting time t 0 all animals were administered an i.d. glucose dose of 1 g/kg 40% dextrose solution (w/v). Blood samples were collected of all test animals in 10 min time intervals.
- Glucose was analyzed using whole blood (Lifescan One Touch II analyzer) while DP IV-activity and insulin concentration were analyzed in plasma.
- the insulin radioimmunoassay was sensitive over that range 10 and 160 mU/ml [PEDERSON, R. A., BUCHAN, A. M. J., ZAHEDI-ASH, S., CHEN, C. B. & BROWN, J. C. Reg. Peptides. 3, 53-63 (1982)].
- DP IV-activity was estimated spectrophotometrically [DEMUTH, H. -U. and HEINS, J., On the catalytic Mechanism of Dipeptidyl Peptidase IV.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Diabetes (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Dermatology (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Thiazole And Isothizaole Compounds (AREA)
Abstract
Description
- This is a Continuation of application Ser. No. 09/932,546 filed Aug. 17, 2001, which is a Continuation-In-Part of application Ser. No. 09/155,833 filed Oct. 6, 1998, which issued Oct. 16, 2001 as U.S. Pat. No. 6,303,661.
- The present invention relates to a novel method for the reduction in the concentration of circulating blood glucose and blood pressure by applying activity lowering effectors (substrates, pseudosubstrates, inhibitors, binding proteins, antibodies and the like) of enzymes with similar or identical activity to the enzymatic activity of the enzyme Dipeptidyl Peptidase IV.
- Besides proteases involved in non-specific proteolysis, proteases resulting in the specific degradation of proteins are known which are involved in the functional regulation (activation, deactivation or modulation) of endogenous peptides. [KIRSCHKE, H., LANGNER, J., RIEMANN, S., WIEDERANDERS, B., ANSORGE, S. and BOHLEY, P., Lysosomal cysteine proteases.Excerpta Medica (Ciba Foundation Symposium 75), 15 (1980); KRÄUSSLICH, H. -G. and WIMMER, E., Viral Proteinases. Ann. Rev. Biochem. 57, 701 (1987)].
- Such convertases, signal peptidases, or enkephalinases have been discovered in the immune system and as a result of neuropeptide research [GOMEZ, S., GLUSCHANKOF, P., LEPAGE, A., MARRAKCHI, N. and COHEN, P.,Proc. Natl. Acad. Sci. USA 85, 5468 (1988); ANSORGE, S. and SCHÖN, E., Histochem. 82, 41 (1987)].
- Since the amino acid proline, which is extraordinarily abundant in numerous peptide hormones, determines certain structural properties of these peptides, proline-specific peptidases have been discussed as having a similar function to the signal peptidases in the regulation of biologically active peptides. [YARON, A., The Role of Proline in the Proteolytic Regulation of Biologically Active Peptides.Biopolymers 26, 215 (1987); WALTER, R., SIMMONS, W. H. and YOSHIMOTO, T., Proline Specific Endo- and Exopeptidases. Mol. Cell. Biochem. 30, 111 (1980); VANHOOF, G., GOOSSENS, F., DE MEESTER, I., HENDRIKS, D. and SCHARPÉ, S., Proline motifs and their biological processing. FASEB Journal 9, 736 (1995)]. As a result of its exceptional structure, proline determines in such peptides both their conformation and stability, preventing degradation by non-specific proteases., [KESSLER, H., Conformation and biological activity. Angew. Chem. 94, 509 (1982)]. In contrast, enzymes that are capable of highly specific actions on proline-containing sequences (including HIV-protease, cyclophylin, etc) are attractive targets of medicinal chemistry. In particular, the activity of post-proline-cleaving peptidases, such as Prolyl Endopeptidase (PEP) and Dipeptidyl Peptidase IV (DP IV), has been linked to the modulation of the biological activity of natural peptide substrates and their selective cleavage by these enzymes. It has been shown that PEP is involved in memory and learning, and that DP IV participates in signal transduction during the immune response [ISHIURA, S., TSUKAHARA, T., TABIRA, T., SHIMIZU, T., ARAHATA K. and SUGITA, H., FEBS-Letters 260, 131 (1990); HEGEN, M., NIEDOBITEK, G., KLEIN, C. E., STEIN, H. and FLEISCHER, B., J. of Immunology 144, 2908 (1990)].
- In addition to their high proline specificity these enzymes are capable of selectively recognizing and cleaving peptide bonds containing the amino acid alanine in typical substrates. It is at present under discussion as to whether alanine-containing peptides adopt similar conformations to structurally related proline-containing peptides. Recently, such properties have been described by point mutation experiments involving the exchange of proline and alanine in proteins [DODGE, R. W. and SCHERAGA, H. A., Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A.Biochemistry 35 (5) 1548 (1996)].
- DP IV or DP IV-like activity (i.e. the cytosolic DP II possesses almost identical substrate specificity to DP IV) present in the circulation is highly specific in releasing dipeptides from the N-terminal end of biologically active peptides with proline or alanine in the penultimate position of the N-terminal sequence of the peptide substrate. Hence, it has been concluded that this enzyme is involved in the regulation of the activity of polypeptides in vivo [VANHOOF, G., GOOSSENS, F., DE MEESTER, I., HENDRIKS, D. and SCHARPÉ, S., Proline motifs and their biological processing,FASEB Journal 9, 736 (1995)].
- The glucose-dependent insulinotropic polypeptides: Gastric Inhibitory Polypeptide 1-42 (GIP-1-42) and Glucagon-Like Peptide Amide-1 7-36 (GLP-17-36), are hormones which potentiate glucose-induced insulin secretion from the pancreas (incretins), and are substrates of DP IV. The enzyme releases the dipeptides tyrosinyl-alanine and histidylalanine, respectively from the N-termini of these peptides both in vitro and in vivo. [MENTLEIN, R., GALLWITZ, B., and SCHMIDT, W. E., Dipeptidyl Peptidase IV hydrolyzes gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829 (1993)].
- Reduction in the cleavage of such substrates by DP IV or DP IV-like enzyme activity in vivo can serve to effectively suppress undesirable enzymatic activity under both laboratory conditions and in pathological states in mammals [DEMUTH, H. -U., Recent developments in the irreversible inhibition of serine and cysteine proteases.J. Enzyme Inhibition 3, 249-278 (1990); DEMUTH, H. -U. and HEINS, J., On the catalytic Mechanism of Dipeptidyl Peptidase IV. in Dipeptidyl Peptidase IV (CD 26) in Metabolism and the Immune Response (B. Fleischer, Ed.) R. G. Landes, Biomedical Publishers, Georgetown, 1-35 (1995)]. For instance, non-insulin dependent Diabetes mellitus is associated with insulin resistance and insulin secretion which is inappropriate for the prevailing glucose concentration, and which may be partially related to protease-mediated abnormalities in the concentration of circulating incretins [BROWN, J. C., DAHL, M., KWAWK, S., MCINTOSH, C. H. S., OTTE, S. C. and PEDERSON, R. A.
Peptides 2, 241 (1981); SCHMIDT, W. E., SIEGEL, E. G., GALLWITZ, B. KUMMEL, H., EBERT, R. and CREUTZFELDT, W., Characterization of the insulinotropic activity of fragments derived from gastric inhibitory polypeptide. Diabetologia 29, 591A (1986); ADELHORST, K., HEDEGAARD, B. B., KNUDSEN, L. B. and KIRK, O., Structure-activity studies of glucagon-like peptide. J. Biol. Chem. 296, 6275 (1994)]. - Insulin-dependent Diabetes mellitus (IDDM) is currently treated through the administration of insulin (isolated from bovine or porcine pancreases or produced as a recombinant molecule) to patients using different forms of administration. Non-insulin-dependent Diabetes mellitus (NIDDM) is treated by diet, administration of sulphonylureas to stimulate insulin secretion or with biguanides to increase glucose uptake. Resistant individuals may need insulin therapy. Traditional, as well as more modern, methods for the treatment of IDDM are characterized by a great deal of effort on behalf of the patient, high costs, and usually a drastic reduction in the quality of living of the patient. Standard therapy (daily i.v. injection of insulin), which has been used since the thirties, is directed at treating the acute symptoms but results, after prolonged application, in vascular disease and nerve damage [LACY, P., Status of Islet Cell Transplantation.Diabetes Care 16 (3) 76 (1993)]. More modern methods, such as the installation of subcutaneous depot—implants (insulin release occurring free from proteolytic attack and in small doses, without the need of daily injections) as well as implantation (or transplantation) of intact islet of Langerhans cells are under trial. However, such transplantation is expensive. Additionally, they represent risky surgical intervention and require, in the case of transplantation methods, immunsupression or bypassing the immune response. [LACY, P., Treating Diabetes with Transplanted Cells. Sci. Americ. 273 (1) 40-46 (1995)]. Attempts at reducing glucose disposal have not been successful. In the case of NIDDM, many patients treated by stimulating endogenous insulin secretion with sulphonylureas become resistant to these drugs. In addition, increasing glucose disposal with biguanides has met with limited success.
- In contrast to the above therapies, the suggested administration of highly effective, low-molecular weight enzyme inhibitors represents a cost-effective alternative. Such inhibitors of various proteolytic enzymes are already in use as anti-hypertensive drugs, immunosuppressive drugs, and antiviral agents. Chemical design of molecules with consideration to their stability, transport and clearance properties may be used to modify their efficacy, and even to adapt the compounds to individual differences between organisms. [SANDLER, M. and SMITH, H. J., eds.,Design of Enzyme Inhibitors as Drugs. Oxford University Press, Oxford (1989); MUNROE, J. E., SHEPHERD, T. A., JUNGHEIM, L. N., HORNBACK, W. J., HATCH, S. D., MUESING, M. A., WISKERCHEN, M. A., SU, K. S., CAMPANALE, K. M., BAXTER, A. J., and COLACINO, J. M., Potent, orally bioavailable HIV-1 protease inhibitors containing noncoded D-amino acids. Bioorg. Medicinal Chem. Letters 5 (23) 2897 (1995)].
- The present invention relates to a novel method in which reduction of the activity of the enzyme Dipeptidyl Peptidase (DP IV or CD 26), or of DP IV-like enzyine activity, in the blood of mammals by specific enzyme effectors will result in a reduced degradation of the endogenous, or exogenously administrated, insulinotropic peptides (incretins), Gastric Inhibitory Polypeptide/Glucose-dependent Insulinotropic Polypeptide 1-42 (GIP1-42) and Glucagon-like Peptide-1 7-36 amide (GLP-17-36) (or analogs of these peptides). The decrease in concentration of these peptides or their analogs, resulting from degradation by DP IV and DP IV-like enzymes, will be thus be reduced or delayed.
- As a consequence of the enhanced stability of the endogenous, or exogenously administered, incretins or their analogs, caused by a reduction in DP IV-activity, their insulinotropic effects are enhanced, resulting in a potentate stimulation of insulin secretion from the pancreatic islets of Langerhans, and more rapid removal of glucose from the blood. As a result, glucose tolerance is improved.
- As a consequence, metabolic abnormalities associated with Diabetes mellitus, including abnormalities of carbohydrate and lipid metabolism, glucosuria and severe metabolic acidosis, and chronic alterations such as microvascular and macrovascular disease and polyneuropathy, which are the consequence of prolonged, elevated circulating glucose concentrations, are prevented or alleviated and in particular blood pressure levels are reduced.
- The present invention is a new approach to lowering elevated concentrations of blood glucose. It is simple, commercially useful, and is suitable to be used in the therapy, especially of human diseases, which are caused by elevated or extraordinary blood glucose and/or blood pressure levels.
- Further understanding of the present invention may be had by reference to the accompanying drawings wherein:
- FIG. 1 shows MALDI-TOF—analysis of the DP IV-catalyzed hydrolysis of GIP1-42 (a) and GLP-7-36 and their inhibition by isoleucyl thiazolidine (b).
- FIG. 2 shows HPLC—analysis of the serum presence of GLP-1 metabolites in presence of the DP IV inhibitor isoleucyl thiazolidine in vivo.
- FIG. 3 shows influence of the DP IV-inhibitor isoleucyl thiazolidine on different blood parameter of the i.d.—glucose-stimulated rat.
- FIG. 4 shows influence of chronic oral treatment of fatty (fa/fa) VDF Zucker rats by the DP IV-inhibitor isoleucyl thiazolidine on the fasting blood glucose during 12 weeks of drug application.
- FIG. 5 Influence of chronic treatment of fatty (fa/fa) VDF Zucker rats by the DP IV-inhibitor isoleucyl thiazolidine on the systolic blood pressure within 8 weeks of drug application (systolic blood pressure was measured using the tail-cuff procedure).
- The aim of the present invention is a simple and new method to lower the level of blood glucose and/or blood pressure in which reduction in the activity of the enzyme Dipeptidyl Peptidase (DP IV or CD 26) or of DP IV-like enzyme activity in the blood of mammals induced by effectors of the enzyme will lead to a reduced degradation of the endogenous (or exogenously administrated) insulinotropic peptides Gastric Inhibitory Polypeptide 1-42 (GIP1-42) and Glucagon-Like Peptide Amide-1 7-36 (GLP-17-36) (or analogs of these peptides). The decrease in concentration of these peptides or their analogs, normally resulting from degradation by DP IV and DP IV-like enzymes, will thus be reduced or delayed.
- The present invention is based on the striking finding that a reduction in the circulating enzymatic activity of Dipeptidyl Peptidase (DP IV or CD 26) or of DP IV-like enzyme activity in the blood of mammals results in an improved glucose tolerance.
- We observed that:
- 1. Reduction of Dipeptidyl Peptidase (DP IV or CD 26) or of DP IV-like enzyme activity leads to a relative increase in the stability of glucose-stimulated endogenously released or exogenously administrated incretins (or their analogs) with the consequence that the administration of effectors of DP IV or of DP IV-like proteins can be used to control the incretin degradation in the circulation.
- 2. The enhanced biological stability of the incretins (or their analogs) results in a modification of the insulin response.
- 3. The enhanced stability of the circulating incretins, caused by reduction of Dipeptidyl Peptidase (DP IV or CD 26) or of DP IV-like enzyme, results in subsequent modification of insulin-induced glucose disposal, indicating that glucose tolerance can be improved by applying DP IV-effectors.
- 4. Blood pressure levels can be reduced.
- Accordingly, the invention concerns the use of effectors of Dipeptidyl Peptidase (DP IV) or of DP IV-like enzyme activity, for lowering of elevated blood glucose and/or blood pressure levels, such as those found in mammals demonstrating clinically inappropriate basal and post-prandial hyperglycemia. The use according to the invention is more specifically characterized by the administration of effectors of DP IV or of DP IV-analogous enzyme activity in the prevention or alleviation of pathological abnormalities of Metabolism of mammals such as glucosuria, hyperlipidaemia, metabolic acidosis and diabetes mellitus. In a further preferred embodiment, the invention concerns a method of lowering elevated blood glucose levels in mammals. Such as those found in a mammal demonstrating clinically inappropriate basal and post-prandial hyperglycemia, comprising administering to a mammal in need of such treatment a therapeutically effective amount of an effector of Dipeptidyl Peptidase (DP IV) or of DP IV-like enzyme activity.
- In another preferred embodiment, the invention concerns effectors of Dipeptidyl Peptidase (DP IV) or of DP IV-like enzyme activity for use in a method of lowering elevated blood glucose and/or blood pressure levels in mammals, such as those found in mammals demonstrating clinically inappropriate basal and post-prandial hyperglycemia.
- The administered effectors of DP IV and DP IV-like enzymes according to this invention may be employed in pharmaceutical formulations as enzyme inhibitors, substrates, pseudosubstrates, inhibitors of DP IV gene expression, binding proteins or antibodies of the target enzyme proteins or as a combination of such different compounds, which reduce DP IV and DP IV-like protein concentration or enzyme activity in mammals. Effectors according to the invention are, for instance, DP IV-inhibitors such as dipeptide derivatives or dipeptide mimetics as alanyl pyrolidide, isoleucyl thiazolidine as well as the pseudosubstrate N-valyl prolyl, O-benzoyl hydroxylamin. Such compounds are known from the literature [DEMUTH, H. -U., Recent developments in the irreversible inhibition of serine and cysteine proteases.J. Enzyme Inhibition 3, 249 (1990)] or may be synthesized according to methods described in the literature.
- The method according to the present invention is a new approach to the reduction of elevated circulating glucose concentration in the blood of mammals and to reducing blood pressure levels.
- The method is simple, commercially useful and appropriate for use in therapy, especially of human diseases, which are caused by elevated or inappropriate blood glucose levels.
- The effectors are administrated in the form of pharmaceutical preparations containing the effector in combination with state-of-the-art materials for drug delivery. The effectors are administered either parenterally (i.v. in physiological saline solution) or enterally oral, formulated with usual carrier materials, like e.g., glucose.
- Depending on the endogenous stability and on the bioavailibility of the effectors single or multiple administrations are suitable, to reach the anticipated normalization of the blood glucose concentration. Such dosage range may vary from 0.1 mg to 10.0 mg of effector compound per kilogram, e.g. in the case of the aminoacyl thiazolidines as inhibitors of DP IV.
- It is possible to suppress the in vitro hydrolysis of incretins caused by DP IV and DP IV-like enzymatic activity using purified enzyme or pooled human serum (FIG. 1).
- According to the present invention complete suppression of the enzyme-catalyzed hydrolysis of both peptide hormones is achieved in vitro by incubating 30 mM GIP1-42 or 30 mM GLP-17-36 and 20 mM isoleucyl thiazolidine (1 a), a reversible DP IV-inhibitor in 20% of pooled serum at pH 7.6 and 30° C. over 24 hours (1b and 1c, both upper spectra: Synthetic GIP1-42 (5 mM) and synthetic GLP-17-36 (15 μM) were incubated with human serum (20%) in 0.1 mM TRICINE Puffer at pH 7.6 and 30° C. for 24 hours. Samples of the incubation assays (in the case of GIP1-422.5 pmol and in the case of GLP-17-367.5 pmol) have been withdrawn after different time intervals. Samples were cocrystallized using 2′,6′-dihydroxyacetophenon as matrix and analyzed by MALDI-TOF-mass spectrometry. Spectra (FIG. 1) display accumulations of 250 single laser shots per sample.
- (1 b) The signal of m/z 4980.1±5.3 corresponds to the DP TV-substrate GIP1-42 (M 4975.6) and the signal of the mass m/z 4745.2±5.5 corresponds to the DP IV-released product GIP3-42 (M 4740.4).
- (1 c) The signal of m/z 3325.0±1.2 corresponds to the DP IV-substrate GLP-17-36 (M 3297.7) and the signal of mass m/z 3116.7±1.3 to the DP IV-released product GLP-19-36(M3089.6).
- In the control assays containing no inhibitor the incretins were almost completely degraded (FIGS. 1b and 1 c, both bottom spectra).
- Analysis of the metabolism of native incretins (in this case GLP-17-36) in the circulation of the rat in the presence or absence of the DP IV-inhibitor isoleucyl thiazolidine (i.v. injection of 1.5 M inhibitor in 0.9% saline solution) and of a control. No degradation of the insulinotropic peptide hormone GLP-17-36 occurs at a concentration of 0.1 mg/kg of the inhibitor isoleucyl thiazolidine in treated animals (n=5) during the time course of the experiment (FIG. 2).
- To analyze the metabolites of the incretins in the presence and absence of the DP IV-inhibitor, test and control animals received a further i.v. injection of 50-100 pM125I-GLP-17-36 (specific activity about 1 μCi/pM) 20 min after an initial i.v.-inhibitor and/or saline administration. Blood samples were collected after 2-5 min incubation time and the plasma was extracted using 20% acetonitrile. Subsequently, the peptide extract was separated on RP-HPLC. Multiple fractions of eluent were collected between 12-18 min and counted on a γ-counter. Data are expressed as counts per minute (cpm) relative to the maximum.
- The figure shows circulating glucose and insulin responses to intraduodenal (i.d.) administration of glucose to rats in the presence or absence of isoleucyl thiazolidine (0.1 mg per kg). There is a more rapid reduction in the circulating glucose concentration in animals, which received DP IV-effectors when compared to untreated controls. The observed effect is dose dependent and reversible after termination of an infusion of 0.05 mg/min of the DP IV-inhibitor isoleucyl thiazolidine per kg rat. In contrast to the i.d. glucose-stimulated animals, there was no comparable effect observable after the i.v. administration of the same amount of glucose in inhibitor-treated control animals. In FIG. 3 these relationships are demonstrated displaying the inhibitor-dependent changes of selected plasma parameter: A—DP IV-activity, B—plasma-insulin level, C—blood glucose level.
- Chronic application of the DP IV-inhibitor isoleucyl thiazolidine fumarate results in dramatic reduction and almost normalization of the fasting blood glucose in the chosen diabetic rat model (FIG. 4).
- Animals. Six pairs of male fatty (fa/fa) VDF Zucker rat littermates were randomly assigned to either a control or treatment (isoleucyl thiazolidine fumarate) group at 440 g body weight (11±0.5 weeks of age). Animals were housed singly, on a 12 hour light/dark cycle (lights on at 6 am) and allowed access to standard rat food, and water ad libitum.
- Protocol for daily monitoring and drug administration. The treatment group received 10 mg/kg isoleucyl thiazolidine fumarate by oral gavage twice daily (8:00 a.m. and 5:00 p.m.) for 100 days, while the control animals received concurrent doses of vehicle consisting of a 1% cellulose solution. Every two days, body weight, morning and evening blood glucose, and food and water intake were assessed. Blood samples for glucose determination were acquired from tail bleeds, and measured using a SureStep glucose analyzer (Lifescan Canada Ltd., Burnaby).
- Protocol for monthly assessment of glucose tolerance. Every four weeks from the start of the experiment, an oral glucose tolerance test (OGTT) was performed: animals were fasted for 18 hours following the 1700 h dosing and administered 1 g/kg glucose orally. This time period is equivalent to ˜12 circulating half-lives of isoleucyl thiazolidine fumarate.
- Chronic application of the DP IV-inhibitor isoleucyl thiazolidine fumarate results in the stabilization of systolic blood pressure in the chosen diabetic rat model (FIG. 4).
- Animals. Six pairs of male fatty (fa/fa) VDF Zucker rat littermates were randomly assigned to either a control or treatment (isoleucyl thiazolidine fumarate) group at 440 g body weight (11±0.5 weeks of age). Animals were housed singly, on a 12 hour light/dark cycle (lights on at 6 am) and allowed access to standard rat food, and water ad libitum.
- Protocol for daily monitoring and drug administration. The treatment group received 10 mg/kg isoleucyl thiazolidine fumarate by oral gavage twice daily (8:00 a.m. and 5:00 p.m.) for 100 days, while the control animals received concurrent doses of vehicle consisting of a 1% cellulose solution. Systolic blood pressure was measured weekly using the tail-cuff procedure.
- The test animals (n=5, male Wistar-rats, 200-225 g) initially received 1.5 M Isoleucyl-Thiazolidine in 0.9% saline solution (▴) or the same volume of plain 0.9% saline solution (▪) (control group n=5). The test group additionally obtained an infusion of the inhibitor of 0.75 M/min over 30 min experimental time (*). The control group received during the same time interval an infusion of inhibitor-free 0.9% saline solution. At starting time t=0 all animals were administered an i.d. glucose dose of 1 g/
kg 40% dextrose solution (w/v). Blood samples were collected of all test animals in 10 min time intervals. Glucose was analyzed using whole blood (Lifescan One Touch II analyzer) while DP IV-activity and insulin concentration were analyzed in plasma. The insulin radioimmunoassay was sensitive over thatrange
Claims (13)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/117,022 US20020110560A1 (en) | 1998-10-06 | 2002-04-05 | Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals |
US11/022,087 US20050107309A1 (en) | 1996-04-25 | 2004-12-22 | Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals |
US13/458,484 US20130116290A1 (en) | 1996-04-25 | 2012-04-27 | Use of Dipeptidyl Peptidase IV Effectors for Normalizing the Blood Glucose Level in Mammals |
US15/042,892 US20170007582A1 (en) | 1996-04-25 | 2016-02-12 | Use of Dipeptidyl Peptidase IV Effectors for Normalizing the Blood Glucose Level in Mammals |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/155,833 US6303661B1 (en) | 1996-04-25 | 1997-04-24 | Use of dipeptidyl peptidase IV effectors for lowering the blood glucose level in mammals |
US09/932,546 US20020006899A1 (en) | 1998-10-06 | 2001-08-17 | Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals |
US10/117,022 US20020110560A1 (en) | 1998-10-06 | 2002-04-05 | Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/932,546 Continuation US20020006899A1 (en) | 1996-04-25 | 2001-08-17 | Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/022,087 Continuation US20050107309A1 (en) | 1996-04-25 | 2004-12-22 | Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020110560A1 true US20020110560A1 (en) | 2002-08-15 |
Family
ID=25462480
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/932,546 Abandoned US20020006899A1 (en) | 1996-04-25 | 2001-08-17 | Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals |
US10/117,022 Abandoned US20020110560A1 (en) | 1996-04-25 | 2002-04-05 | Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals |
US11/022,087 Abandoned US20050107309A1 (en) | 1996-04-25 | 2004-12-22 | Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals |
US13/458,484 Abandoned US20130116290A1 (en) | 1996-04-25 | 2012-04-27 | Use of Dipeptidyl Peptidase IV Effectors for Normalizing the Blood Glucose Level in Mammals |
US15/042,892 Abandoned US20170007582A1 (en) | 1996-04-25 | 2016-02-12 | Use of Dipeptidyl Peptidase IV Effectors for Normalizing the Blood Glucose Level in Mammals |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/932,546 Abandoned US20020006899A1 (en) | 1996-04-25 | 2001-08-17 | Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/022,087 Abandoned US20050107309A1 (en) | 1996-04-25 | 2004-12-22 | Use of dipeptidyl peptidase IV effectors for normalizing the blood glucose level in mammals |
US13/458,484 Abandoned US20130116290A1 (en) | 1996-04-25 | 2012-04-27 | Use of Dipeptidyl Peptidase IV Effectors for Normalizing the Blood Glucose Level in Mammals |
US15/042,892 Abandoned US20170007582A1 (en) | 1996-04-25 | 2016-02-12 | Use of Dipeptidyl Peptidase IV Effectors for Normalizing the Blood Glucose Level in Mammals |
Country Status (9)
Country | Link |
---|---|
US (5) | US20020006899A1 (en) |
EP (1) | EP1416932A1 (en) |
JP (2) | JP2005505531A (en) |
CN (1) | CN1582149A (en) |
CA (1) | CA2423025A1 (en) |
NO (1) | NO20031574L (en) |
RU (1) | RU2305553C2 (en) |
WO (1) | WO2003015775A1 (en) |
ZA (1) | ZA200302126B (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040152192A1 (en) * | 1997-09-29 | 2004-08-05 | Point Therapeutics, Inc. | Stimulation of hematopoietic cells in vitro |
US20060052310A1 (en) * | 1998-08-21 | 2006-03-09 | Point Therapeutics, Inc. | Regulation of substrate activity |
US20060063719A1 (en) * | 2004-09-21 | 2006-03-23 | Point Therapeutics, Inc. | Methods for treating diabetes |
US7132443B2 (en) | 2001-06-27 | 2006-11-07 | Smithklinebeecham Corporation | Fluoropyrrolidines as dipeptidyl peptidase inhibitors |
US20060287245A1 (en) * | 1999-05-25 | 2006-12-21 | Point Therapeutics, Inc. | Anti-tumor agents |
US7169926B1 (en) | 2003-08-13 | 2007-01-30 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US20070060529A1 (en) * | 2005-09-14 | 2007-03-15 | Christopher Ronald J | Administration of dipeptidyl peptidase inhibitors |
US20090012059A1 (en) * | 2004-03-15 | 2009-01-08 | Jun Feng | Dipeptidyl peptidase inhibitors |
US20090048454A1 (en) * | 2006-03-08 | 2009-02-19 | Yoshikazu Asahina | Process for Producing Aminoacetyl Pyrrolidine Carbonitrile Derivative and Intermediate for Production Thereof |
US7678909B1 (en) | 2003-08-13 | 2010-03-16 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7687625B2 (en) | 2003-03-25 | 2010-03-30 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7687638B2 (en) | 2004-06-04 | 2010-03-30 | Takeda San Diego, Inc. | Dipeptidyl peptidase inhibitors |
US20100093825A1 (en) * | 2004-02-05 | 2010-04-15 | Yasumichi Fukuda | Bicycloester derivative |
US20100099892A1 (en) * | 2007-03-22 | 2010-04-22 | Kyorin Pharmaceutical Co. Ltd | Method for producing aminoacetylpyrrolidinecarbonitrile derivative |
US7723344B2 (en) | 2003-08-13 | 2010-05-25 | Takeda San Diego, Inc. | Dipeptidyl peptidase inhibitors |
US7732446B1 (en) | 2004-03-11 | 2010-06-08 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7790734B2 (en) | 2003-09-08 | 2010-09-07 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7825242B2 (en) | 2004-07-16 | 2010-11-02 | Takeda Pharmaceutical Company Limted | Dipeptidyl peptidase inhibitors |
US7872124B2 (en) | 2004-12-21 | 2011-01-18 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US20110137070A1 (en) * | 2008-08-07 | 2011-06-09 | Tomohiro Akeboshi | Process for production of bicyclo[2.2.2]octylamine derivative |
US7960384B2 (en) | 2006-03-28 | 2011-06-14 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US20110152342A1 (en) * | 2008-08-14 | 2011-06-23 | Hiroshi Uchida | Stabilized pharmaceutical composition |
US8084605B2 (en) | 2006-11-29 | 2011-12-27 | Kelly Ron C | Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor |
US8093236B2 (en) | 2007-03-13 | 2012-01-10 | Takeda Pharmaceuticals Company Limited | Weekly administration of dipeptidyl peptidase inhibitors |
US8222411B2 (en) | 2005-09-16 | 2012-07-17 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US8324383B2 (en) | 2006-09-13 | 2012-12-04 | Takeda Pharmaceutical Company Limited | Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile |
US8889618B2 (en) | 2008-11-07 | 2014-11-18 | The General Hospital Corporation | C-terminal fragments of glucagon-like peptide-1 (GLP-1) |
US8906901B2 (en) | 2005-09-14 | 2014-12-09 | Takeda Pharmaceutical Company Limited | Administration of dipeptidyl peptidase inhibitors |
US9040481B2 (en) | 2010-11-02 | 2015-05-26 | The General Hospital Corporation | Methods for treating steatotic disease |
US9205107B2 (en) | 2013-06-05 | 2015-12-08 | Tricida, Inc. | Proton-binding polymers for oral administration |
US10137171B2 (en) | 2011-07-06 | 2018-11-27 | The General Hospital Corporation | Methods of treatment using a pentapeptide derived from the C-Terminus of Glucagon-Like Peptide 1 (GLP-1) |
US10555929B2 (en) | 2015-03-09 | 2020-02-11 | Coherus Biosciences, Inc. | Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy |
US11253508B2 (en) | 2017-04-03 | 2022-02-22 | Coherus Biosciences, Inc. | PPARy agonist for treatment of progressive supranuclear palsy |
US11266684B2 (en) | 2017-11-03 | 2022-03-08 | Tricida, Inc. | Compositions for and method of treating acid-base disorders |
US11311571B2 (en) | 2014-12-10 | 2022-04-26 | Tricida, Inc. | Proton-binding polymers for oral administration |
US11406661B2 (en) | 2016-05-06 | 2022-08-09 | Tricida, Inc. | HCl-binding compositions for and methods of treating acid-base disorders |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6710040B1 (en) | 2002-06-04 | 2004-03-23 | Pfizer Inc. | Fluorinated cyclic amides as dipeptidyl peptidase IV inhibitors |
EP1625122A1 (en) | 2003-05-14 | 2006-02-15 | Takeda San Diego, Inc. | Dipeptidyl peptidase inhibitors |
WO2004104216A2 (en) * | 2003-05-21 | 2004-12-02 | Bayer Healthcare Ag | Diagnostics and therapeutics for diseases associated with dipeptidylpeptidase iv (dpp4) |
US20050065144A1 (en) * | 2003-09-08 | 2005-03-24 | Syrrx, Inc. | Dipeptidyl peptidase inhibitors |
EP1794120B1 (en) * | 2004-07-23 | 2012-04-11 | Nuada, LLC | Peptidase inhibitors |
NZ554943A (en) * | 2004-11-30 | 2010-12-24 | Hoffmann La Roche | Substituted benzoquinolizines as DPP-IV inhibitors for the treatment of diabetes |
MX2007007434A (en) * | 2004-12-20 | 2007-07-17 | Hoffmann La Roche | 4-aminopiperidine derivatives. |
US7411093B2 (en) * | 2004-12-20 | 2008-08-12 | Hoffman-La Roche Inc. | Aminocycloalkanes as DPP-IV inhibitors |
DOP2006000008A (en) * | 2005-01-10 | 2006-08-31 | Arena Pharm Inc | COMBINED THERAPY FOR THE TREATMENT OF DIABETES AND RELATED AFFECTIONS AND FOR THE TREATMENT OF AFFECTIONS THAT IMPROVE THROUGH AN INCREASE IN THE BLOOD CONCENTRATION OF GLP-1 |
JP4568361B2 (en) | 2005-04-22 | 2010-10-27 | アラントス・ファーマシューティカルズ・ホールディング・インコーポレーテッド | Dipeptidyl peptidase-IV inhibitor |
ATE486604T1 (en) * | 2005-04-26 | 2010-11-15 | Mitsubishi Tanabe Pharma Corp | PROPHYLACTIC/THERAPEUTIC AGENT FOR DEVIATIONS IN FAT METABOLISM |
CN102935081B (en) * | 2005-09-14 | 2015-03-04 | 武田药品工业株式会社 | Dipeptidyl peptidase inhibitors for treating diabetis |
TW200745079A (en) * | 2005-09-16 | 2007-12-16 | Takeda Pharmaceuticals Co | Polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile and methods of use therefor |
TW200745080A (en) * | 2005-09-16 | 2007-12-16 | Takeda Pharmaceuticals Co | Polymorphs of tartrate salt of 2-[2-(3-(R)-amino-piperidin-1-yl)-5-fluoro-6-oxo-6H-pyrimidin-1-ylmethyl]-benzonitrile and methods of use therefor |
EP2402750A1 (en) | 2006-04-11 | 2012-01-04 | Arena Pharmaceuticals, Inc. | Methods of using GPR119 receptor to identify compounds useful for increasing bone mass in an individual |
PE20071221A1 (en) | 2006-04-11 | 2007-12-14 | Arena Pharm Inc | GPR119 RECEPTOR AGONISTS IN METHODS TO INCREASE BONE MASS AND TO TREAT OSTEOPOROSIS AND OTHER CONDITIONS CHARACTERIZED BY LOW BONE MASS, AND COMBINED THERAPY RELATED TO THESE AGONISTS |
JP5791228B2 (en) * | 2006-09-13 | 2015-10-07 | 武田薬品工業株式会社 | Use of 2-6- (3-amino-piperidin-1-yl) -3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethyl-4-fluoro-benzonitrile |
JP5616630B2 (en) | 2007-04-03 | 2014-10-29 | 田辺三菱製薬株式会社 | Combination use of dipeptidyl peptidase 4 inhibitor and sweetener |
CL2008003653A1 (en) | 2008-01-17 | 2010-03-05 | Mitsubishi Tanabe Pharma Corp | Use of a glucopyranosyl-derived sglt inhibitor and a selected dppiv inhibitor to treat diabetes; and pharmaceutical composition. |
EP2146210A1 (en) | 2008-04-07 | 2010-01-20 | Arena Pharmaceuticals, Inc. | Methods of using A G protein-coupled receptor to identify peptide YY (PYY) secretagogues and compounds useful in the treatment of conditions modulated by PYY |
US20100144140A1 (en) * | 2008-12-10 | 2010-06-10 | Novellus Systems, Inc. | Methods for depositing tungsten films having low resistivity for gapfill applications |
AR077642A1 (en) | 2009-07-09 | 2011-09-14 | Arena Pharm Inc | METABOLISM MODULATORS AND THE TREATMENT OF DISORDERS RELATED TO THE SAME |
US20130023494A1 (en) | 2010-04-06 | 2013-01-24 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
EP2619198A1 (en) | 2010-09-22 | 2013-07-31 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
WO2012135570A1 (en) | 2011-04-01 | 2012-10-04 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
WO2012145361A1 (en) | 2011-04-19 | 2012-10-26 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
US20140051714A1 (en) | 2011-04-22 | 2014-02-20 | Arena Pharmaceuticals, Inc. | Modulators Of The GPR119 Receptor And The Treatment Of Disorders Related Thereto |
WO2012145603A1 (en) | 2011-04-22 | 2012-10-26 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
WO2012170702A1 (en) | 2011-06-08 | 2012-12-13 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
WO2013055910A1 (en) | 2011-10-12 | 2013-04-18 | Arena Pharmaceuticals, Inc. | Modulators of the gpr119 receptor and the treatment of disorders related thereto |
WO2014074668A1 (en) | 2012-11-08 | 2014-05-15 | Arena Pharmaceuticals, Inc. | Modulators of gpr119 and the treatment of disorders related thereto |
RU2563234C2 (en) * | 2012-12-10 | 2015-09-20 | Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт фармакологии имени В.В. Закусова" | Medication for prevention and correction of diabetes manifestations |
GB201415598D0 (en) | 2014-09-03 | 2014-10-15 | Univ Birmingham | Elavated Itercranial Pressure Treatment |
WO2019208700A1 (en) * | 2018-04-26 | 2019-10-31 | ゼリア新薬工業株式会社 | Dipeptide and pharmaceutical composition containing same |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2961377A (en) * | 1957-08-05 | 1960-11-22 | Us Vitamin Pharm Corp | Oral anti-diabetic compositions and methods |
US3174901A (en) * | 1963-01-31 | 1965-03-23 | Jan Marcel Didier Aron Samuel | Process for the oral treatment of diabetes |
US3879541A (en) * | 1970-03-03 | 1975-04-22 | Bayer Ag | Antihyperglycemic methods and compositions |
US3960949A (en) * | 1971-04-02 | 1976-06-01 | Schering Aktiengesellschaft | 1,2-Biguanides |
US4028402A (en) * | 1974-10-11 | 1977-06-07 | Hoffmann-La Roche Inc. | Biguanide salts |
US4935493A (en) * | 1987-10-06 | 1990-06-19 | E. I. Du Pont De Nemours And Company | Protease inhibitors |
US5433955A (en) * | 1989-01-23 | 1995-07-18 | Akzo N.V. | Site specific in vivo activation of therapeutic drugs |
US5462928A (en) * | 1990-04-14 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Inhibitors of dipeptidyl-aminopeptidase type IV |
US5512549A (en) * | 1994-10-18 | 1996-04-30 | Eli Lilly And Company | Glucagon-like insulinotropic peptide analogs, compositions, and methods of use |
US5543396A (en) * | 1994-04-28 | 1996-08-06 | Georgia Tech Research Corp. | Proline phosphonate derivatives |
US5614379A (en) * | 1995-04-26 | 1997-03-25 | Eli Lilly And Company | Process for preparing anti-obesity protein |
US5624894A (en) * | 1992-09-17 | 1997-04-29 | University Of Florida | Brain-enhanced delivery of neuroactive peptides by sequential metabolism |
US5705483A (en) * | 1993-12-09 | 1998-01-06 | Eli Lilly And Company | Glucagon-like insulinotropic peptides, compositions and methods |
US5827898A (en) * | 1996-10-07 | 1998-10-27 | Shaman Pharmaceuticals, Inc. | Use of bisphenolic compounds to treat type II diabetes |
US5939560A (en) * | 1993-12-03 | 1999-08-17 | Ferring B.V. | Inhibitors of DP-mediated processes, compositions and therapeutic methods thereof |
US6006753A (en) * | 1996-08-30 | 1999-12-28 | Eli Lilly And Company | Use of GLP-1 or analogs to abolish catabolic changes after surgery |
US6011155A (en) * | 1996-11-07 | 2000-01-04 | Novartis Ag | N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
US6107317A (en) * | 1999-06-24 | 2000-08-22 | Novartis Ag | N-(substituted glycyl)-thiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
US6110949A (en) * | 1999-06-24 | 2000-08-29 | Novartis Ag | N-(substituted glycyl)-4-cyanothiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
US6172081B1 (en) * | 1999-06-24 | 2001-01-09 | Novartis Ag | Tetrahydroisoquinoline 3-carboxamide derivatives |
US6303661B1 (en) * | 1996-04-25 | 2001-10-16 | Probiodrug | Use of dipeptidyl peptidase IV effectors for lowering the blood glucose level in mammals |
US6319893B1 (en) * | 1998-07-31 | 2001-11-20 | Probiodrug | Raising blood sugar level in hypoglycemic mammals by administering inhibitors of dipeptidyl peptidase IV |
US6500804B2 (en) * | 2000-03-31 | 2002-12-31 | Probiodrug Ag | Method for the improvement of islet signaling in diabetes mellitus and for its prevention |
US6548481B1 (en) * | 1998-05-28 | 2003-04-15 | Probiodrug Ag | Effectors of dipeptidyl peptidase IV |
US6605589B1 (en) * | 2000-03-31 | 2003-08-12 | Parker Hughes Institute | Cathepsin inhibitors in cancer treatment |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3508251A1 (en) * | 1985-03-08 | 1986-09-11 | Merck Patent Gmbh, 6100 Darmstadt | Dipeptides |
DD296075A5 (en) * | 1989-08-07 | 1991-11-21 | Martin-Luther-Universitaet Halle-Wittenberg,De | PROCESS FOR THE PREPARATION OF NEW INHIBITORS OF DIPEPTIDYL PEPTIDASE IV |
JPH0819154B2 (en) * | 1991-03-14 | 1996-02-28 | 江崎グリコ株式会社 | Peptides that inhibit dipeptidyl carboxypeptidase |
WO1995034538A2 (en) * | 1994-06-10 | 1995-12-21 | Universitaire Instelling Antwerpen | Purification of serine proteases and synthetic inhibitors thereof |
DE19828113A1 (en) * | 1998-06-24 | 2000-01-05 | Probiodrug Ges Fuer Arzneim | Prodrugs of Dipeptidyl Peptidase IV Inhibitors |
DE19828114A1 (en) * | 1998-06-24 | 2000-01-27 | Probiodrug Ges Fuer Arzneim | Produgs of unstable inhibitors of dipeptidyl peptidase IV |
JP2003535034A (en) * | 1999-11-12 | 2003-11-25 | ギルフォード ファーマシューティカルズ インコーポレイテッド | Dipeptidyl peptidase IV inhibitors and methods for producing and using dipeptidyl peptidase IV inhibitors |
US7064145B2 (en) * | 2000-02-25 | 2006-06-20 | Novo Nordisk A/S | Inhibition of beta cell degeneration |
US20020037829A1 (en) * | 2000-08-23 | 2002-03-28 | Aronson Peter S. | Use of DPPIV inhibitors as diuretic and anti-hypertensive agents |
UA74912C2 (en) * | 2001-07-06 | 2006-02-15 | Merck & Co Inc | Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes |
-
2001
- 2001-08-17 US US09/932,546 patent/US20020006899A1/en not_active Abandoned
-
2002
- 2002-04-05 US US10/117,022 patent/US20020110560A1/en not_active Abandoned
- 2002-07-23 CN CNA028026748A patent/CN1582149A/en active Pending
- 2002-07-23 RU RU2003110960/15A patent/RU2305553C2/en active
- 2002-07-23 JP JP2003520734A patent/JP2005505531A/en active Pending
- 2002-07-23 EP EP02764760A patent/EP1416932A1/en not_active Withdrawn
- 2002-07-23 CA CA002423025A patent/CA2423025A1/en not_active Abandoned
- 2002-07-23 WO PCT/EP2002/008210 patent/WO2003015775A1/en active Application Filing
-
2003
- 2003-03-17 ZA ZA2003/02126A patent/ZA200302126B/en unknown
- 2003-04-08 NO NO20031574A patent/NO20031574L/en not_active Application Discontinuation
-
2004
- 2004-12-22 US US11/022,087 patent/US20050107309A1/en not_active Abandoned
-
2009
- 2009-09-08 JP JP2009207484A patent/JP2009286799A/en not_active Abandoned
-
2012
- 2012-04-27 US US13/458,484 patent/US20130116290A1/en not_active Abandoned
-
2016
- 2016-02-12 US US15/042,892 patent/US20170007582A1/en not_active Abandoned
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2961377A (en) * | 1957-08-05 | 1960-11-22 | Us Vitamin Pharm Corp | Oral anti-diabetic compositions and methods |
US3174901A (en) * | 1963-01-31 | 1965-03-23 | Jan Marcel Didier Aron Samuel | Process for the oral treatment of diabetes |
US3879541A (en) * | 1970-03-03 | 1975-04-22 | Bayer Ag | Antihyperglycemic methods and compositions |
US3960949A (en) * | 1971-04-02 | 1976-06-01 | Schering Aktiengesellschaft | 1,2-Biguanides |
US4028402A (en) * | 1974-10-11 | 1977-06-07 | Hoffmann-La Roche Inc. | Biguanide salts |
US4935493A (en) * | 1987-10-06 | 1990-06-19 | E. I. Du Pont De Nemours And Company | Protease inhibitors |
US5433955A (en) * | 1989-01-23 | 1995-07-18 | Akzo N.V. | Site specific in vivo activation of therapeutic drugs |
US5462928A (en) * | 1990-04-14 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Inhibitors of dipeptidyl-aminopeptidase type IV |
US5624894A (en) * | 1992-09-17 | 1997-04-29 | University Of Florida | Brain-enhanced delivery of neuroactive peptides by sequential metabolism |
US6201132B1 (en) * | 1993-12-03 | 2001-03-13 | Ferring B.V. | Inhibitors of DP-mediated processes, compositions, and therapeutic methods thereof |
US5939560A (en) * | 1993-12-03 | 1999-08-17 | Ferring B.V. | Inhibitors of DP-mediated processes, compositions and therapeutic methods thereof |
US5705483A (en) * | 1993-12-09 | 1998-01-06 | Eli Lilly And Company | Glucagon-like insulinotropic peptides, compositions and methods |
US5543396A (en) * | 1994-04-28 | 1996-08-06 | Georgia Tech Research Corp. | Proline phosphonate derivatives |
US5512549A (en) * | 1994-10-18 | 1996-04-30 | Eli Lilly And Company | Glucagon-like insulinotropic peptide analogs, compositions, and methods of use |
US5614379A (en) * | 1995-04-26 | 1997-03-25 | Eli Lilly And Company | Process for preparing anti-obesity protein |
US6303661B1 (en) * | 1996-04-25 | 2001-10-16 | Probiodrug | Use of dipeptidyl peptidase IV effectors for lowering the blood glucose level in mammals |
US6006753A (en) * | 1996-08-30 | 1999-12-28 | Eli Lilly And Company | Use of GLP-1 or analogs to abolish catabolic changes after surgery |
US5827898A (en) * | 1996-10-07 | 1998-10-27 | Shaman Pharmaceuticals, Inc. | Use of bisphenolic compounds to treat type II diabetes |
US6124305A (en) * | 1996-11-07 | 2000-09-26 | Novartis Ag | Use of N-(substituted glycyl)-2-cyanopyrrolidines in inhibiting dipeptidyl peptidase-IV |
US6011155A (en) * | 1996-11-07 | 2000-01-04 | Novartis Ag | N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
US6548481B1 (en) * | 1998-05-28 | 2003-04-15 | Probiodrug Ag | Effectors of dipeptidyl peptidase IV |
US6319893B1 (en) * | 1998-07-31 | 2001-11-20 | Probiodrug | Raising blood sugar level in hypoglycemic mammals by administering inhibitors of dipeptidyl peptidase IV |
US6107317A (en) * | 1999-06-24 | 2000-08-22 | Novartis Ag | N-(substituted glycyl)-thiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
US6110949A (en) * | 1999-06-24 | 2000-08-29 | Novartis Ag | N-(substituted glycyl)-4-cyanothiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV |
US6172081B1 (en) * | 1999-06-24 | 2001-01-09 | Novartis Ag | Tetrahydroisoquinoline 3-carboxamide derivatives |
US6500804B2 (en) * | 2000-03-31 | 2002-12-31 | Probiodrug Ag | Method for the improvement of islet signaling in diabetes mellitus and for its prevention |
US6605589B1 (en) * | 2000-03-31 | 2003-08-12 | Parker Hughes Institute | Cathepsin inhibitors in cancer treatment |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040152192A1 (en) * | 1997-09-29 | 2004-08-05 | Point Therapeutics, Inc. | Stimulation of hematopoietic cells in vitro |
US7276371B2 (en) | 1997-09-29 | 2007-10-02 | Point Therapeutics, Inc. | Stimulation of hematopoietic cells in vitro |
US20060052310A1 (en) * | 1998-08-21 | 2006-03-09 | Point Therapeutics, Inc. | Regulation of substrate activity |
US7265118B2 (en) | 1998-08-21 | 2007-09-04 | Point Therapeutics, Inc. | Regulation of substrate activity |
US7259138B2 (en) | 1999-05-25 | 2007-08-21 | Point Therapeutics, Inc. | Anti-tumor agents |
US7282484B2 (en) | 1999-05-25 | 2007-10-16 | Point Therapeutics, Inc. | Anti-tumor agents |
US20060287245A1 (en) * | 1999-05-25 | 2006-12-21 | Point Therapeutics, Inc. | Anti-tumor agents |
US7132443B2 (en) | 2001-06-27 | 2006-11-07 | Smithklinebeecham Corporation | Fluoropyrrolidines as dipeptidyl peptidase inhibitors |
US7687625B2 (en) | 2003-03-25 | 2010-03-30 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7790736B2 (en) | 2003-08-13 | 2010-09-07 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7169926B1 (en) | 2003-08-13 | 2007-01-30 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7678909B1 (en) | 2003-08-13 | 2010-03-16 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7723344B2 (en) | 2003-08-13 | 2010-05-25 | Takeda San Diego, Inc. | Dipeptidyl peptidase inhibitors |
US7790734B2 (en) | 2003-09-08 | 2010-09-07 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7754757B2 (en) | 2004-02-05 | 2010-07-13 | Kyorin Pharmaceutical Co., Ltd. | Bicycloester derivative |
US8053465B2 (en) | 2004-02-05 | 2011-11-08 | Kyorin Pharmaceutical Co., Ltd. | Bicycloester derivative |
US20100093825A1 (en) * | 2004-02-05 | 2010-04-15 | Yasumichi Fukuda | Bicycloester derivative |
US7732446B1 (en) | 2004-03-11 | 2010-06-08 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US8329900B2 (en) | 2004-03-15 | 2012-12-11 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US20090012059A1 (en) * | 2004-03-15 | 2009-01-08 | Jun Feng | Dipeptidyl peptidase inhibitors |
US8288539B2 (en) | 2004-03-15 | 2012-10-16 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7781584B2 (en) | 2004-03-15 | 2010-08-24 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US8188275B2 (en) | 2004-03-15 | 2012-05-29 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7807689B2 (en) | 2004-03-15 | 2010-10-05 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US8173663B2 (en) | 2004-03-15 | 2012-05-08 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7906523B2 (en) | 2004-03-15 | 2011-03-15 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7687638B2 (en) | 2004-06-04 | 2010-03-30 | Takeda San Diego, Inc. | Dipeptidyl peptidase inhibitors |
US7825242B2 (en) | 2004-07-16 | 2010-11-02 | Takeda Pharmaceutical Company Limted | Dipeptidyl peptidase inhibitors |
US20070072830A1 (en) * | 2004-09-21 | 2007-03-29 | Point Therapeutics, Inc. | Methods for treating diabetes |
US20060063719A1 (en) * | 2004-09-21 | 2006-03-23 | Point Therapeutics, Inc. | Methods for treating diabetes |
US7872124B2 (en) | 2004-12-21 | 2011-01-18 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US8906901B2 (en) | 2005-09-14 | 2014-12-09 | Takeda Pharmaceutical Company Limited | Administration of dipeptidyl peptidase inhibitors |
US20070060529A1 (en) * | 2005-09-14 | 2007-03-15 | Christopher Ronald J | Administration of dipeptidyl peptidase inhibitors |
US8222411B2 (en) | 2005-09-16 | 2012-07-17 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US7915427B2 (en) | 2006-03-08 | 2011-03-29 | Kyorin Pharmaceuticals Co., Ltd. | Process for producing aminoacetyl pyrrolidine carbonitrile derivative and intermediate for production thereof |
US20090048454A1 (en) * | 2006-03-08 | 2009-02-19 | Yoshikazu Asahina | Process for Producing Aminoacetyl Pyrrolidine Carbonitrile Derivative and Intermediate for Production Thereof |
US7960384B2 (en) | 2006-03-28 | 2011-06-14 | Takeda Pharmaceutical Company Limited | Dipeptidyl peptidase inhibitors |
US8324383B2 (en) | 2006-09-13 | 2012-12-04 | Takeda Pharmaceutical Company Limited | Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile |
US8084605B2 (en) | 2006-11-29 | 2011-12-27 | Kelly Ron C | Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor |
US8093236B2 (en) | 2007-03-13 | 2012-01-10 | Takeda Pharmaceuticals Company Limited | Weekly administration of dipeptidyl peptidase inhibitors |
US20100099892A1 (en) * | 2007-03-22 | 2010-04-22 | Kyorin Pharmaceutical Co. Ltd | Method for producing aminoacetylpyrrolidinecarbonitrile derivative |
US8143427B2 (en) | 2007-03-22 | 2012-03-27 | Kyorin Pharmaceutical Co., Ltd. | Method for producing aminoacetylpyrrolidinecarbonitrile derivative |
US20110137070A1 (en) * | 2008-08-07 | 2011-06-09 | Tomohiro Akeboshi | Process for production of bicyclo[2.2.2]octylamine derivative |
US8476470B2 (en) | 2008-08-07 | 2013-07-02 | Kyorin Pharmaceutical Co., Ltd. | Process for production of bicyclo[2.2.2]octylamine derivative |
US20110152342A1 (en) * | 2008-08-14 | 2011-06-23 | Hiroshi Uchida | Stabilized pharmaceutical composition |
US10118955B2 (en) | 2008-11-07 | 2018-11-06 | The General Hospital Corporation | C-terminal fragments of glucagon-like peptide-1 (GLP-1) |
US8889618B2 (en) | 2008-11-07 | 2014-11-18 | The General Hospital Corporation | C-terminal fragments of glucagon-like peptide-1 (GLP-1) |
US9040481B2 (en) | 2010-11-02 | 2015-05-26 | The General Hospital Corporation | Methods for treating steatotic disease |
US10137171B2 (en) | 2011-07-06 | 2018-11-27 | The General Hospital Corporation | Methods of treatment using a pentapeptide derived from the C-Terminus of Glucagon-Like Peptide 1 (GLP-1) |
US11197887B2 (en) | 2013-06-05 | 2021-12-14 | Tricida, Inc. | Proton-binding polymers for oral administration |
US9205107B2 (en) | 2013-06-05 | 2015-12-08 | Tricida, Inc. | Proton-binding polymers for oral administration |
US10363268B2 (en) | 2013-06-05 | 2019-07-30 | Tricida, Inc. | Proton-binding polymers for oral administration |
US10369169B1 (en) | 2013-06-05 | 2019-08-06 | Tricida, Inc. | Proton-binding polymers for oral administration |
US10391118B2 (en) | 2013-06-05 | 2019-08-27 | Tricida, Inc | Proton-binding polymers for oral administration |
US9925214B2 (en) | 2013-06-05 | 2018-03-27 | Tricida, Inc. | Proton-binding polymers for oral administration |
US9993500B2 (en) | 2013-06-05 | 2018-06-12 | Tricida, Inc. | Proton-binding polymers for oral administration |
US11738041B2 (en) | 2014-12-10 | 2023-08-29 | Renosis, Inc. | Proton-binding polymers for oral administration |
US11311571B2 (en) | 2014-12-10 | 2022-04-26 | Tricida, Inc. | Proton-binding polymers for oral administration |
US11400072B2 (en) | 2015-03-09 | 2022-08-02 | Coherus Biosciences, Inc. | Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy |
US10555929B2 (en) | 2015-03-09 | 2020-02-11 | Coherus Biosciences, Inc. | Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy |
US10772865B2 (en) | 2015-03-09 | 2020-09-15 | Coherus Biosciences, Inc. | Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy |
US11406661B2 (en) | 2016-05-06 | 2022-08-09 | Tricida, Inc. | HCl-binding compositions for and methods of treating acid-base disorders |
US11992501B2 (en) | 2016-05-06 | 2024-05-28 | Renosis, Inc. | Compositions for and methods of treating acid-base disorders |
US11253508B2 (en) | 2017-04-03 | 2022-02-22 | Coherus Biosciences, Inc. | PPARy agonist for treatment of progressive supranuclear palsy |
US11266684B2 (en) | 2017-11-03 | 2022-03-08 | Tricida, Inc. | Compositions for and method of treating acid-base disorders |
US11986490B2 (en) | 2017-11-03 | 2024-05-21 | Renosis, Inc. | Compositions for and method of treating acid-base disorders |
Also Published As
Publication number | Publication date |
---|---|
US20170007582A1 (en) | 2017-01-12 |
CA2423025A1 (en) | 2003-02-27 |
WO2003015775A1 (en) | 2003-02-27 |
US20050107309A1 (en) | 2005-05-19 |
JP2009286799A (en) | 2009-12-10 |
CN1582149A (en) | 2005-02-16 |
EP1416932A1 (en) | 2004-05-12 |
RU2305553C2 (en) | 2007-09-10 |
US20130116290A1 (en) | 2013-05-09 |
ZA200302126B (en) | 2005-06-29 |
US20020006899A1 (en) | 2002-01-17 |
NO20031574L (en) | 2003-06-03 |
JP2005505531A (en) | 2005-02-24 |
NO20031574D0 (en) | 2003-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6303661B1 (en) | Use of dipeptidyl peptidase IV effectors for lowering the blood glucose level in mammals | |
US20170007582A1 (en) | Use of Dipeptidyl Peptidase IV Effectors for Normalizing the Blood Glucose Level in Mammals | |
EP0995440B1 (en) | Method to increase the blood, glucose level in mammals | |
RU2309161C2 (en) | Effectors of dipeptidyl peptidase iv | |
Green et al. | Inhibition of dipeptidyl peptidase IV activity as a therapy of type 2 diabetes | |
Salvatore et al. | Progress in the oral treatment of type 2 diabetes: update on DPP-IV inhibitors | |
FREED et al. | Pospisilik et al.(43) Pub. Date: Jan. 17, 2002 | |
AU2004267955A1 (en) | Combination therapy for glycaemic control | |
Zito et al. | Oral hypoglycemics: a review of chemicals used to treat type 2 diabetes | |
CZ20004427A3 (en) | Novel effectors of IV dipeptidyl peptidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016536/0107 Effective date: 20050321 |
|
AS | Assignment |
Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016536/0621 Effective date: 20050321 Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016547/0581 Effective date: 20050321 Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:017045/0252 Effective date: 20050321 Owner name: PROSIDION LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROBIODRUG AG;REEL/FRAME:016561/0783 Effective date: 20050321 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |