US20010034007A1 - Dental tool - Google Patents
Dental tool Download PDFInfo
- Publication number
- US20010034007A1 US20010034007A1 US09/514,398 US51439800A US2001034007A1 US 20010034007 A1 US20010034007 A1 US 20010034007A1 US 51439800 A US51439800 A US 51439800A US 2001034007 A1 US2001034007 A1 US 2001034007A1
- Authority
- US
- United States
- Prior art keywords
- dental tool
- tool according
- grinding head
- edges
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 CCC[C@@]1C(C2)CC[C@@](*)C2(*)C1 Chemical compound CCC[C@@]1C(C2)CC[C@@](*)C2(*)C1 0.000 description 2
- SLIQDUOVSYKJRP-UHFFFAOYSA-N CC1CC(C)C(C2)C2C1 Chemical compound CC1CC(C)C(C2)C2C1 SLIQDUOVSYKJRP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C3/00—Dental tools or instruments
- A61C3/02—Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
Definitions
- the present invention relates to a dental tool, in particular a dental tool for grinding teeth.
- Dental tools for grinding teeth are used in dental preparatory techniques for both pre-grinding (roughing) and fine grinding (smoothing) operations.
- pre-grinding roughing
- fine grinding fine grinding
- the dentist must prepare the tooth in such a way that it can subsequently be restored again.
- the dentist should not remove too much material.
- normally the amount of material removed should be as small as possible.
- a preparation is needed that is gentle on the tooth substance and that preserves it.
- a dental tool in particular a tool for grinding teeth, comprising a grinding head and a rotatingly drivable shaft, the grinding head having on its surface at least one elevated portion that, during revolution of the grinding head, works or treats a surface to be prepared and defines a circle of rotation.
- the dental tool is characterized in that the elevated portion comprises and edge, the edge forms the side line of a surface that is situated at least at the leading side of the edge and that is recessed relative to the rotation circle defined by the edge.
- the dental tool of the invention is characterized by several advantages. Due to the arrangement of a grinding head having at least one elevated portion comprising an edge, and in contrast to known grinding instruments that have a conical or cylindrical surface, a higher contact pressure is achieved at the working area or elevated portion at a constant pressure force exerted by a dentist during the grinding or abrading operation, which results in a greater amount of removal. In the known grinding instruments a larger contact surface contacts the tooth per unit time, so that the constant contact force is distributed over a larger surface area.
- the tooth surface may be worked or treated over the entire external length of the grinding head of the invention.
- the trailing sections of the edge contact the tooth surface during each revolution of the grinding head at a certain time delay that depends on the rotational speed of the grinding head and the pitch or other configurational arrangement of the elevated portion.
- edges represent a known geometrical shape and, in addition, have a great strength, which is of special importance to grinding tools.
- edges can be produced in different ways, depending on the shape of the blank used in manufacturing the tool, so that a simple and inexpensive production method can be chosen.
- the edge forms the side line of a surface that is situated at least at the leading side of the edge and is recessed relative to the rotation circle defined by the edge, in the course of rotation of the dental tool the elevated edge or side line of the recessed surface comes into contact with the tooth surface to be treated from its initial contact point up to its end or trailing contact point.
- both the interests of the dentist and those of the patient to be treated are satisfied with the dental tool of the invention by way of the trailing removal of dental enamel through the higher contact pressure per working area at a constant contact force exerted by a dentist.
- the grinding head is substantially conical, so that the known advantages of conical shaped grinding heads are additionally achieved by the conical grinding heads of the invention.
- the recessed surface or surfaces may be planar (that is, substantially flat in cross-section) or have a concave curvature. Such shapes of the surfaces can be produced in a particularly easy manner. Moreover, instead of being concavely curved, the recessed surface may also consist of two sections intersecting each other at an obtuse angle, as in an indented wedge shape.
- edges of a similar type should be formed on the circumference of the grinding head. It is possible for example to form a plurality of adjacent, recessed planar surfaces on the outer circumference of the grinding head that are separated one from the next by elevated curved portions remaining in the originally conical grinding head following tooling. Alternatively, two planar surfaces may also adjoin each other directly.
- the elevated curved portion When the elevated curved portion is positioned in the outer (rotation) circle of the dental tool of the invention, the configuration allows excellent guidance of the tool on the tooth to be treated without impairing the other inventive effects.
- the elevated portion comprises an edge that is threaded over the length of the grinding head.
- a multitude of point-like sections of the edge simultaneously engage into the surface of the tooth per time unit and at a corresponding pitch of the thread-like edge.
- the contact pressure as divided among the multitude of engaging point-like sections, at a constant contact force per working surface area is smaller than would occur with a single engaging point-like section, it is still greater than the contact pressure of known cylindrical or conical heads.
- the working surface is still at least twice the size of a smooth circumferential surface of the conventional grinding instruments and may also be many times that size provided that the pitch of the thread is appropriately chosen.
- the elevated portion may comprise a rounded elevated surface similar to a screw thread.
- the edges are part of a honeycomb-like structure consisting of alternating fields circumferentially offset one from the next along the longitudinal length of the grinding head.
- each of said alternating fields comprises a plurality of elevated portions comprising edges, and a plurality of recessed surfaces adjoining said edges.
- the grinding head comprises at least two longitudinally successive sections and the edges of the first section are arranged in a circumferentially-offset fashion relative to the edges of the other section.
- Such a configuration guarantees that a given edge contacts the tooth only sectionwise, resulting in a high contact pressure.
- This above embodiment can be implemented in a particularly simple way when the edges extend in the longitudinal direction of the dental tool, because such a configuration yields a particularly simple and easily-producible geometrical shape.
- the offset arrangement of the edges can specifically be chosen such that the edges of the next sections but one are substantially identical in orientiation.
- Other alternations of offset among the multiple sections will be recognized by those skilled in the art in view of the present disclosure.
- a particularly advantageous relation between treatment time and removal rate can thereby be achieved.
- a configuration that can be produced in a particularly simple way is obtained when a concave curvature is provided at both sides of a rounded edge, resulting in an approximately waved design.
- Such a design can not only be produced easily, but due to the absence of corners is also devoid of any stress peaks, and yields a dental tool has a particularly long service life.
- the surface area of the grinding head is macroscopically enlarged, whereby an increased number of grinding grains can be placed on the grinding head.
- the surface of the grinding head preferably has diamond grinding grains placed thereon for increasing the removal rate.
- the diamond grains may either have the same grain size or different grain sizes.
- the grain sizes of the diamond grains range from about 5 to 250 ⁇ m, preferably 100 to 180 ⁇ m. The selection of the grain size will, in turn, have an effect on the removal efficiency with respect to the dental enamel and should thus be adapted to the requirements of the dental tool.
- FIG. 1A is a schematic side view of a first embodiment of a dental tool according to the invention.
- FIG. 1B is a cross-sectional view taken along line A-A of FIG. 1A.
- FIG. 2A is a schematic side view of a second embodiment of a dental tool according to the invention.
- FIG. 2B is a cross-sectional view taken along line A-A of FIG. 2A.
- FIG. 3A is a schematic side view of a third embodiment of a dental tool according to the invention.
- FIG. 3B is a cross-sectional view taken along line A-A of FIG. 3A.
- FIG. 4A is a schematic side view of a fourth embodiment of a dental tool according to the invention.
- FIG. 4B is a cross-sectional view taken along line A-A of FIG. 4A next to an enlarged illustration of the section marked by the small circle in FIG. 4B.
- FIG. 5A is a schematic side view of a fifth embodiment of a dental tool according to the invention.
- FIG. 5B is a cross-sectional view taken along line A-A of FIG. 5A.
- FIG. 6A is a schematic side view of a sixth embodiment of a dental tool according to the invention.
- FIG. 6B is a cross-sectional view taken along line A-A of FIG. 6A.
- FIG. 7A is a schematic side view of a seventh embodiment of a dental tool according to the invention.
- FIG. 7B is a cross-sectional view taken along line A-A of FIG. 7A.
- FIG. 8A is a schematic side view of an eighth embodiment of a dental tool according to the invention.
- FIG. 8B is a cross-sectional view taken along line A-A of FIG. 8A.
- FIG. 9A is a schematic side view of a ninth embodiment of a dental tool according to the invention.
- FIG. 9B is a cross-sectional view taken along line A-A of FIG. 9A.
- FIG. 1A is a schematic side view showing a first embodiment of a dental tool 1 according to the invention.
- the dental tool 1 is used for grinding or abrading teeth and comprises a grinding head 2 and a rotatingly drivable shaft 3
- the shaft 3 is here driven by a driving means (not shown).
- the grinding head 2 is substantially conical.
- the grinding head 2 as well may be cylindrical or flame shaped.
- planar recessed surfaces 4 to 10 are incorporated into the circumferential surface of the grinding head 2 .
- Each two such respective planar surfaces are adjacent to each other, such that elevated portions 11 , which in the present embodiment comprise edges 11 seen in the sectional view of FIG. 1B, are formed along the connection line between the respective planar surfaces 4 to 10 .
- the edges 11 form the side lines of the planar surfaces 4 to 10 .
- FIGS. 1A and 1B only three edges and two edges, respectively, have been designated with the corresponding reference numeral 11 by way of example, although six such edges are visible in FIG.
- FIGS. 1A and 1B show additional planar surfaces beyond those designated with reference numerals 4 though 10 ; and these and other figures herein depict multiple structural features that are described but not individually enumerated in the drawings.
- the circumferential surface of the grinding head 2 is subdivided into twelve recessed planar surfaces sections.
- the side view of FIG. 1A shows a number of these recessed surfaces spiraling longitudinally along the length of the grinding head. This particular subdivision, however, is not imperative. Another number can also be chosen for the subdivision. The number, and also the orientation of the subdivided sections, depends on the respective requirements.
- the different sections of the grinding head may each be electroplated with different abrasives, such as diamond grains.
- the different sections may also comprise diamond grains of different grain sizes ranging from 5 to 250 ⁇ m.
- the different sections may also be covered with diamond grains having the same grain size. A size of the diamond grains that ranges from 100 to 180 ⁇ m has turned out to be particularly efficient with respect to the grinding effect.
- the tip of the grinding head 2 is rounded to prevent injuries when the inventive dental tool is used in a patient's mouth.
- the dental tool 1 is inserted with its shaft 3 into a driving means (not shown) which upon use of the dental tool 1 according to the invention will rotatingly drive the shaft 3 including the grinding head 2 . Subsequently, the dental tool 1 of the invention is moved towards a tooth together with its grinding head 2 . It is only the edges 11 that will come into contact with the surface of the tooth. Since the twist or helix angle of the edges 11 in FIG. 1A is about 30° , the grinding head 2 must rotate by 30° to ensure that an edge 11 contacts a tooth surface from its initial point to its end point (for example, from the tip-most point of the edge to the end point on the edge closest the base of the grinding head).
- FIGS. 2A, 2B, 3 A and 3 B show two further embodiments similar to the first embodiment of the dental tool 1 according to the invention. These two embodiments differ from the first embodiment by the feature that a respective one of the elevated curved portions 13 , 14 , 15 and 13 ′, 14 ′, 15 ′, respectively, derived from the conical shape is situated between each two neighboring recessed planar surfaces, e.g. 4 ′, 5 ′, 6 ′.
- edges 11 which, however, are provided in a reduced number (FIG. 2B) or in an increased number (FIG. 3B) in dependence upon the arcuate length of the curved portions 13 , 14 , 15 and 13 ′, 14 ′, 15 ′, respectively.
- FIG. 4A is a schematic side view showing a fourth embodiment of the dental tool 1 according to the invention. Said embodiment differs from the preceding embodiments in that the grinding head 2 is provided on its surface with a honeycomb-like structure 16 . As is particularly shown in FIG. 4B, the honeycomb-like outer structure 16 is formed with elevated portions 18 and recessed or indented portions 17 . This becomes apparent from FIG. 4B and the enlarged section marked by the small circle.
- the sequence of elevated portions 18 and indented portions 17 as illustrated by way of example in FIG. 4B may also be opposite, i.e. the elevated portions may be indented portions and the indented portions may represent elevated portions. This, however, is of no importance to the illustration of a basic principle of the present invention, namely to achieve what is termed a “trailing removal” per revolution of the grinding head 2 .
- FIG. 5 shows a fifth embodiment of the dental tool according to the invention.
- the elevated portion 19 ′ is formed over the length of the grinding tool 2 in a spiral or thread-like configuration.
- the pitch of one thread revolution corresponds to the height h of the spiral groove 20 .
- point-like sections of the elevated portion 19 ′ will act on a tooth surface at a given moment. Said point-like sections will move downwards in FIG. 5 A upon continued rotation, so that per revolution of the grinding head the height H per winding of the elevated portion 19 ′ will remove dental enamel to be treated in trailing fashion.
- FIG. 5 shows a fifth embodiment of the dental tool according to the invention.
- the surface of the elevated portion may be provided with a multitude of adjacent planar surfaces 21 , resulting in a dodecagonal surface in the section shown in FIG. 5B.
- the comer edges 11 formed between respective adjacent planar surfaces 21 of the elevated portion 19 ′ further enhance the efficiency of the dental tool 1 of the invention.
- the number of edge comers 11 of the section shown in FIG. 5B is variable in response to the respective requirements, i.e. the number of comers can be increased or reduced.
- FIGS. 6A and 6B show a sixth embodiment of the dental tool 1 according to the invention.
- Said dental tool 1 substantially differs from several of the dental tools 1 shown in the preceding embodiments in that the edges 11 forming the elevated portions are not arranged in continuous fashion over the entire length of the grinding head 2 . Rather, the grinding head 2 consists of several sections 2 a - 2 d arranged one after the other in the longitudinal direction of the grinding head 2 . Four sections 2 a - 2 d are shown in the embodiment, but their number may also be greater or smaller.
- each of said sections 2 a - 2 d comprises a plurality of edges 11 which in the embodiment extend in parallel with the longitudinal direction of the dental tool 1 , but may also be arranged at an angle relative to the longitudinal direction.
- a planar surface 19 is arranged in front of each edge 11 , and a curved portion 13 is provided behind each edge 11 , resulting in the cross section shown in FIG. 6B.
- a further special feature in comparison with the dental tools 1 according to the embodiments shown in FIGS. 1 A- 5 B is that in this configuration the edges 11 of the one section 2 a are offset relative to the edges 11 of the subsequent section 2 b.
- the offset arrangement can be chosen such that the edges 11 of all odd sections, i.e. in the present embodiment the first and third section 2 a and 2 c, and the edges 11 of all even sections, i.e. in the present embodiment the second and fourth section 2 b and 2 d, are substantially identical.
- FIGS. 7 A- 8 B show a seventh and eighth embodiment of the dental tool 1 according to the invention.
- the two embodiments are similar; they just differ from each other in the number of the edges 11 provided for. In the embodiment shown in FIGS. 7A and 7B the number is greater than in the embodiment shown in FIGS. 8A and 8B.
- the common feature of the two embodiments is that there are provided at least two edges 11 that extend in opposite directions and in spiral configuration around the grinding head 2 , thereby intersecting each other so that the rhombic pattern shown in FIGS. 7A and 8A is obtained.
- the recessed surfaces 4 which are leading with respect to a respective adjoining edge 11 are composed of two sections 4 a, 4 b that intersect each other at an obtuse angle.
- pockets are formed between two respective edges 11 ; these do not rest on the tooth to be treated, thereby providing a small contact surface of the dental tool 1 as is desired according to the invention.
- FIGS. 9A and 9B A ninth embodiment is illustrated in FIGS. 9A and 9B.
- the edges 11 that form the elevated portions are here rounded.
- the recessed surfaces 4 that are leading with respect to an adjoining rounded edge 11 are provided with a concave curvature, resulting in a symmetrical waved extension of protruding edges 11 and concave curvatures when viewed in cross section.
- the edges 11 extend at an angle relative to the longitudinal axis of the dental tool 1 or whether they are arranged in parallel therewith.
- the grinding heads 2 of the various embodiments may be electroplated with diamond grains for an improved grinding effect.
- the diamond grains may here have identical or also different grain sizes.
- the preferred size ranges from 100 to 180 ⁇ m at a possible grain size spectrum between 5 and 250 ⁇ m.
- the outer surface area is enlarged so that in comparison with the conventional conical grinding instruments a larger number of diamond grains can be applied.
- Such a measure results in a further improvement in the efficiency or removal rate of the dental tool 1 of the invention.
- the pre-preparation time is further reduced. The result is a more gentle treatment of the patient by the dentist.
- FIGS. 1A to 9 B are a part of the description of the present invention, but that they, and the other examples and descriptions herein, do not limit the invention claimed in this patent.
- the subject matter of this invention is set forth in the claims below, and that invention includes all lawful equivalents of the matter recited in the claims.
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
Abstract
The present invention relates to a dental tool, in particular for grinding teeth, comprising a grinding head and a rotatingly drivable shaft, the grinding head being provided on its surface with at least one elevated portion which, during rotation of the grinding head works a surface to be prepared and defines a circle of rotation. The invention is characterized in that the elevated portion comprises an edge, and the edge is the side line of a surface that is situated at least at the leading side of the edge and that is retracted relative to the circle of rotation defined by the edge.
Description
- Benefit of priority for this invention is claimed, under 35 U.S.C. §119 and all other applicable law, to the inventors' earlier German patent application, Number 199 08 507.2, filed in the Deutsches Patentamt on Feb. 26, 1999.
- The present invention relates to a dental tool, in particular a dental tool for grinding teeth.
- Dental tools for grinding teeth, as are known from for example from the generic disclosure of EP 71 611 B1, are used in dental preparatory techniques for both pre-grinding (roughing) and fine grinding (smoothing) operations. In these grinding or abrading processes the dentist and also the patient want the procedure to be completed as fast as possible. Here, however, a conflict of interests arises. The dentist must prepare the tooth in such a way that it can subsequently be restored again. The dentist should not remove too much material. Nor should there be any avoidable damage caused by, for example, high preparation temperatures. In this regard it should be noted that normally the amount of material removed should be as small as possible. A preparation is needed that is gentle on the tooth substance and that preserves it.
- This, however, is not possible for all preparatory work. For instance, when a tooth is prepared that is to be provided with a crown or bridge in a later step, a relatively large amount of material must be removed by the dentist depending on the individual case. The instruments used for this are available with different grain sizes. Many dentists prefer coarse grinding instruments to achieve a reduction of the dental enamel as quickly as possible. The known grinding instruments, however, are in need of improvement as to their efficiency, i.e. a fast reduction of the dental enamel is desirable from the viewpoint of the dentist and also from that of the patient.
- It is one object of the present invention to provide a dental tool that in practice achieves a higher removal rate with respect to a surface to be treated. Other objects of the invention are described herein.
- According to the invention this object is achieved by a dental tool, in particular a tool for grinding teeth, comprising a grinding head and a rotatingly drivable shaft, the grinding head having on its surface at least one elevated portion that, during revolution of the grinding head, works or treats a surface to be prepared and defines a circle of rotation. The dental tool is characterized in that the elevated portion comprises and edge, the edge forms the side line of a surface that is situated at least at the leading side of the edge and that is recessed relative to the rotation circle defined by the edge.
- The dental tool of the invention is characterized by several advantages. Due to the arrangement of a grinding head having at least one elevated portion comprising an edge, and in contrast to known grinding instruments that have a conical or cylindrical surface, a higher contact pressure is achieved at the working area or elevated portion at a constant pressure force exerted by a dentist during the grinding or abrading operation, which results in a greater amount of removal. In the known grinding instruments a larger contact surface contacts the tooth per unit time, so that the constant contact force is distributed over a larger surface area.
- At the same time, however, the tooth surface may be worked or treated over the entire external length of the grinding head of the invention. As a result, in various embodiments described herein the trailing sections of the edge contact the tooth surface during each revolution of the grinding head at a certain time delay that depends on the rotational speed of the grinding head and the pitch or other configurational arrangement of the elevated portion.
- The configuration of a grinding head having an elevated portion comprising an edge has the additional effect that edges represent a known geometrical shape and, in addition, have a great strength, which is of special importance to grinding tools. Moreover, edges can be produced in different ways, depending on the shape of the blank used in manufacturing the tool, so that a simple and inexpensive production method can be chosen.
- Because the edge forms the side line of a surface that is situated at least at the leading side of the edge and is recessed relative to the rotation circle defined by the edge, in the course of rotation of the dental tool the elevated edge or side line of the recessed surface comes into contact with the tooth surface to be treated from its initial contact point up to its end or trailing contact point. In this manner, both the interests of the dentist and those of the patient to be treated are satisfied with the dental tool of the invention by way of the trailing removal of dental enamel through the higher contact pressure per working area at a constant contact force exerted by a dentist.
- Preferably, the grinding head is substantially conical, so that the known advantages of conical shaped grinding heads are additionally achieved by the conical grinding heads of the invention.
- According to another advantageous aspect of the invention, the recessed surface or surfaces may be planar (that is, substantially flat in cross-section) or have a concave curvature. Such shapes of the surfaces can be produced in a particularly easy manner. Moreover, instead of being concavely curved, the recessed surface may also consist of two sections intersecting each other at an obtuse angle, as in an indented wedge shape.
- To improve the efficiency of the dental tool of the invention, not only one edge, but several edges of a similar type should be formed on the circumference of the grinding head. It is possible for example to form a plurality of adjacent, recessed planar surfaces on the outer circumference of the grinding head that are separated one from the next by elevated curved portions remaining in the originally conical grinding head following tooling. Alternatively, two planar surfaces may also adjoin each other directly.
- When the elevated curved portion is positioned in the outer (rotation) circle of the dental tool of the invention, the configuration allows excellent guidance of the tool on the tooth to be treated without impairing the other inventive effects.
- According to an alternative embodiment of the dental tool of the invention, the elevated portion comprises an edge that is threaded over the length of the grinding head. As a result, a multitude of point-like sections of the edge simultaneously engage into the surface of the tooth per time unit and at a corresponding pitch of the thread-like edge. Hence, although the contact pressure as divided among the multitude of engaging point-like sections, at a constant contact force per working surface area, is smaller than would occur with a single engaging point-like section, it is still greater than the contact pressure of known cylindrical or conical heads. Moreover, the working surface is still at least twice the size of a smooth circumferential surface of the conventional grinding instruments and may also be many times that size provided that the pitch of the thread is appropriately chosen.
- To achieve a production of a thread-like edge as simply as possible, the elevated portion may comprise a rounded elevated surface similar to a screw thread.
- According to a further alternative embodiment of the dental tool of the invention, the edges are part of a honeycomb-like structure consisting of alternating fields circumferentially offset one from the next along the longitudinal length of the grinding head. Preferably, each of said alternating fields comprises a plurality of elevated portions comprising edges, and a plurality of recessed surfaces adjoining said edges. This is of advantage insofar as, in the case of a substantially circular cross-section of the grinding head of the invention, a multitude of edges can be formed on the surface of the grinding head.
- According to another aspect of the invention, the grinding head comprises at least two longitudinally successive sections and the edges of the first section are arranged in a circumferentially-offset fashion relative to the edges of the other section. Such a configuration guarantees that a given edge contacts the tooth only sectionwise, resulting in a high contact pressure. This above embodiment can be implemented in a particularly simple way when the edges extend in the longitudinal direction of the dental tool, because such a configuration yields a particularly simple and easily-producible geometrical shape.
- The offset arrangement of the edges can specifically be chosen such that the edges of the next sections but one are substantially identical in orientiation. Other alternations of offset among the multiple sections will be recognized by those skilled in the art in view of the present disclosure. A particularly advantageous relation between treatment time and removal rate can thereby be achieved.
- According to another development of the invention, when several edges are provided that intersect one another forming a rhombic pattern, it is possible to remove a great amount of material without the above-explained drawbacks of the prior art being observed.
- A configuration that can be produced in a particularly simple way is obtained when a concave curvature is provided at both sides of a rounded edge, resulting in an approximately waved design. Such a design can not only be produced easily, but due to the absence of corners is also devoid of any stress peaks, and yields a dental tool has a particularly long service life.
- In addition, and in contrast to conventional conical grinding instruments, the surface area of the grinding head is macroscopically enlarged, whereby an increased number of grinding grains can be placed on the grinding head.
- In all of the above-mentioned preferred embodiments of the dental tool according to the invention, the surface of the grinding head preferably has diamond grinding grains placed thereon for increasing the removal rate. The diamond grains may either have the same grain size or different grain sizes. The grain sizes of the diamond grains range from about 5 to 250 μm, preferably 100 to 180 μm. The selection of the grain size will, in turn, have an effect on the removal efficiency with respect to the dental enamel and should thus be adapted to the requirements of the dental tool.
- Further advantages and features of the present invention will become apparent from the following detailed description of inventive embodiments of a dental tool in conjunction with the attached drawings.
- FIG. 1A is a schematic side view of a first embodiment of a dental tool according to the invention.
- FIG. 1B is a cross-sectional view taken along line A-A of FIG. 1A.
- FIG. 2A is a schematic side view of a second embodiment of a dental tool according to the invention.
- FIG. 2B is a cross-sectional view taken along line A-A of FIG. 2A.
- FIG. 3A is a schematic side view of a third embodiment of a dental tool according to the invention.
- FIG. 3B is a cross-sectional view taken along line A-A of FIG. 3A.
- FIG. 4A is a schematic side view of a fourth embodiment of a dental tool according to the invention. FIG. 4B is a cross-sectional view taken along line A-A of FIG. 4A next to an enlarged illustration of the section marked by the small circle in FIG. 4B. FIG. 5A is a schematic side view of a fifth embodiment of a dental tool according to the invention. FIG. 5B is a cross-sectional view taken along line A-A of FIG. 5A. FIG. 6A is a schematic side view of a sixth embodiment of a dental tool according to the invention. FIG. 6B is a cross-sectional view taken along line A-A of FIG. 6A. FIG. 7A is a schematic side view of a seventh embodiment of a dental tool according to the invention. FIG. 7B is a cross-sectional view taken along line A-A of FIG. 7A. FIG. 8A is a schematic side view of an eighth embodiment of a dental tool according to the invention. FIG. 8B is a cross-sectional view taken along line A-A of FIG. 8A. FIG. 9A is a schematic side view of a ninth embodiment of a dental tool according to the invention. FIG. 9B is a cross-sectional view taken along line A-A of FIG. 9A.
- FIG. 1A is a schematic side view showing a first embodiment of a dental tool1 according to the invention. The dental tool 1 is used for grinding or abrading teeth and comprises a grinding
head 2 and a rotatinglydrivable shaft 3 Theshaft 3 is here driven by a driving means (not shown). - In the embodiment shown in FIGS. 1A and 1B, the grinding
head 2 is substantially conical. The grindinghead 2 as well may be cylindrical or flame shaped. Furthermore, planar recessedsurfaces 4 to 10 are incorporated into the circumferential surface of the grindinghead 2. Each two such respective planar surfaces are adjacent to each other, such thatelevated portions 11, which in the present embodiment comprise edges 11 seen in the sectional view of FIG. 1B, are formed along the connection line between the respectiveplanar surfaces 4 to 10. In other words, theedges 11 form the side lines of theplanar surfaces 4 to 10. In FIGS. 1A and 1B, only three edges and two edges, respectively, have been designated with thecorresponding reference numeral 11 by way of example, although six such edges are visible in FIG. 1A and twelve such edges in FIG. 1B. Similarly, FIGS. 1A and 1B show additional planar surfaces beyond those designated withreference numerals 4 though 10; and these and other figures herein depict multiple structural features that are described but not individually enumerated in the drawings. - As seen in FIG. 1B, the circumferential surface of the grinding
head 2 is subdivided into twelve recessed planar surfaces sections. The side view of FIG. 1A shows a number of these recessed surfaces spiraling longitudinally along the length of the grinding head. This particular subdivision, however, is not imperative. Another number can also be chosen for the subdivision. The number, and also the orientation of the subdivided sections, depends on the respective requirements. - The different sections of the grinding head, as for example the subdivided sections exemplified above, may each be electroplated with different abrasives, such as diamond grains. At the same time, the different sections may also comprise diamond grains of different grain sizes ranging from 5 to 250 μm. Of course, the different sections may also be covered with diamond grains having the same grain size. A size of the diamond grains that ranges from 100 to 180 μm has turned out to be particularly efficient with respect to the grinding effect.
- Finally, it should be noted that in the inventive dental tool shown in FIG. 1A the tip of the grinding
head 2 is rounded to prevent injuries when the inventive dental tool is used in a patient's mouth. - The operation of the dental tool1 according to the invention is described in the following example.
- The dental tool1 is inserted with its
shaft 3 into a driving means (not shown) which upon use of the dental tool 1 according to the invention will rotatingly drive theshaft 3 including the grindinghead 2. Subsequently, the dental tool 1 of the invention is moved towards a tooth together with its grindinghead 2. It is only theedges 11 that will come into contact with the surface of the tooth. Since the twist or helix angle of theedges 11 in FIG. 1A is about 30° , the grindinghead 2 must rotate by 30° to ensure that anedge 11 contacts a tooth surface from its initial point to its end point (for example, from the tip-most point of the edge to the end point on the edge closest the base of the grinding head). - Hence, at a given moment an
edge 11 comes into contact with a tooth surface only pointwise and not over its entire length, resulting in an increased contact pressure at the working surface at a constant contact force. Nevertheless, a tooth surface is treated by anedge 11 over the entire length of the grindinghead 2, and succeeding or trailing points alongedge 11 will contact the tooth surface at a time delay depending on the rotational speed of the dental tool 1, resulting in a “trailing removal” of tooth material as that term is used herein. - FIGS. 2A, 2B,3A and 3B show two further embodiments similar to the first embodiment of the dental tool 1 according to the invention. These two embodiments differ from the first embodiment by the feature that a respective one of the elevated
curved portions - These two embodiments also comprise
edges 11 which, however, are provided in a reduced number (FIG. 2B) or in an increased number (FIG. 3B) in dependence upon the arcuate length of thecurved portions - FIG. 4A is a schematic side view showing a fourth embodiment of the dental tool1 according to the invention. Said embodiment differs from the preceding embodiments in that the grinding
head 2 is provided on its surface with a honeycomb-like structure 16. As is particularly shown in FIG. 4B, the honeycomb-likeouter structure 16 is formed withelevated portions 18 and recessed orindented portions 17. This becomes apparent from FIG. 4B and the enlarged section marked by the small circle. - The sequence of
elevated portions 18 andindented portions 17 as illustrated by way of example in FIG. 4B may also be opposite, i.e. the elevated portions may be indented portions and the indented portions may represent elevated portions. This, however, is of no importance to the illustration of a basic principle of the present invention, namely to achieve what is termed a “trailing removal” per revolution of the grindinghead 2. - FIG. 5 shows a fifth embodiment of the dental tool according to the invention. In the lateral view of the inventive dental tool1 of FIG. 5A, the
elevated portion 19′ is formed over the length of the grindingtool 2 in a spiral or thread-like configuration. The pitch of one thread revolution corresponds to the height h of thespiral groove 20. Upon rotation of the dental tool 1 of the invention, point-like sections of theelevated portion 19′ will act on a tooth surface at a given moment. Said point-like sections will move downwards in FIG. 5A upon continued rotation, so that per revolution of the grinding head the height H per winding of theelevated portion 19′ will remove dental enamel to be treated in trailing fashion. As shown in FIG. 5B, the surface of the elevated portion may be provided with a multitude of adjacentplanar surfaces 21, resulting in a dodecagonal surface in the section shown in FIG. 5B. The comer edges 11 formed between respective adjacentplanar surfaces 21 of theelevated portion 19′ further enhance the efficiency of the dental tool 1 of the invention. - As can be seen, the number of
edge comers 11 of the section shown in FIG. 5B is variable in response to the respective requirements, i.e. the number of comers can be increased or reduced. - FIGS. 6A and 6B show a sixth embodiment of the dental tool1 according to the invention. Said dental tool 1 substantially differs from several of the dental tools 1 shown in the preceding embodiments in that the
edges 11 forming the elevated portions are not arranged in continuous fashion over the entire length of the grindinghead 2. Rather, the grindinghead 2 consists ofseveral sections 2 a-2 d arranged one after the other in the longitudinal direction of the grindinghead 2. Foursections 2 a-2 d are shown in the embodiment, but their number may also be greater or smaller. - As is apparent particularly in FIG. 6A, each of said
sections 2 a-2 d comprises a plurality ofedges 11 which in the embodiment extend in parallel with the longitudinal direction of the dental tool 1, but may also be arranged at an angle relative to the longitudinal direction. Aplanar surface 19 is arranged in front of eachedge 11, and acurved portion 13 is provided behind eachedge 11, resulting in the cross section shown in FIG. 6B. A further special feature in comparison with the dental tools 1 according to the embodiments shown in FIGS. 1A-5B is that in this configuration theedges 11 of the onesection 2 a are offset relative to theedges 11 of thesubsequent section 2 b. The offset arrangement can be chosen such that theedges 11 of all odd sections, i.e. in the present embodiment the first andthird section edges 11 of all even sections, i.e. in the present embodiment the second andfourth section - FIGS.7A-8B show a seventh and eighth embodiment of the dental tool 1 according to the invention. The two embodiments are similar; they just differ from each other in the number of the
edges 11 provided for. In the embodiment shown in FIGS. 7A and 7B the number is greater than in the embodiment shown in FIGS. 8A and 8B. The common feature of the two embodiments is that there are provided at least twoedges 11 that extend in opposite directions and in spiral configuration around the grindinghead 2, thereby intersecting each other so that the rhombic pattern shown in FIGS. 7A and 8A is obtained. Moreover, in said dental tools 1 the recessedsurfaces 4 which are leading with respect to a respective adjoiningedge 11 are composed of twosections respective edges 11; these do not rest on the tooth to be treated, thereby providing a small contact surface of the dental tool 1 as is desired according to the invention. - A ninth embodiment is illustrated in FIGS. 9A and 9B. The
edges 11 that form the elevated portions are here rounded. Furthermore, the recessedsurfaces 4 that are leading with respect to an adjoiningrounded edge 11 are provided with a concave curvature, resulting in a symmetrical waved extension of protrudingedges 11 and concave curvatures when viewed in cross section. In the instant embodiment it does not matter whether, as illustrated, theedges 11 extend at an angle relative to the longitudinal axis of the dental tool 1 or whether they are arranged in parallel therewith. - Although this is not drawn in the above figures of various embodiments of the dental tool of the invention, the grinding
heads 2 of the various embodiments may be electroplated with diamond grains for an improved grinding effect. The diamond grains may here have identical or also different grain sizes. The preferred size ranges from 100 to 180 μm at a possible grain size spectrum between 5 and 250 μm. - It should be noted that in particular in the
embodiments - It should also be noted that the geometrical and constructional features illustrated in FIGS. 1A to9B are a part of the description of the present invention, but that they, and the other examples and descriptions herein, do not limit the invention claimed in this patent. The subject matter of this invention is set forth in the claims below, and that invention includes all lawful equivalents of the matter recited in the claims.
Claims (20)
1. A dental tool for grinding teeth comprising a grinding head and a rotatingly drivable shaft, said grinding head having on its surface at least one elevated portion comprising an edge, said edge, during rotation of the dental tool, defining a circle of rotation and being adapted to work a surface to be prepared, and said edge further forming the side line of a surface that is situated at least at the leading side of the edge and that is recessed relative to the circle of rotation defined by the edge.
2. The dental tool according to , wherein the shape of said grinding head is substantially conical, cylindrical or flame shaped.
claim 1
3. The dental tool according to , wherein said recessed surface is planar.
claim 1
4. The dental tool according to , wherein said recessed surface has a concave curvature.
claim 1
5. The dental tool according to , wherein said recessed surface comprises two sections intersecting each other at an obtuse angle.
claim 1
6. The dental tool according to any one of claims 1, 2, 3, 4 or 5 further comprising a plurality of said edges, and wherein a plurality of adjacent recessed surfaces are separated one from the next by a respective elevated curved portion.
7. The dental tool according to , characterized in that at least one said curved portion is positioned in said circle of rotation.
claim 6
8. The dental tool according to , wherein said edge is shaped in the form of a thread over the length of said grinding head.
claim 1
9. The dental tool according to , wherein said edge has a rounded surface.
claim 1
10. The dental tool according to , wherein said edge forms a part of a honeycomb-like surface comprising a plurality of alternating fields circumferentially offset one from the next along the longitudinal length of the grinding head.
claim 1
11. The dental tool according to , wherein said grinding head comprises at least two sections situated one after the other along the longitudinal length of said grinding head, and wherein a plurality of edges of said one section are circumferentially offset relative to a plurality of edges of said other section.
claim 1
12. The dental tool according to , wherein the circumferential offset is such that the offsets of the edges of the next sections but one are substantially identical.
claim 11
13. The dental tool according to , wherein a plurality of said edges extend in parallel with the longitudinal axis of said grinding head.
claim 1
14. The dental tool according to comprising a plurality of edges, wherein said edges intersect one another forming a rhombic pattern.
claim 1
15. The dental tool according to , wherein said plurality of edges are convex rounded edges, and wherein said plurality of adjacent recessed surfaces provide a concave curvature at both sides of said rounded edges.
claim 6
16. The dental tool according to , further comprising diamond grains on the surface of said grinding head.
claim 1
17. The dental tool according to , wherein said diamond grains have substantially the same size.
claim 16
18. The dental tool according to , wherein said diamond grains are on different sections of said grinding head, and wherein the diamond grains on said different sections have different sizes.
claim 16
19. The dental tool according to any one of claims 16, 17 or 18, wherein the grain size of said diamond grains ranges from 5 to 250 μm, preferably from 100 to 180 μm.
20. The dental tool according to any one of claims 16, 17 or 18, wherein the grain size of said diamond grains ranges from 100 to 180 μm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19908507A DE19908507B4 (en) | 1999-02-26 | 1999-02-26 | dental tool |
DE19908507.2 | 1999-02-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010034007A1 true US20010034007A1 (en) | 2001-10-25 |
US6368107B2 US6368107B2 (en) | 2002-04-09 |
Family
ID=7899062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/514,398 Expired - Lifetime US6368107B2 (en) | 1999-02-26 | 2000-02-28 | Dental tool |
Country Status (4)
Country | Link |
---|---|
US (1) | US6368107B2 (en) |
EP (1) | EP1031325B1 (en) |
DE (2) | DE19908507B4 (en) |
ES (1) | ES2288145T3 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006077191A1 (en) * | 2005-01-21 | 2006-07-27 | Siemens Aktiengesellschaft | Tool and method for machining a workpiece made of a hard material |
US7426066B2 (en) | 2002-11-22 | 2008-09-16 | Advanced Numicro Systems, Inc. | MEMS scanning mirror with tunable natural frequency |
US20110207081A1 (en) * | 2010-02-24 | 2011-08-25 | Cao Group, Inc. | Endodontic Drill Bit |
US20120214125A1 (en) * | 2011-02-18 | 2012-08-23 | Ss White Burs, Inc. | Endodontic burs, kits, and methods for using endodontic burs |
JP6829360B1 (en) * | 2019-12-26 | 2021-02-10 | 合同会社Wsptジャパン | Cutting / polishing bar |
WO2024026546A1 (en) * | 2022-08-04 | 2024-02-08 | Manssur Simone Melara | Structural arrangement on dental diamond-coated bur |
US20240138963A1 (en) * | 2015-09-08 | 2024-05-02 | James R. Glidewell Dental Ceramics, Inc. | Method of Making Dental Restorations from Sintered Preforms |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070293867A1 (en) * | 2004-02-05 | 2007-12-20 | Bti,I+D, S.L. | Method and Tools for Low-Speed Milling Without Irrigation and with Extraction and Recovery of Tissue Particles |
US8870571B2 (en) | 2004-09-24 | 2014-10-28 | Spectrum Systems, Llc | Rotary dental tool and method of manufacture |
WO2006036862A2 (en) * | 2004-09-24 | 2006-04-06 | Lowder James T | Rotary dental tool and method of manufacture |
DE102005037130B3 (en) * | 2005-08-06 | 2007-01-04 | Ralf Volle | Dental tool to be used for preparation of tooth for being capped with crown, comprises tip not covered with grinding material |
US9539063B2 (en) | 2011-02-24 | 2017-01-10 | Dentsply International Inc. | Endodontic rotary instruments made from hollow tubes and methods of manufacturing thereof |
CN105310784A (en) * | 2015-11-24 | 2016-02-10 | 宁波爱优恩商贸有限公司 | Tooth polishing head |
ES2632168B1 (en) * | 2016-03-10 | 2018-06-14 | Bioner S.A. | DRILL FOR DENTAL IMPLANTOLOGY |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE71611C (en) | L. SCHAURTE in Berlin N.W., Friedrichstr. 100, Hotel Monopol | Cooking kettle for fish, asparagus, eggs, etc. | ||
US1813741A (en) * | 1929-12-21 | 1931-07-07 | William E Harper | Seat burr |
US2715772A (en) * | 1950-07-15 | 1955-08-23 | Frico G M B H | Dental burr |
DE1209243B (en) * | 1960-05-10 | 1966-01-20 | Brasseler Geb | Drills for dental purposes |
US3971135A (en) * | 1974-09-11 | 1976-07-27 | Dentsply Research & Development Corporation | Dental bur |
IT1118303B (en) * | 1978-01-30 | 1986-02-24 | Star Dental Mfg Co | ROTARY GRINDER FOR USE IN DENTAL HANDPIECES |
AT375859B (en) * | 1981-02-17 | 1984-09-25 | Dendia Werk | DIAMOND GRINDING BODY |
BE903012A (en) * | 1985-08-02 | 1985-12-02 | North Bel Spa | Abrasive, rotating dentistry tool - has intersecting grooves in working surface to aid cooling and abrasive action |
US4834655A (en) * | 1986-06-04 | 1989-05-30 | G-C Dental Industrial Corp. | Cutting tools |
US4990088A (en) * | 1988-03-24 | 1991-02-05 | Weissman Bernard B | Dental tool combining reamer and router |
DE8815578U1 (en) * | 1988-12-15 | 1989-04-20 | Gebr. Brasseler GmbH & Co. KG, 4920 Lemgo | Finisher |
CA1334348C (en) * | 1989-01-19 | 1995-02-14 | Carl E. Dulaney | Dental and medical tool |
FR2676639A1 (en) * | 1991-05-21 | 1992-11-27 | Peltier Patrick | IMPROVEMENTS ON HELICAL FORESTS FOR BONE SURGERY, PARTICULARLY FOR DENTAL SURGERY. |
DE9401142U1 (en) * | 1994-01-25 | 1994-06-30 | Arnold, Wolfgang, 45355 Essen | Rotating triangular drilling tool |
CH692484A5 (en) * | 1997-05-15 | 2002-07-15 | Jean Claude Rouiller | rotary drilling tool. |
-
1999
- 1999-02-26 DE DE19908507A patent/DE19908507B4/en not_active Expired - Lifetime
-
2000
- 2000-02-24 ES ES00103888T patent/ES2288145T3/en not_active Expired - Lifetime
- 2000-02-24 EP EP00103888A patent/EP1031325B1/en not_active Expired - Lifetime
- 2000-02-24 DE DE50014354T patent/DE50014354D1/en not_active Expired - Lifetime
- 2000-02-28 US US09/514,398 patent/US6368107B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7426066B2 (en) | 2002-11-22 | 2008-09-16 | Advanced Numicro Systems, Inc. | MEMS scanning mirror with tunable natural frequency |
WO2006077191A1 (en) * | 2005-01-21 | 2006-07-27 | Siemens Aktiengesellschaft | Tool and method for machining a workpiece made of a hard material |
US7908946B2 (en) | 2005-01-21 | 2011-03-22 | Siemens Aktiengesellschaft | Tool for machining a workpiece made of a hard material |
US20110207081A1 (en) * | 2010-02-24 | 2011-08-25 | Cao Group, Inc. | Endodontic Drill Bit |
US20120214125A1 (en) * | 2011-02-18 | 2012-08-23 | Ss White Burs, Inc. | Endodontic burs, kits, and methods for using endodontic burs |
EP2675388B1 (en) * | 2011-02-18 | 2020-04-08 | SS White Burs, Inc. | Endodontic burs and kits |
US20240138963A1 (en) * | 2015-09-08 | 2024-05-02 | James R. Glidewell Dental Ceramics, Inc. | Method of Making Dental Restorations from Sintered Preforms |
JP6829360B1 (en) * | 2019-12-26 | 2021-02-10 | 合同会社Wsptジャパン | Cutting / polishing bar |
JP2021104267A (en) * | 2019-12-26 | 2021-07-26 | 合同会社Wsptジャパン | Bar for cutting and polishing |
WO2024026546A1 (en) * | 2022-08-04 | 2024-02-08 | Manssur Simone Melara | Structural arrangement on dental diamond-coated bur |
Also Published As
Publication number | Publication date |
---|---|
EP1031325A3 (en) | 2002-10-16 |
EP1031325B1 (en) | 2007-05-30 |
ES2288145T3 (en) | 2008-01-01 |
DE50014354D1 (en) | 2007-07-12 |
DE19908507B4 (en) | 2007-11-29 |
US6368107B2 (en) | 2002-04-09 |
DE19908507A1 (en) | 2000-09-07 |
EP1031325A2 (en) | 2000-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6368107B2 (en) | Dental tool | |
JP4741544B2 (en) | Grinding worm profile forming method and profile forming tool | |
US4834655A (en) | Cutting tools | |
US6179616B1 (en) | Dental drill | |
US20090053674A1 (en) | Dental drill | |
JP6351937B2 (en) | Milling tools and cutting inserts | |
EP0893973B1 (en) | Endodontic instrument | |
US4264307A (en) | Dental reducing tool | |
JP2010520064A (en) | Spherical milling | |
US7125252B2 (en) | Drilling instrument in particular for drilling dental root canals | |
US4389192A (en) | Dental reducing tool | |
WO1999003631A1 (en) | Cold forming tap with inside diameter finish blade and method of manufacturing same | |
HU212295B (en) | Disctype grinding tool | |
JP2008511466A (en) | Spiral groove end mill with multi-section cutting surface | |
US6382973B2 (en) | Dental root canal therapeutic instrument | |
KR20020083423A (en) | Throw-away tip | |
US6261096B1 (en) | Dental tool having triple toothing | |
CN110102808A (en) | More groove end mill(ing) cutters | |
US20240041474A1 (en) | Surgical Cutting Tool Having A Plurality Of Protuberances And Method Of Manufacturing The Same | |
US20200030900A1 (en) | Thread forming tool | |
JPH0319004B2 (en) | ||
JP2588580Y2 (en) | Ball end mill | |
EP0144468A1 (en) | Grinding wheels with renewable toothing | |
US6402607B2 (en) | Fine-machining tool for machining gear workpieces | |
JPS6399856A (en) | Cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GEBR. BRASSELER GMBH & CO. KG., GERMAN DEMOCRATIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DANGER, KARL-HEINZ;KULLMER, MICHAEL;REEL/FRAME:010875/0795 Effective date: 20000525 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |