[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20020003642A1 - Combination photonic time and wavelength division multiplexer - Google Patents

Combination photonic time and wavelength division multiplexer Download PDF

Info

Publication number
US20020003642A1
US20020003642A1 US09/785,524 US78552401A US2002003642A1 US 20020003642 A1 US20020003642 A1 US 20020003642A1 US 78552401 A US78552401 A US 78552401A US 2002003642 A1 US2002003642 A1 US 2002003642A1
Authority
US
United States
Prior art keywords
photonic
modulator
pulse
output
parallel digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/785,524
Inventor
John Hait
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
All Optical Networks Inc
Original Assignee
All Optical Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by All Optical Networks Inc filed Critical All Optical Networks Inc
Priority to US09/785,524 priority Critical patent/US20020003642A1/en
Assigned to ALL OPTICAL NETWORKS, INC. reassignment ALL OPTICAL NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAIT, JOHN N.
Publication of US20020003642A1 publication Critical patent/US20020003642A1/en
Assigned to Pate Pierce & Baird reassignment Pate Pierce & Baird ATTORNEY'S LIEN AND NOTICE OF INTEREST Assignors: ALL OPTICAL NETWORKS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • This invention relates to data multiplexing and, more particularly, to novel systems and methods for time and wavelength division multiplexing of binary and non-binary digital information for photonic transmission and information storage systems.
  • Hait also does not teach how to use a single pulsed laser system (or other single-pulsed photonic input system) to provide all the required sequential output pulses, including synchronization pulses, needed to provide a complete serial transmission system.
  • Hait teach how to interface electronic with photonic components to provide serial photonic transmission capable of operating at a rate faster than the rate at which electronic components provide parallel digital data input.
  • Electromagnetic energy is not affected by the level of capacitance and inductance complexities found in computer chips.
  • the amount of delay that occurs along a photonic delay path maybe determined quite accurately even into the sub-picosecond range.
  • the present invention takes advantage of these characteristics of electromagnetic energy and the materials used therewith to provide a complete time-division multiplexing system.
  • the present invention is an apparatus and method of providing parallel digital data to serial data conversion having a photonic serial digital output that may be used with both binary and non-binary transmissions.
  • a series of pulses of photonic energy are input to provide an electromagnetic energy and pulse timing source, which is divided into portions.
  • a portion of the energy of these pulses is directed into the output to provide sync (synchronization) pulses that a photonic receiver uses to time the recovery of serial information and convert it into parallel information.
  • “In serial” as used hereinafter refers to data in serial format (i.e., in series).
  • The“n”photonic modulators are first set to their data modulation states, then allowed to complete their setup times, and finally held in those states while a photonic pulse is directed to each one.
  • the pulses either are transmitted through each modulator or are inhibited.
  • the present invention is not limited to binary transmission only, but may use multistate semaphore digits that use more than two modulation states during each digit time.
  • the word “digital” in this disclosure may refer to either a binary semaphore or one having more than two modulation states.
  • n Associated with the group of “n” photonic modulators is a group of “n” serial timing delay mechanisms. Each modulator has one of these delay mechanisms in series with it so that the photonic pulse reads the condition of the modulator and is delayed sufficiently and directed into the common output so that the resulting modulated digit arrives at the output at its assigned digit time. Therefore, all the “n” modulated and delayed pulses arrive at the output in serial following a sync pulse and prior to the subsequent sync pulse. This produces a complete data set having “n” digit positions filled with the “n” delayed digital pulses.
  • Each serial timing delay mechanism may be placed either before or after its modulator; however, the timing provided by all the delay mechanisms throughout the present invention must be adjusted so as to time the serial digits properly.
  • Photonic modulators have a setup time. That is, it takes a certain amount of time for the modulators to stabilize in response to their controlling electronic inputs. After this setup time has elapsed, the modulators remain stable during the next photonic pulse, which reads the information loaded into the modulators by the electronic inputs.
  • Parallel information is provided through “n” digital information inputs.
  • Each modulator has associated with it one of “n” modulator loaders which load digital information from one of the “n” digital information inputs into its modulator.
  • the “n” modulator loaders load the “n” photonic modulators with modulation states from the “n” digital information inputs.
  • the input pulses are directed into the group of “n” modulator loaders.
  • the present invention is very versatile, since it may be engineered to match a variety of photonic modulators, parallel inputs, optical transmission lines, and demultiplexers.
  • One reason the present invention is superior is that modulators that require a long setup time may be loaded for the next data set while the previous data set is being transmitted. Accordingly, the invention uses time efficiently.
  • the present invention may be engineered to accommodate slow modulators by increasing the number of digit times and the number of parallel information inputs (that is, by increasing n) without wasting valuable transmission time and effective bandwidth.
  • the setup times may be comparatively short.
  • the present invention also has the advantage of being able to interface very slow electronics with high-speed photonics.
  • the modulator loaders may be electronic circuits that control optoelectronic modulators triggered by the photonic pulses using a photo diode.
  • the complete apparatus for triggering and loading the modulators may involve the use of prior art optoelectronic, electronic, and/or photonic circuitry.
  • the loading circuits load information from the digital information inputs into the modulators and hold that information there until the following trigger pulse occurs.
  • the following trigger pulse occurs after the setup time and the photonic read pulse for that data set.
  • the pulses that trigger modulator loading may require a delay mechanism to prevent a state change within the modulators during the time that photonic pulses are traveling through the modulators. This depends upon the choice of circuitry.
  • This loading delay mechanism may be placed between the input pulse source and the modulators. Individual loading delay mechanisms may be inserted as needed to produce proper output timing before any or all of the “n” photonic modulators.
  • a sync timing delay mechanism may also be inserted between the input pulse source and the output so that sync pulses will be properly timed in the output. All of these various delay mechanisms may be engineered or made adjustable in order to accommodate a great variety of hardware components and transmission protocols.
  • the first transmitted data set is not yet set up and loaded into the modulators from the parallel digital information input until the first pulse has read the “n” photonic modulators and/or the sync pulse is not delayed by a full data set time.
  • the first data set following the first sync pulse may be a null data set or may contain spurious or preset information, depending on the circuitry that controls the modulators.
  • Some types of receivers require a specific data set for initialization or calibration. This is one way of providing the beginning data set.
  • the first photonic input pulse triggers the loading of the first data set from the parallel digital information input, which will be transmitted following the second photonic sync pulse.
  • Each modulator is loaded while the previous data set is being transmitted. Following this initialization, sync pulses are interspersed with data set pulses.
  • Wavelength division multiplexing (which may also be referred to as frequency multiplexing) may be accomplished by the present invention in two different ways. If the parallel input information is already wavelength division multiplexed, the present invention may be constructed using frequency multiplexed logic components and by providing frequency matched input pulses. Such components are described in U.S. Pat. No. 5,617,249.
  • Wavelength division multiplexing may also be accomplished through the combination of multiple multiplexers of the present invention routed into a common output. If the pulses of the separate wavelengths used are in sync, only one sync pulse need be sent on one of the wavelengths. However, if the pulses of the separate wavelengths used are not in sync, or if the demultiplexer to be used is not capable of providing synchronization among multiple photonic channels, a sync pulse may be provided for each wavelength channel using the same method as that by which the sync pulses are provided in a single wavelength embodiment. Since each data set-sync pulse data frame may be transmitted asynchronously, the problems associated with wavelength dispersion among the wavelength channels may be minimized.
  • the present invention is a method of parallel digital data to photonic serial conversion using delayed-pulse timing that may comprise the elements and methods as described in the following paragraphs.
  • an apparatus in accordance with the invention may comprise a first photonic pulse input having a first wavelength, at least first and second digital inputs that constitute a first parallel digital input, a first multiplexer output, at least first and second photonic modulators, and at least first and second modulator loaders for loading the first modulation states into the first and second photonic modulators using information from the first parallel digital input.
  • the first and second digital inputs are input to the first and second modulator loaders, respectively. Subsequently the modulation states from the first and second modulator loaders are transmitted to the first and second modulators where they are converted to photonic digital pulses for output to the first multiplexer output.
  • input pulses from the first photonic pulse are input to the first and second modulator loaders to initiate modulator loading to the multiplexer output to provide sync pulses, and to the first and second photonic modulators to read the first modulation states loaded into the first and second photonic modulators to provide first photonic digital pulses of the first wavelength.
  • a presently the preferred embodiment may include a delay mechanism as necessary to time the arrival of the first photonic digital output pulses at the multiplexer output in serial between the sync pulses.
  • the capability of the present invention to load information from one data set while simultaneously transmitting another data set enables the present invention to transmit sequential data frames without introducing undesirable delays between frames. This is accomplished because the delay mechanisms are arranged to provide the photonic digital pulses at the multiplexer output from a first data set input to the first parallel data input while the photonic modulators are being loaded with a second data set from the first parallel digital input.
  • a combined wavelength division and time-division multiplexing method of the present invention may be produced by providing multiple multiplexers, as described above, having different photonic wavelength inputs, and combining the time-division multiplexed outputs from all wavelengths into a common output.
  • the method may be implemented by providing a second photonic pulse input having a second wavelength, at least third and fourth digital inputs that constitute a second parallel digital input, a second multiplexer output, at least third and fourth photonic modulators, and at least third and fourth modulator loaders for loading the second modulation states into the third and fourth photonic modulators using information from the second parallel digital input.
  • the third and fourth digital inputs are input to the third and fourth modulator loaders, respectively. Subsequently the modulation states from the third and fourth modulator loaders are transmitted to the third and fourth modulators where they are converted to photonic digital pulses for output to the second multiplexer output.
  • input pulses from the second photonic pulse are input to the third and fourth modulator loaders to initiate modulator loading to the multiplexer output to provide sync pulses, and to the third and fourth photonic modulators to read the second modulation states loaded into the third and fourth photonic modulators to provide second photonic digital pulses of the second wavelength.
  • one presently preferred embodiment may include a delay mechanism as necessary to time the arrival of the second photonic digital output pulses at the multiplexer output in serial between the sync pulses.
  • Photonic modulators may be loaded and controlled in a variety of different ways. The most common way is electronic. However, several additional ways exist, including without limitation mechanical, electromechanical, acoustical, and the like. All of the foregoing ways have one thing in common: their top switching speeds are much slower than the short pulse times that may be achieved with electromagnetic energy, including without limitation laser light. Even these slow modulator setup times may be accommodated by the present invention.
  • the single digit times are one femtosecond long and an optoelectronic setup time is one nanosecond
  • one million serial digits may be placed between sync pulses.
  • Transmission parameters may be engineered to account for the properties of whatever components are available.
  • photonic delay mechanisms including free-flight path differences and/or optical fibers, may be precisely manufactured to provide the precise timing needed to ensure the reliability of a million digits following a single sync pulse. Prior art methods are not sufficiently reliable to make such a transmission protocol practical.
  • photonic modulators are photonically controlled. With such photonically controlled modulators, high-speed parallel photonic inputs may provide very short setup times. Thus, sync pulse repetition rates, and data transmission rates may be selected to suit the photonic components being used.
  • photonic components may include photonic transistors, self-exciting electro-optical devices (SEEDS), and nonlinear optical materials.
  • photonically-controlled photonic modulators also allows for the construction of more complex multiplexers having multiple parallel inputs and various organizations of delay times as needed to match the various parallel digital data sources and transmission protocols to be used.
  • Certain photonic modulators such as the photonic transistors of U.S. Pat. No. 5,617,249, may provide frequency multiplexed logic, which may be used to frequency multiplex and time-division multiplex information simultaneously using the present invention.
  • Each of the multiplexing frequencies must be provided at the photonic input to provide a series of pulses for each frequency channel.
  • sync pulses need only be sent on one of the channels. The result is a combination of wave division and time-division multiplexing.
  • the present invention may be designed to work with amplitude, phase, spatial and polarization modulation techniques, as needed for a particular circumstance. Different forms of modulation may be used to make the separation of sync pulses from data pulses easier at the receiver and to provide multiple states for the transmission of semaphore digits having more than two modulation states.
  • the photonic modulators, support circuitry and delay mechanisms are selected to provide the needed modulation combinations.
  • Sync pulses may even be modulated as multilevel semaphores that may be used for data set routing or other purposes at the receiver.
  • digit and “digital,” as used herein include multilevel as well as binary digits.
  • the serial output may be used for direct photonic transmission through free space, waveguides, or optical fibers.
  • the output may also be directed along a delay path such as a free-space path or an optical fiber to provide a method of photonic information storage.
  • the output may also be written onto or into various information storage media including holograms, photographs, CD-ROMS, photo-sensitive materials, and the like.
  • the present invention may be used with photonic energy anywhere within the electromagnetic spectrum through the selection of appropriate components to match the frequencies being used. Most notable is the microwave region, where the present invention may be used to multiplex information sent via satellite or other microwave links.
  • the recent commercialization of x-ray technology including x-ray capillaries (like optical fiber for x-rays), may be used to provide multiplexing in the x-ray bands.
  • spatial modulation is not common. While spatial modulation is more complex than the more usual methods, the present invention may use this method of transmission. Spatial modulation is particularly useful when serialization is required inside a photonic computer or mass information storage device. Appropriate components may be used as with the other modulation methods.
  • An object of the present invention is to provide an apparatus and method of converting parallel digital information input to photonic serial information.
  • Another object of the present invention is to provide an apparatus and method for high-speed parallel photonic sampling of preset modulation states loaded into slow modulators followed by transmission of the sampled information in serial during the modulator setup time for the following data frame, thus providing an apparatus and method of maximizing photonic throughput by using the shortest transmissible photonic pulses, while using slow modulators (even electro-photonic modulators) having response times longer than the photonic sampling pulses.
  • Another object of the present invention is to provide an apparatus and method for optimizing data frame repetition rates by matching them to the modulator setup times combined with multilevel semaphores. This may be done to maximize overall transmission rates for each carrier wavelength and then adding separate carrier wavelengths until a selected transmission medium, be it an optical fiber or a free-space beam, has been saturated to its maximum physical information-carrying capacity.
  • Another object of the present invention is to provide an apparatus and method for photonically transmitting electronic information using the fastest available electronic and photonic components.
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information using digital semaphores having more than two modulation states.
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information using a variety of photonic modulation mechanisms and methods.
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information into an optical fiber for the purpose of retrieving the information at a future time.
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information to a satellite reflector or transponder, as the present invention may be designed to use photonic energy in the microwave as well as the optical portions of the electromagnetic spectrum.
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information using the various parts of the electromagnetic spectrum including optical (both visible and invisible,) microwave, and radio frequencies.
  • Another object of the present invention is to provide an apparatus and method for transmitting simultaneous serial (time-division) and wavelength division (frequency multiplexed) information.
  • FIG. 1 is a schematic block diagram of a parallel digital data to photonic serial data converter that constitutes the multiplexer of the present invention
  • FIG. 2 is a pulse timing diagram illustrating the relationship between photonic pulses and modulator setup times
  • FIG. 3 is a pulse diagram showing multistate digit time pulses.
  • FIG. 1 is a block diagram of a delayed-pulse photonic time-division multiplexer which is a parallel digital information to photonic serial information converter of the present invention. Three dots between components indicate identical components for information flow lines up through n ⁇ 1.
  • FIG. 2 is a pulse timing diagram that shows how delay times may be organized for the various required pulses and how they relate to each other.
  • FIGS. 1 and 2 The present disclosure is easily understood by examining FIGS. 1 and 2 together. Reference characters 1 through 17 are used in FIG. 1 and reference characters 30 through 47 are used in FIG. 2.
  • a series of photonic pulses are provided by photonic source 1 routed into multiplexer input 2 as shown by time line 30 .
  • the input pulses 38 a , 45 a , and 40 a are directed through sync delay mechanism 3 to provide sync pulses 38 b , 45 b , and 40 b atphotonic output 17 , as shown in time line 35 .
  • time-division demultiplexers require specialized sync waveforms, such as shortened pulses, or specialized modulation characteristics. These may be provided by insertion either with a sync delay mechanism in line 3 or between photonic source 1 and the other components or both for use in demultiplexing. Electronic digital information may be input to photonic modulators 4 , 5 , 6 through 7 by parallel digital information input 19 .
  • Input pulses from multiplexer input 2 as shown on time line 30 are also supplied to a group of “n” photonic modulators to sample their previously loaded and held modulation states.
  • Four of the “n” photonic modulators are shown: photonic modulators 4 , 5 , 6 , and the nth photonic modulator 7 .
  • the output of each photonic modulator is directed into its own serial timing delay mechanism.
  • Serial timing delay mechanisms depicted are serial timing delay mechanisms 12 , 13 , 14 and the nth one 15 .
  • the integer “n” may be any integer in which at least one modulator and at least one serial timing delay mechanism are provided for each digit time in output 17 , as shown on time line 35 , just as with those modulator and serial delay mechanism combinations depicted.
  • Examples of output digit times include the first digit pulse 46 and the n th digit pulse 47 in example data set 44 .
  • the output from the group of “n” photonic modulators 4 , 5 , 6 through 7 and the group of “n” serial delay mechanisms 12 , 13 , 14 through 15 is “n” delayed digital pulses that are timed to arrive at output 17 in serial.
  • the basic transmission sequence for a single data frame may begin with a modulator loading sequence initiated by a timed photonic pulse from photonic source 1 routed to modulator loaders 8 , 9 , 10 through 11 .
  • photonic modulators 4 , 5 , 6 , through 7 are loaded during their setup times by modulator loaders 8 , 9 , 10 through 11 , with data from parallel digital information input 19 .
  • the loaded modulation states are then held for a period of time to allow photonic sampling of the loaded modulation states.
  • Photonic pulses from photonic source 1 are then routed through photonic modulators 4 , 5 , 6 , through 7 to sample their modulation states.
  • the modulated photonic pulses are then routed and delayed by delay mechanisms 12 , 13 , 14 through 15 along with a sync pulse to arrive at output 17 in serial. While the photonic pulses are being routed through the delay mechanisms 12 , 13 , 14 through 15 into the serial output 17 , the modulators 4 , 5 , 6 through 7 are once again prepared by modulator loaders 8 , 9 , 10 through 11 for data sampling for the next frame.
  • the transmission sequence may be started anywhere in the sequence; however, the information transmitted during the first frame may depend upon several other factors.
  • the information transmitted during the first frame may depend upon several other factors.
  • photonic modulators that provide more than two stable modulation states may also be used
  • non-binary semaphores digits
  • the digit times are the same as “bit times,” as commonly used in the electronic serial communications art. Digit times shown in FIG. 2 having both top and bottom lines (for example, as in time line 31 ) indicate that the actual modulation states depend upon the modulation states of the respective modulators.
  • FIG. 2 depicts common amplitude modulation form
  • the actual form of modulation used may be amplitude, phase, spatial, or polarization, or any combination of these.
  • the present invention provides time-division multiplexing by means of pulse delays regardless of the modulation method or methods used for the pulses. Certain modulation combinations may require the use of multiple modulators and/or multiple delay mechanisms for each digit time as the engineering of these components requires. Delay mechanisms may include free-space distances, materials having an index of refraction greater than one, waveguides, optical fibers, one-shot multivibrators, and other more complex circuitry.
  • One advantage of using delaying materials such as glass, optical fibers, and the like is that these may be machined very precisely to maintain digit times within tolerance, while allowing or compensating for temperature and other fluctuations within the materials being used. Changes that do occur may be accurately measured, and such compensating information may be sent to the demultiplexer in order to compensate at the receiving end.
  • Each of the serial timing delay mechanisms 12 , 13 , 14 through 15 provides a different delay time so that the “n” delayed digital photonic pulses shown on time lines 31 , 32 , 33 through 34 are combined with the sync pulses at location 16 and arrive at output 17 , as shown on time line 35 as data sets 39 , 41 , and 44 in serial in between sync pulses.
  • the delay mechanisms may comprise optical fibers, the outputs of which are all directed through a lens and into another optical fiber that comprises output 17 .
  • sync pulse 45 b between data set times 41 and 44 are optional and may be used if needed by a particular demultiplexer.
  • Each of the “n” photonic modulators has a required setup time that elapses before the modulating information in the modulators is sufficiently stable to be read by sending a photonic pulse into the modulators.
  • This characteristic which has often been viewed as a detriment in prior systems, is considered useful in the present invention.
  • the summation of digit times that make up a data set may be designed to be at least as long as one of the photonic modulator's setup times shown on time line 37 . All modulator setup times depicted on time line 37 are substantially the same as, for example, set up time 42 .
  • modulators chosen are very slow in comparison with the photonics, more digit times may be added to each data set by adding more parallel inputs in parallel digital information input 19 along with corresponding modulator loader, photonic modulator, serial timing delay mechanisms, and interconnections. These additions increase the size of “n” until the functional limit of the photonics is reached.
  • the parallel digital information input 19 may be expanded to include one half-million parallel lines without the use of non-binary digits (semaphores).
  • non-binary digits are used during each digit time, the information throughput may be greatly multiplied.
  • the present invention may be capable of transmitting 1,000 terabits per second and beyond using presently available components, while interfacing inherently slow electronics to high-speed photonics.
  • the length of setup time 42 of photonic modulators 4 , 5 , 6 , through 7 (which depends upon the type of modulators used) and the pulse width of the input pulses such as pulse 40 a will determine the maximum pulse repetition rate for the input and sync pulses as shown on time lines 30 and 35 , which in turn will determine the number “n”; that is, the number of digit times such as digit time 47 available between sync pulses.
  • Each pulse exiting load delay mechanism 18 triggers loading of the “n” modulators with new information from parallel digital information input 19 , starting the modulator setup time, as for example time 42 as shown on time line 37 .
  • Pulse setup times as shown on time line 37 may actually be timed events within the “n” modulator loaders 8 , 9 , 10 through 11 rather than an actual detectable signal having the wave form like that of modulator setup time 42 on time line 37 .
  • the present invention is as compatible with optoelectronic modulators and electronic modulator loaders as with photonic, mechanical, acoustic and other modulating and modulator loading.
  • the present invention may provide photonic serial information at a speed that is considerably faster than that of conventional single electronic modulator methods. This advantage is provided by the use of modulator loading times that occur during the transmission of the previously loaded and sampled data set.
  • the present invention transmits asynchronously, with each sync pulse acting as a start pulse for the data set which follows.
  • Input pulses 38 a , 40 a , and 45 a shown on time line 30 , are directed into the “n” photonic modulators 4 , 5 , 6 , through 7 to read them.
  • This read time may be at any time that is not simultaneous with a setup time such as 42 shown on time line 37 . For example, they may be read during time 43 , which is between setup times on time line 37 .
  • the first input pulse 38 a reads the modulation state of photonic modulators 4 , 5 , 6 , through 7 .
  • the modulators may contain unknown data or may be off or preset since no setup time has yet occurred. This is because modulator read pulses occur before the setup time begins for loading the next data set.
  • the first data set 41 may be null or may contain unknown or preset data.
  • a null or preset modulation pattern may be used by certain demultiplexers for determining the source of the information that follows, for calibration, or to provide other system information to the demultiplexer.
  • the first parallel digital data set is loaded following pulse 38 a , which is delayed by load delay mechanism 18 , which in turn triggers the start of setup time 42 . This occurs during the time that the first (possibly null) data set 41 is being transmitted.
  • the photonic modulators are set up and stable at the completion of setup time 42 so that they may be read by the second input pulse 45 a.
  • the modulator outputs are delayed, each one by an amount that differs by at least one digit time (such as 46 and 47 ), to their individual digit time slots as in time lines 31 , 32 , 33 through 34 and are combined into output 17 as a complete data set 44 , shown in time line 35 .
  • the process then continues in the same cyclic manner for the following trigger, setup, read, delay and transmit sequences.
  • the first data set 41 may be eliminated by changing the timing delays of the various delay mechanisms used throughout the invention.
  • sync delay mechanism 3 may be used to delay the sync pulses so that the first pulse arrives one data frame later; that is, the first sync pulse 38 b would then arrive at 45 b .
  • Certain types of delay, modulation, modulator loading, beam combining, and output mechanisms require the use of amplifiers and pulse shapers that may be inserted, as needed within the present invention.
  • FIG. 3 shows a non-binary semaphore quadnary digit having four different amplitude modulated levels 50 , 51 , 52 through 53 , one level of which is transmitted during a digit time (such as digit time 47 of FIG. 2) to indicate one of four digits.
  • the parallel digital information input 19 may be multi-level, or binary to multi-level encoding may be accomplished within the modulator loaders 8 , 9 , 10 through 11 .
  • Non-binary transmission methods There are many combinations of non-binary transmission methods that may be used with the “n” photonic modulators.
  • Another example is as shown by waveforms 54 , 55 , and 56 of FIG. 3, which is ternary. These waveforms indicate the use of a combination of phase and amplitude modulation.
  • the photonic carrier wave 54 is 180 degrees out of phase with carrier wave 56 (as indicated by its position below the zero axis line).
  • carrier wave 55 is amplitude-modulated low; this modulation combination is particularly useful when interference-based photonic components such as those taught in U.S. Pat. No. 5,093,802 are being used at the receiving demultiplexer.
  • each of the photonic modulators is loaded with non-binary modulation state combinations, considerably more information maybe transmitted during each digit time than if binary modulation is used. Any combination of stable modulation states using any combination of modulation methods may be used.
  • the present invention is ideally suited for such modulation techniques because the method provides ample time for loading the modulators, even modulators that are comparatively slow. Multiple modulators may be used for each digit time slot so that the phase, amplitude, polarization, and spatial modulation techniques may be mixed and matched, as the transmitting medium and demultiplexers require. Also, the types of delay mechanisms available are compatible with a variety of modulation methods.
  • the present invention may be used to provide serial photonic information for a variety of tasks.
  • the present invention may be used for fiber optic transmission, satellite and terrestrial microwave links, and for writing to optical devices such as CD-ROMs, holographic storage devices, and fiber optic circulating data storage devices.
  • the photonic components usable in the present invention include those having the capability of frequency multiplexing (or wave division multiplexing) so that multiple frequency channels may be used simultaneously during each digit time. Such a feature is important when transmission or information storage mediums such as optical fibers or microwave links are combined with repeater amplifiers having a limited number of frequency channels available.
  • the present invention may be used with various combinations of frequency channels, pulse repetition rates, and modulation methods to suit the medium to be driven.
  • separate carrier wavelengths are routed from photonic source 1 to separate modulators. For example, red light would be routed to modulators 4 and 5 and green light to modulators 6 and 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

A method and apparatus are hereby disclosed for a combination photonic time and wavelength division multiplexer. Parallel digital inputs of quantity “n” are input into “n” modulator loaders for loading into “n” photonic modulators, each having a setup time required to provide a stable modulation state. Subsequently, a photonic pulse of a specified frequency reads the modulation state of each of the “n” photonic modulators. The “n” modulation states may then be processed by “n” delay mechanisms to time the modulation states into a serial multiplexed output comprising a series of synchronizing pulses and data digits. Several parallel digital to serial multiplexers, operating at distinct frequencies, may be used in parallel or in series to comprise a wavelength division multiplexer in accordance with the invention. The present invention also provides an apparatus for interfacing slower electronic components with the higher speed photonic (optical) components by increasing “n,” the number of parallel digital inputs, therefore maximizing the potential capacity of optical transmission. Moreover, the present invention discloses an apparatus to increase the multiplexer efficiency by beginning to load the next set of data into the photonic modulators shortly after previous set has been read and while the previous data set is being delayed and multiplexed into the serial output.

Description

    RELATED APPLICATIONS
  • This application is a continuation of a co-pending patent application, Ser. No. 09/075,046, filed on May 8, 1998 and directed to a Combination Photonic Time and Wavelength Division Multiplexer.[0001]
  • BACKGROUND
  • 2. The Field of the Invention [0002]
  • This invention relates to data multiplexing and, more particularly, to novel systems and methods for time and wavelength division multiplexing of binary and non-binary digital information for photonic transmission and information storage systems. [0003]
  • 3 . The Background Art [0004]
  • U.S. Pat. No. 5,623,366 to Hait (hereinafter “Hait”), describes a photonic method of parallel to serial conversion. What Hait does not teach is the apparatus and method of providing the proper pulse timing needed in FIG. 24A of Hait, when the parallel information input provides pulses that arrive in parallel at substantially the same time. [0005]
  • Hait also does not teach how to use a single pulsed laser system (or other single-pulsed photonic input system) to provide all the required sequential output pulses, including synchronization pulses, needed to provide a complete serial transmission system. [0006]
  • Nor does Hait teach how to interface electronic with photonic components to provide serial photonic transmission capable of operating at a rate faster than the rate at which electronic components provide parallel digital data input. [0007]
  • In the initial stages of the development of electronic integrated circuit technology, attempts were made at “pulse racing.” That is, attempts were made to time the delay of signals traveling through a computer chip so that a number of signals would arrive at a specific location having a specific timing relationship determined by the various delays applied to each signal. It was found that many of the electronic variables involved, such as capacitance and inductance, made pulse racing impractical and unreliable as chip frequencies increased. [0008]
  • Electromagnetic energy, on the other hand, is not affected by the level of capacitance and inductance complexities found in computer chips. The amount of delay that occurs along a photonic delay path maybe determined quite accurately even into the sub-picosecond range. The present invention takes advantage of these characteristics of electromagnetic energy and the materials used therewith to provide a complete time-division multiplexing system. [0009]
  • BRIEF SUMMARY AND OBJECTS OF THE INVENTION
  • The present invention, a delayed pulse photonic time-division multiplexer, is an apparatus and method of providing parallel digital data to serial data conversion having a photonic serial digital output that may be used with both binary and non-binary transmissions. A series of pulses of photonic energy are input to provide an electromagnetic energy and pulse timing source, which is divided into portions. A portion of the energy of these pulses is directed into the output to provide sync (synchronization) pulses that a photonic receiver uses to time the recovery of serial information and convert it into parallel information. “In serial” as used hereinafter refers to data in serial format (i.e., in series). [0010]
  • A portion of the energy of the input pulses is also directed into “n” photonic modulators, the integer “n” being the number of data digits that are to be transmitted in serial within a single data set between sync pulses. For example, if n=8 and the digits are binary, then a byte of serial information would be sent. If n=32, then a 32-bit word is sent. The actual number of digits sent is a matter of engineering choice. The engineer may take into account the need for signal amplification within the receiver and/or the transmitter. He may also need to take into account the accumulation of delay error that may occur using certain types of delay mechanisms. [0011]
  • The“n”photonic modulators are first set to their data modulation states, then allowed to complete their setup times, and finally held in those states while a photonic pulse is directed to each one. In the case of binary amplitude modulation, the pulses either are transmitted through each modulator or are inhibited. However, the present invention is not limited to binary transmission only, but may use multistate semaphore digits that use more than two modulation states during each digit time. Thus, the word “digital” in this disclosure may refer to either a binary semaphore or one having more than two modulation states. [0012]
  • Associated with the group of “n” photonic modulators is a group of “n” serial timing delay mechanisms. Each modulator has one of these delay mechanisms in series with it so that the photonic pulse reads the condition of the modulator and is delayed sufficiently and directed into the common output so that the resulting modulated digit arrives at the output at its assigned digit time. Therefore, all the “n” modulated and delayed pulses arrive at the output in serial following a sync pulse and prior to the subsequent sync pulse. This produces a complete data set having “n” digit positions filled with the “n” delayed digital pulses. [0013]
  • Each serial timing delay mechanism may be placed either before or after its modulator; however, the timing provided by all the delay mechanisms throughout the present invention must be adjusted so as to time the serial digits properly. [0014]
  • Photonic modulators have a setup time. That is, it takes a certain amount of time for the modulators to stabilize in response to their controlling electronic inputs. After this setup time has elapsed, the modulators remain stable during the next photonic pulse, which reads the information loaded into the modulators by the electronic inputs. [0015]
  • Parallel information is provided through “n” digital information inputs. Each modulator has associated with it one of “n” modulator loaders which load digital information from one of the “n” digital information inputs into its modulator. When triggered, the “n” modulator loaders load the “n” photonic modulators with modulation states from the “n” digital information inputs. To initiate modulator loading and begin the setup time for the next data set, the input pulses are directed into the group of “n” modulator loaders. [0016]
  • The present invention is very versatile, since it may be engineered to match a variety of photonic modulators, parallel inputs, optical transmission lines, and demultiplexers. One reason the present invention is superior is that modulators that require a long setup time may be loaded for the next data set while the previous data set is being transmitted. Accordingly, the invention uses time efficiently. As a result, the present invention may be engineered to accommodate slow modulators by increasing the number of digit times and the number of parallel information inputs (that is, by increasing n) without wasting valuable transmission time and effective bandwidth. [0017]
  • When photonic parallel inputs are provided along with photonic modulators and loaders, the setup times may be comparatively short. However, the present invention also has the advantage of being able to interface very slow electronics with high-speed photonics. In that case, the modulator loaders may be electronic circuits that control optoelectronic modulators triggered by the photonic pulses using a photo diode. Thus, the complete apparatus for triggering and loading the modulators may involve the use of prior art optoelectronic, electronic, and/or photonic circuitry. [0018]
  • The loading circuits load information from the digital information inputs into the modulators and hold that information there until the following trigger pulse occurs. The following trigger pulse occurs after the setup time and the photonic read pulse for that data set. [0019]
  • The pulses that trigger modulator loading may require a delay mechanism to prevent a state change within the modulators during the time that photonic pulses are traveling through the modulators. This depends upon the choice of circuitry. This loading delay mechanism may be placed between the input pulse source and the modulators. Individual loading delay mechanisms may be inserted as needed to produce proper output timing before any or all of the “n” photonic modulators. [0020]
  • A sync timing delay mechanism may also be inserted between the input pulse source and the output so that sync pulses will be properly timed in the output. All of these various delay mechanisms may be engineered or made adjustable in order to accommodate a great variety of hardware components and transmission protocols. [0021]
  • It should be noted that, in the arrangement having the “n” photonic modulators placed before the “n” serial timing delay mechanisms, the first transmitted data set is not yet set up and loaded into the modulators from the parallel digital information input until the first pulse has read the “n” photonic modulators and/or the sync pulse is not delayed by a full data set time. The result is that the first data set following the first sync pulse may be a null data set or may contain spurious or preset information, depending on the circuitry that controls the modulators. Some types of receivers require a specific data set for initialization or calibration. This is one way of providing the beginning data set. [0022]
  • The first photonic input pulse triggers the loading of the first data set from the parallel digital information input, which will be transmitted following the second photonic sync pulse. Each modulator is loaded while the previous data set is being transmitted. Following this initialization, sync pulses are interspersed with data set pulses. [0023]
  • Wavelength division multiplexing (which may also be referred to as frequency multiplexing) may be accomplished by the present invention in two different ways. If the parallel input information is already wavelength division multiplexed, the present invention may be constructed using frequency multiplexed logic components and by providing frequency matched input pulses. Such components are described in U.S. Pat. No. 5,617,249. [0024]
  • Wavelength division multiplexing may also be accomplished through the combination of multiple multiplexers of the present invention routed into a common output. If the pulses of the separate wavelengths used are in sync, only one sync pulse need be sent on one of the wavelengths. However, if the pulses of the separate wavelengths used are not in sync, or if the demultiplexer to be used is not capable of providing synchronization among multiple photonic channels, a sync pulse may be provided for each wavelength channel using the same method as that by which the sync pulses are provided in a single wavelength embodiment. Since each data set-sync pulse data frame may be transmitted asynchronously, the problems associated with wavelength dispersion among the wavelength channels may be minimized. [0025]
  • Because the minimum number for “n” is two, the present invention may be described in terms of first and second components. Therefore, the present invention is a method of parallel digital data to photonic serial conversion using delayed-pulse timing that may comprise the elements and methods as described in the following paragraphs. [0026]
  • In certain embodiments, an apparatus in accordance with the invention may comprise a first photonic pulse input having a first wavelength, at least first and second digital inputs that constitute a first parallel digital input, a first multiplexer output, at least first and second photonic modulators, and at least first and second modulator loaders for loading the first modulation states into the first and second photonic modulators using information from the first parallel digital input. [0027]
  • The first and second digital inputs are input to the first and second modulator loaders, respectively. Subsequently the modulation states from the first and second modulator loaders are transmitted to the first and second modulators where they are converted to photonic digital pulses for output to the first multiplexer output. [0028]
  • Similarly, input pulses from the first photonic pulse are input to the first and second modulator loaders to initiate modulator loading to the multiplexer output to provide sync pulses, and to the first and second photonic modulators to read the first modulation states loaded into the first and second photonic modulators to provide first photonic digital pulses of the first wavelength. Moreover, a presently the preferred embodiment may include a delay mechanism as necessary to time the arrival of the first photonic digital output pulses at the multiplexer output in serial between the sync pulses. [0029]
  • The capability of the present invention to load information from one data set while simultaneously transmitting another data set enables the present invention to transmit sequential data frames without introducing undesirable delays between frames. This is accomplished because the delay mechanisms are arranged to provide the photonic digital pulses at the multiplexer output from a first data set input to the first parallel data input while the photonic modulators are being loaded with a second data set from the first parallel digital input. [0030]
  • A combined wavelength division and time-division multiplexing method of the present invention may be produced by providing multiple multiplexers, as described above, having different photonic wavelength inputs, and combining the time-division multiplexed outputs from all wavelengths into a common output. [0031]
  • The method may be implemented by providing a second photonic pulse input having a second wavelength, at least third and fourth digital inputs that constitute a second parallel digital input, a second multiplexer output, at least third and fourth photonic modulators, and at least third and fourth modulator loaders for loading the second modulation states into the third and fourth photonic modulators using information from the second parallel digital input. [0032]
  • The third and fourth digital inputs are input to the third and fourth modulator loaders, respectively. Subsequently the modulation states from the third and fourth modulator loaders are transmitted to the third and fourth modulators where they are converted to photonic digital pulses for output to the second multiplexer output. [0033]
  • Similarly, input pulses from the second photonic pulse are input to the third and fourth modulator loaders to initiate modulator loading to the multiplexer output to provide sync pulses, and to the third and fourth photonic modulators to read the second modulation states loaded into the third and fourth photonic modulators to provide second photonic digital pulses of the second wavelength. [0034]
  • Moreover, one presently preferred embodiment may include a delay mechanism as necessary to time the arrival of the second photonic digital output pulses at the multiplexer output in serial between the sync pulses. [0035]
  • Thus, a method of wave division multiplexed time-division multiplexing is made possible by the present invention by combining the first and second multiplexer outputs into a single output. [0036]
  • Photonic modulators may be loaded and controlled in a variety of different ways. The most common way is electronic. However, several additional ways exist, including without limitation mechanical, electromechanical, acoustical, and the like. All of the foregoing ways have one thing in common: their top switching speeds are much slower than the short pulse times that may be achieved with electromagnetic energy, including without limitation laser light. Even these slow modulator setup times may be accommodated by the present invention. [0037]
  • For example, if the single digit times (as determined by the length of the input pulses) are one femtosecond long and an optoelectronic setup time is one nanosecond, one million serial digits may be placed between sync pulses. Transmission parameters may be engineered to account for the properties of whatever components are available. One of the advantages of the present invention over other devices is that photonic delay mechanisms, including free-flight path differences and/or optical fibers, may be precisely manufactured to provide the precise timing needed to ensure the reliability of a million digits following a single sync pulse. Prior art methods are not sufficiently reliable to make such a transmission protocol practical. [0038]
  • Another class of photonic modulators are photonically controlled. With such photonically controlled modulators, high-speed parallel photonic inputs may provide very short setup times. Thus, sync pulse repetition rates, and data transmission rates may be selected to suit the photonic components being used. Such photonic components may include photonic transistors, self-exciting electro-optical devices (SEEDS), and nonlinear optical materials. [0039]
  • The use of photonically-controlled photonic modulators also allows for the construction of more complex multiplexers having multiple parallel inputs and various organizations of delay times as needed to match the various parallel digital data sources and transmission protocols to be used. [0040]
  • Certain photonic modulators, such as the photonic transistors of U.S. Pat. No. 5,617,249, may provide frequency multiplexed logic, which may be used to frequency multiplex and time-division multiplex information simultaneously using the present invention. Each of the multiplexing frequencies must be provided at the photonic input to provide a series of pulses for each frequency channel. However, with suitable circuitry, sync pulses need only be sent on one of the channels. The result is a combination of wave division and time-division multiplexing. [0041]
  • The present invention may be designed to work with amplitude, phase, spatial and polarization modulation techniques, as needed for a particular circumstance. Different forms of modulation may be used to make the separation of sync pulses from data pulses easier at the receiver and to provide multiple states for the transmission of semaphore digits having more than two modulation states. The photonic modulators, support circuitry and delay mechanisms are selected to provide the needed modulation combinations. Sync pulses may even be modulated as multilevel semaphores that may be used for data set routing or other purposes at the receiver. Thus the terms “digit” and “digital,” as used herein include multilevel as well as binary digits. [0042]
  • The serial output may be used for direct photonic transmission through free space, waveguides, or optical fibers. The output may also be directed along a delay path such as a free-space path or an optical fiber to provide a method of photonic information storage. The output may also be written onto or into various information storage media including holograms, photographs, CD-ROMS, photo-sensitive materials, and the like. [0043]
  • Even though this disclosure uses optical terminology, the present invention may be used with photonic energy anywhere within the electromagnetic spectrum through the selection of appropriate components to match the frequencies being used. Most notable is the microwave region, where the present invention may be used to multiplex information sent via satellite or other microwave links. The recent commercialization of x-ray technology, including x-ray capillaries (like optical fiber for x-rays), may be used to provide multiplexing in the x-ray bands. [0044]
  • The use of spatial modulation is not common. While spatial modulation is more complex than the more usual methods, the present invention may use this method of transmission. Spatial modulation is particularly useful when serialization is required inside a photonic computer or mass information storage device. Appropriate components may be used as with the other modulation methods. [0045]
  • An object of the present invention is to provide an apparatus and method of converting parallel digital information input to photonic serial information. [0046]
  • Another object of the present invention is to provide an apparatus and method for high-speed parallel photonic sampling of preset modulation states loaded into slow modulators followed by transmission of the sampled information in serial during the modulator setup time for the following data frame, thus providing an apparatus and method of maximizing photonic throughput by using the shortest transmissible photonic pulses, while using slow modulators (even electro-photonic modulators) having response times longer than the photonic sampling pulses. [0047]
  • Another object of the present invention is to provide an apparatus and method for optimizing data frame repetition rates by matching them to the modulator setup times combined with multilevel semaphores. This may be done to maximize overall transmission rates for each carrier wavelength and then adding separate carrier wavelengths until a selected transmission medium, be it an optical fiber or a free-space beam, has been saturated to its maximum physical information-carrying capacity. [0048]
  • Another object of the present invention is to provide an apparatus and method for photonically transmitting electronic information using the fastest available electronic and photonic components. [0049]
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information using digital semaphores having more than two modulation states. [0050]
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information using a variety of photonic modulation mechanisms and methods. [0051]
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information into an optical fiber for the purpose of retrieving the information at a future time. [0052]
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information to a satellite reflector or transponder, as the present invention may be designed to use photonic energy in the microwave as well as the optical portions of the electromagnetic spectrum. [0053]
  • Another object of the present invention is to provide an apparatus and method for transmitting serial information using the various parts of the electromagnetic spectrum including optical (both visible and invisible,) microwave, and radio frequencies. [0054]
  • Another object of the present invention is to provide an apparatus and method for transmitting simultaneous serial (time-division) and wavelength division (frequency multiplexed) information. [0055]
  • The foregoing objects and benefits of the present invention will become clearer through an examination of the drawings, description of the drawings, description of the preferred embodiment, and claims that follow.[0056]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects and features of the present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only typical embodiments of the invention and are, therefore, not to be considered limiting of its scope, the invention will be described with additional specificity and detail through use of the accompanying drawings in which: [0057]
  • FIG. 1 is a schematic block diagram of a parallel digital data to photonic serial data converter that constitutes the multiplexer of the present invention; [0058]
  • FIG. 2 is a pulse timing diagram illustrating the relationship between photonic pulses and modulator setup times; and [0059]
  • FIG. 3 is a pulse diagram showing multistate digit time pulses. [0060]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • It will be readily understood that the components of the present invention, as generally described and illustrated in the FIGURES herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the system and method of the present invention, as represented in FIGS. 1 through 3, is not intended to limit the scope of the invention, as claimed, but it is merely representative of the presently preferred embodiments of the invention. [0061]
  • The presently preferred embodiments of the invention will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. [0062]
  • Those of ordinary skill in the art will, of course, appreciate that various modifications to the details illustrated in the schematic diagrams of FIGS. [0063] 1-3 may easily be made without departing from the essential characteristics of the invention. Thus, the following description is intended only as an example, and simply illustrates one presently preferred embodiment consistent with the invention as claimed herein.
  • FIG. 1 is a block diagram of a delayed-pulse photonic time-division multiplexer which is a parallel digital information to photonic serial information converter of the present invention. Three dots between components indicate identical components for information flow lines up through n−1. [0064]
  • FIG. 2 is a pulse timing diagram that shows how delay times may be organized for the various required pulses and how they relate to each other. Three dots within data sets on time line [0065] 35 depict identical digit times up through n−1.
  • The present disclosure is easily understood by examining FIGS. 1 and 2 together. Reference characters [0066] 1 through 17 are used in FIG. 1 and reference characters 30 through 47 are used in FIG. 2.
  • Referring to FIGS. 1 and 2, in the depicted embodiment, a series of photonic pulses (optical, microwave, or RF) are provided by photonic source [0067] 1 routed into multiplexer input 2 as shown by time line 30. The input pulses 38 a, 45 a, and 40 a are directed through sync delay mechanism 3 to provide sync pulses 38 b, 45 b, and 40 b atphotonic output 17, as shown in time line 35.
  • Certain types of time-division demultiplexers require specialized sync waveforms, such as shortened pulses, or specialized modulation characteristics. These may be provided by insertion either with a sync delay mechanism in line [0068] 3 or between photonic source 1 and the other components or both for use in demultiplexing. Electronic digital information may be input to photonic modulators 4, 5, 6 through 7 by parallel digital information input 19.
  • Input pulses from multiplexer input [0069] 2 as shown on time line 30 are also supplied to a group of “n” photonic modulators to sample their previously loaded and held modulation states. Four of the “n” photonic modulators are shown: photonic modulators 4, 5, 6, and the nth photonic modulator 7. The output of each photonic modulator is directed into its own serial timing delay mechanism. Serial timing delay mechanisms depicted are serial timing delay mechanisms 12, 13, 14 and the nth one 15.
  • The integer “n” may be any integer in which at least one modulator and at least one serial timing delay mechanism are provided for each digit time in output [0070] 17, as shown on time line 35, just as with those modulator and serial delay mechanism combinations depicted. Examples of output digit times include the first digit pulse 46 and the nth digit pulse 47 in example data set 44.
  • The output from the group of “n” photonic modulators [0071] 4, 5, 6 through 7 and the group of “n” serial delay mechanisms 12, 13, 14 through 15 is “n” delayed digital pulses that are timed to arrive at output 17 in serial. For example, the basic transmission sequence for a single data frame may begin with a modulator loading sequence initiated by a timed photonic pulse from photonic source 1 routed to modulator loaders 8, 9, 10 through 11. In turn, photonic modulators 4, 5, 6, through 7 are loaded during their setup times by modulator loaders 8, 9, 10 through 11, with data from parallel digital information input 19. The loaded modulation states are then held for a period of time to allow photonic sampling of the loaded modulation states.
  • Photonic pulses from photonic source [0072] 1 are then routed through photonic modulators 4, 5, 6, through 7 to sample their modulation states. The modulated photonic pulses are then routed and delayed by delay mechanisms 12, 13, 14 through 15 along with a sync pulse to arrive at output 17 in serial. While the photonic pulses are being routed through the delay mechanisms 12, 13, 14 through 15 into the serial output 17, the modulators 4, 5, 6 through 7 are once again prepared by modulator loaders 8, 9, 10 through 11 for data sampling for the next frame.
  • The transmission sequence may be started anywhere in the sequence; however, the information transmitted during the first frame may depend upon several other factors. For example, because photonic modulators that provide more than two stable modulation states may also be used, non-binary semaphores (digits) may be used in the present invention. When only two states are used, the digit times are the same as “bit times,” as commonly used in the electronic serial communications art. Digit times shown in FIG. 2 having both top and bottom lines (for example, as in time line [0073] 31) indicate that the actual modulation states depend upon the modulation states of the respective modulators.
  • While FIG. 2 depicts common amplitude modulation form, the actual form of modulation used may be amplitude, phase, spatial, or polarization, or any combination of these. The present invention provides time-division multiplexing by means of pulse delays regardless of the modulation method or methods used for the pulses. Certain modulation combinations may require the use of multiple modulators and/or multiple delay mechanisms for each digit time as the engineering of these components requires. Delay mechanisms may include free-space distances, materials having an index of refraction greater than one, waveguides, optical fibers, one-shot multivibrators, and other more complex circuitry. [0074]
  • One advantage of using delaying materials such as glass, optical fibers, and the like is that these may be machined very precisely to maintain digit times within tolerance, while allowing or compensating for temperature and other fluctuations within the materials being used. Changes that do occur may be accurately measured, and such compensating information may be sent to the demultiplexer in order to compensate at the receiving end. [0075]
  • Each of the serial timing delay mechanisms [0076] 12, 13, 14 through 15 provides a different delay time so that the “n” delayed digital photonic pulses shown on time lines 31, 32, 33 through 34 are combined with the sync pulses at location 16 and arrive at output 17, as shown on time line 35 as data sets 39, 41, and 44 in serial in between sync pulses. As an example, the delay mechanisms may comprise optical fibers, the outputs of which are all directed through a lens and into another optical fiber that comprises output 17.
  • The time spaces shown on either side of the sync pulses, such as sync pulse [0077] 45 b between data set times 41 and 44, are optional and may be used if needed by a particular demultiplexer.
  • Each of the “n” photonic modulators has a required setup time that elapses before the modulating information in the modulators is sufficiently stable to be read by sending a photonic pulse into the modulators. This characteristic, which has often been viewed as a detriment in prior systems, is considered useful in the present invention. The summation of digit times that make up a data set, for instance times [0078] 39 or 44, may be designed to be at least as long as one of the photonic modulator's setup times shown on time line 37. All modulator setup times depicted on time line 37 are substantially the same as, for example, set up time 42.
  • If the modulators chosen are very slow in comparison with the photonics, more digit times may be added to each data set by adding more parallel inputs in parallel digital information input [0079] 19 along with corresponding modulator loader, photonic modulator, serial timing delay mechanisms, and interconnections. These additions increase the size of “n” until the functional limit of the photonics is reached.
  • As an example, if femtosecond pulses, as are commonly produced in the laser art, are used as the photonic source [0080] 1 and photonic modulators 4, 5, 6, through 7 having a 2 gHz (0.5 ns) response are used, the parallel digital information input 19 may be expanded to include one half-million parallel lines without the use of non-binary digits (semaphores). When non-binary digits are used during each digit time, the information throughput may be greatly multiplied. As a result, the present invention may be capable of transmitting 1,000 terabits per second and beyond using presently available components, while interfacing inherently slow electronics to high-speed photonics.
  • The length of setup time [0081] 42 of photonic modulators 4, 5, 6, through 7 (which depends upon the type of modulators used) and the pulse width of the input pulses such as pulse 40 a will determine the maximum pulse repetition rate for the input and sync pulses as shown on time lines 30 and 35, which in turn will determine the number “n”; that is, the number of digit times such as digit time 47 available between sync pulses.
  • To initiate modulator loading and the setup times as shown on time line [0082] 37, input pulses from the series of pulses of photonic energy input at multiplexer input 2 as shown by time line 30 are also directed through delay mechanism 18 as shown on time line 36 and into “n” modulator loaders 8, 9, 10 through the nth one here designated 11. When electronic components are used, these load triggering pulses are directed into a photo diode, which starts an electronic modulator loading circuit as discussed in the summary.
  • Each pulse exiting load delay mechanism [0083] 18 triggers loading of the “n” modulators with new information from parallel digital information input 19, starting the modulator setup time, as for example time 42 as shown on time line 37. Pulse setup times as shown on time line 37 may actually be timed events within the “n” modulator loaders 8, 9, 10 through 11 rather than an actual detectable signal having the wave form like that of modulator setup time 42 on time line 37. In view of the foregoing, the present invention is as compatible with optoelectronic modulators and electronic modulator loaders as with photonic, mechanical, acoustic and other modulating and modulator loading. As a result, the present invention may provide photonic serial information at a speed that is considerably faster than that of conventional single electronic modulator methods. This advantage is provided by the use of modulator loading times that occur during the transmission of the previously loaded and sampled data set. The present invention transmits asynchronously, with each sync pulse acting as a start pulse for the data set which follows.
  • Input pulses [0084] 38 a, 40 a, and 45 a, shown on time line 30, are directed into the “n” photonic modulators 4, 5, 6, through 7 to read them. This read time may be at any time that is not simultaneous with a setup time such as 42 shown on time line 37. For example, they may be read during time 43, which is between setup times on time line 37.
  • Of particular interest is the relationship between the setup times and the first sync pulse in the embodiment shown. The first input pulse [0085] 38 a reads the modulation state of photonic modulators 4, 5, 6, through 7. At that time, the modulators may contain unknown data or may be off or preset since no setup time has yet occurred. This is because modulator read pulses occur before the setup time begins for loading the next data set. Thus, the first data set 41 may be null or may contain unknown or preset data. A null or preset modulation pattern may be used by certain demultiplexers for determining the source of the information that follows, for calibration, or to provide other system information to the demultiplexer.
  • The first parallel digital data set is loaded following pulse [0086] 38 a, which is delayed by load delay mechanism 18, which in turn triggers the start of setup time 42. This occurs during the time that the first (possibly null) data set 41 is being transmitted. The photonic modulators are set up and stable at the completion of setup time 42 so that they may be read by the second input pulse 45 a.
  • The modulator outputs are delayed, each one by an amount that differs by at least one digit time (such as [0087] 46 and 47), to their individual digit time slots as in time lines 31, 32, 33 through 34 and are combined into output 17 as a complete data set 44, shown in time line 35. The process then continues in the same cyclic manner for the following trigger, setup, read, delay and transmit sequences.
  • The first data set [0088] 41 may be eliminated by changing the timing delays of the various delay mechanisms used throughout the invention. In particular, sync delay mechanism 3 may be used to delay the sync pulses so that the first pulse arrives one data frame later; that is, the first sync pulse 38 b would then arrive at 45 b. Certain types of delay, modulation, modulator loading, beam combining, and output mechanisms require the use of amplifiers and pulse shapers that may be inserted, as needed within the present invention.
  • It should be noted that other embodiments of the present invention may place delay mechanisms before the photonic modulators and/or sync output while providing other delays before or within the modulator loaders. However, the disclosed embodiment is simple and compatible with electronic parallel digital information input mechanisms. [0089]
  • FIG. 3 shows a non-binary semaphore quadnary digit having four different amplitude modulated levels [0090] 50, 51, 52 through 53, one level of which is transmitted during a digit time (such as digit time 47 of FIG. 2) to indicate one of four digits. The parallel digital information input 19 may be multi-level, or binary to multi-level encoding may be accomplished within the modulator loaders 8, 9, 10 through 11.
  • There are many combinations of non-binary transmission methods that may be used with the “n” photonic modulators. Another example is as shown by waveforms [0091] 54, 55, and 56 of FIG. 3, which is ternary. These waveforms indicate the use of a combination of phase and amplitude modulation. The photonic carrier wave 54 is 180 degrees out of phase with carrier wave 56 (as indicated by its position below the zero axis line). On the other hand, carrier wave 55 is amplitude-modulated low; this modulation combination is particularly useful when interference-based photonic components such as those taught in U.S. Pat. No. 5,093,802 are being used at the receiving demultiplexer.
  • If each of the photonic modulators is loaded with non-binary modulation state combinations, considerably more information maybe transmitted during each digit time than if binary modulation is used. Any combination of stable modulation states using any combination of modulation methods may be used. The present invention is ideally suited for such modulation techniques because the method provides ample time for loading the modulators, even modulators that are comparatively slow. Multiple modulators may be used for each digit time slot so that the phase, amplitude, polarization, and spatial modulation techniques may be mixed and matched, as the transmitting medium and demultiplexers require. Also, the types of delay mechanisms available are compatible with a variety of modulation methods. [0092]
  • The present invention may be used to provide serial photonic information for a variety of tasks. The present invention may be used for fiber optic transmission, satellite and terrestrial microwave links, and for writing to optical devices such as CD-ROMs, holographic storage devices, and fiber optic circulating data storage devices. [0093]
  • The photonic components usable in the present invention include those having the capability of frequency multiplexing (or wave division multiplexing) so that multiple frequency channels may be used simultaneously during each digit time. Such a feature is important when transmission or information storage mediums such as optical fibers or microwave links are combined with repeater amplifiers having a limited number of frequency channels available. The present invention may be used with various combinations of frequency channels, pulse repetition rates, and modulation methods to suit the medium to be driven. [0094]
  • To accomplish combination wave division and time-division multiplexing, separate carrier wavelengths are routed from photonic source [0095] 1 to separate modulators. For example, red light would be routed to modulators 4 and 5 and green light to modulators 6 and 7.
  • The present invention may be embodied in other specific forms without departing from its structures, methods, or other essential characteristics as broadly described herein and claimed hereinafter. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.[0096]

Claims (36)

What is claimed and desired to be secured by United States Letters Patent is:
1. An apparatus for converting parallel digital signals to serial photonic signals, the apparatus comprising:
a first photonic pulse having a first timing corresponding to a first frequency;
first and second parallel digital inputs;
a first modulator loader and a first photonic modulator, the first modulator loader configured to provide the first parallel digital input to the first photonic modulator at a first time corresponding to a first delayed timing of the first photonic pulse;
a second modulator loader and a second photonic modulator, the second modulator loader configured to provide the second parallel digital input to the second photonic modulator at the first time corresponding to the first delayed timing of the first photonic pulse;
a first photonic output from the first photonic modulator and a second photonic output from the second photonic modulator provided at a second time corresponding to the first timing of the first photonic pulse.
2. The apparatus of claim 1, further comprising a first delay mechanism and a second delay mechanism, the first and second delay mechanisms configured to delay the first and second photonic outputs by first and second delays, respectively, so that the first and second photonic outputs are timed serially between pulses of the first photonic pulse.
3. The apparatus of claim 2, further comprising a serial output comprising the first photonic pulse, the first photonic output delayed by the first delay, and the second photonic output delayed by the second delay.
4. The apparatus of claim 3, wherein the first and second modulator loaders are configured to load the first and second parallel digital signals into the first and second photonic modulators during the multiplexing of the serial output.
5. The apparatus of claim 4, wherein the first and second photonic modulators have a response time and wherein a time between successive pulses of the first photonic pulse is longer than the response time of the first and second photonic modulators.
6. The apparatus of claim 5, wherein the first and second parallel digital inputs comprise multi-level non-binary signals.
7. The apparatus of claim 6, wherein the first and second photonic outputs comprise multi-level non-binary photonic signals.
8. The apparatus of claim 7, further comprising:
a second photonic pulse having a second timing corresponding to a second frequency;
third and fourth parallel digital inputs;
a third modulator loader and a third photonic modulator, the third modulator loader configured to provide the third parallel digital input to the third photonic modulator at a third time corresponding to a second delayed timing of the second photonic pulse;
a fourth modulator loader and a fourth photonic modulator, the fourth modulator loader configured to provide the fourth parallel digital input to the fourth photonic modulator at the third time corresponding to the second delayed timing of the second photonic pulse;
a third photonic output from the third photonic modulator and a fourth photonic output from the fourth photonic modulator provided at a fourth time corresponding to the second timing of the second photonic pulse.
9. The apparatus of claim 1, further comprising a serial output comprising the first photonic pulse, the first photonic output delayed by a first delay, and the second photonic output delayed by a second delay.
10. The apparatus of claim 1, wherein the first and second modulator loaders are configured to load the first and second parallel digital signals into the first and second photonic modulators while multiplexing the first photonic pulse, the first photonic output delayed by a first delay, and the second photonic output delayed by a second delay, into a serial output.
11. The apparatus of claim 1, wherein the first and second photonic modulators have a response time and wherein the time between successive pulses of the first photonic pulse is longer than the response time of the first and second photonic modulators.
12. The apparatus of claim 1, wherein the first and second parallel digital inputs comprise multi-level non-binary signals.
13. The apparatus of claim 1, wherein the first and second photonic outputs comprise multi-level non-binary photonic signals.
14. The apparatus of claim 1, wherein the first and second photonic outputs are amplitude-modulated.
15. The apparatus of claim 1, wherein the first and second photonic outputs are phase-modulated.
16. The apparatus of claim 1, wherein the first and second photonic outputs are polarization-modulated.
17. The apparatus of claim 1, wherein the first and second photonic outputs are spatially modulated.
18. The apparatus of claim 1, further comprising:
a second photonic pulse having a second timing corresponding to a second frequency;
third and fourth parallel digital inputs;
a third modulator loader and a third photonic modulator, the third modulator loader configured to provide the third parallel digital input to the third photonic modulator at a third time corresponding to a second delayed timing of the second photonic pulse;
a fourth modulator loader and a fourth photonic modulator, the fourth modulator loader configured to provide the fourth parallel digital input to the fourth photonic modulator at the third time corresponding to the second delayed timing of the second photonic pulse;
a third photonic output from the third photonic modulator and a fourth photonic output from the fourth photonic modulator provided at a fourth time corresponding to the second timing of the second photonic pulse.
19. A method for converting parallel digital signals to serial photonic signals, the method comprising:
providing a first photonic pulse having a first timing corresponding to a first frequency;
providing first and second parallel digital inputs;
loading the first parallel digital input into a first photonic modulator and loading the second parallel digital input into a second photonic modulator at a first time corresponding to a firs delayed timing of the first photonic pulse; and
reading a first photonic output from the first photonic modulator and reading a second photonic output from the second photonic modulator at a second time corresponding to the first timing of the first photonic pulse.
20. The method of claim 19, further comprising delaying the first photonic output by a first delay and delaying the second photonic output by a second delay, the first and second delays being timed so that the first and second photonic outputs are timed serially between pulses of the first photonic pulse.
21. The method of claim 20, further comprising a serial output comprising the first photonic pulse, the delayed first photonic output, and the delayed second photonic output.
22. The method of claim 21, wherein loading the first and second parallel digital signals into the first and second photonic modulators is timed to occur during the multiplexing of the serial output.
23. The method of claim 22, wherein the first and second photonic modulators have a response time and wherein the time between successive pulses of the first photonic pulse is longer than the response time of the first and second photonic modulators.
24. The method of claim 23, wherein the first and second parallel digital inputs comprise multi-level non-binary signals.
25. The method of claim 24, wherein the first and second photonic outputs comprise multi-level non-binary photonic signals.
26. The method of claim 25, further comprising:
providing a second photonic pulse having a first timing corresponding to a second frequency;
providing third and fourth parallel digital inputs;
loading the third parallel digital input into a third photonic modulator and loading the fourth parallel digital input into a fourth photonic modulator at a third time corresponding to a first delayed timing of the second photonic pulse; and
reading a third photonic output from the third photonic modulator and reading a fourth photonic output from the fourth photonic modulator at a fourth time corresponding to the first timing of the second photonic pulse.
27. The method of claim 19, further comprising multiplexing the first photonic pulse, the first photonic output delayed by a first delay, and the second photonic output delayed by a second delay, into a serial output.
28. The method of claim 19, wherein loading the first and second parallel digital signals into the first and second photonic modulators occurs while multiplexing the first photonic pulse, the first photonic output delayed by a first delay, and the second photonic output delayed by a second delay, into a serial output.
29. The method of claim 19, wherein the first and second photonic modulators have a response time and wherein the time between successive pulses of the first photonic pulse is longer than the response time of the first and second photonic modulators.
30. The method of claim 19, wherein the first and second parallel digital inputs comprise multi-level non-binary signals.
31. The method of claim 19, wherein the first and second photonic outputs comprise multi-level non-binary photonic signals.
32. The method of claim 19, wherein the first and second photonic outputs are amplitude-modulated.
33. The method of claim 19, wherein the first and second photonic outputs are phase-modulated.
34. The method of claim 19, wherein the first and second photonic outputs are polarization-modulated.
35. The method of claim 19, wherein the first and second photonic outputs are spatially modulated.
36. A method for converting parallel digital signals to serial photonic signals, the method comprising:
providing a second photonic pulse having a second timing corresponding to a second frequency;
providing third and fourth parallel digital inputs;
loading the third parallel digital input into a third photonic modulator and loading the fourth parallel digital input into a fourth photonic modulator at a third time corresponding to a second delayed timing of the second photonic pulse; and
reading a third photonic output from the third photonic modulator and reading a fourth photonic output from the fourth photonic modulator at a fourth time corresponding to the second timing of the second photonic pulse.
US09/785,524 1998-05-08 2001-02-16 Combination photonic time and wavelength division multiplexer Abandoned US20020003642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/785,524 US20020003642A1 (en) 1998-05-08 2001-02-16 Combination photonic time and wavelength division multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/075,046 US6256124B1 (en) 1998-05-08 1998-05-08 Combination photonic time and wavelength division multiplexer
US09/785,524 US20020003642A1 (en) 1998-05-08 2001-02-16 Combination photonic time and wavelength division multiplexer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/075,046 Continuation US6256124B1 (en) 1998-05-08 1998-05-08 Combination photonic time and wavelength division multiplexer

Publications (1)

Publication Number Publication Date
US20020003642A1 true US20020003642A1 (en) 2002-01-10

Family

ID=22123190

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/075,046 Expired - Fee Related US6256124B1 (en) 1998-05-08 1998-05-08 Combination photonic time and wavelength division multiplexer
US09/785,524 Abandoned US20020003642A1 (en) 1998-05-08 2001-02-16 Combination photonic time and wavelength division multiplexer
US09/810,900 Abandoned US20010017721A1 (en) 1998-05-08 2001-03-16 Combination photonic time and wavelength division multiplexing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/075,046 Expired - Fee Related US6256124B1 (en) 1998-05-08 1998-05-08 Combination photonic time and wavelength division multiplexer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/810,900 Abandoned US20010017721A1 (en) 1998-05-08 2001-03-16 Combination photonic time and wavelength division multiplexing method

Country Status (1)

Country Link
US (3) US6256124B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7272319B1 (en) * 1999-03-04 2007-09-18 Lucent Technologies Inc. System and method for secure multiple wavelength communication on optical fibers
US6819872B2 (en) 1999-06-23 2004-11-16 Jds Uniphase Corporation Micro-optic delay element for use in a time division multiplexed system
US6607313B1 (en) * 1999-06-23 2003-08-19 Jds Fitel Inc. Micro-optic delay element for use in a polarization multiplexed system
US6708003B1 (en) * 1999-12-16 2004-03-16 Northrop Grumman Corporation Optical energy transmission system utilizing precise phase and amplitude control
US6724994B1 (en) * 2000-09-28 2004-04-20 Lucent Technologies Inc. Hybrid TDM/WDM demultiplexing in low duty cycle optical transmission systems
US7127174B2 (en) * 2001-11-16 2006-10-24 Oplink Communications, Inc. Hybrid-integrated high-speed OTDM module
JP3913252B2 (en) * 2005-01-14 2007-05-09 沖電気工業株式会社 Optical time division multiplexing transmitter
JP2009511982A (en) * 2005-10-11 2009-03-19 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティー オブ エルサレム Optical routing and transport accelerator (ORTA)
WO2010053911A2 (en) 2008-11-04 2010-05-14 Massachusetts Institute Of Technology External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements
US8614853B2 (en) 2010-03-09 2013-12-24 Massachusetts Institute Of Technology Two-dimensional wavelength-beam-combining of lasers using first-order grating stack
US8531761B2 (en) 2010-05-27 2013-09-10 Massachusetts Institute Of Technology High peak power optical amplifier
US9620928B2 (en) 2010-07-16 2017-04-11 Massachusetts Institute Of Technology Continuous wave or ultrafast lasers
CN107317650B (en) * 2017-07-03 2019-04-19 华南师范大学 Device, method and system for time-division division multiplex fibre-optic communication wave experimental teaching
US10236027B1 (en) * 2018-02-12 2019-03-19 Microsoft Technology Licensing, Llc Data storage using light of spatially modulated phase and polarization
FI20205637A1 (en) * 2020-06-16 2021-12-17 Teknologian Tutkimuskeskus Vtt Oy Optical arbitrary pulse pattern generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519083A (en) * 1949-08-08 1950-08-15 Gen Electric Time division pulse multiplex system
US3506834A (en) * 1967-04-17 1970-04-14 Bell Telephone Labor Inc Time-division multiplex optical transmission system
GB1540907A (en) * 1976-12-07 1979-02-21 Standard Telephones Cables Ltd System for obtaining data from a plurality of condition responsive optical devices
US4467468A (en) * 1981-12-28 1984-08-21 At&T Bell Laboratories Optical communication system

Also Published As

Publication number Publication date
US20010017721A1 (en) 2001-08-30
US6256124B1 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US6256124B1 (en) Combination photonic time and wavelength division multiplexer
US5111323A (en) Optical switching system
US7738486B2 (en) Multi-mode integrated circuit for use in optoelectronic devices
US5438444A (en) Optical routing system
US5739933A (en) Optically controlled optical switching module, method of optically controlling an optical switching network, and optical switching network
GB2113049A (en) Communication system
JP2002521861A (en) Multi-wavelength high-density wavelength division multiplex optical switching equipment
US5838470A (en) Optical wavelength tracking receiver
EP1132766A2 (en) Optical signal processing device using optical gate
EP2137847B1 (en) Multi-mode integrated circuit for use in optoelectronic devices
US7120364B2 (en) Optical modulator and method for polarization bit interleaving
US6570694B1 (en) System and method for low-jitter asynchronous optical regeneration using wavelength sampling
US6594049B1 (en) Optical router
US20230006760A1 (en) Method and apparatus for optical pulse sequence generation
US20020018259A1 (en) Synchronization pulse for the enhancement of the OTDM
US20010017720A1 (en) Combination photonic time and wavelength division demultiplexing method
US6215570B1 (en) Optical switch
US6128114A (en) Method of and system for transmitting data
EP1368913B1 (en) Optical data compression device and method
US20010040712A1 (en) Reconfigurable optical recognition of bit information in a digital data stream with different bit rates
US6904211B2 (en) Optical pulse code recognition device and optical distributor
US6542269B1 (en) Optical device for processing an optical impulse
AU2002235944A1 (en) Optical data compression device and method
EP0987844B1 (en) Optical device for processing an optical impulse
Runser et al. Highly scalable optical TDM router using a computer controlled time slot selector with picosecond resolution

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALL OPTICAL NETWORKS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAIT, JOHN N.;REEL/FRAME:012118/0520

Effective date: 20010815

AS Assignment

Owner name: PATE PIERCE & BAIRD, UTAH

Free format text: ATTORNEY'S LIEN AND NOTICE OF INTEREST;ASSIGNOR:ALL OPTICAL NETWORKS, INC.;REEL/FRAME:012659/0074

Effective date: 20020208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION