[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20010043253A1 - Ink jet with coiled actuator - Google Patents

Ink jet with coiled actuator Download PDF

Info

Publication number
US20010043253A1
US20010043253A1 US09/854,762 US85476201A US2001043253A1 US 20010043253 A1 US20010043253 A1 US 20010043253A1 US 85476201 A US85476201 A US 85476201A US 2001043253 A1 US2001043253 A1 US 2001043253A1
Authority
US
United States
Prior art keywords
ink
actuator
nozzle
ejection port
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/854,762
Other versions
US6425657B2 (en
Inventor
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zamtec Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPO7991A external-priority patent/AUPO799197A0/en
Priority claimed from AUPO8001A external-priority patent/AUPO800197A0/en
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Priority to US09/854,762 priority Critical patent/US6425657B2/en
Assigned to SILVERBROOK RESEARCH PTY. LTD. reassignment SILVERBROOK RESEARCH PTY. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK, KIA
Publication of US20010043253A1 publication Critical patent/US20010043253A1/en
Application granted granted Critical
Publication of US6425657B2 publication Critical patent/US6425657B2/en
Assigned to ZAMTEC LIMITED reassignment ZAMTEC LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK RESEARCH PTY. LIMITED AND CLAMATE PTY LIMITED
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14427Structure of ink jet print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1635Manufacturing processes dividing the wafer into individual chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1637Manufacturing processes molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1637Manufacturing processes molding
    • B41J2/1639Manufacturing processes molding sacrificial molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1642Manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1643Manufacturing processes thin film formation thin film formation by plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1645Manufacturing processes thin film formation thin film formation by spincoating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1646Manufacturing processes thin film formation thin film formation by sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1648Production of print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/78Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
    • G06F21/79Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data in semiconductor storage media, e.g. directly-addressable memories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/86Secure or tamper-resistant housings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • G06K1/121Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching by printing code marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • H04N1/2154Intermediate information storage for one or a few pictures using still video cameras the still video camera incorporating a hardcopy reproducing device, e.g. a printer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16585Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2002/041Electromagnetic transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/21Line printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2129Authenticate client device independently of the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7458Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of deformable mirrors, e.g. digital micromirror device [DMD]

Definitions

  • the present invention further relates to the field of drop on demand ink jet printing.
  • Ink Jet printers themselves come in many different types.
  • the utilisation of a continuous stream ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electrostatic ink jet printing.
  • U.S. Pat. No. 3,596,275 by Sweet also discloses a process of a continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electrostatic field so as to cause drop separation. This technique is still used by several manufacturers including Elmjet and Scitex (see also U.S. Pat. No. 3,373,437 by Sweet et al)
  • Piezoelectric ink jet printers are also one form of commonly used ink jet printing device. Piezoelectric systems are disclosed by Kyser et. al. in U.S. Pat. No. 3,946,398 (1970) which discloses a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) which discloses a bend mode of piezoelectric operation, Howkins in U.S. Pat. No. 4,459,601 which discloses a piezoelectric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a shear mode type of piezoelectric transducer element.
  • thermal ink jet printing has become an extremely popular form of ink jet printing.
  • the ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4,490,728. Both the aforementioned references disclose ink jet printing techniques rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media.
  • Printing devices using the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard.
  • a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables.
  • an ink jet nozzle comprising an ink ejection port for the ejection of ink, an ink supply with an oscillating ink pressure interconnected to the ink ejection port, a shutter mechanism interconnected between the ink supply and the ink ejection port, which blocks the ink ejection port, and an actuator mechanism for moving the shutter mechanism on demand away from the ink ejection port so as to allow for the ejection of ink on demand from the ink ejection port.
  • the actuator comprises a thermal actuator which is activated by the heating of one side of the actuator.
  • the actuator has a coiled form and is uncoiled upon heating.
  • the actuator includes a serpentine heater element encased in a material having a high coefficient of thermal expansion.
  • the serpentine heater concertinas upon heating.
  • the actuator includes a thick return trace for the serpentine heater element.
  • the material in which the serpentine heater element is encased comprises polytetrafluoroethylene.
  • the actuator is formed within a nozzle chamber which is formed on a silicon wafer and ink is supplied to the ejection port through channels etched through the silicon wafer.
  • FIG. 1 is an exploded perspective view illustrating the construction of a single ink jet nozzle in accordance with the preferred embodiment
  • FIG. 2 is a perspective view, partly in section, of a single ink jet nozzle constructed in accordance with the preferred embodiment
  • FIG. 3 provides a legend of the materials indicated in FIGS. 4 to 16 ;
  • FIG. 4 to FIG. 16 illustrate sectional views of the manufacturing steps in one form of construction of an ink jet printhead nozzle.
  • an oscillating ink reservoir pressure is used to eject ink from ejection nozzles.
  • Each nozzle has an associated shutter which normally blocks the nozzle. The shutter is moved away from the nozzle by an actuator whenever an ink drop is to be fired.
  • FIG. 1 there is illustrated in exploded perspective a single ink jet nozzle 10 as constructed in accordance with the principles of the present invention.
  • the exploded perspective illustrates a single ink jet nozzle 10 .
  • the nozzles are formed as an array on a silicon wafer 12 .
  • the silicon wafer 12 is processed so as to have two level metal CMOS circuitry which includes metal layers and glass layers 13 and which are planarised after construction.
  • the CMOS metal layer has a reduced aperture 14 for the access of ink from the back of silicon wafer 12 via an ink supply channel 15 .
  • a bottom nitride layer 16 is constructed on top of the CMOS layer 13 so as to cover, protect and passivate the CMOS layer 13 from subsequent etching processes. Subsequently, there is provided a copper heater layer 18 which is sandwiched between two polytetrafluoroethylene (PTFE) layers 19 , 20 . The copper layer 18 is connected to lower CMOS layer 13 through vias 25 , 26 . The copper layer 18 and PTFE layers 19 , 20 are encapsulated within nitride borders e.g.
  • nitride top layer 29 which includes an ink ejection port 30 in addition to a number of sacrificial etched access holes 32 which are of a smaller dimension than the ejection port 30 and are provided for allowing access of a etchant to lower sacrificial layers thereby allowing the use of the etchant in the construction of layers, 18 , 19 , 20 and 28 .
  • FIG. 2 there is shown a cutaway perspective view of a fully constructed ink jet nozzle 10 .
  • the ink jet nozzle uses an oscillating ink pressure to eject ink from ejection port 30 .
  • Each nozzle has an associated shutter 31 which normally blocks it. The shutter 31 is moved away from the ejection port 30 by an actuator 35 whenever an ink drop is to be fired.
  • the ports 30 are in communication with ink chambers which contain the actuators 35 . These chambers are connected to ink supply channels 15 which are etched through the silicon wafer. The ink supply channels 15 are substantially wider than the ports 30 , to reduce the fluidic resistance to the ink pressure wave.
  • the ink channels 15 are connected to an ink reservoir.
  • An ultrasonic transducer (for example, a piezoelectric transducer) is positioned in the reservoir. The transducer oscillates the ink pressure at approximately 100 KHz. The ink pressure oscillation is sufficient that ink drops would be ejected from the nozzle were it not blocked by the shutter 31 .
  • the shutters are moved by a thermoelastic actuator 35 .
  • the actuators are formed as a coiled serpentine copper heater 23 embedded in polytetrafluoroethylene (PTFE) 19/20.
  • PTFE polytetrafluoroethylene
  • the current return trace 22 from the heater 23 is also embedded in the PTFE actuator 35 , the current return trace 22 is made wider than the heater trace 23 and is not serpentine. Therefore, it does not heat the PTFE as much as the serpentine heater 23 does.
  • the serpentine heater 23 is positioned along the inside edge of the PTFE coil, and the return trace is positioned on the outside edge. When actuated, the inside edge becomes hotter than the outside edge, and expands more. This results in the actuator 35 uncoiling.
  • the heater layer 23 is etched in a serpentine manner both to increase its resistance, and to reduce its effective tensile strength along the length of the actuator. This is so that the low thermal expansion of the copper does not prevent the actuator from expanding according to the high thermal expansion characteristics of the PTFE.
  • the shutter 31 can be positioned between the fully on and fully off positions. This may be used to vary the volume of the ejected drop. Drop volume control may be used either to implement a degree of continuous tone operation, to regulate the drop volume, or both.
  • Each drop ejection takes two ink pressure cycles.
  • Preferably half of the nozzles 10 should eject drops in one phase, and the other half of the nozzles should eject drops in the other phase. This minimises the pressure variations which occur due to a large number of nozzles being actuated.
  • the amplitude of the ultrasonic transducer can be altered in response to the viscosity of the ink (which is typically affected by temperature), and the number of drops which are to be ejected in the current cycle. This amplitude adjustment can be used to maintain consistent drop size in varying environmental conditions.
  • the drop firing rate can be around 50 KHz.
  • the ink jet head is suitable for fabrication as a monolithic page wide printhead.
  • FIG. 2 shows a single nozzle of a 1600 dpi printhead in “up shooter” configuration.
  • the wafer is processed so as to add CMOS layers 13 with an aperture 14 being inserted.
  • the nitride layer 16 is laid down on top of the CMOS layers so as to protect them from subsequent etchings.
  • a thin sacrificial glass layer is then laid down on top of nitride layers 16 followed by a first PTFE layer 19 , the copper layer 18 and a second PTFE layer 20 . Then a sacrificial glass layer is formed on top of the PTFE layer and etched to a depth of a few microns to form the nitride border regions 28 . Next the top layer 29 is laid down over the sacrificial layer using the mask for forming the various holes including the processing step of forming the rim 40 on nozzle 30 . The sacrificial glass is then dissolved away and the channel 15 formed through the wafer by means of utilisation of high density low pressure plasma etching such as that available from Surface Technology Systems.
  • FIG. 4 is a key to representations of various materials in these manufacturing diagrams, and those of other cross referenced ink jet configurations.
  • sacrificial material 50 e.g. aluminum or photosensitive polyimide
  • the heater 53 which is a 1 micron layer of a conductor with a low Young's modulus, for example aluminum or gold.
  • the printheads in their packaging, which may be a molded plastic former incorporating ink channels which supply the appropriate color ink to the ink inlets at the back of the wafer.
  • the package also includes a piezoelectric actuator attached to the rear of the ink channels. The piezoelectric actuator provides the oscillating ink pressure required for the ink jet operation.
  • the presently disclosed ink jet printing technology is potentially suited to a wide range of printing systems including: colour and monochrome office printers, short run digital printers, high speed digital printers, offset press supplemental printers, low cost scanning printers, high speed pagewidth printers, notebook computers with inbuilt pagewidth printers, portable colour and monochrome printers, colour and monochrome copiers, colour and monochrome facsimile machines, combined printer, facsimile and copying machines, label printers, large format plotters, photograph copiers, printers for digital photographic ‘minilabs’, video printers, PhotoCD printers, portable printers for PDAs, wallpaper printers, indoor sign printers, billboard printers, fabric printers, camera printers and fault tolerant commercial printer arrays.
  • the embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
  • thermal ink jet The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
  • piezoelectric ink jet The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per printhead, but is a major impediment to the fabrication of pagewidth printheads with 19,200 nozzles.
  • the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications.
  • new ink jet technologies have been created.
  • the target features include:
  • ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems.
  • the printhead is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing.
  • the printhead is 100 mm long, with a width which depends upon the ink jet type.
  • the smallest printhead designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm.
  • the printheads each contain 19,200 nozzles plus data and control circuitry.
  • Ink is supplied to the back of the printhead by injection molded plastic ink channels.
  • the molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool.
  • Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer.
  • the printhead is connected to the camera circuitry by tape automated bonding.
  • ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes.
  • Most of the IJ01 to IJ45 examples can be made into ink jet printheads with characteristics superior to any currently available ink jet technology.
  • Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WVW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
  • Perovskite ( ⁇ 1 ⁇ s) PLZSnT are materials such as tin Relatively high required modified lead longitudinal strain Actuators require lanthanum zirconate High efficiency a large area titanate (PLZSnT) Electric field exhibit large strains of strength of around 3 up to 1% associated V/ ⁇ m can be readily with the AFE to FE provided phase transition.
  • Electro- Conductive plates are Low power Difficult to IJ02, IJ04 static plates separated by a consumption operate electrostatic compressible or fluid Many ink types devices in an dielectric (usually air). can be used aqueous Upon application of a Fast operation environment voltage, the plates The electrostatic attract each other and actuator will displace ink, causing normally need to be drop ejection.
  • the separated from the conductive plates may ink be in a comb or Very large area honeycomb structure, required to achieve or stacked to increase high forces the surface area and High voltage therefore the force.
  • drive transistors may be required Full pagewidth print heads are not competitive due to actuator size
  • An electromagnet Low power Complex IJ07, IJ10 magnet directly attracts a consumption fabrication electro- permanent magnet, Many ink types Permanent magnetic displacing ink and can be used magnetic material causing drop ejection.
  • Fast operation such as Neodymium Rare earth magnets High efficiency Iron Boron (NdFeB) with a field strength Easy extension required. around 1 Tesla can be from single nozzles High local used.
  • Examples are: to pagewidth print currents required Samarium Cobalt heads Copper (SaCo) and magnetic metalization should materials in the be used for long neodymium iron boron electromigration family (NdFeB, lifetime and low NdDyFeBNb, resistivity NdDyFeB, etc) Pigmented inks are usually infeasible Operating temperature limited to the Curie temperature (around 540 K.) Soft A solenoid induced a Low power Complex IJ01, IJ05, IJ08, magnetic magnetic field in a soft consumption fabrication IJ10, IJ12, IJ14, core electro- magnetic core or yoke Many ink types Materials not IJ15, IJ17 magnetic fabricated from a can be used usually present in a ferrous material such Fast operation CMOS fab such as as electroplated iron High efficiency NiFe, CoNiFe, or alloys such as CoNiFe Easy extension CoFe are required [1], CoFe, or NiFe from single nozzles High
  • the to pagewidth print currents required soft magnetic material heads Copper is in two parts, which metalization should are normally held be used for long apart by a spring. electromigration When the solenoid is lifetime and low actuated, the two parts resistivity attract, displacing the Electroplating is ink. required High saturation flux density is required (2.0-2.1 T is achievable with CoNiFe [1]) Lorenz The Lorenz force Low power Force acts as a IJ06, IJ11, IJ13, force acting on a current consumption twisting motion IJ16 carrying wire in a Many ink types Typically, only a magnetic field is can be used quarter of the utilized.
  • the surface construction separation applications tension of the ink is No unusual Requires special reduced below the materials required in ink surfactants bubble threshold, fabrication Speed may be causing the ink to High efficiency limited by surfactant egress from the Easy extension properties nozzle. from single nozzles to pagewidth print heads Viscosity
  • the ink viscosity is Simple Requires Silverbrook, EP reduction locally reduced to construction supplementary force 0771 658 A2 and select which drops are No unusual to effect drop related patent to be ejected.
  • a materials required in separation applications viscosity reduction can fabrication Requires special be achieved Easy extension ink viscosity electrothermally with from single nozzles properties most inks, but special to pagewidth print High speed is inks can be engineered heads difficult to achieve for a 100:1 viscosity Requires reduction.
  • oscillating ink pressure A high temperature difference (typically 80 degrees) is required Acoustic An acoustic wave is Can operate Complex drive 1993 Hadimioglu generated and without a nozzle circuitry et al, EUP 550,192 focussed upon the plate Complex 1993 Elrod et al, drop ejection region.
  • Simple planar Corrosion IJ29, IJ30, IJ31, fabrication prevention can be IJ32, IJ33, IJ34, Small chip area difficult IJ35, IJ36, IJ37, required for each Pigmented inks IJ38, IJ39, IJ40, actuator may be infeasible, IJ41 Fast operation as pigment particles High efficiency may jam the bend CMOS actuator compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads High CTE A material with a very High force can Requires special IJ09, IJ17, IJ18, thermo- high coefficient of be generated material (e.g.
  • PTFE PTFE
  • IJ20 IJ21, IJ22
  • elastic thermal expansion Three methods of Requires a PTFE IJ23, IJ24, IJ27, actuator (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30, polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43, (PTFE) is used.
  • CTE actuator
  • PTFE deposition process IJ28, IJ29, IJ30
  • polytetrafluoroethylene under development which is not yet IJ31, IJ42, IJ43, (PTFE) is used.
  • CVD high CTE materials deposition
  • fabs are usually non- spin coating
  • PTFE deposition conductive a heater evaporation cannot be followed fabricated from a PTFE is a with high conductive material is candidate for low temperature (above incorporated.
  • a 50 ⁇ m dielectric constant 350° C.) processing long PTFE bend insulation in ULSI Pigmented inks actuator with Very low power may be infeasible, polysilicon heater and consumption as pigment particles 15 mW power input
  • Many ink types may jam the bend can provide 180 ⁇ N can be used actuator force and 10 ⁇ m Simple planar deflection.
  • Actuator fabrication motions include: Small chip area Bend required for each Push actuator Buckle Fast operation Rotate High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads Conduct-ive A polymer with a high High force can Requires special IJ24 polymer coefficient of thermal be generated materials thermo- expansion (such as Very low power development (High elastic PTFE) is doped with consumption CTE conductive actuator conducting substances Many ink types polymer) to increase its can be used Requires a PTFE conductivity to about 3 Simple planar deposition process, orders of magnitude fabrication which is not yet below that of copper. Small chip area standard in ULSI The conducting required for each fabs polymer expands actuator PTFE deposition when resistively Fast operation cannot be followed heated.
  • IJ24 polymer coefficient of thermal be generated materials thermo- expansion such as Very low power development (High elastic PTFE) is doped with consumption CTE conductive actuator conducting substances Many ink types polymer
  • CMOS temperature (above conducting dopants compatible voltages 350° C.) processing include: and currents Evaporation and Carbon nanotubes Easy extension CVD deposition Metal fibers from single nozzles techniques cannot Conductive polymers to pagewidth print be used such as doped heads Pigmented inks polythiophene may be infeasible, Carbon granules as pigment particles may jam the bend actuator Shape A shape memory alloy High force is Fatigue limits IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa) of cycles Nickel Titanium alloy Large strain is Low strain (1%) developed at the Naval available (more than is required to extend Ordnance Laboratory) 3%) fatigue resistance is thermally switched High corrosion Cycle rate between its weak resistance limited by heat martensitic state and Simple removal its high stiffness construction Requires unusual austenic state.
  • IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa
  • the Easy extension materials (TiNi) shape of the actuator from single nozzles The latent heat of in its martensitic state to pagewidth print transformation must is deformed relative to heads be provided the austenic shape. Low voltage High current
  • the shape change operation operation causes ejection of a Requires pre- drop. stressing to distort the martensitic state
  • Linear Linear magnetic Linear Magnetic Requires unusual IJ12 Magnetic actuators include the actuators can be semiconductor Actuator Linear Induction constructed with materials such as Actuator (LIA), Linear high thrust, long soft magnetic alloys Permanent Magnet travel, and high (e.g.
  • LMSA Linear planar also require Reluctance semiconductor permanent magnetic Synchronous Actuator fabrication materials such as (LRSA), Linear techniques Neodymium iron Switched Reluctance Long actuator boron (NdFeB) Actuator (LSRA), and travel is available Requires the Linear Stepper Medium force is complex multi- Actuator (LSA). available phase drive circuitly Low voltage High current operation operation BASIC OPERATION MODE Actuator This is the simplest Simple operation Drop repetition Thermal ink jet directly mode of operation: the No external rate is usually Piezoelectric ink pushes ink actuator directly fields required limited to around 10 jet supplies sufficient Satellite drops kHz.
  • this IJ01, IJ02, IJ03, kinetic energy to expel can be avoided if is not fundamental IJ04, IJ05, IJ06, the drop.
  • the drop drop velocity is less to the method, but is IJ07, IJ09, IJ11, must have a sufficient than 4 m/s related to the refill IJ12, IJ14, IJ16, velocity to overcome Can be efficient, method normally IJ20, IJ22, IJ23, the surface tension.
  • Electrostatic field applications surface tension selection means for small nozzle Tone-Jet reduction of does not need to sizes is above air pressurized ink), provide the energy breakdown Selected drops are required to separate Electrostatic field separated from the ink the drop from the may attract dust in the nozzle by a nozzle strong electric field.
  • Magnetic The drops to be Very simple print Requires Silverbrook, EP pull on ink printed are selected by head fabrication can magnetic ink 0771 658 A2 and some manner (e.g.
  • the actuator Stiction is energy can be very possible low Shuttered
  • the actuator moves a Actuators with Moving parts are IJ08, IJ15, IJ18, grill shutter to block ink small travel can be required IJ19 flow through a grill to used Requires ink the nozzle.
  • the shutter Actuators with pressure modulator movement need only small force can be Friction and wear be equal to the width used must be considered of the grill holes.
  • High speed (>50 Stiction is kHz) operation can possible be achieved
  • An No heat Requires special actuator controls a dissipation materials for both catch, which prevents problems the actuator and the the ink pusher from ink pusher moving when a drop is Complex not to be ejected.
  • construction AUXILIARY MECHANISM APPLIED TO ALL NOZZLES
  • Electro- An electric field is Low power Field strength Silverbrook, EP static used to accelerate Simple print head required for 0771 658 A2 and selected drops towards construction separation of small related patent the print medium. drops is near or applications above air Tone-Jet breakdown Direct
  • a magnetic field is Low power Requires Silverbrook, EP magnetic used to accelerate Simple print head magnetic ink 0771 658 A2 and field selected drops of construction Requires strong related patent magnetic ink towards magnetic field applications the print medium.
  • the print head is Does not require Requires external IJ06, IJ16 magnetic placed in a constant magnetic materials magnet field magnetic field.
  • problems Pulsed A pulsed magnetic Very low power Complex print IJ10 magnetic field is used to operation is possible head construction field cyclically attract a Small print head Magnetic paddle, which pushes size materials required in on the ink.
  • a small print head actuator moves a catch, which selectively prevents the paddle from moving.
  • the Residual bend IJ33, IJ34, IJ35, bend actuator converts resulting from high IJ36, IJ37, IJ38, a high force low travel temperature or high IJ39, IJ42, IJ43, actuator mechanism to stress during IJ44 high travel, lower formation force mechanism.
  • Transient A trilayer bend Very good High stresses are IJ40, IJ41 bend actuator where the two temperature stability involved actuator outside layers are High speed, as a Care must be identical. This cancels new drop can be taken that the bend due to ambient fired before heat materials do not temperature and dissipates delaminate residual stress.
  • the Cancels residual actuator only responds stress of formation to transient heating of one side or the other.
  • actuators actuators are used force available from may not add IJ20, IJ22, IJ28, simultaneously to an actuator linearly, reducing IJ42, IJ43 move the ink.
  • Each Multiple efficiency actuator need provide actuators can be only a portion of the positioned to control force required. ink flow accurately Linear A linear spring is used Matches low Requires print IJ15 Spring to transform a motion travel actuator with head area for the with small travel and higher travel spring high force into a requirements longer travel, lower Non-contact force motion.
  • a bend actuator is Increases travel Generally IJ17, IJ21, IJ34, actuator coiled to provide Reduces chip restricted to planar IJ35 greater travel in a area implementations reduced chip area. Planar due to extreme implementations are fabrication difficulty relatively easy to in other orientations. fabricate. Flexure A bend actuator has a Simple means of Care must be IJ10, IJ19, IJ33 bend small region near the increasing travel of taken not to exceed actuator fixture point, which a bend actuator the elastic limit in flexes much more the flexure area readily than the Stress remainder of the distribution is very actuator. The actuator uneven flexing is effectively Difficult to converted from an accurately model even coiling to an with finite element angular bend, resulting analysis in greater travel of the actuator tip.
  • the actuator controls a Very low Complex IJ10 small catch.
  • the catch actuator energy construction either enables or Very small Requires external disables movement of actuator size force an ink pusher that is Unsuitable for controlled in a bulk pigmented inks manner.
  • Gears Gears can be used to Low force, low Moving parts are IJ13 increase travel at the travel actuators can required expense of duration.
  • actuator Circular gears, rack Can be fabricated cycles are required and pinion, ratchets, using standard More complex and other gearing surface MEMS drive electronics methods can be used. processes Complex construction Friction, friction, and wear are possible Buckle plate A buckle plate can be Very fast Must stay within S.
  • Hirata et al used to change a slow movement elastic limits of the “An Ink-jet Head actuator into a fast achievable materials for long Using Diaphragm motion. It can also device life Microactuator”, convert a high force, High stresses Proc. IEEE MEMS, low travel actuator involved Feb. 1996, pp 418- into a high travel, Generally high 423. medium force motion. power requirement IJ18, IJ27 Tapered A tapered magnetic Linearizes the Complex IJ14 magnetic pole can increase magnetic construction pole travel at the expense force/distance curve of force.
  • Lever A lever and fulcrum is Matches low High stress IJ32, IJ36, IJ37 used to transform a travel actuator with around the fulcrum motion with small higher travel travel and high force requirements into a motion with Fulcrum area has longer travel and no linear movement, lower force.
  • the lever and can be used for can also reverse the a fluid seal direction of travel.
  • Rotary The actuator is High mechanical Complex IJ28 impeller connected to a rotary advantage construction impeller.
  • a small The ratio of force Unsuitable for angular deflection of to travel of the pigmented inks the actuator results in actuator can be a rotation of the matched to the impeller vanes, which nozzle requirements push the ink against by varying the stationary vanes and number of impeller out of the nozzle.
  • the actuator moves in Efficient High fabrication IJ01, IJ02, IJ04, normal to a direction normal to coupling to ink complexity may be IJ07, IJ11, IJ14 chip surface the print head surface. drops ejected required to achieve The nozzle is typically normal to the perpendicular in the line of surface motion movement. Parallel to The actuator moves Suitable for Fabrication IJ12, IJ13, IJ15, chip surface parallel to the print planar fabrication complexity IJ33, IJ34, IJ35, head surface. Drop Friction IJ36 ejection may still be Stiction normal to the surface.
  • 3,946,398 may be due to dimensions can be from at least two 1973 Stemme differential thermal converted to a large distinct layers, or to U.S. Pat. No. 3,747,120 expansion, motion. have a thermal IJ03, IJ09, IJ10, piezoelectric difference across the IJ19, IJ23, IJ24, expansion, actuator IJ25, IJ29, IJ30, magnetostriction, or IJ31, IJ33, IJ34, other form of relative IJ35 dimensional change. Swivel The actuator swivels Allows operation Inefficient IJ06 around a central pivot.
  • the actuator is Can be used with Requires careful IJ26, IJ32 normally bent, and shape memory balance of stresses straightens when alloys where the to ensure that the energized. austenic phase is quiescent bend is planar accurate Double
  • the actuator bends in One actuator can Difficult to make IJ36, IJ37, IJ38 bend one direction when be used to power the drops ejected by one element is two nozzles. both bend directions energized, and bends Reduced chip identical. the other way when size. A small another element is Not sensitive to efficiency loss energized.
  • tubing as Difficult to macroscopic integrate with VLSI structures processes Coil/uncoil A coiled actuator Easy to fabricate Difficult to IJ17, IJ21, IJ34, uncoils or coils more as a planar VLSI fabricate for non- IJ35 tightly.
  • the motion of process planar devices the free end of the Small area Poor out-of-plane actuator ejects the ink, required, therefore stiffness low cost Bow
  • the actuator bows or Can increase the Maximum travel IJ16, IJ18, IJ27 buckles) in the middle speed of travel is constrained when energized. Mechanically High force rigid required Push-Pull Two actuators control The structure is Not readily IJ18 a shutter.
  • the actuator vibrates
  • the actuator can Large area 1993 Hadimioglu vibration at a high frequency. be physically distant required for et al, EUP 550,192 from the ink efficient operation 1993 Elrod et al, at useful frequencies EUP 572,220 Acoustic coupling and crosstalk Complex drive circuitry Poor control of drop volume and position None In various ink jet No moving parts Various other Silverbrook, EP designs the actuator tradeoffs are 0771 658 A2 and does not move.
  • the ink inlet channel Design simplicity Restricts refill Thermal ink jet channel to the nozzle chamber Operational rate Piezoelectric ink is made long and simplicity May result in a jet relatively narrow, Reduces relatively large chip IJ42, IJ43 relying on viscous crosstalk area drag to reduce inlet Only partially back-flow, effective Positive ink
  • the ink is under a Drop selection Requires a Silverbrook, EP pressure positive pressure, so and separation method (such as a 0771 658 A2 and that in the quiescent forces can be nozzle rim or related patent state some of the ink reduced effective applications drop already protrudes Fast refill time hydrophobizing, or Possible from the nozzle.
  • IJ16, IJ20, IJ22, The nozzle firing is IJ23, IJ24, IJ25, usually performed IJ26, IJ27, IJ28, during a special IJ29, IJ30, IJ31, clearing cycle, after IJ32, IJ33, IJ34, first moving the print IJ36, IJ37, IJ38, head to a cleaning IJ39, IJ40, IJ41, station.
  • IJ23, IJ24, IJ25 other situations, it may IJ27, IJ28, IJ29, cause sufficient IJ30, IJ31, IJ32, vibrations to dislodge IJ33, IJ34, IJ36, clogged nozzles.
  • actuator nozzle clearing may be actuator movement IJ24, IJ25, IJ27, assisted by providing IJ29, IJ30, IJ31, an enhanced drive IJ32, IJ39, IJ40, signal to the actuator.
  • An ultrasonic wave is A high nozzle High IJ08, IJ13, IJ15, resonance applied to the ink clearing capability implementation cost I117, IJ18, IJ19, chamber.
  • This wave is can be achieved if system does not IJ21 of an appropriate May be already include an amplitude and implemented at very acoustic actuator frequency to cause low cost in systems sufficient force at the which already nozzle to clear include acoustic blockages. This is actuators easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.
  • Nozzle A microfabricated Can clear Accurate Silverbrook, EP clearing plate is pushed against severely clogged mechanical 0771 658 A2 and plate the nozzles.
  • the plate nozzles alignment is related patent has a post for every required applications nozzle. A post moves Moving parts are through each nozzle, required displacing dried ink. There is risk of damage to the nozzles Accurate fabrication is required Ink
  • the pressure of the ink May be effective Requires May be used pressure is temporarily where other pressure pump or with all IJ senes ink pulse increased so that ink methods cannot be other pressure jets streams from all of the used actuator nozzles. This maybe Expensive used in conjunction Wasteful of ink with actuator energizing.
  • Print head A flexible ‘blade’ is Effective for Difficult to use if Many ink jet wiper wiped across the print planar print head print head surface is systems head surface.
  • the surfaces non-planar or very blade is usually Low cost fragile fabricated from a Requires flexible polymer, e.g. mechanical parts rubber or synthetic Blade can wear elastomer. out in high volume print systems
  • Separate A separate heater is Can be effective Fabrication Can be used with ink boiling provided at the nozzle where other nozzle complexity many IJ series ink heater although the normal clearing methods jets drop e-ection cannot be used mechanism does not Can be require it.
  • the heaters implemented at no do not require additional cost in individual drive some ink jet circuits, as many configurations nozzles can be cleared simultaneously, and no imaging is required.
  • Electro- A nozzle plate is Fabrication High Hewlett Packard formed separately fabricated simplicity temperatures and Thermal Ink jet nickel from electroformed pressures are nickel, and bonded to required to bond the print head chip.
  • nozzle plate Minimum thickness constraints Differential thermal expansion Laser Individual nozzle No masks Each hole must Canon Bubblejet ablated or holes are ablated by an required be individually 1988 Sercel et drilled intense UV laser in a Can be quite fast formed al., SPIE, Vol. 998 polymer nozzle plate, which is Some control Special Excimer Beam typically a polymer over nozzle profile equipment required Applications, pp.
  • Low cost plate to form the applications using VLSI Nozzles are etched in Existing nozzle chamber IJ01, IJ02, IJ04, litho- the nozzle plate using processes can be Surface may be IJ11, IJ12, IJ17, graphic VLSI lithography and used fragile to the touch IJ18, IJ20, IJ22, processes etching.
  • the nozzle plate is a High accuracy Requires long IJ03, IJ05, IJ06, etched buried etch stop in the ( ⁇ 1 ⁇ m) etch times IJ07, IJ08, IJ09, through wafer.
  • Nozzle Monolithic Requires a IJ10, IJ13, IJ14, substrate chambers are etched in Low cost support wafer IJ15, IJ16, IJ19, the front of the wafer, No differential IJ21, IJ23, IJ25, and the wafer is expansion IJ26 thinned from the back side.
  • Nozzles are then etched in the etch stop layer.
  • No nozzle Various methods have No nozzles to Difficult to Ricoh 1995 plate been tried to eliminate become clogged control drop Sekiya et al U.S. Pat. the nozzles entirely, to position accurately No. 5,412,413 prevent nozzle Crosstalk 1993 Hadimioglu clogging.
  • Methyl MEK is a highly Very fast drying Odorous All IJ series ink Ethyl volatile solvent used Prints on various Flammable jets Ketone for industrial printing substrates such as (MEK) on difficult surfaces metals and plastics such as aluminum cans.
  • Alcohol Alcohol based inks Fast drying Slight odor All IJ series ink (ethanol, 2- can be used where the Operates at sub- Flammable jets butanol, printer must operate at freezing and others) temperatures below temperatures the freezing point of Reduced paper water.
  • An example of cockle this is in-camera Low cost consumer photographic printing.
  • Oil Oil based inks are High solubility High viscosity: All IJ series ink extensively used in medium for some this is a significant jets offset printing. They dyes limitation for use in have advantages in Does not cockle ink jets, which improved paper usually require a characteristics on Does not wick low viscosity. Some paper (especially no through paper short chain and wicking or cockle). multi-branched oils Oil soluble dies and have a sufficiently pigments are required. low viscosity.
  • Micro- A microemulsion is a Stops ink bleed Viscosity higher All IJ series ink emulsion stable, self forming High dye than water jets emulsion of oil, water, solubility Cost is slightly and surfactant.
  • the Water, oil, and higher than water characteristic drop size amphiphilic soluble based ink is less than 100 nm, dies can be used High surfactant and is determined by Can stabilize concentration the preferred curvature pigment required (around of the surfactant. suspensions 5%)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

An ink jet printer uses an actuator and an oscillating pressured ink supply. A shutter is located between the ink supply and an ink ejection port, normally blocking the ink ejection port. An actuator is provided for moving the shutter mechanism on demand away from the ink ejection port so as to allow for the ejection of ink on demand from the ink ejection port. The actuator includes a thermal actuator in a coiled form constructed primarily from polytetrafluorethylene. The coil is uncoiled upon heating. The actuator includes a serpentine heater element encased in a material having a high coefficient of thermal expansion. The serpentine heater takes a concertina form upon heating and a thick return trace returns the actuator to its original position upon cooling.

Description

  • The present invention further relates to the field of drop on demand ink jet printing. [0001]
  • BACKGROUND OF THE INVENTION
  • Many different types of printing have been invented, a large number of which are presently in use. The known forms of print have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc. [0002]
  • In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature. [0003]
  • Many different techniques on ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, “Non-Impact Printing: Introduction and Historical Perspective”, Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207-220 (1988). [0004]
  • Ink Jet printers themselves come in many different types. The utilisation of a continuous stream ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electrostatic ink jet printing. [0005]
  • U.S. Pat. No. 3,596,275 by Sweet also discloses a process of a continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electrostatic field so as to cause drop separation. This technique is still used by several manufacturers including Elmjet and Scitex (see also U.S. Pat. No. 3,373,437 by Sweet et al) [0006]
  • Piezoelectric ink jet printers are also one form of commonly used ink jet printing device. Piezoelectric systems are disclosed by Kyser et. al. in U.S. Pat. No. 3,946,398 (1970) which discloses a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) which discloses a bend mode of piezoelectric operation, Howkins in U.S. Pat. No. 4,459,601 which discloses a piezoelectric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a shear mode type of piezoelectric transducer element. [0007]
  • Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4,490,728. Both the aforementioned references disclose ink jet printing techniques rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices using the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard. [0008]
  • As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables. [0009]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide an alternative form of ink jet printing using an actuator and a shuttered oscillating pressured ink supply. [0010]
  • In accordance with the first aspect of the present invention, there is provided an ink jet nozzle comprising an ink ejection port for the ejection of ink, an ink supply with an oscillating ink pressure interconnected to the ink ejection port, a shutter mechanism interconnected between the ink supply and the ink ejection port, which blocks the ink ejection port, and an actuator mechanism for moving the shutter mechanism on demand away from the ink ejection port so as to allow for the ejection of ink on demand from the ink ejection port. [0011]
  • Further, the actuator comprises a thermal actuator which is activated by the heating of one side of the actuator. Preferably the actuator has a coiled form and is uncoiled upon heating. The actuator includes a serpentine heater element encased in a material having a high coefficient of thermal expansion. The serpentine heater concertinas upon heating. Advantageously, the actuator includes a thick return trace for the serpentine heater element. The material in which the serpentine heater element is encased comprises polytetrafluoroethylene. The actuator is formed within a nozzle chamber which is formed on a silicon wafer and ink is supplied to the ejection port through channels etched through the silicon wafer.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which: [0013]
  • FIG. 1 is an exploded perspective view illustrating the construction of a single ink jet nozzle in accordance with the preferred embodiment; [0014]
  • FIG. 2 is a perspective view, partly in section, of a single ink jet nozzle constructed in accordance with the preferred embodiment; [0015]
  • FIG. 3 provides a legend of the materials indicated in FIGS. [0016] 4 to 16; and
  • FIG. 4 to FIG. 16 illustrate sectional views of the manufacturing steps in one form of construction of an ink jet printhead nozzle.[0017]
  • DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS
  • In the preferred embodiment, an oscillating ink reservoir pressure is used to eject ink from ejection nozzles. Each nozzle has an associated shutter which normally blocks the nozzle. The shutter is moved away from the nozzle by an actuator whenever an ink drop is to be fired. [0018]
  • Turning initially to FIG. 1, there is illustrated in exploded perspective a single ink jet nozzle [0019] 10 as constructed in accordance with the principles of the present invention. The exploded perspective illustrates a single ink jet nozzle 10. Ideally, the nozzles are formed as an array on a silicon wafer 12. The silicon wafer 12 is processed so as to have two level metal CMOS circuitry which includes metal layers and glass layers 13 and which are planarised after construction. The CMOS metal layer has a reduced aperture 14 for the access of ink from the back of silicon wafer 12 via an ink supply channel 15.
  • A [0020] bottom nitride layer 16 is constructed on top of the CMOS layer 13 so as to cover, protect and passivate the CMOS layer 13 from subsequent etching processes. Subsequently, there is provided a copper heater layer 18 which is sandwiched between two polytetrafluoroethylene (PTFE) layers 19,20. The copper layer 18 is connected to lower CMOS layer 13 through vias 25,26. The copper layer 18 and PTFE layers 19,20 are encapsulated within nitride borders e.g. 28 and nitride top layer 29 which includes an ink ejection port 30 in addition to a number of sacrificial etched access holes 32 which are of a smaller dimension than the ejection port 30 and are provided for allowing access of a etchant to lower sacrificial layers thereby allowing the use of the etchant in the construction of layers, 18,19,20 and 28.
  • Turning now to FIG. 2, there is shown a cutaway perspective view of a fully constructed ink jet nozzle [0021] 10. The ink jet nozzle uses an oscillating ink pressure to eject ink from ejection port 30. Each nozzle has an associated shutter 31 which normally blocks it. The shutter 31 is moved away from the ejection port 30 by an actuator 35 whenever an ink drop is to be fired.
  • The [0022] ports 30 are in communication with ink chambers which contain the actuators 35. These chambers are connected to ink supply channels 15 which are etched through the silicon wafer. The ink supply channels 15 are substantially wider than the ports 30, to reduce the fluidic resistance to the ink pressure wave. The ink channels 15 are connected to an ink reservoir. An ultrasonic transducer (for example, a piezoelectric transducer) is positioned in the reservoir. The transducer oscillates the ink pressure at approximately 100 KHz. The ink pressure oscillation is sufficient that ink drops would be ejected from the nozzle were it not blocked by the shutter 31.
  • The shutters are moved by a [0023] thermoelastic actuator 35. The actuators are formed as a coiled serpentine copper heater 23 embedded in polytetrafluoroethylene (PTFE) 19/20. PTFE has a very high coefficient of thermal expansion (approximately 770×10−6). The current return trace 22 from the heater 23 is also embedded in the PTFE actuator 35, the current return trace 22 is made wider than the heater trace 23 and is not serpentine. Therefore, it does not heat the PTFE as much as the serpentine heater 23 does. The serpentine heater 23 is positioned along the inside edge of the PTFE coil, and the return trace is positioned on the outside edge. When actuated, the inside edge becomes hotter than the outside edge, and expands more. This results in the actuator 35 uncoiling.
  • The [0024] heater layer 23 is etched in a serpentine manner both to increase its resistance, and to reduce its effective tensile strength along the length of the actuator. This is so that the low thermal expansion of the copper does not prevent the actuator from expanding according to the high thermal expansion characteristics of the PTFE.
  • By varying the power applied to the [0025] actuator 35, the shutter 31 can be positioned between the fully on and fully off positions. This may be used to vary the volume of the ejected drop. Drop volume control may be used either to implement a degree of continuous tone operation, to regulate the drop volume, or both.
  • When data signals distributed on the printhead indicate that a particular nozzle is turned on, the [0026] actuator 35 is energized, which moves the shutter 31 so that it is not blocking the ink chamber. The peak of the ink pressure variation causes the ink to be squirted out of the nozzle 30. As the ink pressure goes negative, ink is drawn back into the nozzle, causing drop break-off. The shutter 31 is kept open until the nozzle is refilled on the next positive pressure cycle. It is then shut to prevent the ink from being withdrawn from the nozzle on the next negative pressure cycle.
  • Each drop ejection takes two ink pressure cycles. Preferably half of the nozzles [0027] 10 should eject drops in one phase, and the other half of the nozzles should eject drops in the other phase. This minimises the pressure variations which occur due to a large number of nozzles being actuated.
  • The amplitude of the ultrasonic transducer can be altered in response to the viscosity of the ink (which is typically affected by temperature), and the number of drops which are to be ejected in the current cycle. This amplitude adjustment can be used to maintain consistent drop size in varying environmental conditions. [0028]
  • The drop firing rate can be around 50 KHz. The ink jet head is suitable for fabrication as a monolithic page wide printhead. FIG. 2 shows a single nozzle of a 1600 dpi printhead in “up shooter” configuration. [0029]
  • Returning again to FIG. 1, one method of construction of the ink jet print nozzles [0030] 10 will now be described. Starting with the bottom wafer layer 12, the wafer is processed so as to add CMOS layers 13 with an aperture 14 being inserted. The nitride layer 16 is laid down on top of the CMOS layers so as to protect them from subsequent etchings.
  • A thin sacrificial glass layer is then laid down on top of nitride layers [0031] 16 followed by a first PTFE layer 19, the copper layer 18 and a second PTFE layer 20. Then a sacrificial glass layer is formed on top of the PTFE layer and etched to a depth of a few microns to form the nitride border regions 28. Next the top layer 29 is laid down over the sacrificial layer using the mask for forming the various holes including the processing step of forming the rim 40 on nozzle 30. The sacrificial glass is then dissolved away and the channel 15 formed through the wafer by means of utilisation of high density low pressure plasma etching such as that available from Surface Technology Systems.
  • One form of detailed manufacturing process which can be used to fabricate monolithic ink jet printheads operating in accordance with the principles taught by the present embodiment can proceed using the following steps: [0032]
  • 1. Using a double sided [0033] polished wafer 12, complete drive transistors, data distribution, and timing circuits using a 0.5 micron, one poly, 2 metal CMOS process 13. The wafer is passivated with 0.1 microns of silicon nitride 16. This step is shown in FIG. 4. For clarity, these diagrams may not be to scale, and may not represent a cross section though any single plane of the nozzle. FIG. 3 is a key to representations of various materials in these manufacturing diagrams, and those of other cross referenced ink jet configurations.
  • 2. Etch nitride and oxide down to silicon using Mask [0034] 1. This mask defines the nozzle inlet below the shutter. This step is shown in FIG. 5.
  • 3. Deposit 3 microns of sacrificial material [0035] 50 (e.g. aluminum or photosensitive polyimide)
  • 4. Planarize the sacrificial layer to a thickness of 1 micron over nitride. This step is shown in FIG. 6. [0036]
  • 5. Etch the sacrificial layer using Mask [0037] 2. This mask defines the actuator anchor point 51. This step is shown in FIG. 7.
  • 6. Deposit 1 micron of [0038] PTFE 52.
  • 7. Etch the PTFE, nitride, and oxide down to second level metal using Mask 3. This mask defines the [0039] heater vias 25,26. This step is shown in FIG. 8.
  • 8. Deposit the [0040] heater 53, which is a 1 micron layer of a conductor with a low Young's modulus, for example aluminum or gold.
  • 9. Pattern the conductor using Mask [0041] 4. This step is shown in FIG. 9.
  • 10. Deposit 1 micron of [0042] PTFE 54.
  • 11. Etch the PTFE down to the sacrificial layer using Mask [0043] 5. This mask defines the actuator and shutter This step is shown in FIG. 10.
  • 12. Wafer probe. All electrical connections are complete at this point, bond pads are accessible, and the chips are not yet separated. [0044]
  • 13. Deposit 3 microns of [0045] sacrificial material 55. Planarize using CMP
  • 14. Etch the sacrificial material using Mask [0046] 6. This mask defines the nozzle chamber wall 28. This step is shown in FIG. 11.
  • 15. Deposit 3 microns of [0047] PECVD glass 56.
  • 16. Etch to a depth of (approx.) 1 micron using Mask [0048] 7. This mask defines the nozzle rim 40. This step is shown in FIG. 12.
  • 17. Etch down to the sacrificial layer using Mask [0049] 6. This mask defines the roof of the nozzle chamber, the nozzle 30, and the sacrificial etch access holes 32. This step is shown in FIG. 13.
  • 18. Back-etch completely through the silicon wafer (with, for example, an ASE Advanced Silicon Etcher from Surface Technology Systems) using Mask [0050] 7. This mask defines the ink inlets 15 which are etched through the wafer. The wafer is also diced by this etch. This step is shown in FIG. 14.
  • 19. Etch the sacrificial material. The nozzle chambers are cleared, the actuators freed, and the chips are separated by this etch. This step is shown in FIG. 15. [0051]
  • 20. Mount the printheads in their packaging, which may be a molded plastic former incorporating ink channels which supply the appropriate color ink to the ink inlets at the back of the wafer. The package also includes a piezoelectric actuator attached to the rear of the ink channels. The piezoelectric actuator provides the oscillating ink pressure required for the ink jet operation. [0052]
  • 21. Connect the printheads to their interconnect systems. For a low profile connection with minimum disruption of airflow, TAB may be used. Wire bonding may also be used if the printer is to be operated with sufficient clearance to the paper. [0053]
  • 22. Hydrophobize the front surface of the printheads. [0054]
  • 23. Fill the completed printheads with [0055] ink 57 and test them. A filled nozzle is shown in FIG. 16.
  • It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the preferred embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive. [0056]
  • The presently disclosed ink jet printing technology is potentially suited to a wide range of printing systems including: colour and monochrome office printers, short run digital printers, high speed digital printers, offset press supplemental printers, low cost scanning printers, high speed pagewidth printers, notebook computers with inbuilt pagewidth printers, portable colour and monochrome printers, colour and monochrome copiers, colour and monochrome facsimile machines, combined printer, facsimile and copying machines, label printers, large format plotters, photograph copiers, printers for digital photographic ‘minilabs’, video printers, PhotoCD printers, portable printers for PDAs, wallpaper printers, indoor sign printers, billboard printers, fabric printers, camera printers and fault tolerant commercial printer arrays. [0057]
  • Ink Jet Technologies [0058]
  • The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable. [0059]
  • The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out. [0060]
  • The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per printhead, but is a major impediment to the fabrication of pagewidth printheads with 19,200 nozzles. [0061]
  • Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet technologies have been created. The target features include: [0062]
  • low power (less than 10 Watts) [0063]
  • high resolution capability (1,600 dpi or more) [0064]
  • photographic quality output [0065]
  • low manufacturing cost [0066]
  • small size (pagewidth times minimum cross section) [0067]
  • high speed (<2 seconds per page). [0068]
  • All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. Forty-five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table under the heading Cross References to Related Applications. [0069]
  • The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems. [0070]
  • For ease of manufacture using standard process equipment, the printhead is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the printhead is 100 mm long, with a width which depends upon the ink jet type. The smallest printhead designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The printheads each contain 19,200 nozzles plus data and control circuitry. [0071]
  • Ink is supplied to the back of the printhead by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The printhead is connected to the camera circuitry by tape automated bonding. [0072]
  • Tables of Drop-on-Demand Ink Jets [0073]
  • Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee. [0074]
  • The following tables form the axes of an eleven dimensional table of ink jet types. [0075]
  • Actuator mechanism (18 types) [0076]
  • Basic operation mode (7 types) [0077]
  • Auxiliary mechanism (8 types) [0078]
  • Actuator amplification or modification method (17 types) [0079]
  • Actuator motion (19 types) [0080]
  • Nozzle refill method (4 types) [0081]
  • Method of restricting back-flow through inlet (10 types) [0082]
  • Nozzle clearing method (9 types) [0083]
  • Nozzle plate construction (9 types) [0084]
  • Drop ejection direction (5 types) [0085]
  • Ink type (7 types) [0086]
  • The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. These are designated IJ01 to IJ45 above which matches the docket numbers in the table under the heading Cross References to Related Applications. [0087]
  • Other ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into ink jet printheads with characteristics superior to any currently available ink jet technology. [0088]
  • Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a print technology may be listed more than once in a table, where it shares characteristics with more than one entry. [0089]
  • Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WVW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc. [0090]
  • The information associated with the aforementioned 11 dimensional matrix are set out in the following tables. [0091]
    Description Advantages Disadvantages Examples
    ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)
    Thermal An electrothermal Large force High power Canon Bubblejet
    bubble heater heats the ink to generated Ink carrier 1979 Endo et al GB
    above boiling point, Simple limited to water patent 2,007,162
    transferring significant construction Low efficiency Xerox heater-in-
    heat to the aqueous No moving parts High pit 1990 Hawkins et
    ink. A bubble Fast operation temperatures al U.S. Pat. 4,899,181
    nucleates and quickly Small chip area required Hewlett-Packard
    forms, expelling the required for actuator High mechanical TIJ 1982 Vaught et
    ink. stress al U.S. Pat. 4,490,728
    The efficiency of the Unusual
    process is low, with materials required
    typically less than Large drive
    0.05% of the electrical transistors
    energy being Cavitation causes
    transformed into actuator failure
    kinetic energy of the Kogation reduces
    drop. bubble formation
    Large print heads
    are difficult to
    fabricate
    Piezo- A piezoelectric crystal Low power Very large area Kyser et al U.S. Pat.
    electric such as lead consumption required for actuator 3,946,398
    lanthanum zirconate Many ink types Difficult to Zoltan U.S. Pat.
    (PZT) is electrically can be used integrate with 3,683,212
    activated, and either Fast operation electronics 1973 Stemme
    expands, shears, or High efficiency High voltage U.S. Pat. 3,747,120
    bends to apply drive transistors Epson Stylus
    pressure to the ink, required Tektronix
    ejecting drops. Full pagewidth IJ04
    print heads
    impractical due to
    actuator size
    Requires
    electrical poling in
    high field strengths
    during manufacture
    Electro- An electric field is Low power Low maximum Seiko Epson,
    strictive used to activate consumption strain (approx. Usui et all JP
    electrostriction in Many ink types 0.01%) 253401/96
    relaxor materials such can be used Large area IJ04
    as lead lanthanum Low thermal required for actuator
    zirconate titanate expansion due to low strain
    (PLZT) or lead Electric field Response speed
    magnesium niobate strength required is marginal (˜10
    (PMN). (approx. 3.5 V/μm) μs)
    can be generated High voltage
    without difficulty drive transistors
    Does not require required
    electrical poling Full pagewidth
    print heads
    impractical due to
    actuator size
    Ferro- An electric field is Low power Difficult to IJ04
    electric used to induce a phase consumption integrate with
    transition between the Many ink types electronics
    antiferroelectric (AFE) can be used Unusual
    and ferroelectric (FE) Fast operation materials such as
    phase. Perovskite (<1 μs) PLZSnT are
    materials such as tin Relatively high required
    modified lead longitudinal strain Actuators require
    lanthanum zirconate High efficiency a large area
    titanate (PLZSnT) Electric field
    exhibit large strains of strength of around 3
    up to 1% associated V/μm can be readily
    with the AFE to FE provided
    phase transition.
    Electro- Conductive plates are Low power Difficult to IJ02, IJ04
    static plates separated by a consumption operate electrostatic
    compressible or fluid Many ink types devices in an
    dielectric (usually air). can be used aqueous
    Upon application of a Fast operation environment
    voltage, the plates The electrostatic
    attract each other and actuator will
    displace ink, causing normally need to be
    drop ejection. The separated from the
    conductive plates may ink
    be in a comb or Very large area
    honeycomb structure, required to achieve
    or stacked to increase high forces
    the surface area and High voltage
    therefore the force. drive transistors
    may be required
    Full pagewidth
    print heads are not
    competitive due to
    actuator size
    Electro- A strong electric field Low current High voltage 1989 Saito et al,
    static pull is applied to the ink, consumption required U.S. Pat. No. 4,799,068
    on ink whereupon Low temperature May be damaged 1989 Miura et al,
    electrostatic attraction by sparks due to air U.S. Pat. No. 4,810,954
    accelerates the ink breakdown Tone-jet
    towards the print Required field
    medium. strength increases as
    the drop size
    decreases
    High voltage
    drive transistors
    required
    Electrostatic field
    attracts dust
    Permanent An electromagnet Low power Complex IJ07, IJ10
    magnet directly attracts a consumption fabrication
    electro- permanent magnet, Many ink types Permanent
    magnetic displacing ink and can be used magnetic material
    causing drop ejection. Fast operation such as Neodymium
    Rare earth magnets High efficiency Iron Boron (NdFeB)
    with a field strength Easy extension required.
    around 1 Tesla can be from single nozzles High local
    used. Examples are: to pagewidth print currents required
    Samarium Cobalt heads Copper
    (SaCo) and magnetic metalization should
    materials in the be used for long
    neodymium iron boron electromigration
    family (NdFeB, lifetime and low
    NdDyFeBNb, resistivity
    NdDyFeB, etc) Pigmented inks
    are usually
    infeasible
    Operating
    temperature limited
    to the Curie
    temperature (around
    540 K.)
    Soft A solenoid induced a Low power Complex IJ01, IJ05, IJ08,
    magnetic magnetic field in a soft consumption fabrication IJ10, IJ12, IJ14,
    core electro- magnetic core or yoke Many ink types Materials not IJ15, IJ17
    magnetic fabricated from a can be used usually present in a
    ferrous material such Fast operation CMOS fab such as
    as electroplated iron High efficiency NiFe, CoNiFe, or
    alloys such as CoNiFe Easy extension CoFe are required
    [1], CoFe, or NiFe from single nozzles High local
    alloys. Typically, the to pagewidth print currents required
    soft magnetic material heads Copper
    is in two parts, which metalization should
    are normally held be used for long
    apart by a spring. electromigration
    When the solenoid is lifetime and low
    actuated, the two parts resistivity
    attract, displacing the Electroplating is
    ink. required
    High saturation
    flux density is
    required (2.0-2.1 T
    is achievable with
    CoNiFe [1])
    Lorenz The Lorenz force Low power Force acts as a IJ06, IJ11, IJ13,
    force acting on a current consumption twisting motion IJ16
    carrying wire in a Many ink types Typically, only a
    magnetic field is can be used quarter of the
    utilized. Fast operation solenoid length
    This allows the High efficiency provides force in a
    magnetic field to be Easy extension useful direction
    supplied externally to from single nozzles High local
    the print head, for to pagewidth print currents required
    example with rare heads Copper
    earth permanent metalization should
    magnets. be used for long
    Only the current electromigration
    carrying wire need be lifetime and low
    fabricated on the print- resistivity
    head, simplifying Pigmented inks
    materials are usually
    requirements. infeasible
    Magneto- The actuator uses the Many ink types Force acts as a Fischenbeck,
    striction giant magnetostrictive can be used twisting motion U.S. Pat. No. 4,032,929
    effect of materials Fast operation Unusual IJ25
    such as Terfenol-D (an Easy extension materials such as
    alloy of terbium, from single nozzles Terfenol-D are
    dysprosium and iron to pagewidth print required
    developed at the Naval heads High local
    Ordnance Laboratory, High force is currents required
    hence Ter-Fe-NOL). available Copper
    For best efficiency, the metalization should
    actuator should be pre- be used for long
    stressed to approx. 8 electromigration
    MPa. lifetime and low
    resistivity
    Pre-stressing
    may be required
    Surface Ink under positive Low power Requires Silverbrook, EP
    tension pressure is held in a consumption supplementary force 0771 658 A2 and
    reduction nozzle by surface Simple to effect drop related patent
    tension. The surface construction separation applications
    tension of the ink is No unusual Requires special
    reduced below the materials required in ink surfactants
    bubble threshold, fabrication Speed may be
    causing the ink to High efficiency limited by surfactant
    egress from the Easy extension properties
    nozzle. from single nozzles
    to pagewidth print
    heads
    Viscosity The ink viscosity is Simple Requires Silverbrook, EP
    reduction locally reduced to construction supplementary force 0771 658 A2 and
    select which drops are No unusual to effect drop related patent
    to be ejected. A materials required in separation applications
    viscosity reduction can fabrication Requires special
    be achieved Easy extension ink viscosity
    electrothermally with from single nozzles properties
    most inks, but special to pagewidth print High speed is
    inks can be engineered heads difficult to achieve
    for a 100:1 viscosity Requires
    reduction. oscillating ink
    pressure
    A high
    temperature
    difference (typically
    80 degrees) is
    required
    Acoustic An acoustic wave is Can operate Complex drive 1993 Hadimioglu
    generated and without a nozzle circuitry et al, EUP 550,192
    focussed upon the plate Complex 1993 Elrod et al,
    drop ejection region. fabrication EUP 572,220
    Low efficiency
    Poor control of
    drop position
    Poor control of
    drop volume
    Thermo- An actuator which Low power Efficient aqueous IJ03, IJ09, IJ17,
    elastic bend relies upon differential consumption operation requires a IJ18, IJ19, IJ20,
    actuator thermal expansion Many ink types thermal insulator on IJ21, IJ22, IJ23,
    upon Joule heating is can be used the hot side IJ24, IJ27, IJ28,
    used. Simple planar Corrosion IJ29, IJ30, IJ31,
    fabrication prevention can be IJ32, IJ33, IJ34,
    Small chip area difficult IJ35, IJ36, IJ37,
    required for each Pigmented inks IJ38, IJ39, IJ40,
    actuator may be infeasible, IJ41
    Fast operation as pigment particles
    High efficiency may jam the bend
    CMOS actuator
    compatible voltages
    and currents
    Standard MEMS
    processes can be
    used
    Easy extension
    from single nozzles
    to pagewidth print
    heads
    High CTE A material with a very High force can Requires special IJ09, IJ17, IJ18,
    thermo- high coefficient of be generated material (e.g. PTFE) IJ20, IJ21, IJ22,
    elastic thermal expansion Three methods of Requires a PTFE IJ23, IJ24, IJ27,
    actuator (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30,
    polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43,
    (PTFE) is used. As chemical vapor standard in ULSI IJ44
    high CTE materials deposition (CVD), fabs
    are usually non- spin coating, and PTFE deposition
    conductive, a heater evaporation cannot be followed
    fabricated from a PTFE is a with high
    conductive material is candidate for low temperature (above
    incorporated. A 50 μm dielectric constant 350° C.) processing
    long PTFE bend insulation in ULSI Pigmented inks
    actuator with Very low power may be infeasible,
    polysilicon heater and consumption as pigment particles
    15 mW power input Many ink types may jam the bend
    can provide 180 μN can be used actuator
    force and 10 μm Simple planar
    deflection. Actuator fabrication
    motions include: Small chip area
    Bend required for each
    Push actuator
    Buckle Fast operation
    Rotate High efficiency
    CMOS
    compatible voltages
    and currents
    Easy extension
    from single nozzles
    to pagewidth print
    heads
    Conduct-ive A polymer with a high High force can Requires special IJ24
    polymer coefficient of thermal be generated materials
    thermo- expansion (such as Very low power development (High
    elastic PTFE) is doped with consumption CTE conductive
    actuator conducting substances Many ink types polymer)
    to increase its can be used Requires a PTFE
    conductivity to about 3 Simple planar deposition process,
    orders of magnitude fabrication which is not yet
    below that of copper. Small chip area standard in ULSI
    The conducting required for each fabs
    polymer expands actuator PTFE deposition
    when resistively Fast operation cannot be followed
    heated. High efficiency with high
    Examples of CMOS temperature (above
    conducting dopants compatible voltages 350° C.) processing
    include: and currents Evaporation and
    Carbon nanotubes Easy extension CVD deposition
    Metal fibers from single nozzles techniques cannot
    Conductive polymers to pagewidth print be used
    such as doped heads Pigmented inks
    polythiophene may be infeasible,
    Carbon granules as pigment particles
    may jam the bend
    actuator
    Shape A shape memory alloy High force is Fatigue limits IJ26
    memory such as TiNi (also available (stresses maximum number
    alloy known as Nitinol - of hundreds of MPa) of cycles
    Nickel Titanium alloy Large strain is Low strain (1%)
    developed at the Naval available (more than is required to extend
    Ordnance Laboratory) 3%) fatigue resistance
    is thermally switched High corrosion Cycle rate
    between its weak resistance limited by heat
    martensitic state and Simple removal
    its high stiffness construction Requires unusual
    austenic state. The Easy extension materials (TiNi)
    shape of the actuator from single nozzles The latent heat of
    in its martensitic state to pagewidth print transformation must
    is deformed relative to heads be provided
    the austenic shape. Low voltage High current
    The shape change operation operation
    causes ejection of a Requires pre-
    drop. stressing to distort
    the martensitic state
    Linear Linear magnetic Linear Magnetic Requires unusual IJ12
    Magnetic actuators include the actuators can be semiconductor
    Actuator Linear Induction constructed with materials such as
    Actuator (LIA), Linear high thrust, long soft magnetic alloys
    Permanent Magnet travel, and high (e.g. CoNiFe)
    Synchronous Actuator efficiency using Some varieties
    (LPMSA), Linear planar also require
    Reluctance semiconductor permanent magnetic
    Synchronous Actuator fabrication materials such as
    (LRSA), Linear techniques Neodymium iron
    Switched Reluctance Long actuator boron (NdFeB)
    Actuator (LSRA), and travel is available Requires
    the Linear Stepper Medium force is complex multi-
    Actuator (LSA). available phase drive circuitly
    Low voltage High current
    operation operation
    BASIC OPERATION MODE
    Actuator This is the simplest Simple operation Drop repetition Thermal ink jet
    directly mode of operation: the No external rate is usually Piezoelectric ink
    pushes ink actuator directly fields required limited to around 10 jet
    supplies sufficient Satellite drops kHz. However, this IJ01, IJ02, IJ03,
    kinetic energy to expel can be avoided if is not fundamental IJ04, IJ05, IJ06,
    the drop. The drop drop velocity is less to the method, but is IJ07, IJ09, IJ11,
    must have a sufficient than 4 m/s related to the refill IJ12, IJ14, IJ16,
    velocity to overcome Can be efficient, method normally IJ20, IJ22, IJ23,
    the surface tension. depending upon the used IJ24, IJ25, IJ26,
    actuator used All of the drop IJ27, IJ28, IJ29,
    kinetic energy must IJ30, IJ31, IJ32,
    be provided by the IJ33, IJ34, IJ35,
    actuator IJ36, IJ37, IJ38,
    Satellite drops IJ39, IJ40, IJ41,
    usually form if drop IJ42, IJ43, IJ44
    velocity is greatere
    than 4.5 m/s
    Proximity The drops to be Very simple print Requires close Silverbrook, EP
    printed are selected by head fabrication can proximity between 0771 658 A2 and
    some manner (e.g. be used the print head and related patent
    thermally induced The drop the print media or applications
    surface tension selection means transfer roller
    reduction of does not need to May require two
    pressurized ink), provide the energy print heads printing
    Selected drops are required to separate alternate rows of the
    separated from the ink the drop from the image
    in the nozzle by nozzle Monolithic color
    contact with the print print heads are
    medium or a transfer difficult
    roller.
    Electro- The drops to be Very simple print Requires very Silverbrook, EP
    static pull printed are selected by head fabrication can high electrostatic 0771 658 A2 and
    on ink some manner (e.g. be used field related patent
    thermally induced The drop Electrostatic field applications
    surface tension selection means for small nozzle Tone-Jet
    reduction of does not need to sizes is above air
    pressurized ink), provide the energy breakdown
    Selected drops are required to separate Electrostatic field
    separated from the ink the drop from the may attract dust
    in the nozzle by a nozzle
    strong electric field.
    Magnetic The drops to be Very simple print Requires Silverbrook, EP
    pull on ink printed are selected by head fabrication can magnetic ink 0771 658 A2 and
    some manner (e.g. be used Ink colors other related patent
    thermally induced The drop than black are applications
    surface tension selection means difficult
    reduction of does not need to Requires very
    pressurized ink), provide the energy high magnetic fields
    Selected drops are required to separate
    separated from the ink the drop from the
    in the nozzle by a nozzle
    strong magnetic field
    acting on the magnetic
    ink.
    Shutter The actuator moves a High speed (>50 Moving parts are IJ13, IJ17, IJ21
    shutter to block ink kHz) operation can required
    flow to the nozzle. The be achieved due to Requires ink
    ink pressure is pulsed reduced refill time pressure modulator
    at a multiple of the Drop timing can Friction and wear
    drop ejection be very accurate must be considered
    frequency. The actuator Stiction is
    energy can be very possible
    low
    Shuttered The actuator moves a Actuators with Moving parts are IJ08, IJ15, IJ18,
    grill shutter to block ink small travel can be required IJ19
    flow through a grill to used Requires ink
    the nozzle. The shutter Actuators with pressure modulator
    movement need only small force can be Friction and wear
    be equal to the width used must be considered
    of the grill holes. High speed (>50 Stiction is
    kHz) operation can possible
    be achieved
    Pulsed A pulsed magnetic Extremely low Requires an IJ10
    magnetic field attracts an ‘ink energy operation is external pulsed
    pull on ink pusher’ at the drop possible magnetic field
    pusher ejection frequency. An No heat Requires special
    actuator controls a dissipation materials for both
    catch, which prevents problems the actuator and the
    the ink pusher from ink pusher
    moving when a drop is Complex
    not to be ejected. construction
    AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES)
    Electro- An electric field is Low power Field strength Silverbrook, EP
    static used to accelerate Simple print head required for 0771 658 A2 and
    selected drops towards construction separation of small related patent
    the print medium. drops is near or applications
    above air Tone-Jet
    breakdown
    Direct A magnetic field is Low power Requires Silverbrook, EP
    magnetic used to accelerate Simple print head magnetic ink 0771 658 A2 and
    field selected drops of construction Requires strong related patent
    magnetic ink towards magnetic field applications
    the print medium.
    Cross The print head is Does not require Requires external IJ06, IJ16
    magnetic placed in a constant magnetic materials magnet
    field magnetic field. The to be integrated in Current densities
    Lorenz force in a the print head may be high,
    current carrying wire manufacturing resulting in
    is used to move the process electromigration
    actuator. problems
    Pulsed A pulsed magnetic Very low power Complex print IJ10
    magnetic field is used to operation is possible head construction
    field cyclically attract a Small print head Magnetic
    paddle, which pushes size materials required in
    on the ink. A small print head
    actuator moves a
    catch, which
    selectively prevents
    the paddle from
    moving.
    ACTUATOR AMPLIFICATION OR MODIFICATION METHOD
    None No actuator Operational Many actuator Thermal Bubble
    mechanical simplicity mechanisms have Ink jet
    amplification is used. insufficient travel, IJ01, IJ02, IJ06,
    The actuator directly or insufficient force, IJ07, IJ16, IJ25,
    drives the drop to efficiently drive IJ26
    ejection process. the drop ejection
    process
    Differential An actuator material Provides greater High stresses are Piezoelectric
    expansion expands more on one travel in a reduced involved IJ03, IJ09, IJ17,
    bend side than on the other. print head area Care must be IJ18, IJ19, IJ20,
    actuator The expansion may be taken that the IJ21, IJ22, IJ23,
    thermal, piezoelectric, materials do not IJ24, IJ27, IJ29,
    magnetostrictive, or delaminate IJ30, IJ31, IJ32,
    other mechanism. The Residual bend IJ33, IJ34, IJ35,
    bend actuator converts resulting from high IJ36, IJ37, IJ38,
    a high force low travel temperature or high IJ39, IJ42, IJ43,
    actuator mechanism to stress during IJ44
    high travel, lower formation
    force mechanism.
    Transient A trilayer bend Very good High stresses are IJ40, IJ41
    bend actuator where the two temperature stability involved
    actuator outside layers are High speed, as a Care must be
    identical. This cancels new drop can be taken that the
    bend due to ambient fired before heat materials do not
    temperature and dissipates delaminate
    residual stress. The Cancels residual
    actuator only responds stress of formation
    to transient heating of
    one side or the other.
    Reverse The actuator loads a Better coupling Fabrication IJ05, IJ11
    spring spring. When the to the ink complexity
    actuator is turned off, High stress in the
    the spring releases. spring
    This can reverse the
    force/distance curve of
    the actuator to make it
    compatible with the
    force/time
    requirements of the
    drop ejection.
    Actuator A series of thin Increased travel Increased Some
    stack actuators are stacked. Reduced drive fabrication piezoelectric ink jets
    This can be voltage complexity IJ04
    appropriate where Increased
    actuators require high possibility of short
    electric field strength, circuits due to
    such as electrostatic pinholes
    and piezoelectric
    actuators.
    Multiple Multiple smaller Increases the Actuator forces IJ12, IJ13, IJ18,
    actuators actuators are used force available from may not add IJ20, IJ22, IJ28,
    simultaneously to an actuator linearly, reducing IJ42, IJ43
    move the ink. Each Multiple efficiency
    actuator need provide actuators can be
    only a portion of the positioned to control
    force required. ink flow accurately
    Linear A linear spring is used Matches low Requires print IJ15
    Spring to transform a motion travel actuator with head area for the
    with small travel and higher travel spring
    high force into a requirements
    longer travel, lower Non-contact
    force motion. method of motion
    transformation
    Coiled A bend actuator is Increases travel Generally IJ17, IJ21, IJ34,
    actuator coiled to provide Reduces chip restricted to planar IJ35
    greater travel in a area implementations
    reduced chip area. Planar due to extreme
    implementations are fabrication difficulty
    relatively easy to in other orientations.
    fabricate.
    Flexure A bend actuator has a Simple means of Care must be IJ10, IJ19, IJ33
    bend small region near the increasing travel of taken not to exceed
    actuator fixture point, which a bend actuator the elastic limit in
    flexes much more the flexure area
    readily than the Stress
    remainder of the distribution is very
    actuator. The actuator uneven
    flexing is effectively Difficult to
    converted from an accurately model
    even coiling to an with finite element
    angular bend, resulting analysis
    in greater travel of the
    actuator tip.
    Catch The actuator controls a Very low Complex IJ10
    small catch. The catch actuator energy construction
    either enables or Very small Requires external
    disables movement of actuator size force
    an ink pusher that is Unsuitable for
    controlled in a bulk pigmented inks
    manner.
    Gears Gears can be used to Low force, low Moving parts are IJ13
    increase travel at the travel actuators can required
    expense of duration. be used Several actuator
    Circular gears, rack Can be fabricated cycles are required
    and pinion, ratchets, using standard More complex
    and other gearing surface MEMS drive electronics
    methods can be used. processes Complex
    construction
    Friction, friction,
    and wear are
    possible
    Buckle plate A buckle plate can be Very fast Must stay within S. Hirata et al,
    used to change a slow movement elastic limits of the “An Ink-jet Head
    actuator into a fast achievable materials for long Using Diaphragm
    motion. It can also device life Microactuator”,
    convert a high force, High stresses Proc. IEEE MEMS,
    low travel actuator involved Feb. 1996, pp 418-
    into a high travel, Generally high 423.
    medium force motion. power requirement IJ18, IJ27
    Tapered A tapered magnetic Linearizes the Complex IJ14
    magnetic pole can increase magnetic construction
    pole travel at the expense force/distance curve
    of force.
    Lever A lever and fulcrum is Matches low High stress IJ32, IJ36, IJ37
    used to transform a travel actuator with around the fulcrum
    motion with small higher travel
    travel and high force requirements
    into a motion with Fulcrum area has
    longer travel and no linear movement,
    lower force. The lever and can be used for
    can also reverse the a fluid seal
    direction of travel.
    Rotary The actuator is High mechanical Complex IJ28
    impeller connected to a rotary advantage construction
    impeller. A small The ratio of force Unsuitable for
    angular deflection of to travel of the pigmented inks
    the actuator results in actuator can be
    a rotation of the matched to the
    impeller vanes, which nozzle requirements
    push the ink against by varying the
    stationary vanes and number of impeller
    out of the nozzle. vanes
    Acoustic A refractive or No moving parts Large area 1993 Hadimioglu
    lens diffractive (e.g. zone required et al, EUP 550,192
    plate) acoustic lens is Only relevant for 1993 Elrod et al,
    used to concentrate acoustic ink jets EUP 572,220
    sound waves.
    Sharp A sharp point is used Simple Difficult to Tone-jet
    conductive to concentrate an construction fabricate using
    point electrostatic field. standard VLSI
    processes for a
    surface ejecting ink-
    jet
    Only relevant for
    electrostatic ink jets
    ACTUATOR MOTION
    Volume The volume of the Simple High energy is Hewlett-Packard
    expansion actuator changes, construction in the typically required to Thermal Ink jet
    pushing the ink in all case of thermal ink achieve volume Canon Bubblejet
    directions. jet expansion. This
    leads to thermal
    stress, cavitation,
    and kogation in
    thermal ink jet
    implementations
    Linear, The actuator moves in Efficient High fabrication IJ01, IJ02, IJ04,
    normal to a direction normal to coupling to ink complexity may be IJ07, IJ11, IJ14
    chip surface the print head surface. drops ejected required to achieve
    The nozzle is typically normal to the perpendicular
    in the line of surface motion
    movement.
    Parallel to The actuator moves Suitable for Fabrication IJ12, IJ13, IJ15,
    chip surface parallel to the print planar fabrication complexity IJ33, IJ34, IJ35,
    head surface. Drop Friction IJ36
    ejection may still be Stiction
    normal to the surface.
    Membrane An actuator with a The effective Fabrication 1982 Howkins
    push high force but small area of the actuator complexity U.S. Pat. No. 4,459,601
    area is used to push a becomes the Actuator size
    stiff membrane that is membrane area Difficulty of
    in contact with the ink. integration in a
    VLSI process
    Rotary The actuator causes Rotary levers Device IJ05, IJ08, IJ13,
    the rotation of some may be used to complexity IJ28
    element, such a grill or increase travel May have
    impeller Small chip area friction at a pivot
    requirements point
    Bend The actuator bends A very small Requires the 1970 Kyser et al
    when energized. This change in actuator to be made U.S. Pat. No. 3,946,398
    may be due to dimensions can be from at least two 1973 Stemme
    differential thermal converted to a large distinct layers, or to U.S. Pat. No. 3,747,120
    expansion, motion. have a thermal IJ03, IJ09, IJ10,
    piezoelectric difference across the IJ19, IJ23, IJ24,
    expansion, actuator IJ25, IJ29, IJ30,
    magnetostriction, or IJ31, IJ33, IJ34,
    other form of relative IJ35
    dimensional change.
    Swivel The actuator swivels Allows operation Inefficient IJ06
    around a central pivot. where the net linear coupling to the ink
    This motion is suitable force on the paddle motion
    where there are is zero
    opposite forces Small chip area
    applied to opposite requirements
    sides of the paddle,
    e.g. Lorenz force.
    Straighten The actuator is Can be used with Requires careful IJ26, IJ32
    normally bent, and shape memory balance of stresses
    straightens when alloys where the to ensure that the
    energized. austenic phase is quiescent bend is
    planar accurate
    Double The actuator bends in One actuator can Difficult to make IJ36, IJ37, IJ38
    bend one direction when be used to power the drops ejected by
    one element is two nozzles. both bend directions
    energized, and bends Reduced chip identical.
    the other way when size. A small
    another element is Not sensitive to efficiency loss
    energized. ambient temperature compared to
    equivalent single
    bend actuators.
    Shear Energizing the Can increase the Not readily 1985 Fishbeck
    actuator causes a shear effective travel of applicable to other U.S. Pat. 4,584,590
    motion in the actuator piezoelectric actuator
    material, actuators mechanisms
    Radial con- The actuator squeezes Relatively easy High force 1970 Zoltan
    striction an ink reservoir, to fabricate single required U.S. Pat. No.
    forcing ink from a nozzles from glass Inefficient 3,683,212
    constricted nozzle. tubing as Difficult to
    macroscopic integrate with VLSI
    structures processes
    Coil/uncoil A coiled actuator Easy to fabricate Difficult to IJ17, IJ21, IJ34,
    uncoils or coils more as a planar VLSI fabricate for non- IJ35
    tightly. The motion of process planar devices
    the free end of the Small area Poor out-of-plane
    actuator ejects the ink, required, therefore stiffness
    low cost
    Bow The actuator bows (or Can increase the Maximum travel IJ16, IJ18, IJ27
    buckles) in the middle speed of travel is constrained
    when energized. Mechanically High force
    rigid required
    Push-Pull Two actuators control The structure is Not readily IJ18
    a shutter. One actuator pinned at both ends, suitable for ink jets
    pulls the shutter, and so has a high out-of- which directly push
    the other pushes it. plane rigidity the ink
    Curl A set of actuators curl Good fluid flow Design IJ20, IJ42
    inwards inwards to reduce the to the region behind complexity
    volume of ink that the actuator
    they enclose. increases efficiency
    Curl A set of actuators curl Relatively simple Relatively large IJ43
    outwards outwards, pressurizing construction chip area
    ink in a chamber
    surrounding the
    actuators, and
    expelling ink from a
    nozzle in the chamber.
    Iris Multiple vanes enclose High efficiency High fabrication IJ22
    a volume of ink. These Small chip area complexity
    simultaneously rotate, Not suitable for
    reducing the volume pigmented inks
    between the vanes.
    Acoustic The actuator vibrates The actuator can Large area 1993 Hadimioglu
    vibration at a high frequency. be physically distant required for et al, EUP 550,192
    from the ink efficient operation 1993 Elrod et al,
    at useful frequencies EUP 572,220
    Acoustic
    coupling and
    crosstalk
    Complex drive
    circuitry
    Poor control of
    drop volume and
    position
    None In various ink jet No moving parts Various other Silverbrook, EP
    designs the actuator tradeoffs are 0771 658 A2 and
    does not move. required to related patent
    eliminate moving applications
    parts Tone-jet
    NOZZLE REFILL METHOD
    Surface This is the normal way Fabrication Low speed Thermal ink jet
    tension that ink jets are simplicity Surface tension Piezoelectric ink
    refilled. After the Operational force relatively jet
    actuator is energized, simplicity small compared to IJ01-IJ07, IJ10-
    it typically returns actuator force IJ14, IJ16, IJ20,
    rapidly to its normal Long refill time IJ22-1145
    position. This rapid usually dominates
    return sucks in air the total repetition
    through the nozzle rate
    opening. The ink
    surface tension at the
    nozzle then exerts a
    small force restoring
    the meniscus to a
    minimum area. This
    force refills the nozzle.
    Shuttered Ink to the nozzle High speed Requires IJ08, IJ13, IJ15,
    oscillating chamber is provided at Low actuator common ink IJ17, IJ18, IJ19,
    ink pressure a pressure that energy, as the pressure oscillator IJ21
    oscillates at twice the actuator need only May not be
    drop ejection open or close the suitable for
    frequency. When a shutter, instead of pigmented inks
    drop is to be ejected, ejecting the ink drop
    the shutter is opened
    for 3 half cycles: drop
    ejection, actuator
    return, and refill. The
    shutter is then closed
    to prevent the nozzle
    chamber emptying
    during the next
    negative pressure
    cycle.
    Refill After the main High speed, as Requires two IJ09
    actuator actuator has ejected a the nozzle is independent
    drop a second (refill) actively refilled actuators per nozzle
    actuator is energized.
    The refill actuator
    pushes ink into the
    nozzle chamber. The
    refill actuator returns
    slowly, to prevent its
    return from emptying
    the chamber again.
    Positive ink The ink is held a slight High refill rate, Surface spill Silverbrook, EP
    pressure positive pressure. therefore a high must be prevented 0771 658 A2 and
    After the ink drop is drop repetition rate Highly related patent
    ejected, the nozzle is possible hydrophobic print applications
    chamber fills quickly head surfaces are Alternative for:,
    as surface tension and required IJ01-IJ07, IJ10-IJ14,
    ink pressure both IJ16, IJ20, IJ22-IJ45
    operate to refill the
    nozzle.
    METHOD OF RESTRICTING BACK-FLOW THROUGH INLET
    Long inlet The ink inlet channel Design simplicity Restricts refill Thermal ink jet
    channel to the nozzle chamber Operational rate Piezoelectric ink
    is made long and simplicity May result in a jet
    relatively narrow, Reduces relatively large chip IJ42, IJ43
    relying on viscous crosstalk area
    drag to reduce inlet Only partially
    back-flow, effective
    Positive ink The ink is under a Drop selection Requires a Silverbrook, EP
    pressure positive pressure, so and separation method (such as a 0771 658 A2 and
    that in the quiescent forces can be nozzle rim or related patent
    state some of the ink reduced effective applications
    drop already protrudes Fast refill time hydrophobizing, or Possible
    from the nozzle. both) to prevent operation of the
    This reduces the flooding of the following: IJ01-
    pressure in the nozzle ejection surface of IJ07, IJ09-IJ12,
    chamber which is the print head. IJ14, IJ16, IJ20,
    required to eject a IJ22, IJ23-IJ34,
    certain volume of ink. IJ36-IJ41, IJ44
    The reduction in
    chamber pressure
    results in a reduction
    in ink pushed out
    through the inlet.
    Baffle One or more baffles The refill rate is Design HP Thermal Ink
    are placed in the inlet not as restricted as complexity Jet
    ink flow. When the the long inlet May increase Tektronix
    actuator is energized, method. fabrication piezoelectric ink jet
    the rapid ink Reduces complexity (e.g.
    movement creates crosstalk Tektronix hot melt
    eddies which restrict Piezoelectric print
    the flow through the heads).
    inlet. The slower refill
    process is unrestricted,
    and does not result in
    eddies.
    Flexible flap In this method recently Significantly Not applicable to Canon
    restricts disclosed by Canon, reduces back-flow most ink jet
    inlet the expanding actuator for edge-shooter configurations
    (bubble) pushes on a thermal ink jet Increased
    flexible flap that devices fabrication
    restricts the inlet, complexity
    Inelastic
    deformation of
    polymer flap results
    in creep over
    extended use
    NOZZLE CLEARING METHOD
    Normal All of the nozzles are No added May not be Most ink jet
    nozzle firing fired periodically, complexity on the sufficient to systems
    before the ink has a print head displace dried ink IJ01, IJ02, IJ03,
    chance to dry. When IJ04, IJ05, IJ06,
    not in use the nozzles IJ07, IJ09, IJ10,
    are sealed (capped) IJ11, IJ12, IJ14,
    against air. IJ16, IJ20, IJ22,
    The nozzle firing is IJ23, IJ24, IJ25,
    usually performed IJ26, IJ27, IJ28,
    during a special IJ29, IJ30, IJ31,
    clearing cycle, after IJ32, IJ33, IJ34,
    first moving the print IJ36, IJ37, IJ38,
    head to a cleaning IJ39, IJ40, IJ41,
    station. IJ42, IJ43, IJ44,
    IJ45
    Extra In systems which heat Can be highly Requires higher Silverbrook, EP
    power to the ink, but do not boil effective if the drive voltage for 0771 658 A2 and
    ink heater it under normal heater is adjacent to clearing related patent
    situations, nozzle the nozzle May require applications
    clearing can be larger drive
    achieved by over- transistors
    powering the heater
    and boiling ink at the
    nozzle.
    Rapid The actuator is fired in Does not require Effectiveness May be used
    success-ion rapid succession. In extra drive circuits depends with: IJ01, IJ02,
    of actuator some configurations, on the print head substantially upon IJ03, IJ04, IJ05,
    pulses this may cause heat Can be readily the configuration of IJ06, IJ07, IJ09,
    build-up at the nozzle controlled and the ink jet nozzle IJ10, IJ11, IJ14,
    which boils the ink, initiated by digital IJ16, IJ20, IJ22,
    clearing the nozzle. In logic IJ23, IJ24, IJ25,
    other situations, it may IJ27, IJ28, IJ29,
    cause sufficient IJ30, IJ31, IJ32,
    vibrations to dislodge IJ33, IJ34, IJ36,
    clogged nozzles. IJ37, IJ38, IJ39,
    IJ40, IJ41, IJ42,
    IJ43, 1IJ4, IJ45
    Extra Where an actuator is A simple Not suitable May be used
    power to not normally driven to solution where where there is a with: IJ03, IJ09,
    ink pushing the limit of its motion, applicable hard limit to IJ16, IJ20, IJ23,
    actuator nozzle clearing may be actuator movement IJ24, IJ25, IJ27,
    assisted by providing IJ29, IJ30, IJ31,
    an enhanced drive IJ32, IJ39, IJ40,
    signal to the actuator. IJ41, IJ42, IJ43,
    IJ44, IJ45
    Acoustic An ultrasonic wave is A high nozzle High IJ08, IJ13, IJ15,
    resonance applied to the ink clearing capability implementation cost I117, IJ18, IJ19,
    chamber. This wave is can be achieved if system does not IJ21
    of an appropriate May be already include an
    amplitude and implemented at very acoustic actuator
    frequency to cause low cost in systems
    sufficient force at the which already
    nozzle to clear include acoustic
    blockages. This is actuators
    easiest to achieve if
    the ultrasonic wave is
    at a resonant
    frequency of the ink
    cavity.
    Nozzle A microfabricated Can clear Accurate Silverbrook, EP
    clearing plate is pushed against severely clogged mechanical 0771 658 A2 and
    plate the nozzles. The plate nozzles alignment is related patent
    has a post for every required applications
    nozzle. A post moves Moving parts are
    through each nozzle, required
    displacing dried ink. There is risk of
    damage to the
    nozzles
    Accurate
    fabrication is
    required
    Ink The pressure of the ink May be effective Requires May be used
    pressure is temporarily where other pressure pump or with all IJ senes ink
    pulse increased so that ink methods cannot be other pressure jets
    streams from all of the used actuator
    nozzles. This maybe Expensive
    used in conjunction Wasteful of ink
    with actuator
    energizing.
    Print head A flexible ‘blade’ is Effective for Difficult to use if Many ink jet
    wiper wiped across the print planar print head print head surface is systems
    head surface. The surfaces non-planar or very
    blade is usually Low cost fragile
    fabricated from a Requires
    flexible polymer, e.g. mechanical parts
    rubber or synthetic Blade can wear
    elastomer. out in high volume
    print systems
    Separate A separate heater is Can be effective Fabrication Can be used with
    ink boiling provided at the nozzle where other nozzle complexity many IJ series ink
    heater although the normal clearing methods jets
    drop e-ection cannot be used
    mechanism does not Can be
    require it. The heaters implemented at no
    do not require additional cost in
    individual drive some ink jet
    circuits, as many configurations
    nozzles can be cleared
    simultaneously, and no
    imaging is required.
    NOZZLE PLATE CONSTRUCTION
    Electro- A nozzle plate is Fabrication High Hewlett Packard
    formed separately fabricated simplicity temperatures and Thermal Ink jet
    nickel from electroformed pressures are
    nickel, and bonded to required to bond
    the print head chip. nozzle plate
    Minimum
    thickness constraints
    Differential
    thermal expansion
    Laser Individual nozzle No masks Each hole must Canon Bubblejet
    ablated or holes are ablated by an required be individually 1988 Sercel et
    drilled intense UV laser in a Can be quite fast formed al., SPIE, Vol. 998
    polymer nozzle plate, which is Some control Special Excimer Beam
    typically a polymer over nozzle profile equipment required Applications, pp.
    such as polyimide or is possible Slow where there 76-83
    polysulphone Equipment are many thousands 1993 Watanabe
    required is relatively of nozzles per print et al., U.S. Pat. No.
    low cost head 5,208,604
    May produce thin
    burrs at exit holes
    Silicon A separate nozzle High accuracy is Two part K. Bean, IEEE
    micro- plate is attainable construction Transactions on
    machined micromachined from High cost Electron Devices,
    single crystal silicon, Requires Vol. ED-25, No. 10,
    and bonded to the precision alignment 1978, pp 1185-1195
    print head wafer. Nozzles may be Xerox 1990
    clogged by adhesive Hawkins et al., U.S. Pat.
    No. 4,899,181
    Glass Fine glass capillaries No expensive Very small 1970 Zoltan U.S. Pat.
    capillaries are drawn from glass equipment required nozzle sizes are 3,683,212
    tubing. This method Simple to make difficult to form
    has been used for single nozzles Not suited for
    making individual mass production
    nozzles, but is difficult
    to use for bulk
    manufacturing of print
    heads with thousands
    of nozzles.
    Monolithic, The nozzle plate is High accuracy Requires Silverbrook, EP
    surface deposited as a layer (<1 μm) sacrificial layer 0771 658 A2 and
    micro- using standard VLSI Monolithic under the nozzle related patent
    machined deposition techniques. Low cost plate to form the applications
    using VLSI Nozzles are etched in Existing nozzle chamber IJ01, IJ02, IJ04,
    litho- the nozzle plate using processes can be Surface may be IJ11, IJ12, IJ17,
    graphic VLSI lithography and used fragile to the touch IJ18, IJ20, IJ22,
    processes etching. IJ24, IJ27, IJ28,
    IJ29, IJ30, IJ31,
    IJ32, IJ33, IJ34,
    IJ36, IJ37, IJ38,
    IJ39, IJ40, IJ41,
    IJ42, IJ43, IJ44
    Monolithic, The nozzle plate is a High accuracy Requires long IJ03, IJ05, IJ06,
    etched buried etch stop in the (<1 μm) etch times IJ07, IJ08, IJ09,
    through wafer. Nozzle Monolithic Requires a IJ10, IJ13, IJ14,
    substrate chambers are etched in Low cost support wafer IJ15, IJ16, IJ19,
    the front of the wafer, No differential IJ21, IJ23, IJ25,
    and the wafer is expansion IJ26
    thinned from the back
    side. Nozzles are then
    etched in the etch stop
    layer.
    No nozzle Various methods have No nozzles to Difficult to Ricoh 1995
    plate been tried to eliminate become clogged control drop Sekiya et al U.S. Pat.
    the nozzles entirely, to position accurately No. 5,412,413
    prevent nozzle Crosstalk 1993 Hadimioglu
    clogging. These problems et al EUP 550,192
    include thermal bubble 1993 Elrod et al
    mechanisms and EUP 572,220
    acoustic lens
    mechanisms
    Trough Each drop ejector has Reduced Drop firing IJ135
    a trough through manufacturing direction is sensitive
    which a paddle moves, complexity to wicking.
    There is no nozzle Monolithic
    plate.
    Nozzle slit The elimination of No nozzles to Difficult to 1989 Saito et al
    instead of nozzle holes and become clogged control drop U.S. Pat. 4,799,068
    individual replacement by a slit position accurately
    nozzles encompassing many Crosstalk
    actuator positions problems
    reduces nozzle
    clogging, but increases
    crosstalk due to ink
    surface waves
    DROP EJECTION DIRECTION
    Edge Ink flow is along the Simple Nozzles limited Canon Bubblejet
    (‘edge surface of the chip, construction to edge 1979 Endo et al GB
    shooter’) and ink drops are No silicon High resolution patent 2,007,162
    ejected from the chip etching required is difficult Xerox heater-in-
    edge. Good heat Fast color pit 1990 Hawkins et
    sinking via substrate printing requires al U.S. Pat. 4,899,181
    Mechanically one print head per Tone-jet
    strong color
    Ease of chip
    handing
    Surface Ink flow is along the No bulk silicon Maximum ink Hewlett-Packard
    (‘roof surface of the chip, etching required flow is severely TIJ 1982 Vaught et
    shooter’) and ink drops are Silicon can make restricted al U.S. Pat. 4,490,728
    ejected from the chip an effective heat IJ02, IJ11, IJ12,
    surface, normal to the sink IJ20, IJ22
    plane of the chip. Mechanical
    strength
    Through Ink flow is through the High ink flow Requires bulk Silverbrook, EP
    chip, chip, and ink drops are Suitable for silicon etching 0771 658 A2 and
    forward ejected from the front pagewidth print related patent
    (‘up surface of the chip, heads applications
    shooter’) High nozzle IJ04, IJ17, IJ18,
    packing density IJ24, IJ27-1145
    therefore low
    manufacturing cost
    Through Ink flow is through the High ink flow Requires wafer IJ01, IJ03, IJ05,
    chip, chip, and ink drops are Suitable for thinning IJ06, IJ07, IJ08,
    reverse ejected from the rear pagewidth print Requires special IJ09, IJ10, IJ13,
    (‘down surface of the chip. heads handling during IJ14, IJ15, IJ16,
    shooter’) High nozzle manufacture IJ19, IJ21, IJ23,
    packing density IJ25, IJ26
    therefore low
    manufacturing cost
    Through Ink flow is through the Suitable for Pagewidth print Epson Stylus
    actuator actuator, which is not piezoelectric print heads require Tektronix hot
    fabricated as part of heads several thousand melt piezoelectric
    the same substrate as connections to drive ink jets
    the drive transistors. circuits
    Cannot be
    manufactured in
    standard CMOS
    fabs
    Complex
    assembly required
    INK TYPE
    Aqueous, Water based ink which Environmentally Slow drying Most existing ink
    dye typically contains: friendly Corrosive jets
    water, dye, surfactant, No odor Bleeds on paper All IJ series ink
    humectant, and May jets
    biocide. strikethrough Silverbrook, EP
    Modern ink dyes have Cockles paper 0771 658 A2 and
    high water-fastness, related patent
    light fastness applications
    Aqueous, Water based ink which Environmentally Slow drying IJ02, IJ04, IJ21,
    pigment typically contains: friendly Corrosive IJ26, IJ27, IJ30
    water, pigment, No odor Pigment may Silverbrook, EP
    surfactant, humectant, Reduced bleed clog nozzles 0771 658 A2 and
    and biocide. Reduced wicking Pigment may related patent
    Pigments have an Reduced clog actuator applications
    advantage in reduced strikethrough mechanisms Piezoelectric ink-
    bleed, wicking and Cockles paper jets
    strikethrough. Thermal ink jets
    (with significant
    restrictions)
    Methyl MEK is a highly Very fast drying Odorous All IJ series ink
    Ethyl volatile solvent used Prints on various Flammable jets
    Ketone for industrial printing substrates such as
    (MEK) on difficult surfaces metals and plastics
    such as aluminum
    cans.
    Alcohol Alcohol based inks Fast drying Slight odor All IJ series ink
    (ethanol, 2- can be used where the Operates at sub- Flammable jets
    butanol, printer must operate at freezing
    and others) temperatures below temperatures
    the freezing point of Reduced paper
    water. An example of cockle
    this is in-camera Low cost
    consumer
    photographic printing.
    Phase The ink is solid at No drying time- High viscosity Tektronix hot
    change room temperature, and ink instantly freezes Printed ink melt piezoelectric
    (hot melt) is melted in the print on the print medium typically has a ink jets
    head before jetting. Almost any print ‘waxy’ feel 1989 Nowak
    Hot melt inks are medium can be used Printed pages U.S. Pat. 4,820,346
    usually wax based, No paper cockle may ‘block’ All IJ series ink
    with a melting point occurs Ink temperature jets
    around 80° C. After No wicking maybe above the
    jetting the ink freezes occurs curie point of
    almost instantly upon No bleed occurs permanent magnets
    contacting the print No strikethrough Ink heaters
    medium or a transfer occurs consume power
    roller. Long warm-up
    time
    Oil Oil based inks are High solubility High viscosity: All IJ series ink
    extensively used in medium for some this is a significant jets
    offset printing. They dyes limitation for use in
    have advantages in Does not cockle ink jets, which
    improved paper usually require a
    characteristics on Does not wick low viscosity. Some
    paper (especially no through paper short chain and
    wicking or cockle). multi-branched oils
    Oil soluble dies and have a sufficiently
    pigments are required. low viscosity.
    Slow drying
    Micro- A microemulsion is a Stops ink bleed Viscosity higher All IJ series ink
    emulsion stable, self forming High dye than water jets
    emulsion of oil, water, solubility Cost is slightly
    and surfactant. The Water, oil, and higher than water
    characteristic drop size amphiphilic soluble based ink
    is less than 100 nm, dies can be used High surfactant
    and is determined by Can stabilize concentration
    the preferred curvature pigment required (around
    of the surfactant. suspensions 5%)

Claims (10)

I claim:
1. An ink jet nozzle arrangement comprising:
a nozzle chamber defining means which defines a chamber;
an ink ejection port in fluid communication with the chamber; and
a coiled actuator operatively arranged relative to the ink ejection port, said actuator, upon being activated on demand, at least partially coiling or uncoiling to cause ejection of ink from said ink ejection port.
2. The arrangement of
claim 1
in which the actuator is an electro-thermally operable bend actuator.
3. The arrangement of
claim 2
in which the actuator includes a heater element at least partially embedded in a jacket, application of current through said heater element causing heating of one side of the actuator to cause at least partial uncoiling of the actuator.
4. The arrangement of
claim 2
in which the heater element is a serpentine heater element having a serpentine portion and a return trace, the return trace being of thicker cross-section than the serpentine portion.
5. The arrangement of
claim 1
which includes a shutter arranged within the nozzle chamber for opening and closing the ink ejection port, the shutter being mounted on the actuator and being in a normally closed position in a rest condition of the actuator to inhibit escape of ink through said ink ejection port.
6. The arrangement of
claim 5
which includes a substrate with the nozzle chamber defining means being arranged on the substrate, an ink inlet opening being defined in the substrate.
7. The arrangement of
claim 6
in which the ink inlet opening is aligned with the ink ejection port, the shutter being interposed between the ink inlet opening and the ink ejection port.
8. The arrangement of
claim 6
in which the ink inlet opening is arranged at an end of a supply channel through the substrate, the supply channel having a larger cross-sectional area than the ink inlet opening and the ink ejection port.
9. The arrangement of
claim 1
in which the actuator is arranged within said nozzle chamber.
10. The arrangement of
claim 1
in which the port is defined in a wall of the nozzle chamber defining means.
US09/854,762 1997-07-15 2001-05-14 Ink jet with coiled actuator Expired - Fee Related US6425657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/854,762 US6425657B2 (en) 1997-07-15 2001-05-14 Ink jet with coiled actuator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
AUPO7991A AUPO799197A0 (en) 1997-07-15 1997-07-15 Image processing method and apparatus (ART01)
AUPO8001A AUPO800197A0 (en) 1997-07-15 1997-07-15 Image creation method and apparatus (IJ17)
AUPO7991 1997-07-15
AUPO8001 1997-07-15
US09/112,815 US6247792B1 (en) 1997-07-15 1998-07-10 PTFE surface shooting shuttered oscillating pressure ink jet printing mechanism
US09/854,762 US6425657B2 (en) 1997-07-15 2001-05-14 Ink jet with coiled actuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/112,815 Continuation US6247792B1 (en) 1997-07-15 1998-07-10 PTFE surface shooting shuttered oscillating pressure ink jet printing mechanism

Publications (2)

Publication Number Publication Date
US20010043253A1 true US20010043253A1 (en) 2001-11-22
US6425657B2 US6425657B2 (en) 2002-07-30

Family

ID=25645484

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/112,815 Expired - Fee Related US6247792B1 (en) 1997-07-15 1998-07-10 PTFE surface shooting shuttered oscillating pressure ink jet printing mechanism
US09/854,762 Expired - Fee Related US6425657B2 (en) 1997-07-15 2001-05-14 Ink jet with coiled actuator
US10/693,947 Expired - Fee Related US6783217B2 (en) 1997-07-15 2003-10-28 Micro-electromechanical valve assembly
US10/884,887 Expired - Fee Related US7140719B2 (en) 1997-07-15 2004-07-06 Actuator for a micro-electromechanical valve assembly
US10/884,890 Expired - Fee Related US7226145B2 (en) 1997-07-15 2004-07-06 Micro-electromechanical valve shutter assembly
US11/442,176 Expired - Fee Related US7152960B2 (en) 1997-07-15 2006-05-30 Micro-electromechanical valve having transformable valve actuator
US11/604,319 Expired - Fee Related US7357488B2 (en) 1997-07-15 2006-11-27 Nozzle assembly incorporating a shuttered actuation mechanism

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/112,815 Expired - Fee Related US6247792B1 (en) 1997-07-15 1998-07-10 PTFE surface shooting shuttered oscillating pressure ink jet printing mechanism

Family Applications After (5)

Application Number Title Priority Date Filing Date
US10/693,947 Expired - Fee Related US6783217B2 (en) 1997-07-15 2003-10-28 Micro-electromechanical valve assembly
US10/884,887 Expired - Fee Related US7140719B2 (en) 1997-07-15 2004-07-06 Actuator for a micro-electromechanical valve assembly
US10/884,890 Expired - Fee Related US7226145B2 (en) 1997-07-15 2004-07-06 Micro-electromechanical valve shutter assembly
US11/442,176 Expired - Fee Related US7152960B2 (en) 1997-07-15 2006-05-30 Micro-electromechanical valve having transformable valve actuator
US11/604,319 Expired - Fee Related US7357488B2 (en) 1997-07-15 2006-11-27 Nozzle assembly incorporating a shuttered actuation mechanism

Country Status (1)

Country Link
US (7) US6247792B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030006676A1 (en) * 2001-05-29 2003-01-09 Smith Stuart T. Closed loop control systems employing relaxor ferroelectric actuators
GB2389817A (en) * 2002-06-21 2003-12-24 Opportunity Europ Limimted Ink cartridge containing a coil for ink flow control
FR2844475A1 (en) * 2002-09-12 2004-03-19 Seiko Epson Corp INK CARTRIDGE AND METHOD FOR REGULATING THE FLOW OF FLUID.

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO799197A0 (en) * 1997-07-15 1997-08-07 Silverbrook Research Pty Ltd Image processing method and apparatus (ART01)
US6648453B2 (en) 1997-07-15 2003-11-18 Silverbrook Research Pty Ltd Ink jet printhead chip with predetermined micro-electromechanical systems height
US20090273641A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead IC With Ink Supply Channel For Multiple Nozzle Rows
US7527357B2 (en) 1997-07-15 2009-05-05 Silverbrook Research Pty Ltd Inkjet nozzle array with individual feed channel for each nozzle
US7556356B1 (en) 1997-07-15 2009-07-07 Silverbrook Research Pty Ltd Inkjet printhead integrated circuit with ink spread prevention
US20090278891A1 (en) * 1997-07-15 2009-11-12 Silverbrook Research Pty Ltd Printhead IC With Filter Structure At Inlet To Ink Chambers
US7021745B2 (en) * 1997-07-15 2006-04-04 Silverbrook Research Pty Ltd Ink jet with thin nozzle wall
US20090273640A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead Integrated Circuit With Small Nozzle Apertures
US6712453B2 (en) 1997-07-15 2004-03-30 Silverbrook Research Pty Ltd. Ink jet nozzle rim
US6428147B2 (en) * 1997-07-15 2002-08-06 Silverbrook Research Pty Ltd Ink jet nozzle assembly including a fluidic seal
US6855264B1 (en) 1997-07-15 2005-02-15 Kia Silverbrook Method of manufacture of an ink jet printer having a thermal actuator comprising an external coil spring
US20090273623A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead With Low Power Actuators
US20090273643A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead Integrated Circuit With Ink Supply Through Wafer Thickness
US6488361B2 (en) * 1997-07-15 2002-12-03 Silverbrook Research Pty Ltd. Inkjet printhead that incorporates closure mechanisms
US6247792B1 (en) * 1997-07-15 2001-06-19 Silverbrook Research Pty Ltd PTFE surface shooting shuttered oscillating pressure ink jet printing mechanism
US8366243B2 (en) * 1997-07-15 2013-02-05 Zamtec Ltd Printhead integrated circuit with actuators proximate exterior surface
US20090278892A1 (en) * 1997-07-15 2009-11-12 Silverbrook Research Pty Ltd Printhead IC With Small Ink Chambers
US20090273632A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead Integrated Circuit With Large Nozzle Array
US20090273634A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead Integrated Circuit With Thin Nozzle Layer
US6682174B2 (en) 1998-03-25 2004-01-27 Silverbrook Research Pty Ltd Ink jet nozzle arrangement configuration
US6460971B2 (en) * 1997-07-15 2002-10-08 Silverbrook Research Pty Ltd Ink jet with high young's modulus actuator
US20090273642A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead IC With Low Velocity Droplet Ejection
US8117751B2 (en) * 1997-07-15 2012-02-21 Silverbrook Research Pty Ltd Method of forming printhead by removing sacrificial material through nozzle apertures
US6935724B2 (en) 1997-07-15 2005-08-30 Silverbrook Research Pty Ltd Ink jet nozzle having actuator with anchor positioned between nozzle chamber and actuator connection point
US20090273638A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead Integrated Circuit With More Than Two Metal Layer CMOS
US7337532B2 (en) 1997-07-15 2008-03-04 Silverbrook Research Pty Ltd Method of manufacturing micro-electromechanical device having motion-transmitting structure
US6557977B1 (en) * 1997-07-15 2003-05-06 Silverbrook Research Pty Ltd Shape memory alloy ink jet printing mechanism
US7465030B2 (en) 1997-07-15 2008-12-16 Silverbrook Research Pty Ltd Nozzle arrangement with a magnetic field generator
US20090273636A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Electro-Thermal Inkjet Printer With High Speed Media Feed
US7468139B2 (en) 1997-07-15 2008-12-23 Silverbrook Research Pty Ltd Method of depositing heater material over a photoresist scaffold
US20090273622A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead Integrated Circuit With Low Operating Power
US6485123B2 (en) * 1997-07-15 2002-11-26 Silverbrook Research Pty Ltd Shutter ink jet
US6416170B2 (en) * 1997-07-15 2002-07-09 Silverbrook Research Pty Ltd Differential thermal ink jet printing mechanism
US20090273633A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead Integrated Circuit With High Density Nozzle Array
US7195339B2 (en) 1997-07-15 2007-03-27 Silverbrook Research Pty Ltd Ink jet nozzle assembly with a thermal bend actuator
US20090273635A1 (en) * 1997-07-15 2009-11-05 Silverbrook Research Pty Ltd Printhead Integrated Circuit For Low Volume Droplet Ejection
US6412912B2 (en) * 1998-07-10 2002-07-02 Silverbrook Research Pty Ltd Ink jet printer mechanism with colinear nozzle and inlet
US6505916B1 (en) * 2000-10-20 2003-01-14 Silverbrook Research Pty Ltd Nozzle poker for moving nozzle ink jet
US6416169B1 (en) * 2000-11-24 2002-07-09 Xerox Corporation Micromachined fluid ejector systems and methods having improved response characteristics
US20020136983A1 (en) * 2001-03-22 2002-09-26 Agfa-Gevaert Method of coating an image-recording layer by valve-jet
AUPS175202A0 (en) 2002-04-16 2002-05-23 Silverbrook Research Pty. Ltd. An apparatus (AP36)
US7868358B2 (en) * 2003-06-06 2011-01-11 Northrop Grumman Systems Corporation Coiled circuit device with active circuitry and methods for making the same
US7299552B2 (en) * 2003-09-08 2007-11-27 Hewlett-Packard Development Company, L.P. Methods for creating channels
US7258434B2 (en) * 2003-11-24 2007-08-21 Lexmark International, Inc. Inkjet printheads having multiple label placement positions for air diffusion vents
US7416292B2 (en) * 2005-06-30 2008-08-26 Xerox Corporation Valve system for molten solid ink and method for regulating flow of molten solid ink
US7913928B2 (en) 2005-11-04 2011-03-29 Alliant Techsystems Inc. Adaptive structures, systems incorporating same and related methods
US20070145636A1 (en) * 2005-12-28 2007-06-28 Johns Gina M Ink tank incorporating lens for ink level sensing
JP4819581B2 (en) * 2006-06-02 2011-11-24 富士フイルム株式会社 Liquid storage device and image forming apparatus
US9010329B2 (en) * 2009-02-10 2015-04-21 Aerophase Electronically-controlled, high pressure flow control valve and method of use
KR101620525B1 (en) * 2009-08-07 2016-05-13 삼성디스플레이 주식회사 Display device using mems and driving method thereof
US9996857B2 (en) 2015-03-17 2018-06-12 Dow Jones & Company, Inc. Systems and methods for variable data publication
US9980415B2 (en) * 2015-08-20 2018-05-22 Toyota Motor Engineering & Manufacturing North America, Inc. Configurable double-sided modular jet impingement assemblies for electronics cooling
EP3644969A4 (en) 2017-06-26 2021-03-17 Bionaut Labs Ltd. Methods and systems to control particles and implantable devices

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB792145A (en) 1953-05-20 1958-03-19 Technograph Printed Circuits L Improvements in and relating to devices for obtaining a mechanical movement from theaction of an electric current
DE1648322A1 (en) 1967-07-20 1971-03-25 Vdo Schindling Measuring or switching element made of bimetal
FR2188389B1 (en) 1972-06-08 1975-06-13 Cibie Projecteurs
FR2231076A2 (en) 1973-05-24 1974-12-20 Electricite De France Driving organ operated by thermal means - esp. for use in corrosive or dangerous environments formed by two metal strips
US4007464A (en) * 1975-01-23 1977-02-08 International Business Machines Corporation Ink jet nozzle
DE2905063A1 (en) 1979-02-10 1980-08-14 Olympia Werke Ag Ink nozzle air intake avoidance system - has vibratory pressure generator shutting bore in membrane in rest position
US4458255A (en) * 1980-07-07 1984-07-03 Hewlett-Packard Company Apparatus for capping an ink jet print head
JPS58112747A (en) 1981-12-26 1983-07-05 Fujitsu Ltd Ink jet recording device
JPS58116165A (en) 1981-12-29 1983-07-11 Canon Inc Ink injection head
DE3214791A1 (en) 1982-04-21 1983-10-27 Siemens AG, 1000 Berlin und 8000 München WRITING DEVICE WORKING WITH LIQUID DROPS
US4423401A (en) * 1982-07-21 1983-12-27 Tektronix, Inc. Thin-film electrothermal device
DE3245283A1 (en) 1982-12-07 1984-06-07 Siemens AG, 1000 Berlin und 8000 München Arrangement for expelling liquid droplets
US4553393A (en) * 1983-08-26 1985-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Memory metal actuator
US4812792A (en) * 1983-12-22 1989-03-14 Trw Inc. High-frequency multilayer printed circuit board
JPS6125849A (en) 1984-07-17 1986-02-04 Canon Inc Ink jet recording device
DE3430155A1 (en) 1984-08-16 1986-02-27 Siemens AG, 1000 Berlin und 8000 München Indirectly heated bimetal
JPS61106259A (en) * 1984-10-31 1986-05-24 Hitachi Ltd Ink droplet jet discharging device
SE447222B (en) * 1984-12-21 1986-11-03 Swedot System Ab ELECTROMAGNETIC MANOVERABLE VALVE DEVICE, SPECIFICALLY FOR GENERATING DROPS IN A HYDRAULIC PRINTER
GB8507652D0 (en) * 1985-03-25 1985-05-01 Irex Corp Hard copy recorders
JPS61268453A (en) 1985-05-23 1986-11-27 Olympus Optical Co Ltd Ink jet printer head
US5258774A (en) * 1985-11-26 1993-11-02 Dataproducts Corporation Compensation for aerodynamic influences in ink jet apparatuses having ink jet chambers utilizing a plurality of orifices
DE3716996A1 (en) 1987-05-21 1988-12-08 Vdo Schindling Deformation element
JPH01105746A (en) 1987-10-19 1989-04-24 Ricoh Co Ltd Ink jet head
JPH01115639A (en) 1987-10-30 1989-05-08 Ricoh Co Ltd Ink jet recording head
JPH01128839A (en) 1987-11-13 1989-05-22 Ricoh Co Ltd Inkjet recording head
JPH01155639A (en) 1987-12-11 1989-06-19 Mitsubishi Electric Corp Light-shielding evaluation device for photo input integrated circuit
US4855567A (en) * 1988-01-15 1989-08-08 Rytec Corporation Frost control system for high-speed horizontal folding doors
JPH01257058A (en) 1988-04-07 1989-10-13 Seiko Epson Corp Ink jet head
DE3814150A1 (en) * 1988-04-27 1989-11-09 Draegerwerk Ag VALVE ARRANGEMENT MADE FROM MICROSTRUCTURED COMPONENTS
JPH01306254A (en) 1988-06-03 1989-12-11 Seiko Epson Corp Ink jet head
JPH0250841A (en) 1988-08-12 1990-02-20 Seiko Epson Corp Ink jet head
JPH0292643A (en) 1988-09-30 1990-04-03 Seiko Epson Corp Ink jet head
IT1229927B (en) 1988-10-14 1991-09-16 Cipelletti Alberto Cae VANE PUMP.
JPH02108544A (en) 1988-10-19 1990-04-20 Seiko Epson Corp Inkjet printing head
US4864824A (en) * 1988-10-31 1989-09-12 American Telephone And Telegraph Company, At&T Bell Laboratories Thin film shape memory alloy and method for producing
JP2697041B2 (en) 1988-12-10 1998-01-14 ミノルタ株式会社 Inkjet printer
JPH02162049A (en) 1988-12-16 1990-06-21 Seiko Epson Corp Printer head
JPH041051A (en) 1989-02-22 1992-01-06 Ricoh Co Ltd Ink-jet recording device
JPH02265752A (en) 1989-04-05 1990-10-30 Matsushita Electric Ind Co Ltd Ink-jet recording head
EP0398031A1 (en) 1989-04-19 1990-11-22 Seiko Epson Corporation Ink jet head
JPH0365348A (en) 1989-08-04 1991-03-20 Matsushita Electric Ind Co Ltd Ink jet head
US5255016A (en) 1989-09-05 1993-10-19 Seiko Epson Corporation Ink jet printer recording head
JP2746703B2 (en) 1989-11-09 1998-05-06 松下電器産業株式会社 Ink jet head device and method of manufacturing the same
JPH03112662A (en) 1989-09-27 1991-05-14 Seiko Epson Corp Ink jet printer
JP2964618B2 (en) 1989-11-10 1999-10-18 セイコーエプソン株式会社 Head for inkjet printer
JPH03180350A (en) 1989-12-08 1991-08-06 Seiko Epson Corp Ink jet head
JPH04118241A (en) 1990-09-10 1992-04-20 Seiko Epson Corp Amplitude conversion actuator for ink jet printer head
JPH04126255A (en) 1990-09-18 1992-04-27 Seiko Epson Corp Ink jet head
JPH04141429A (en) 1990-10-03 1992-05-14 Seiko Epson Corp Ink jet head
DE4031248A1 (en) 1990-10-04 1992-04-09 Kernforschungsz Karlsruhe MICROMECHANICAL ELEMENT
US5126755A (en) 1991-03-26 1992-06-30 Videojet Systems International, Inc. Print head assembly for ink jet printer
US5164740A (en) 1991-04-24 1992-11-17 Yehuda Ivri High frequency printing mechanism
US5058856A (en) * 1991-05-08 1991-10-22 Hewlett-Packard Company Thermally-actuated microminiature valve
JPH04353458A (en) 1991-05-31 1992-12-08 Brother Ind Ltd Ink jet head
JPH04368851A (en) 1991-06-17 1992-12-21 Seiko Epson Corp Magnetic field generating substrate and ink jet head equipped therewith
JPH0528765A (en) 1991-07-18 1993-02-05 Nec Home Electron Ltd Memory control circuit
GB9121851D0 (en) 1991-10-15 1991-11-27 Willett Int Ltd Device
JP3450349B2 (en) 1992-03-31 2003-09-22 キヤノン株式会社 Cantilever probe
JPH05318724A (en) 1992-05-19 1993-12-03 Seikosha Co Ltd Ink jet recorder
JP2615319B2 (en) 1992-09-17 1997-05-28 セイコープレシジョン株式会社 Inkjet head
JPH0691865A (en) 1992-09-17 1994-04-05 Seikosha Co Ltd Ink jet head
GB9302170D0 (en) 1993-02-04 1993-03-24 Domino Printing Sciences Plc Ink jet printer
JPH07137250A (en) * 1993-05-14 1995-05-30 Fujitsu Ltd Ultrasonic printer
IT1270861B (en) 1993-05-31 1997-05-13 Olivetti Canon Ind Spa IMPROVED INK JET HEAD FOR A POINT PRINTER
US5666141A (en) * 1993-07-13 1997-09-09 Sharp Kabushiki Kaisha Ink jet head and a method of manufacturing thereof
DE4328433A1 (en) 1993-08-24 1995-03-02 Heidelberger Druckmasch Ag Ink jet spray method, and ink jet spray device
EP0752601B1 (en) * 1994-03-24 2003-05-14 Kanagawa Academy Of Science And Technology Optical fiber and its manufacture
DE19516997C2 (en) 1994-05-10 1998-02-26 Sharp Kk Ink jet head and method of manufacturing the same
JPH07314673A (en) 1994-05-27 1995-12-05 Sharp Corp Ink-jet head
JPH07314665A (en) 1994-05-27 1995-12-05 Canon Inc Ink jet recording head, recorder using the same and recording method therefor
JPH0890769A (en) 1994-09-27 1996-04-09 Sharp Corp Gusseted diaphragm type ink-jet head
JPH08142323A (en) 1994-11-24 1996-06-04 Sharp Corp Ink jet head and manufacture thereof
DE19525152C2 (en) 1994-12-07 1998-03-12 Sotralentz Sa Stackable pallet container for transport and storage purposes
DE19513358C1 (en) * 1995-04-08 1996-08-08 Amphenol Tuchel Elect Electrical in-line connector with contact engagement interlock
JP3706671B2 (en) 1995-04-14 2005-10-12 キヤノン株式会社 Liquid ejection head, head cartridge using liquid ejection head, liquid ejection apparatus, and liquid ejection method
SG49942A1 (en) * 1995-04-26 1998-06-15 Canon Kk Liquid ejecting head liquid ejecting device and liquid ejecting method
JPH08336965A (en) 1995-06-14 1996-12-24 Sharp Corp Ink-jet head
DE69617540T2 (en) 1995-06-28 2002-05-23 Canon K.K., Tokio/Tokyo Micro device for liquid jet recording head equipped therewith, liquid jet recording device with this liquid jet recording head
US5828394A (en) 1995-09-20 1998-10-27 The Board Of Trustees Of The Leland Stanford Junior University Fluid drop ejector and method
JPH09104109A (en) 1995-10-12 1997-04-22 Sharp Corp Ink jet head and production thereof
US5825275A (en) * 1995-10-27 1998-10-20 University Of Maryland Composite shape memory micro actuator
US6003977A (en) * 1996-02-07 1999-12-21 Hewlett-Packard Company Bubble valving for ink-jet printheads
US5812159A (en) * 1996-07-22 1998-09-22 Eastman Kodak Company Ink printing apparatus with improved heater
JP3653348B2 (en) 1996-08-23 2005-05-25 三洋電機株式会社 Air conditioner
US5781331A (en) * 1997-01-24 1998-07-14 Roxburgh Ltd. Optical microshutter array
US6331043B1 (en) 1997-06-06 2001-12-18 Canon Kabushiki Kaisha Liquid discharging method, a liquid discharge head, and a liquid discharger apparatus
US6247792B1 (en) * 1997-07-15 2001-06-19 Silverbrook Research Pty Ltd PTFE surface shooting shuttered oscillating pressure ink jet printing mechanism
US6485123B2 (en) * 1997-07-15 2002-11-26 Silverbrook Research Pty Ltd Shutter ink jet
US6062681A (en) * 1998-07-14 2000-05-16 Hewlett-Packard Company Bubble valve and bubble valve-based pressure regulator
JP2000141656A (en) 1998-11-09 2000-05-23 Ricoh Co Ltd Ink-jet head and its manufacture
US6175050B1 (en) * 1999-05-11 2001-01-16 Shell Oil Company Process for separating functionalized alpha olefins from functionalized internal olefins

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030006676A1 (en) * 2001-05-29 2003-01-09 Smith Stuart T. Closed loop control systems employing relaxor ferroelectric actuators
US6707230B2 (en) 2001-05-29 2004-03-16 University Of North Carolina At Charlotte Closed loop control systems employing relaxor ferroelectric actuators
GB2389817A (en) * 2002-06-21 2003-12-24 Opportunity Europ Limimted Ink cartridge containing a coil for ink flow control
GB2389817B (en) * 2002-06-21 2004-05-19 Opportunity Europ Limimted Ink-jet cartridges
FR2844475A1 (en) * 2002-09-12 2004-03-19 Seiko Epson Corp INK CARTRIDGE AND METHOD FOR REGULATING THE FLOW OF FLUID.
EP1398156A3 (en) * 2002-09-12 2004-03-31 Seiko Epson Corporation Ink cartridge and method of regulating fluid flow
US20050231571A1 (en) * 2002-09-12 2005-10-20 Hisashi Miyazawa Ink cartridge and method of regulating fluid flow
US7011397B2 (en) 2002-09-12 2006-03-14 Seiko Epson Corporation Ink cartridge and method of regulating fluid flow
US7434923B2 (en) 2002-09-12 2008-10-14 Seiko Epson Corporation Ink cartridge and method of regulating fluid flow
US7794067B2 (en) 2002-09-12 2010-09-14 Seiko Epson Corporation Ink cartridge and method of regulating fluid flow

Also Published As

Publication number Publication date
US7152960B2 (en) 2006-12-26
US6783217B2 (en) 2004-08-31
US6247792B1 (en) 2001-06-19
US7226145B2 (en) 2007-06-05
US7357488B2 (en) 2008-04-15
US20040085402A1 (en) 2004-05-06
US20050036001A1 (en) 2005-02-17
US20060227184A1 (en) 2006-10-12
US7140719B2 (en) 2006-11-28
US6425657B2 (en) 2002-07-30
US20070070124A1 (en) 2007-03-29
US20040257403A1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
US8029101B2 (en) Ink ejection mechanism with thermal actuator coil
US20010043253A1 (en) Ink jet with coiled actuator
US7590347B2 (en) Photographic prints having magnetically recordable media
US20010045969A1 (en) Shutter ink jet
US7901050B2 (en) Printhead integrated circuit with suspended heater elements
US7984975B2 (en) Printhead nozzle cell having photoresist chamber
US7753484B2 (en) Printhead provided with individual nozzle enclosures
US8029686B2 (en) Method of fabricating an ink jet nozzle with a heater element
US6137500A (en) Utilizing of brush stroking techniques in the generation of computer images
US7771015B2 (en) Printhead nozzle arrangement having a looped heater element
US6225138B1 (en) Method of manufacture of a pulsed magnetic field ink jet printer
CA2592267C (en) Inkjet printhead having isolated nozzles

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILVERBROOK RESEARCH PTY. LTD., AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK, KIA;REEL/FRAME:011817/0384

Effective date: 20010510

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: ZAMTEC LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK RESEARCH PTY. LIMITED AND CLAMATE PTY LIMITED;REEL/FRAME:028537/0396

Effective date: 20120503

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140730