[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20010018847A1 - Rain sensor mount for use in a vehicle - Google Patents

Rain sensor mount for use in a vehicle Download PDF

Info

Publication number
US20010018847A1
US20010018847A1 US09/860,361 US86036101A US2001018847A1 US 20010018847 A1 US20010018847 A1 US 20010018847A1 US 86036101 A US86036101 A US 86036101A US 2001018847 A1 US2001018847 A1 US 2001018847A1
Authority
US
United States
Prior art keywords
rain sensor
mounting
assembly
housing
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/860,361
Other versions
US6341523B2 (en
Inventor
Niall Lynam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna Electronics Inc
Original Assignee
Donnelly Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donnelly Corp filed Critical Donnelly Corp
Priority to US09/860,361 priority Critical patent/US6341523B2/en
Publication of US20010018847A1 publication Critical patent/US20010018847A1/en
Priority to US10/023,162 priority patent/US6516664B2/en
Publication of US6341523B2 publication Critical patent/US6341523B2/en
Application granted granted Critical
Priority to US10/348,514 priority patent/US6968736B2/en
Assigned to MAGNA DONNELLY CORPORATION reassignment MAGNA DONNELLY CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DONNELLY CORPORATION
Assigned to MAGNA MIRRORS OF AMERICA, INC. reassignment MAGNA MIRRORS OF AMERICA, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MAGNA DONNELLY CORPORATION
Assigned to DONNELLY CORPORATION reassignment DONNELLY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LYNAM, NIALL R.
Assigned to MAGNA ELECTRONICS, INC. reassignment MAGNA ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAGNA MIRRORS OF AMERICA, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/04Rear-view mirror arrangements mounted inside vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/12Mirror assemblies combined with other articles, e.g. clocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • B60R11/0247Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for microphones or earphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0874Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means characterized by the position of the sensor on the windshield
    • B60S1/0885Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means characterized by the position of the sensor on the windshield the sensor being integrated in a rear-view mirror module
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • B60R11/0241Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for telephones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/12Mirror assemblies combined with other articles, e.g. clocks
    • B60R2001/1223Mirror assemblies combined with other articles, e.g. clocks with sensors or transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle
    • B60R2011/0026Windows, e.g. windscreen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle
    • B60R2011/0033Rear-view mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0874Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means characterized by the position of the sensor on the windshield
    • B60S1/0881Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means characterized by the position of the sensor on the windshield characterized by the attachment means on the windshield
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • This invention relates to a vehicular rearview assembly. More particularly, the present invention relates to mounting of a rain sensor within a rearview mirror assembly support.
  • Rain sensors for detecting moisture due to rain, road splash, and the like on the outside of a vehicular windshield are conventionally mounted to the inner cabin surface of the vehicle windshield.
  • Rain sensors typically comprise a light emitting diode, an array of light emitting diodes which are paired with a photo detector, or an array photo detectors.
  • the rain sensor may detect moisture by sensing a change in the amount of light refracted at the outer windshield surface due to the presence or absence of moisture or use other techniques such as sending backscattering of light caused by raindrops.
  • Various mounting methods have been proposed with a common method including optically coupling the rain sensor detector usually to the inner cabin surface of the vehicle windshield.
  • Rain sensor detectors are conventionally coupled to the inner cabin surface by use of an optical adhesive, or by using a removable mount, for example a mount of a type disclosed in U.S. Pat. No. 4,871,917 to O'Farrell assigned to Donnelly Corporation of Holland, Mich., the disclosure of which is incorporated by reference herein.
  • the rain sensor detection surface which typically comprises a resilient optically clear polymer material, such as a silicone material, is mechanically pressed between the detector and the inner windshield surface by the mount.
  • the windshield manufacturer often attaches a mirror mounting button to the windshield , for example a mounting button of the type disclosed in U.S. Pat. No. 4,930,742 assigned to Donnelly Corporation, which provides a releasable mount for the rearview mirror assembly to the windshield, the disclosure of which is incorporated in its entirety herein.
  • a mirror mounting button for example a mounting button of the type disclosed in U.S. Pat. No. 4,930,742 assigned to Donnelly Corporation, which provides a releasable mount for the rearview mirror assembly to the windshield, the disclosure of which is incorporated in its entirety herein.
  • the manufacturer may need to attach a second structure, such as a mechanical guide or rail to which the rain sensor is then later attached to the vehicle, which would ultimately increase the cost of the windshield.
  • this prior art interior rearview mirror assembly 300 includes a mirror housing 302 which supports a reflective element 304 and which is mounted to the windshield W by a support arm 306 .
  • Support arm 306 is coupled to housing 302 by a ball and socket connection 307 .
  • the rain sensor 308 is mounted inside support arm 306 and positioned to view the outside surface of windshield W.
  • Support arm 306 includes a biasing member 309 and is adapted to releasably engage a mirror mounting button 310 , which is attached to the inner surface W′ of the windshield W and typically installed by the window manufacturer for coupling rearview mirror assembly 300 to the windshield (FIG. 9).
  • mirror mounting button 310 is a ring shaped member 312 with a hollow center 314 , which is glued to the inner surface of the vehicle windshield.
  • Support arm 306 engages the outer rim of mirror mounting button 310 when the mirror assembly 300 is attached to button 310 during assembly of the vehicle at the vehicle assembly plant or during service.
  • the rain sensor is located within the cavity of the support arm approximate the mirror mounting button and is biased into contact with the glass surface through hollow center 314 by biasing member 309 .
  • Support arm 306 only provides a single point of articulation for housing 302 , since it must remain in a fixed position at the juncture of the support arm and the windshield in order to maintain the alignment of the sensor with the mounting button.
  • the aforementioned construction has several advantages, it has numerous disadvantages that can limit its widespread application in vehicles.
  • the support arm By locating the rain sensor within the support arm, the support arm must necessarily include a cavity that is large enough to accommodate the rain sensor unit.
  • this construction requires that the articulation of the mirror housing about the support arm be limited to a single point at the juncture of the support arm to the housing.
  • the juncture of the support arm to the mounting button must remain fixed so that rain sensor maintains contact with the inner surface of the windshield. Therefore, the present design is limited for use on single pivot mirror supports and is unsuitable for dual pivot mounting supports, which are commonly used on a wide variety of vehicles. It is also necessary to stock a special mirror design when a rain sensor is desired, which adds to inventory requirements.
  • dual pivot mounting supports typically include a double ball joint which comprises an outer tubular support arm member with sockets formed at both ends.
  • the sockets receive ball joints extending from the housing and mirror mounts to provide a greater range of movement for the rearview mirror assembly.
  • a helical spring Positioned in the cavity of the tubular member is a helical spring which retains the respective ball joints in the ends of the tubular support arm. Therefore, double ball joint mirrors would appear to not be well suited to accommodate a rain sensor unit within the support arm cavity.
  • the improved rain sensor mount for a vehicle that overcomes the above disadvantages and achieves its purpose in a manner that is economical and convenient for the automaker. Furthermore the improved rain sensor mount preferably provides broad application by allowing flexibility in the choice of design. Moreover, the improved rain sensor preferably is consistent with current safety goals and enhances the performance of the interior rearview mirror assembly.
  • the present invention provides a new and unique rain sensor mounting which is especially suitable for mounting on an inner surface of a vehicle windshield for detecting moisture on an outer surface of the windshield.
  • the invention provides a mount for mounting a rain sensor which includes a housing having an access opening on a first side or end and a port on a second side or end, preferably an opposing side or end, for positioning adjacent an inner surface of the vehicle windshield and which is adapted for mounting to a vehicle windshield.
  • a cover is secured to the housing and covers the access opening.
  • a mirror mounting button is provided on either the housing or the cover for mounting a rearview mirror assembly to the mount.
  • a biasing member is supported in the housing and, preferably, is interposed between the cover and a rain sensor positioned in the housing. The biasing member urges a detecting surface of the rain sensor to project through the port and to optically couple to the vehicle windshield for detecting moisture on an outer surface of the vehicle windshield.
  • the biasing member may comprise, for example, a helical spring, a leaf spring or a urethane disc.
  • the biasing member may also include an internal structure of the housing that engages with the rain sensor when the housing is received on a mounting member that encompasses an opening (such as is described below) such that the detecting surface of the rain sensor is urged to project through the opening at the mounting member and intimately and, preferably, releasably contact the inner surface of the windshield, and optically couple therewith.
  • the internal cavity of the housing can comprise a resilient polymer material (such as a rubber, silicone, urethane, elastomeric (such as a thermoplastic elastomer), vinyl (such as plasticized polyvinyl chloride) or similar material with spring-like property) serving as a biasing member that urges the detecting surface of the rain sensor forward to contact the windshield when the unit is mounting in the vehicle.
  • the biasing member may comprise a flexible polymer or a resilient gasket that compresses to urge the detecting surface of the rain sensor to contact the windshield when mounted in the vehicle.
  • the mirror mounting button is secured to the cover.
  • the mirror mounting button may releasably secured to the cover or may be integrally molded with the cover to form a unitary member.
  • the second side of the housing includes a layer of adhesive for mounting the housing to the vehicle windshield.
  • the adhesive may comprise a polyvinyl butyral material, an epoxy material, a urethane material, an acrylate material, an acrylic material, or a silicone adhesive material.
  • the adhesive layer may include an opening for receiving the rain sensor whereby the detecting surface of the rain sensor can directly contact the vehicle windshield for detecting moisture on the outer surface of the windshield or the detecting surface can contact and optically couple to the cured form of said adhesive.
  • the mount includes an annular or like member having a central opening and which is adapted to mount the housing to the inner surface of the windshield.
  • the port of the housing is aligned with the central opening of the annular member so that the rain sensor can extend through the port and through the central opening and contact the inner windshield surface for detecting moisture on an outer surface of the vehicle windshield.
  • the housing is preferably releasably secured to the annular member so that the rain sensor can be serviced or replaced.
  • at least the second side of the housing substantially covers and conceals the annular member.
  • a rain sensor mount includes a housing having a cover, which covers an access opening in the housing, a means for mounting a rearview mirror assembly to the housing, and a rain sensor, which is positioned in the housing and includes a detecting surface. Furthermore, a biasing member is interposed between a portion of the housing and the rain sensor for urging the detecting surface of the rain sensor to optical couple to the windshield of the vehicle for detecting moisture on an outer surface of the windshield.
  • a rearview mirror assembly which includes a rearview mirror housing having a reflective element supported therein, a support arm mounted to the rearview mirror housing that terminates in a button attaching mirror mount, and a rain sensor module.
  • the rain sensor module includes a rain sensor module housing having a first side or end and a second side or end, with the second side preferably including a port. The second side is positioned adjacent an inner surface of the vehicle windshield and is adapted to mount the rain sensor module housing to the vehicle windshield.
  • the rain sensor module housing preferably also includes a cover, which covers an access opening provide in the rain sensor module housing and a rain sensor which is supported in the rain sensor module housing.
  • the rain sensor module may be a unitary member or construction wherein the rain sensor is housed, preferably resiliently housed, within the cavity of the housing such that the detecting surface of the rain sensor is positioned, and preferably urged to protrude, at the second side (end) of the housing that is opposite and opposing the first side (end).
  • the rain sensor includes a detector surface, which preferably is extended though a port provided in the housing for optically coupling the rain sensor to the inner surface of the vehicle windshield.
  • a mirror mount extends from the housing, for securing the support arm to the housing.
  • the rain sensor module housing includes a biasing member supported therein which is interposed between a portion of the rain sensor module housing and the rain sensor for urging the detecting surface of the rain sensor to optically couple the rain sensor to the vehicle windshield for detecting moisture on an outer surface of the vehicle windshield.
  • the rain sensor module can be provided in a variety of constructions, thus providing economic, convenience and flexibility benefits to automakers and their suppliers.
  • the housing of the rain sensor module and the mirror mount extending therefrom can be a unitary construction (such as can be formed by mechanically attaching or adhesively attaching a mirror mounting button to an already formed housing, or by attaching the mirror mounting button to the housing while the housing itself is being formed, such as by integral molding as is known in the molding arts), or the rain sensor, housing and mirror mount can be provided as a unitary construction, such as a unitary rain sensor module.
  • the support arm is secured to the rearview mirror housing by a ball and socket connection to permit repositioning of the reflective element. Additionally, and preferably, the support arm may be secured to the mirror mount by a second ball and socket connection to permit a greater range of motion for the rearview mirror housing and provide a greater range of positions for the reflective element.
  • the rain sensor mount of the present invention provides numerous advantages over prior known rain sensor mounting arrangements.
  • the rain sensor module can be attached by the windshield manufacturer at the time of the windshield fabrication and shipped to the automobile assembly plant where the rearview mirror assembly can be attached to the rain sensor module.
  • the annular member may be attached to the windshield by the windshield manufacturer at the time of fabrication leaving the installation of the rain sensor module assembly optional.
  • windshields with the rain sensor mount pre-attached can be received at the vehicle assembly plant, and the rain sensor module can be attached, and the rearview mirror assembly also attached to the module, as the vehicle passes along the vehicle assembly line.
  • the rain sensor mount can be mounted without detracting from the styling of the vehicle and, moreover, without obstructing the view of the driver of the vehicle.
  • the rain sensor mount can be adapted to support a wide range of rearview mirror assemblies and, notably, rearview mirror assemblies with double ball joint support arms to permit a greater range of motion of the mirror assembly housing than the present rains sensor mounts permit.
  • the present rain sensor mount affords the automobile manufacturer greater flexibility in its selection of the mirror assembly and the button mount and therefore can accommodate most markets' regulations.
  • FIG. 1 is a partial fragmentary side elevation of a mirror assembly mounted to a vehicle windshield of the present invention
  • FIG. 2 is an enlarged partial fragmentary side elevation of the mirror assembly mounting of FIG. 1;
  • FIG. 3 is a front elevational view of the mirror mount of FIGS. 1 and 2;
  • FIG. 4A is an exploded perspective view of a second embodiment of the mirror assembly mounting of the present invention.
  • FIG. 4B is a partial exploded perspective view of the second embodiment of mirror assembly mounting of FIG. 4A;
  • FIG. 5 is a partial fragmentary side elevational view of a third embodiment of the mirror assembly mounting of the present invention.
  • FIG. 6 is an enlarged partial fragmentary side elevation of the mirror assembly mounting of FIG. 5;
  • FIG. 7 is a front elevational view of a prior art mounting button
  • FIG. 8 is a side elevational view of the prior art mounting button mounted to the inner surface of a windshield.
  • FIG. 9 is a side elevational view of a conventional mirror assembly incorporating a rain sensor unit in the support arm of the mirror assembly.
  • a rain sensor module assembly 10 of the present invention is shown mounted to the inner surface 11 of a windshield 12 .
  • Rain sensor module assembly 10 is positioned on inner surface 11 of windshield 12 for detecting moisture, such as rain droplets, on the outer surface 13 and, optionally, on inner surface 11 of windshield 12 , as will be more fully explained below.
  • Rain sensor module assembly 10 is mounted to inner surface 11 of windshield 12 by a rain sensor mounting button 17 .
  • Rain sensor mounting button 17 is preferably adhered to inner surface 11 of windshield 12 by a layer 18 of adhesive such as an epoxy, a polyvinyl butyral, a urethane, or a silicone adhesive material or the like.
  • rain sensor mounting button 17 is circular in shape having a solid annular outer portion 17 a and inner hollow open central portion 17 b .
  • Solid portion 17 a of rain sensor mounting button 17 may comprise a polymer material, such as an engineering resin, a nylon or an ABS material, or can be a metal fabrication such as zinc casting or a sintered steel pressing or equivalent metal material such as steel, titanium, nickel, aluminum and their alloys, or the like.
  • Rain sensor module assembly 10 includes rain sensor unit 22 , which is positioned in housing 14 and projects through an opening or port 26 provided on a windshield facing side 20 of housing 14 and extends through inner hollow open central portion 17 b of rain sensor mounting button 17 to contact inner surface 11 of windshield 12 .
  • Rain sensor unit 22 preferably comprises a compact rain sensor unit available from ITT Automotive Europe, GMBH of Frankfurt, Germany.
  • Rain sensor unit 22 includes a detecting surface 24 which projects through an opening 28 provided in adhesive layer 18 so that direct contact is achieved between inner surface 11 of windshield 12 and detecting surface 24 of rain sensor unit 22 , and also includes a light emitting source 23 a and a light detecting source 23 b along with associated electronic circuitry for generating an electrical signal indicative of detection of moisture on the outer surface of the windshield.
  • the circuitry (in whole or in part) can be contained in the rain sensor and/or within the housing of the module.
  • the electronic circuitry can be located/share components with/receive input from or deliver output electrical accessories in the vehicle, such as a CAN bus, electronically equipped mirrors such as lighted mirror and automatic dimming electrochromic mirrors, overhead consoles, and similar electrically functioning vehicle components.
  • Electrical connectors 23 can be accommodated at the rain sensor module, such as at or on its housing.
  • the rain sensor can be separately removable from the module for service, or can be an integral part of the module so that a unitary module is provided by a supplier to the automaker for mating with a windshield mounting member as the vehicle passes along the vehicle assembly line (or at a local ready-to-install windshield supply plant), and thereafter for attachment thereto of a rearview mirror assembly.
  • the electrical signal output by the rain sensor can be used to automatically operate the wiper system for the windshield and/or the backlite, or operate other vehicular functions such as close a sunroof in the event of rain or change the braking and/or traction characteristics of the vehicle braking and/or traction control systems.
  • Housing 14 is adapted to urge rain sensor unit 22 into optical contact with inner surface 11 of windshield.
  • housing 14 includes a resilient member 32 for biasing detecting surface 24 into contact with inner surface 11 of windshield 12 .
  • Resilient member 32 preferably comprises a helical spring, urethane disc, or the like.
  • Resilient member 32 may be integrally formed with housing 14 or may be interposed between rain sensor unit 22 and a portion of housing 14 , for example a cabin facing side 14 b or back portion or member 30 of housing 14 .
  • Back portion 30 may preferably comprise a removable cover 30 a which permits access to rain sensor unit 22 .
  • Cover 30 a is positioned over an access opening 21 provided on housing 14 and is mounted to housing 14 by releasable fasteners, such as clips, screws, latches, or the like. In this manner, rain sensor unit 22 can be easily removed for service or replacement.
  • Housing 14 of rain sensor module assembly 10 is preferably releasably or removably mounted or attached to rain sensor mounting button 17 by attachment to solid portion 17 a of rain sensor mounting button 17 , for example by mechanical means such as by snap-on or twist-on attachment or, alternatively, by a releasable adhesive layer.
  • Rain sensor mounting button 17 may comprise of a variety of shapes including square, rectangular, trapezoidal, triangular and the like, with a central opening through which rain sensor unit 22 extends to position detecting surface 24 into contact with either the inner surface 11 of windshield 12 or the outer surface of the adhesive layer 18 .
  • the outer rim of rain sensor mounting button 17 has a smooth edge radius for safety purposes, for example an edge radius of greater than or equal to two millimeters.
  • the attachment of rain sensor module 10 to rain sensor mounting button 17 is preferably a breakaway mount, which meets government and automaker safety requirements upon impact during an accident.
  • the mounting member attached to the vehicle windshield such as rain sensor mounting button 17 can have a wide variety of shapes and forms. It is desirable that there be an adequate contact area with the windshield surface to assure long term integrity of the joint thereto under the loading conditions experienced during lifetime use in the vehicle.
  • the weight of the rearview mirror assembly attached to the mirror mounting button of the rain sensor module can vary from about 100 grams to about 500 grams, or even higher dependent on the feature content of the mirror assembly.
  • the rain sensor module itself is preferably fabricated of lightweight materials, and preferably weighs less than about 100 grams, more preferably less than about 50 grams, and most preferably less that about 25 grams.
  • the mounting member may have a contiguous perimetal portion encompassing a central opening (such as an annulus with a central hole transverse therethrough so that a portion of the inner surface of the windshield is exposed thereat), or the mounting member can be non-contiguous (for example, two spaced apart rails attached to the windshield encompassing an opening therebetween where the detecting surface of the rain sensor can contact the windshield, or the mounting member can be a single rail with an adjacent portion of the inner surface of the windshield serving as the opening for contacting of the rain sensor to the windshield).
  • the rain sensor module can be received on the mounting member such that its engagement on the support attached to the windshield causes the detecting surface of the rain sensor to be urged forward towards, and to contact, the windshield.
  • the module itself in cooperation with its mounting member on the windshield, serves at least partially as a biasing member.
  • a mirror mounting button 35 for mounting a mirror assembly 40 to rain sensor module assembly 10 .
  • Mirror mounting button 35 is preferably mounted to back portion 30 of housing 14 using conventional mechanical attachment means, including fasteners and the like. Alternatively, mounting button 35 may be molded with back portion 30 to form a single integral unitary member or construction.
  • Mirror mounting button 35 provides a mount for one of a plurality of known types of interior mirror assemblies.
  • mirror mounting button 35 and housing 14 are substantially coaxial and, furthermore, are both coaxial with rain sensor mounting button 17 . In this manner, rain sensor mounting button 17 , rain sensor module assembly 10 and mirror assembly 40 are coaxially aligned and are mounted on windshield 12 using the same footprint, thus, minimizing the obstruction to the driver.
  • mirror assembly 40 comprises a double-ball-joint interior mirror assembly which is detachably mounted to mounting button 35 by a mirror mount 42 .
  • Mounting button 35 is preferably made from an engineering polymer material such as a glass or mineral filled nylon or similar ensuring plastic cover.
  • mounting button 35 may be made from a zinc casting or sintered steel pressing or equivalent metal material (such as steel, nickel or nickel alloy, titanium, aluminum or the like), and, preferably is adhered to back portion 30 which preferably comprises a plastic material.
  • mounting button 35 may be mechanically or integrally molded therewith.
  • Mirror mount 42 engages the outer periphery of button 35 and provides a breakaway connection so that upon an impact, interior mirror assembly 40 will detach from button 35 , thereby reducing the risk of injury to passengers in the vehicle.
  • Interior mirror assembly 40 includes a mirror housing 44 , which supports a mirror reflector element 46 and an actuator for changing the mirror reflectivity of the mirror reflective element 46 .
  • Reflector element 46 may comprise a prismatic mirror element or a variable reflectance electrochromic mirror element, for example the reflective element 46 may comprise a conventional non-electro-optic mirror element including metallic reflector coated glass substrate such as with a thin chromium reflector coating or may include a non-metallic reflector, such as a dichroic such as is described in U.S. Pat. No. 5,207,492 to Roberts et al. or may be a reflector comprising a silicon reflective layer such as is described in U.S. Pat. No.
  • reflective element 46 may comprise a variable reflective electro-optic element such as an electrochromic mirror element and may comprise one of several types of electrochromic elements—the electrochemichromic type, such as that disclosed in U.S. Pat. No. 5,140,455 issued to Varaprasad et al. and commonly assigned with the present application, the disclosure of which is hereby incorporated herein by reference or may be of the solid state type such as that disclosed in the U.S. Pat. No. 4,712,879 issued to Niall R. Lynam et al., U.S. patent application Ser. No. 08/023,675, filed Feb.
  • electrochromic elements comprise an electrically responsive electrochromic medium that modulates reflectivity from a reflective element.
  • electrochromic mirror elements are continuously variable and exhibit multiple partial reflectant states as the voltage applied thereto is varied.
  • reflective element 14 may comprise other electro-optic mirror elements, such as a liquid crystal mirror and the like.
  • Actuator 48 may comprise a manual flip mechanism, for a conventional prismatic mirror element, or an electrical actuator with circuitry for a variable reflectivity electrochromic mirror element.
  • the rearview mirror assembly may be an electrically operated assembly such as the lighted mirror assemblies described in pending U.S. patent application, entitled MODULAR REARVIEW MIRROR ASSEMBLY, filed on Aug. 25, 1997 by Jonathan E. DeLine, Roger L. Veldman, and Niall R. Lynam and assigned to Donnelly Corp of Holland, Mich., which is herein incorporated in its entirety by reference.
  • Mirror housing 44 is attached to mirror mount 42 by a support arm 50 .
  • mirror mount 42 and housing 44 each include ball joints 49 a and 49 b which are secured in opposed ends of support arm 50 to provide a dual pivot rearview mirror assembly.
  • mirror housing 44 may be pivoted about a first ball socket joint 51 a and/or a second ball socket joint 51 b.
  • Rain sensor module assembly 110 includes a generally cylindrical housing 114 having one end 115 a adapted for mounting on a rain sensor mounting button 117 , which in turn is mounted to windshield 12 ′, and a second end 115 b which includes a mirror mounting button 135 for mounting an exterior mirror assembly (not shown in this embodiment) to housing 114 .
  • Housing 114 is preferably formed from a rigid polymer material, such as an engineering resin, a nylon, a polyolefin, such a polypropylene and an ABS material or from a rigid metal formed by a metal fabrication, such as die cast or the like.
  • rain sensor mounting button 117 , housing 114 , and mirror mounting button 135 are preferably substantially aligned along a common axis A to provide a substantial coaxial mounting of a mirror assembly and rain sensor module assembly 110 , which minimizes the obstruction of the driver's view through the windshield, and which minimizes the overall assembly footprint, as well as optimizing appearance when viewed from the outside of the vehicle.
  • Rain sensor mounting button 117 is preferably circular in shape having a solid annular outer portion 117 a and inner hollow open central portion 117 b .
  • Solid portion 117 a of rain sensor mounting button 117 preferably comprises a polymer material, such as an engineering resin, a nylon, a polyolefin such as polypropylene and an ABS material or may be formed from a metal fabrication, such as zinc casting or a sintered steel pressing or equivalent metal material such as aluminum, titanium, nickel and their alloys, or the like.
  • Rain sensor mounting button 117 is adhered to an inner surface 11 ′ of windshield 12 ′ by a layer 118 of adhesive, for example an epoxy, a polyvinyl butyral, a urethane, or a silicone adhesive material or the like.
  • Layer 118 is interposed between a windshield facing side 120 of outer portion 117 a of rain sensor mounting button 117 and windshield 12 ′. Preferably, layer 118 extends over at least a substantial portion of windshield facing side 120 of rain sensor mounting button 117 , preferably terminating at or near the outer perimeter 117 c of rain sensor mounting button 117 . It should be understood, however, that discrete regions of adhesive layer may also be used to attach rain sensor mounting button 117 to windshield 12 .
  • Housing first end 115 a is preferably adapted to rotate or twist onto rain sensor mounting button 117 and is, preferably, mounted to rain sensor mounting button 117 in a break-away mounting so that housing 114 and the interior mirror assembly will detach from rain sensor mounting button 117 when any one of the housing and the mirror assembly are impacted.
  • Mirror mounting button 135 is mounted to second end 115 b of housing 114 or may be integrally molded therewith, similarly to button 35 described in reference to the first embodiment.
  • Housing 114 includes a cavity 125 in which a rain sensor unit 122 is positioned.
  • Rain sensor module assembly 110 may include rain sensor unit 122 as a separate component or may include rain sensor unit 122 fixed to or encapsulated by housing 114 to form a modular unit, which provides for a single step replacement procedure.
  • Rain sensor unit 122 and its associated electronic circuitry 123 are supported and positioned in cavity 125 of housing 114 for viewing windshield 12 ′ and are biased into optical contact with windshield 12 ′ by a resilient member 132 , as will more fully described below.
  • rain sensor unit 122 preferably comprises a rain sensor unit such as is available from ITT Automotive Europe, GMBH.
  • rain sensor unit 122 has a disc or truncated cylindrical shaped body with a detecting surface 124 formed on a windshield facing side 122 a of sensor unit 122 , which preferably comprises a resilient optical material, such as a silicone or a plasticized polymer, and which is preferably a high transmitter of visible and near-infrared radiation.
  • the rain sensor unit is preferably of compact construction.
  • the ITT unit is a cylindrical shaped body with a circular end face of diameter about 3.3 cm (cross-sectional area of about 8.6 square centimeters) and a body length of about 1.2 cm.
  • the cross-sectional area of the rain sensor module be less than about four square inches, more preferably less than about two square inches, and most preferably be less than about one square inch provided that adequate contact area is provided for the detecting surface of the module to the windshield for detection of moisture on the outer windshield surface.
  • the body length of the rain sensor module is preferably less than about 1.5 inches, more preferably less than about 1 inch and most preferably less than about 0.75 inches.
  • the ratio of cross-sectional diameter to body length for the rain sensor module is preferably greater than 1, more preferably greater than 2, most preferably greater than 3 in order to assure adequate contact area to the windshield and minimum rearward intrusion into the cabin of the vehicle by the rain sensor module, and the rearview mirror attached thereto.
  • Sensor unit 122 is positioned in central opening 117 b of rain sensor mounting button 117 with a cabin facing side 122 b of rain sensor unit 122 being aligned with resilient member 132 so that when housing 114 is mounted on rain sensor mounting button 117 , rain sensor unit 122 is biased toward windshield 12 ′.
  • detecting surface 124 may be urged into direct contact (where it may be optionally releasably adhered) with inner surface 11 ′ of windshield 12 through an opening 118 a provided in adhesive layer or may be urged into contact with adhesive layer 118 to similarly optically couple sensor unit 122 .
  • Resilient member 132 may comprise a spring, such as a helical spring or a urethane or plastic disc, which is positioned in cavity 125 .
  • resilient member 132 may comprise a resilient inner surface or member, such as a wall 132 a , provided in housing 114 .
  • the interior of housing 114 may include a spring-like polymer such as a rubber, a silicone, a urethane, an elastomeric (such as a thermoplastic elastomer), a vinyl (such as plasticized polyvinyl chloride) or similar resilient material that urges the detecting surface of the rain sensor to intimately contact and optically couple with the inner windshield surface when the unit is mounted in a vehicle.
  • resilient member 132 is aligned with rain sensor unit 122 and urges detecting surface 124 into optical contact with inner surface 11 ′ of windshield 12 . Therefore, regardless of whether rain sensor unit 122 is a separate component or an integral component of housing 114 , it can be appreciate that the installation of rain sensor module assembly 110 is greatly simplified.
  • Rain sensor mounting button 117 is adhered to the inner surface 11 ′ of windshield 12 ′, typically by the windshield manufacturer, and then rain sensor unit 122 is placed in opening 117 b and held in place and urged into optical contact with windshield 12 ′ by housing 114 .
  • Rain sensor module assembly 210 is of a similar construction to rain sensor module assembly 10 and includes a housing 214 which is directly mounted to the inner surface 11 ′′ of windshield 12 ′′.
  • Rain sensor module assembly housing 214 is adhered to inner surface 11 ′′ of windshield 12 ′′ by a layer 218 of adhesive, for example an epoxy, a polyvinyl butyral, a urethane, or a silicone adhesive material or the like.
  • Layer 218 is interposed between a windshield facing side 220 of housing 214 and windshield 12 ′′.
  • layer 218 extends over at least a substantial portion of windshield facing side 220 of housing 214 and preferably terminates at or near the outer perimeter 214 a of housing 214 . It should be understood, however, that discrete regions of adhesive layer may also be used to attach housing 214 to windshield 12 ′′ , but this may be less desirable since it may detract from the aesthetic appearance of the rain sensor mounting.
  • Rain sensor module assembly 210 includes at least one rain sensor unit 222 and associated electronic circuitry, which is supported and positioned in housing 214 for viewing windshield 12 ′′.
  • Rain sensor unit 222 preferably comprises a rain sensor unit available from ITT Automotive Europe, GMBH of Frankfurt, Germany, and includes a detecting surface 224 .
  • Detecting surface 224 preferably comprises a resilient optical material, such as a silicone or a plasticized polymer, and which is preferably a high transmitter of visible and near-infrared radiation. As best seen in FIG. 6, detecting surface 224 of rain sensor unit 222 is positioned in and projects through an opening or port 226 provided in windshield facing side 220 of housing 214 .
  • detecting surface 224 projects through an opening 228 provided in layer 218 so that detecting surface 224 makes direct contact with inner surface 11 ′′ of windshield 12 ′′.
  • rain sensor unit 222 is optically coupled with inner surface 11 ′′ of windshield 12 ′′.
  • detecting surface 224 of rain sensor unit 222 may be biased against and may contact the surface of adhesive layer 218 via opening 226 in housing 214 .
  • the detecting surface 224 of sensor unit 222 may have little or no resilience. Instead, the resiliency may be provided at the contact point with the adhesive layer 218 . Therefore, in this case adhesive layer 218 is preferably selected from materials which are resilient or spring-like in their cured state, such as provided by polyvinyl butyral and silicone adhesive, or the like.
  • Housing 214 includes a back portion or member 230 , which may comprise a removable cover 230 a which is secured to housing 214 by one or more fasteners, such as screws, clips, snaps, latches, or the like.
  • Housing 214 and back member 230 are preferably made from a polymer material such as a nylon, ABS, engineering resin, a polyolefin such as polypropylene or similar material. Removal of cover 230 a permits access to rain sensor unit 222 and its associated circuitry for replacement or repair.
  • back member 230 comprises a removable cover
  • housing 214 preferably includes an access opening 221 which is sufficiently large to permit removal of rain sensor unit 222 and its associated circuitry through the cabin facing side 214 b of housing 214 .
  • rain sensor module assembly 210 may comprise a unitary modular assembly that can be replaced as a unit.
  • biasing member 232 Interposed between a portion of housing 214 , for example back member 230 , and rain sensor unit 222 is a biasing member 232 which urges detecting surface 224 of rain sensor unit 222 into direct contact with inner surface 11 ′′ of windshield 12 ′′ to thereby optically couple to and contact the windshield surface under the spring force of biasing member 232 .
  • Biasing member 232 preferably comprises a resilient member, such as a helical spring or urethane or plastic disc spring or the like. It should be understood that when detecting surface 224 makes contact with the outer surface of adhesive layer 218 , biasing member 232 urges detecting surface 224 into contact with layer 218 to optically couple sensor 222 to windshield 12 ′′.
  • a mirror assembly 40 ′ which is similar to the double ball joint interior mirror assembly 40 of the first embodiment, is detachably mounted to housing 214 by a mirror mount 42 ′.
  • Mirror mount 42 ′ is of similar construction to mirror mount 42 and engages a mounting button 235 , which is secured or formed on back portion 230 of housing 214 .
  • Mirror mount 42 ′ engages the outer periphery of button 235 and provides a breakaway connection so that upon an impact, the interior mirror assembly will detach from button 235 , thereby reducing the risk of injury to passengers in the vehicle.
  • interior mirror assembly 40 ′ includes a mirror housing 44 ′, which supports a mirror reflector element 46 ′ therein.
  • a conventional flip actuator mechanism is shown, but it should be understood that other actuators, including electrical actuators, may be included in housing 44 ′.
  • Mirror housing 44 ′ is attached to mirror mount 42 ′ by a support arm 50 ′, preferably a double ball and socket support arm with a first ball socket joint 51 a ′ between support arm 50 ′ and mirror mount 42 ′ and a second ball socket joint 51 b ′ between support arm 50 ′ and housing 44 ′. In this manner, reflective element 46 ′ can be repositioned over a wide range of motion.
  • detecting surface 224 of rain sensor unit 222 may be alternatively biased to contact adhesive layer 218 .
  • the connection between detecting surface 224 and adhesive 218 is sufficiently resilient to absorb vibrations in windshield, which may be provided by adhesive layer 218 , when adhesive layer 218 is selected from the group of adhesives that are resilient in their cured states as described in reference to the first embodiment, or by detecting surface 224 of rain sensor 222 .
  • module 210 may include a second rain sensor unit 222 ′, which is similarly supported in housing 214 and projects through a second port or opening 228 ′ provided on windshield facing side 214 a of housing 214 .
  • housing 214 preferably includes a second biasing member 232 ′, which urges rain sensor unit 222 ′ into optical contact with inner surface 11 ′′of windshield 12 ′′ for detecting moisture on the inner surface of windshield 12 ′′.
  • Second sensor unit 222 ′ can be electrically coupled to a car area network to control the defrost cycle or demisting cycle of the air system of the vehicle.
  • the rain sensor electrical drive can be electrically coupled to and/or share components with any electrical drive or circuitry already present in the mirror assembly 4 ′ such as available in automotive electrochromic rearview mirrors.
  • Rain sensor units 22 , 122 , 222 are preferably powered via electrically connections to the vehicle ignition system and/or its battery, which typically is twelve volts.
  • the signal outputs from rain sensor units 22 , 122 , 222 are directed to the vehicle windshield wiper controller or can be directed to a car area network such as described in U.S. patent application Ser. No. 08/679,681 entitled VEHICLE MIRROR DIGITAL INTERACTIVE MIRROR SYSTEM filed on Jul. 11, 1996 by O'Farrell et al., which is assigned to the Donnelly Corporation of Holland, Mich., the disclosure which is hereby incorporated by reference in its entirety.
  • the second rain sensor can be electrically coupled to the car area network to control the defrost cycle or demisting cycle of the air system of the vehicle.
  • the rain sensor electrical drive can be electrically coupled to and/or share components with any electrical drive or circuitry already present in mirror assembly 40 , 40 ′ such as available in automotive electrochromic rearview mirrors.
  • Rain sensor module assemblies 10 , 110 , 210 have many commercially attractive advantages.
  • rain sensor mounting buttons 17 and 117 can be attached by the windshield manufacturer at the time of fabrication of the windshield and shipped to the automobile assembly plant fully assembled.
  • the shape and size of the outer solid portion 17 a or 117 a of rain sensor mounting button 17 or 117 may be the same as that of the mirror button 35 so that mirror assembly 40 or 40 ′ may mount directly onto rain sensor mounting button 17 or 117 in lieu of the rain sensor module assembly, which provides the automaker with greater freedom of choice to include or not to include a rain sensor unit in the vehicle.
  • a blank insert may be placed to plug opening 17 b or 117 b.
  • the size and dimensions of rain sensor mounting buttons 17 , 117 , rain sensor modules 22 , 122 , 222 and mirror mounts 42 , 142 , 242 are preferably generally commensurate in size so that the installation of a rain sensor module assembly 10 , 110 , or 210 is compact and unobtrusive.
  • the footprint of rain sensor module assembly 10 , 110 , 210 is less than about four square inches. In a more preferred form, the footprint of rain sensor module assembly 10 , 110 , 210 is less than about two square inches. In a most preferred form, the footprint of rain sensor module assembly 10 , 110 , 210 is less than about one square inch.
  • the rain sensor mounting member attached to the windshield and the rearview mirror mounting button provided on the rain sensor module are generally aligned along a common axis when the rain sensor module is mounted to the vehicle in order to provide a mounting of a rearview mirror assembly to the rain sensor module that is generally coaxial with the mounting of the rain sensor module to the windshield.
  • FIGS. 1 and 2 where the rain sensor mounting button 17 , the rain sensor unit 22 , detecting surface 24 and mirror mounting button 35 are substantially aligned along common axis AA, thus minimizing the footprint presented by the assembly when installed to the windshield in the vehicle.
  • a ceramic black frit layer as is commonly known in the windshield fabrication art, can be used on the inner surface 11 , 11 ′, 11 ′′ of windshield 12 , 12 ′, 12 ′′ to hide the attachment of location of rain sensor module 10 , 110 , 210 .
  • the center portion of such a ceramic layer should include a central opening or at least provide efficient transmission for the output of the light emitters and the rain sensor unit at the point of contact a detecting surface 24 , 124 , 224 to windshield 12 , 12 ′, 12 ′′ or to the adhesive layer 18 , 118 , 218 .
  • rain sensor module assembly 10 , 110 , 210 can accommodate a wide variety of mirror assemblies. Therefore, rain sensor module assemblies 10 , 110 , 210 have broad application and may be used in most countries. Furthermore, rain sensor module assemblies 10 , 110 , 210 permit the automaker to have essentially unlimited choices of mirror supplier. Moreover, rain sensor module assemblies 10 , 110 , 210 do not increase the weight of the respective mirror assembly and, therefore, do not negatively impact the vibration characteristics of the mirror assembly. In addition, as described above, rain sensor module assemblies 10 , 110 , 210 may optionally include a second rain sensor unit for detecting moisture on the inner surface of the windshield.
  • the second rain sensor may be similarly optically coupled to the inner surface of the windshield and further, coupled to the controls of the blower of the defrost and ventilation system of the vehicle, for example via a car area network, in order to activate the blower to demist the inner surface of the windshield.
  • the concept of this invention can also be beneficially applied to other glass or other transparent panels.
  • aspects of this invention can be applied to a variety of rain sensor types including windshield contacting units where the detecting surface contacts the windshield surface, and non-windshield contacting units, such as are described in PCT Application WO 94/27262 published Nov. 24, 1994 to Dennis Hegyl, the disclosure of which is incorporated by reference in its entirety herein, where the detecting surface of the rain sensor does not contact the windshield surface, and is stood-off therefrom.
  • the rain sensor module may optionally accommodate sensor/circuit/displays for vehicle functions and accessories other than for a moisture sensing function.
  • a compass sensor such as a flux gate, magnetoinductive, magnetoresistive or magnetocapacitive sensor and/or a compass display can be accommodated at, within or on the rain sensor module.
  • Other sensors and/or displays can be similarly accommodated such as of vehicle altitude and/or incline (of particular interest in sport utility vehicles), seat occupancy, air bag activation enable/disable, and headlamp intensity/daylight intensity photosensors, and their like.
  • antennae, transmitters and receivers along with any associated displays and sensors, for geographic positioning satellite (GPS) systems, pagers, cellular phone systems, pagers, cellular phone systems, ONSTAR systems, security systems, tire monitoring systems, remote fueling systems where vehicle fueling and/or payment/charging for fuel is remotely achieved, remote keyless entry systems, garage and/or security door opener systems, INTERNET interfaces, vehicle tracking systems, remote car door unlock systems, e-mail systems, toll booth interactions systems, highway information systems, traffic warning systems, home access systems and their like can be mounted at, within or on the rain sensor module, or at, within or on the rearview mirror attached thereto, or at, within or on a pod attached to the rain sensor module or to the rearview mirror attached thereto. Therefore, it will be understood that the embodiments shown in the drawings and described above are merely for illustrative purposes, and are not intended to limit the scope of the invention which is defined by claims which follow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Automation & Control Theory (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A mount for mounting a rain sensor includes a housing having an access opening on first side and a port on second side for positioning adjacent an inner surface of the vehicle windshield. The second side is adapted for mounting to a vehicle windshield, for example by a layer of adhesive which is interposed between the housing and the windshield. Optionally, the housing includes an access opening and a cover, which and covers the access opening. A mirror mounting button is provided on either the housing or the cover for mounting a rearview mirror assembly to the mount. A biasing member is supported in the housing and is interposed between the first side of the housing and a rain sensor positioned in the housing, which urges a detecting surface of the rain sensor to project through the port and to optically couple the rain sensor to the vehicle windshield for detecting moisture on an outer surface of the vehicle windshield. The biasing member may comprise, for example, a helical spring or a urethane disc.

Description

    TECHNICAL FIELD AND BACKGROUND OF THE INVENTION
  • This invention relates to a vehicular rearview assembly. More particularly, the present invention relates to mounting of a rain sensor within a rearview mirror assembly support. [0001]
  • Rain sensors for detecting moisture due to rain, road splash, and the like on the outside of a vehicular windshield are conventionally mounted to the inner cabin surface of the vehicle windshield. Rain sensors typically comprise a light emitting diode, an array of light emitting diodes which are paired with a photo detector, or an array photo detectors. The rain sensor may detect moisture by sensing a change in the amount of light refracted at the outer windshield surface due to the presence or absence of moisture or use other techniques such as sending backscattering of light caused by raindrops. [0002]
  • Various mounting methods have been proposed with a common method including optically coupling the rain sensor detector usually to the inner cabin surface of the vehicle windshield. Rain sensor detectors are conventionally coupled to the inner cabin surface by use of an optical adhesive, or by using a removable mount, for example a mount of a type disclosed in U.S. Pat. No. 4,871,917 to O'Farrell assigned to Donnelly Corporation of Holland, Mich., the disclosure of which is incorporated by reference herein. In removable mount constructions, such as are disclosed in the Donnelly '917 Patent, the rain sensor detection surface, which typically comprises a resilient optically clear polymer material, such as a silicone material, is mechanically pressed between the detector and the inner windshield surface by the mount. [0003]
  • Thus far, conventionally known means for mounting rain sensor units to vehicle windshields have several disadvantages. Optical adhesives are difficult and expensive to remove during service replacement of a damaged windshield. Furthermore, the optical adhesives, which are used to attach the rain sensors to the inner surface of the windshield, may be visible from the outside of the vehicle and, thus, can potentially detract from the vehicle appearance and styling. Moreover, the attachment of the rain sensor to the windshield either by bonding with an adhesive or by mechanical attachment often creates a noticeable obstruction of the forward field of view due to the separate and, frequently, bulky housing provided for the rain sensor unit. Furthermore, the location and bulky size of the rain sensor unit may further increase the risk of potential injury of the vehicle occupants should they impact the windshield in an accident. [0004]
  • In general practice, the windshield manufacturer often attaches a mirror mounting button to the windshield , for example a mounting button of the type disclosed in U.S. Pat. No. 4,930,742 assigned to Donnelly Corporation, which provides a releasable mount for the rearview mirror assembly to the windshield, the disclosure of which is incorporated in its entirety herein. When these mounting buttons are attached to the windshield, the manufacturer may need to attach a second structure, such as a mechanical guide or rail to which the rain sensor is then later attached to the vehicle, which would ultimately increase the cost of the windshield. [0005]
  • More recently, rain sensors have been mounted within the support arm of the interior rearview mirror assembly. These constructions utilize the teaching of the Donnelly '917 patent as follows. Referring to FIGS. [0006] 7-9, this prior art interior rearview mirror assembly 300 includes a mirror housing 302 which supports a reflective element 304 and which is mounted to the windshield W by a support arm 306. Support arm 306 is coupled to housing 302 by a ball and socket connection 307. The rain sensor 308 is mounted inside support arm 306 and positioned to view the outside surface of windshield W. Support arm 306 includes a biasing member 309 and is adapted to releasably engage a mirror mounting button 310, which is attached to the inner surface W′ of the windshield W and typically installed by the window manufacturer for coupling rearview mirror assembly 300 to the windshield (FIG. 9). In this system, mirror mounting button 310 is a ring shaped member 312 with a hollow center 314, which is glued to the inner surface of the vehicle windshield. Support arm 306 engages the outer rim of mirror mounting button 310 when the mirror assembly 300 is attached to button 310 during assembly of the vehicle at the vehicle assembly plant or during service. The rain sensor is located within the cavity of the support arm approximate the mirror mounting button and is biased into contact with the glass surface through hollow center 314 by biasing member 309. Support arm 306, however, only provides a single point of articulation for housing 302, since it must remain in a fixed position at the juncture of the support arm and the windshield in order to maintain the alignment of the sensor with the mounting button.
  • Although the aforementioned construction has several advantages, it has numerous disadvantages that can limit its widespread application in vehicles. By locating the rain sensor within the support arm, the support arm must necessarily include a cavity that is large enough to accommodate the rain sensor unit. Furthermore, this construction requires that the articulation of the mirror housing about the support arm be limited to a single point at the juncture of the support arm to the housing. As mentioned above, the juncture of the support arm to the mounting button must remain fixed so that rain sensor maintains contact with the inner surface of the windshield. Therefore, the present design is limited for use on single pivot mirror supports and is unsuitable for dual pivot mounting supports, which are commonly used on a wide variety of vehicles. It is also necessary to stock a special mirror design when a rain sensor is desired, which adds to inventory requirements. [0007]
  • Referring to U.S. Pat. Nos. 4,936,533 and 5,100,095 both assigned to Donnelly Corporation, the disclosures of which are incorporated by reference in their entireties, dual pivot mounting supports typically include a double ball joint which comprises an outer tubular support arm member with sockets formed at both ends. The sockets receive ball joints extending from the housing and mirror mounts to provide a greater range of movement for the rearview mirror assembly. Positioned in the cavity of the tubular member is a helical spring which retains the respective ball joints in the ends of the tubular support arm. Therefore, double ball joint mirrors would appear to not be well suited to accommodate a rain sensor unit within the support arm cavity. [0008]
  • Other considerations include vibration performance. The presence of the rain sensor in the support arm increases the weight of the rearview mirror assembly. With increased weight, potential exists for detrimental effects on the mirror assembly vibration performance. Furthermore, placement of the rain sensor in the support arm limits the choice of rearview mirror suppliers since only a limited number of mirror assembly support arm designs can accommodate such mounting of the rain sensor. Additionally, most countries have regulations that require mirror assemblies to break away upon impact in an accident. With the design illustrated in FIGS. [0009] 7-9, the choice of the mirror button design is, therefore, also limited, thus placing potential limitation on the use of these rain sensor mounts in certain countries.
  • Consequently, there is a need for an improved rain sensor mount for a vehicle that overcomes the above disadvantages and achieves its purpose in a manner that is economical and convenient for the automaker. Furthermore the improved rain sensor mount preferably provides broad application by allowing flexibility in the choice of design. Moreover, the improved rain sensor preferably is consistent with current safety goals and enhances the performance of the interior rearview mirror assembly. [0010]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides a new and unique rain sensor mounting which is especially suitable for mounting on an inner surface of a vehicle windshield for detecting moisture on an outer surface of the windshield. [0011]
  • In one aspect, the invention provides a mount for mounting a rain sensor which includes a housing having an access opening on a first side or end and a port on a second side or end, preferably an opposing side or end, for positioning adjacent an inner surface of the vehicle windshield and which is adapted for mounting to a vehicle windshield. A cover is secured to the housing and covers the access opening. A mirror mounting button is provided on either the housing or the cover for mounting a rearview mirror assembly to the mount. A biasing member is supported in the housing and, preferably, is interposed between the cover and a rain sensor positioned in the housing. The biasing member urges a detecting surface of the rain sensor to project through the port and to optically couple to the vehicle windshield for detecting moisture on an outer surface of the vehicle windshield. The biasing member may comprise, for example, a helical spring, a leaf spring or a urethane disc. The biasing member may also include an internal structure of the housing that engages with the rain sensor when the housing is received on a mounting member that encompasses an opening (such as is described below) such that the detecting surface of the rain sensor is urged to project through the opening at the mounting member and intimately and, preferably, releasably contact the inner surface of the windshield, and optically couple therewith. For example, the internal cavity of the housing can comprise a resilient polymer material (such as a rubber, silicone, urethane, elastomeric (such as a thermoplastic elastomer), vinyl (such as plasticized polyvinyl chloride) or similar material with spring-like property) serving as a biasing member that urges the detecting surface of the rain sensor forward to contact the windshield when the unit is mounting in the vehicle. The biasing member may comprise a flexible polymer or a resilient gasket that compresses to urge the detecting surface of the rain sensor to contact the windshield when mounted in the vehicle. [0012]
  • In one form, the mirror mounting button is secured to the cover. The mirror mounting button may releasably secured to the cover or may be integrally molded with the cover to form a unitary member. [0013]
  • In other forms, the second side of the housing includes a layer of adhesive for mounting the housing to the vehicle windshield. For example, the adhesive may comprise a polyvinyl butyral material, an epoxy material, a urethane material, an acrylate material, an acrylic material, or a silicone adhesive material. The adhesive layer may include an opening for receiving the rain sensor whereby the detecting surface of the rain sensor can directly contact the vehicle windshield for detecting moisture on the outer surface of the windshield or the detecting surface can contact and optically couple to the cured form of said adhesive. [0014]
  • In yet another form, the mount includes an annular or like member having a central opening and which is adapted to mount the housing to the inner surface of the windshield. The port of the housing is aligned with the central opening of the annular member so that the rain sensor can extend through the port and through the central opening and contact the inner windshield surface for detecting moisture on an outer surface of the vehicle windshield. The housing is preferably releasably secured to the annular member so that the rain sensor can be serviced or replaced. In addition, at least the second side of the housing substantially covers and conceals the annular member. [0015]
  • According to another aspect of the invention, a rain sensor mount includes a housing having a cover, which covers an access opening in the housing, a means for mounting a rearview mirror assembly to the housing, and a rain sensor, which is positioned in the housing and includes a detecting surface. Furthermore, a biasing member is interposed between a portion of the housing and the rain sensor for urging the detecting surface of the rain sensor to optical couple to the windshield of the vehicle for detecting moisture on an outer surface of the windshield. [0016]
  • According to yet another aspect of the invention, a rearview mirror assembly is disclosed which includes a rearview mirror housing having a reflective element supported therein, a support arm mounted to the rearview mirror housing that terminates in a button attaching mirror mount, and a rain sensor module. The rain sensor module includes a rain sensor module housing having a first side or end and a second side or end, with the second side preferably including a port. The second side is positioned adjacent an inner surface of the vehicle windshield and is adapted to mount the rain sensor module housing to the vehicle windshield. The rain sensor module housing preferably also includes a cover, which covers an access opening provide in the rain sensor module housing and a rain sensor which is supported in the rain sensor module housing. Alternately, the rain sensor module may be a unitary member or construction wherein the rain sensor is housed, preferably resiliently housed, within the cavity of the housing such that the detecting surface of the rain sensor is positioned, and preferably urged to protrude, at the second side (end) of the housing that is opposite and opposing the first side (end). The rain sensor includes a detector surface, which preferably is extended though a port provided in the housing for optically coupling the rain sensor to the inner surface of the vehicle windshield. A mirror mount extends from the housing, for securing the support arm to the housing. Furthermore, the rain sensor module housing includes a biasing member supported therein which is interposed between a portion of the rain sensor module housing and the rain sensor for urging the detecting surface of the rain sensor to optically couple the rain sensor to the vehicle windshield for detecting moisture on an outer surface of the vehicle windshield. The rain sensor module can be provided in a variety of constructions, thus providing economic, convenience and flexibility benefits to automakers and their suppliers. For example, the housing of the rain sensor module and the mirror mount extending therefrom can be a unitary construction (such as can be formed by mechanically attaching or adhesively attaching a mirror mounting button to an already formed housing, or by attaching the mirror mounting button to the housing while the housing itself is being formed, such as by integral molding as is known in the molding arts), or the rain sensor, housing and mirror mount can be provided as a unitary construction, such as a unitary rain sensor module. [0017]
  • In one form, the support arm is secured to the rearview mirror housing by a ball and socket connection to permit repositioning of the reflective element. Additionally, and preferably, the support arm may be secured to the mirror mount by a second ball and socket connection to permit a greater range of motion for the rearview mirror housing and provide a greater range of positions for the reflective element. [0018]
  • As will be understood, the rain sensor mount of the present invention provides numerous advantages over prior known rain sensor mounting arrangements. For example, the rain sensor module can be attached by the windshield manufacturer at the time of the windshield fabrication and shipped to the automobile assembly plant where the rearview mirror assembly can be attached to the rain sensor module. Alternatively, the annular member may be attached to the windshield by the windshield manufacturer at the time of fabrication leaving the installation of the rain sensor module assembly optional. For example, windshields with the rain sensor mount pre-attached can be received at the vehicle assembly plant, and the rain sensor module can be attached, and the rearview mirror assembly also attached to the module, as the vehicle passes along the vehicle assembly line. Furthermore, the rain sensor mount can be mounted without detracting from the styling of the vehicle and, moreover, without obstructing the view of the driver of the vehicle. In addition, the rain sensor mount can be adapted to support a wide range of rearview mirror assemblies and, notably, rearview mirror assemblies with double ball joint support arms to permit a greater range of motion of the mirror assembly housing than the present rains sensor mounts permit. Thus, the present rain sensor mount affords the automobile manufacturer greater flexibility in its selection of the mirror assembly and the button mount and therefore can accommodate most markets' regulations. [0019]
  • These and other objects, advantages, purposes and features of the invention will become more apparent from a study of the following description taken in conjunction with the drawings. [0020]
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial fragmentary side elevation of a mirror assembly mounted to a vehicle windshield of the present invention; [0021]
  • FIG. 2 is an enlarged partial fragmentary side elevation of the mirror assembly mounting of FIG. 1; [0022]
  • FIG. 3 is a front elevational view of the mirror mount of FIGS. 1 and 2; [0023]
  • FIG. 4A is an exploded perspective view of a second embodiment of the mirror assembly mounting of the present invention; [0024]
  • FIG. 4B is a partial exploded perspective view of the second embodiment of mirror assembly mounting of FIG. 4A; [0025]
  • FIG. 5 is a partial fragmentary side elevational view of a third embodiment of the mirror assembly mounting of the present invention; [0026]
  • FIG. 6 is an enlarged partial fragmentary side elevation of the mirror assembly mounting of FIG. 5; [0027]
  • FIG. 7 is a front elevational view of a prior art mounting button; [0028]
  • FIG. 8 is a side elevational view of the prior art mounting button mounted to the inner surface of a windshield; and [0029]
  • FIG. 9 is a side elevational view of a conventional mirror assembly incorporating a rain sensor unit in the support arm of the mirror assembly. [0030]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1 and 2, a rain [0031] sensor module assembly 10 of the present invention is shown mounted to the inner surface 11 of a windshield 12. Rain sensor module assembly 10 is positioned on inner surface 11 of windshield 12 for detecting moisture, such as rain droplets, on the outer surface 13 and, optionally, on inner surface 11 of windshield 12, as will be more fully explained below.
  • Rain [0032] sensor module assembly 10 is mounted to inner surface 11 of windshield 12 by a rain sensor mounting button 17. Rain sensor mounting button 17 is preferably adhered to inner surface 11 of windshield 12 by a layer 18 of adhesive such as an epoxy, a polyvinyl butyral, a urethane, or a silicone adhesive material or the like. In the illustrated embodiment rain sensor mounting button 17 is circular in shape having a solid annular outer portion 17 a and inner hollow open central portion 17 b. Solid portion 17 a of rain sensor mounting button 17 may comprise a polymer material, such as an engineering resin, a nylon or an ABS material, or can be a metal fabrication such as zinc casting or a sintered steel pressing or equivalent metal material such as steel, titanium, nickel, aluminum and their alloys, or the like.
  • Rain [0033] sensor module assembly 10 includes rain sensor unit 22, which is positioned in housing 14 and projects through an opening or port 26 provided on a windshield facing side 20 of housing 14 and extends through inner hollow open central portion 17 b of rain sensor mounting button 17 to contact inner surface 11 of windshield 12. Rain sensor unit 22 preferably comprises a compact rain sensor unit available from ITT Automotive Europe, GMBH of Frankfurt, Germany. Rain sensor unit 22 includes a detecting surface 24 which projects through an opening 28 provided in adhesive layer 18 so that direct contact is achieved between inner surface 11 of windshield 12 and detecting surface 24 of rain sensor unit 22, and also includes a light emitting source 23 a and a light detecting source 23 b along with associated electronic circuitry for generating an electrical signal indicative of detection of moisture on the outer surface of the windshield. Light is emitted by the emitter, passes through the rain sensor detecting surface, is refracted at the outer windshield surface, and re-enters the rain sensor at its detecting surface to impinge the light detector of the rain sensor, whose output is processed by electronic circuitry to detect the presence/absence of moisture on the windshield. The circuitry (in whole or in part) can be contained in the rain sensor and/or within the housing of the module. Optionally, the electronic circuitry can be located/share components with/receive input from or deliver output electrical accessories in the vehicle, such as a CAN bus, electronically equipped mirrors such as lighted mirror and automatic dimming electrochromic mirrors, overhead consoles, and similar electrically functioning vehicle components. Electrical connectors 23 can be accommodated at the rain sensor module, such as at or on its housing. The rain sensor can be separately removable from the module for service, or can be an integral part of the module so that a unitary module is provided by a supplier to the automaker for mating with a windshield mounting member as the vehicle passes along the vehicle assembly line (or at a local ready-to-install windshield supply plant), and thereafter for attachment thereto of a rearview mirror assembly. The electrical signal output by the rain sensor can be used to automatically operate the wiper system for the windshield and/or the backlite, or operate other vehicular functions such as close a sunroof in the event of rain or change the braking and/or traction characteristics of the vehicle braking and/or traction control systems.
  • [0034] Housing 14 is adapted to urge rain sensor unit 22 into optical contact with inner surface 11 of windshield. In the illustrated embodiment, housing 14 includes a resilient member 32 for biasing detecting surface 24 into contact with inner surface 11 of windshield 12. Resilient member 32 preferably comprises a helical spring, urethane disc, or the like. Resilient member 32 may be integrally formed with housing 14 or may be interposed between rain sensor unit 22 and a portion of housing 14, for example a cabin facing side 14 b or back portion or member 30 of housing 14. Back portion 30, may preferably comprise a removable cover 30 a which permits access to rain sensor unit 22. Cover 30 a is positioned over an access opening 21 provided on housing 14 and is mounted to housing 14 by releasable fasteners, such as clips, screws, latches, or the like. In this manner, rain sensor unit 22 can be easily removed for service or replacement.
  • [0035] Housing 14 of rain sensor module assembly 10 is preferably releasably or removably mounted or attached to rain sensor mounting button 17 by attachment to solid portion 17 a of rain sensor mounting button 17, for example by mechanical means such as by snap-on or twist-on attachment or, alternatively, by a releasable adhesive layer. Rain sensor mounting button 17 may comprise of a variety of shapes including square, rectangular, trapezoidal, triangular and the like, with a central opening through which rain sensor unit 22 extends to position detecting surface 24 into contact with either the inner surface 11 of windshield 12 or the outer surface of the adhesive layer 18. Preferably, the outer rim of rain sensor mounting button 17 has a smooth edge radius for safety purposes, for example an edge radius of greater than or equal to two millimeters. Also, the attachment of rain sensor module 10 to rain sensor mounting button 17 is preferably a breakaway mount, which meets government and automaker safety requirements upon impact during an accident. The mounting member attached to the vehicle windshield such as rain sensor mounting button 17 can have a wide variety of shapes and forms. It is desirable that there be an adequate contact area with the windshield surface to assure long term integrity of the joint thereto under the loading conditions experienced during lifetime use in the vehicle. The weight of the rearview mirror assembly attached to the mirror mounting button of the rain sensor module can vary from about 100 grams to about 500 grams, or even higher dependent on the feature content of the mirror assembly. The rain sensor module itself is preferably fabricated of lightweight materials, and preferably weighs less than about 100 grams, more preferably less than about 50 grams, and most preferably less that about 25 grams. The mounting member may have a contiguous perimetal portion encompassing a central opening (such as an annulus with a central hole transverse therethrough so that a portion of the inner surface of the windshield is exposed thereat), or the mounting member can be non-contiguous (for example, two spaced apart rails attached to the windshield encompassing an opening therebetween where the detecting surface of the rain sensor can contact the windshield, or the mounting member can be a single rail with an adjacent portion of the inner surface of the windshield serving as the opening for contacting of the rain sensor to the windshield). Also, the rain sensor module can be received on the mounting member such that its engagement on the support attached to the windshield causes the detecting surface of the rain sensor to be urged forward towards, and to contact, the windshield. The module itself, in cooperation with its mounting member on the windshield, serves at least partially as a biasing member.
  • Mounted to [0036] cabin facing side 14 b of housing 14 is a mirror mounting button 35 for mounting a mirror assembly 40 to rain sensor module assembly 10. Mirror mounting button 35 is preferably mounted to back portion 30 of housing 14 using conventional mechanical attachment means, including fasteners and the like. Alternatively, mounting button 35 may be molded with back portion 30 to form a single integral unitary member or construction. Mirror mounting button 35 provides a mount for one of a plurality of known types of interior mirror assemblies. Preferably, mirror mounting button 35 and housing 14 are substantially coaxial and, furthermore, are both coaxial with rain sensor mounting button 17. In this manner, rain sensor mounting button 17, rain sensor module assembly 10 and mirror assembly 40 are coaxially aligned and are mounted on windshield 12 using the same footprint, thus, minimizing the obstruction to the driver.
  • As best seen in FIG. 1, [0037] mirror assembly 40 comprises a double-ball-joint interior mirror assembly which is detachably mounted to mounting button 35 by a mirror mount 42. Mounting button 35 is preferably made from an engineering polymer material such as a glass or mineral filled nylon or similar ensuring plastic cover. Alternatively, mounting button 35 may be made from a zinc casting or sintered steel pressing or equivalent metal material (such as steel, nickel or nickel alloy, titanium, aluminum or the like), and, preferably is adhered to back portion 30 which preferably comprises a plastic material. Alternatively, mounting button 35 may be mechanically or integrally molded therewith.
  • [0038] Mirror mount 42 engages the outer periphery of button 35 and provides a breakaway connection so that upon an impact, interior mirror assembly 40 will detach from button 35, thereby reducing the risk of injury to passengers in the vehicle. Reference is made to U.S. patent application Ser. No. 08/781,408 entitled BREAKAWAY ACCESSORY MOUNTING ASSEMBLY FOR VEHICLES AND WINDSHIELD MOUNTED BUTTON THEREFOR filed Jan. 10, 1997 by Ralph A. Spooner, which is assigned to Donnelly Corporation of Holland, Mich., the disclosure of which is incorporated by reference in its entirety herein, for a preferred form of mounting button 35. Reference is also made to U.S. Pat. Nos. 4,936,533 and 5,100,095 for examples of suitable double ball joint rearview mirror assemblies.
  • [0039] Interior mirror assembly 40 includes a mirror housing 44, which supports a mirror reflector element 46 and an actuator for changing the mirror reflectivity of the mirror reflective element 46. Reflector element 46 may comprise a prismatic mirror element or a variable reflectance electrochromic mirror element, for example the reflective element 46 may comprise a conventional non-electro-optic mirror element including metallic reflector coated glass substrate such as with a thin chromium reflector coating or may include a non-metallic reflector, such as a dichroic such as is described in U.S. Pat. No. 5,207,492 to Roberts et al. or may be a reflector comprising a silicon reflective layer such as is described in U.S. Pat. No. 5,535,056 to Caskey et al. which is herein incorporated in its entirety by reference. Alternatively, reflective element 46 may comprise a variable reflective electro-optic element such as an electrochromic mirror element and may comprise one of several types of electrochromic elements—the electrochemichromic type, such as that disclosed in U.S. Pat. No. 5,140,455 issued to Varaprasad et al. and commonly assigned with the present application, the disclosure of which is hereby incorporated herein by reference or may be of the solid state type such as that disclosed in the U.S. Pat. No. 4,712,879 issued to Niall R. Lynam et al., U.S. patent application Ser. No. 08/023,675, filed Feb. 22, 1993 by Varaprasad et al., U.S. patent application Ser. No. 08/193,557, filed Feb. 8, 1994 by Varaprasad et al., and U.S. application Ser. No. 08/238,521, filed Mar. 5, 1994 by Varaprasad et al., all commonly assigned with the present application to Donnelly Corporation, the disclosures of which are herein incorporated by reference. Such electrochromic elements comprise an electrically responsive electrochromic medium that modulates reflectivity from a reflective element. Such electrochromic mirror elements are continuously variable and exhibit multiple partial reflectant states as the voltage applied thereto is varied. Alternatively, reflective element 14 may comprise other electro-optic mirror elements, such as a liquid crystal mirror and the like. Actuator 48 may comprise a manual flip mechanism, for a conventional prismatic mirror element, or an electrical actuator with circuitry for a variable reflectivity electrochromic mirror element. The rearview mirror assembly may be an electrically operated assembly such as the lighted mirror assemblies described in pending U.S. patent application, entitled MODULAR REARVIEW MIRROR ASSEMBLY, filed on Aug. 25, 1997 by Jonathan E. DeLine, Roger L. Veldman, and Niall R. Lynam and assigned to Donnelly Corp of Holland, Mich., which is herein incorporated in its entirety by reference. Mirror housing 44 is attached to mirror mount 42 by a support arm 50. Preferably, mirror mount 42 and housing 44 each include ball joints 49 a and 49 b which are secured in opposed ends of support arm 50 to provide a dual pivot rearview mirror assembly. In this manner, mirror housing 44 may be pivoted about a first ball socket joint 51 a and/or a second ball socket joint 51 b.
  • Referring to FIGS. 4A and 4B, a [0040] second embodiment 110 of a rain sensor module assembly of the present invention is shown. Rain sensor module assembly 110 includes a generally cylindrical housing 114 having one end 115 a adapted for mounting on a rain sensor mounting button 117, which in turn is mounted to windshield 12′, and a second end 115 b which includes a mirror mounting button 135 for mounting an exterior mirror assembly (not shown in this embodiment) to housing 114. Housing 114 is preferably formed from a rigid polymer material, such as an engineering resin, a nylon, a polyolefin, such a polypropylene and an ABS material or from a rigid metal formed by a metal fabrication, such as die cast or the like. Similar to the first embodiment, rain sensor mounting button 117, housing 114, and mirror mounting button 135 are preferably substantially aligned along a common axis A to provide a substantial coaxial mounting of a mirror assembly and rain sensor module assembly 110, which minimizes the obstruction of the driver's view through the windshield, and which minimizes the overall assembly footprint, as well as optimizing appearance when viewed from the outside of the vehicle.
  • Rain [0041] sensor mounting button 117 is preferably circular in shape having a solid annular outer portion 117 a and inner hollow open central portion 117 b. Solid portion 117 a of rain sensor mounting button 117 preferably comprises a polymer material, such as an engineering resin, a nylon, a polyolefin such as polypropylene and an ABS material or may be formed from a metal fabrication, such as zinc casting or a sintered steel pressing or equivalent metal material such as aluminum, titanium, nickel and their alloys, or the like. Rain sensor mounting button 117 is adhered to an inner surface 11′ of windshield 12′ by a layer 118 of adhesive, for example an epoxy, a polyvinyl butyral, a urethane, or a silicone adhesive material or the like. Layer 118 is interposed between a windshield facing side 120 of outer portion 117 a of rain sensor mounting button 117 and windshield 12′. Preferably, layer 118 extends over at least a substantial portion of windshield facing side 120 of rain sensor mounting button 117, preferably terminating at or near the outer perimeter 117 c of rain sensor mounting button 117. It should be understood, however, that discrete regions of adhesive layer may also be used to attach rain sensor mounting button 117 to windshield 12.
  • Housing [0042] first end 115 a is preferably adapted to rotate or twist onto rain sensor mounting button 117 and is, preferably, mounted to rain sensor mounting button 117 in a break-away mounting so that housing 114 and the interior mirror assembly will detach from rain sensor mounting button 117 when any one of the housing and the mirror assembly are impacted. Mirror mounting button 135 is mounted to second end 115 b of housing 114 or may be integrally molded therewith, similarly to button 35 described in reference to the first embodiment.
  • [0043] Housing 114 includes a cavity 125 in which a rain sensor unit 122 is positioned. Rain sensor module assembly 110 may include rain sensor unit 122 as a separate component or may include rain sensor unit 122 fixed to or encapsulated by housing 114 to form a modular unit, which provides for a single step replacement procedure. Rain sensor unit 122 and its associated electronic circuitry 123 are supported and positioned in cavity 125 of housing 114 for viewing windshield 12′ and are biased into optical contact with windshield 12′ by a resilient member 132, as will more fully described below.
  • Similarly to the first embodiment, [0044] rain sensor unit 122 preferably comprises a rain sensor unit such as is available from ITT Automotive Europe, GMBH. In this embodiment, rain sensor unit 122 has a disc or truncated cylindrical shaped body with a detecting surface 124 formed on a windshield facing side 122 a of sensor unit 122, which preferably comprises a resilient optical material, such as a silicone or a plasticized polymer, and which is preferably a high transmitter of visible and near-infrared radiation. The rain sensor unit is preferably of compact construction. For example, the ITT unit is a cylindrical shaped body with a circular end face of diameter about 3.3 cm (cross-sectional area of about 8.6 square centimeters) and a body length of about 1.2 cm. For compact mounting on the vehicle, it is preferable that the cross-sectional area of the rain sensor module be less than about four square inches, more preferably less than about two square inches, and most preferably be less than about one square inch provided that adequate contact area is provided for the detecting surface of the module to the windshield for detection of moisture on the outer windshield surface. The body length of the rain sensor module is preferably less than about 1.5 inches, more preferably less than about 1 inch and most preferably less than about 0.75 inches. The ratio of cross-sectional diameter to body length for the rain sensor module is preferably greater than 1, more preferably greater than 2, most preferably greater than 3 in order to assure adequate contact area to the windshield and minimum rearward intrusion into the cabin of the vehicle by the rain sensor module, and the rearview mirror attached thereto. Sensor unit 122 is positioned in central opening 117 b of rain sensor mounting button 117 with a cabin facing side 122 b of rain sensor unit 122 being aligned with resilient member 132 so that when housing 114 is mounted on rain sensor mounting button 117, rain sensor unit 122 is biased toward windshield 12′. As described in reference to the first embodiment, detecting surface 124 may be urged into direct contact (where it may be optionally releasably adhered) with inner surface 11′ of windshield 12 through an opening 118 a provided in adhesive layer or may be urged into contact with adhesive layer 118 to similarly optically couple sensor unit 122.
  • [0045] Resilient member 132 may comprise a spring, such as a helical spring or a urethane or plastic disc, which is positioned in cavity 125. Alternatively, resilient member 132 may comprise a resilient inner surface or member, such as a wall 132 a, provided in housing 114. For example, the interior of housing 114 may include a spring-like polymer such as a rubber, a silicone, a urethane, an elastomeric (such as a thermoplastic elastomer), a vinyl (such as plasticized polyvinyl chloride) or similar resilient material that urges the detecting surface of the rain sensor to intimately contact and optically couple with the inner windshield surface when the unit is mounted in a vehicle. As described previously, resilient member 132 is aligned with rain sensor unit 122 and urges detecting surface 124 into optical contact with inner surface 11′ of windshield 12. Therefore, regardless of whether rain sensor unit 122 is a separate component or an integral component of housing 114, it can be appreciate that the installation of rain sensor module assembly 110 is greatly simplified. Rain sensor mounting button 117 is adhered to the inner surface 11′ of windshield 12′, typically by the windshield manufacturer, and then rain sensor unit 122 is placed in opening 117 b and held in place and urged into optical contact with windshield 12′ by housing 114.
  • Referring the FIG. 5, a [0046] third embodiment 210 of the rain sensor module assembly is illustrated. Rain sensor module assembly 210 is of a similar construction to rain sensor module assembly 10 and includes a housing 214 which is directly mounted to the inner surface 11″ of windshield 12″. Rain sensor module assembly housing 214 is adhered to inner surface 11″ of windshield 12″ by a layer 218 of adhesive, for example an epoxy, a polyvinyl butyral, a urethane, or a silicone adhesive material or the like. Layer 218 is interposed between a windshield facing side 220 of housing 214 and windshield 12″. Preferably, layer 218 extends over at least a substantial portion of windshield facing side 220 of housing 214 and preferably terminates at or near the outer perimeter 214 a of housing 214. It should be understood, however, that discrete regions of adhesive layer may also be used to attach housing 214 to windshield 12″ , but this may be less desirable since it may detract from the aesthetic appearance of the rain sensor mounting.
  • Rain [0047] sensor module assembly 210 includes at least one rain sensor unit 222 and associated electronic circuitry, which is supported and positioned in housing 214 for viewing windshield 12″. Rain sensor unit 222 preferably comprises a rain sensor unit available from ITT Automotive Europe, GMBH of Frankfurt, Germany, and includes a detecting surface 224. Detecting surface 224 preferably comprises a resilient optical material, such as a silicone or a plasticized polymer, and which is preferably a high transmitter of visible and near-infrared radiation. As best seen in FIG. 6, detecting surface 224 of rain sensor unit 222 is positioned in and projects through an opening or port 226 provided in windshield facing side 220 of housing 214. Furthermore, detecting surface 224 projects through an opening 228 provided in layer 218 so that detecting surface 224 makes direct contact with inner surface 11″ of windshield 12″. Thus, rain sensor unit 222 is optically coupled with inner surface 11″ of windshield 12″. Alternately, detecting surface 224 of rain sensor unit 222 may be biased against and may contact the surface of adhesive layer 218 via opening 226 in housing 214. In this application, the detecting surface 224 of sensor unit 222 may have little or no resilience. Instead, the resiliency may be provided at the contact point with the adhesive layer 218. Therefore, in this case adhesive layer 218 is preferably selected from materials which are resilient or spring-like in their cured state, such as provided by polyvinyl butyral and silicone adhesive, or the like.
  • [0048] Housing 214 includes a back portion or member 230, which may comprise a removable cover 230 a which is secured to housing 214 by one or more fasteners, such as screws, clips, snaps, latches, or the like. Housing 214 and back member 230 are preferably made from a polymer material such as a nylon, ABS, engineering resin, a polyolefin such as polypropylene or similar material. Removal of cover 230 a permits access to rain sensor unit 222 and its associated circuitry for replacement or repair. Where back member 230 comprises a removable cover, housing 214 preferably includes an access opening 221 which is sufficiently large to permit removal of rain sensor unit 222 and its associated circuitry through the cabin facing side 214 b of housing 214. Alternatively, rain sensor module assembly 210 may comprise a unitary modular assembly that can be replaced as a unit.
  • Interposed between a portion of [0049] housing 214, for example back member 230, and rain sensor unit 222 is a biasing member 232 which urges detecting surface 224 of rain sensor unit 222 into direct contact with inner surface 11″ of windshield 12″ to thereby optically couple to and contact the windshield surface under the spring force of biasing member 232. Biasing member 232 preferably comprises a resilient member, such as a helical spring or urethane or plastic disc spring or the like. It should be understood that when detecting surface 224 makes contact with the outer surface of adhesive layer 218, biasing member 232 urges detecting surface 224 into contact with layer 218 to optically couple sensor 222 to windshield 12″.
  • As best seen in FIG. 4, a [0050] mirror assembly 40′, which is similar to the double ball joint interior mirror assembly 40 of the first embodiment, is detachably mounted to housing 214 by a mirror mount 42′. Mirror mount 42′ is of similar construction to mirror mount 42 and engages a mounting button 235, which is secured or formed on back portion 230 of housing 214. Reference is made to the first embodiment for materials and methods of forming or securing mounting button 235 to the housing 214.
  • Mirror mount [0051] 42′ engages the outer periphery of button 235 and provides a breakaway connection so that upon an impact, the interior mirror assembly will detach from button 235, thereby reducing the risk of injury to passengers in the vehicle. Similar to the first embodiment, interior mirror assembly 40′ includes a mirror housing 44′, which supports a mirror reflector element 46′ therein. In the illustrated embodiment, a conventional flip actuator mechanism is shown, but it should be understood that other actuators, including electrical actuators, may be included in housing 44′. Mirror housing 44′ is attached to mirror mount 42′ by a support arm 50′, preferably a double ball and socket support arm with a first ball socket joint 51 a′ between support arm 50′ and mirror mount 42′ and a second ball socket joint 51 b′ between support arm 50′ and housing 44′. In this manner, reflective element 46′ can be repositioned over a wide range of motion.
  • As described in reference to the first embodiment, detecting [0052] surface 224 of rain sensor unit 222 may be alternatively biased to contact adhesive layer 218. Preferably, the connection between detecting surface 224 and adhesive 218 is sufficiently resilient to absorb vibrations in windshield, which may be provided by adhesive layer 218, when adhesive layer 218 is selected from the group of adhesives that are resilient in their cured states as described in reference to the first embodiment, or by detecting surface 224 of rain sensor 222.
  • Optionally, [0053] module 210 may include a second rain sensor unit 222′, which is similarly supported in housing 214 and projects through a second port or opening 228′ provided on windshield facing side 214 a of housing 214. Furthermore, housing 214 preferably includes a second biasing member 232′, which urges rain sensor unit 222′ into optical contact with inner surface 11″of windshield 12″ for detecting moisture on the inner surface of windshield 12″. Second sensor unit 222′ can be electrically coupled to a car area network to control the defrost cycle or demisting cycle of the air system of the vehicle. Optionally, the rain sensor electrical drive can be electrically coupled to and/or share components with any electrical drive or circuitry already present in the mirror assembly 4′ such as available in automotive electrochromic rearview mirrors.
  • [0054] Rain sensor units 22, 122, 222 are preferably powered via electrically connections to the vehicle ignition system and/or its battery, which typically is twelve volts. Preferably, the signal outputs from rain sensor units 22, 122, 222 are directed to the vehicle windshield wiper controller or can be directed to a car area network such as described in U.S. patent application Ser. No. 08/679,681 entitled VEHICLE MIRROR DIGITAL INTERACTIVE MIRROR SYSTEM filed on Jul. 11, 1996 by O'Farrell et al., which is assigned to the Donnelly Corporation of Holland, Mich., the disclosure which is hereby incorporated by reference in its entirety. Similarly, where a second rain sensor is employed that detects moisture on the inner surface of the windshield, as described above, the second rain sensor can be electrically coupled to the car area network to control the defrost cycle or demisting cycle of the air system of the vehicle. Optionally, the rain sensor electrical drive can be electrically coupled to and/or share components with any electrical drive or circuitry already present in mirror assembly 40, 40′ such as available in automotive electrochromic rearview mirrors.
  • Rain [0055] sensor module assemblies 10, 110, 210 have many commercially attractive advantages. As mentioned previously, rain sensor mounting buttons 17 and 117 can be attached by the windshield manufacturer at the time of fabrication of the windshield and shipped to the automobile assembly plant fully assembled. Optionally, the shape and size of the outer solid portion 17 a or 117 a of rain sensor mounting button 17 or 117 may be the same as that of the mirror button 35 so that mirror assembly 40 or 40′ may mount directly onto rain sensor mounting button 17 or 117 in lieu of the rain sensor module assembly, which provides the automaker with greater freedom of choice to include or not to include a rain sensor unit in the vehicle. In the event that the rain sensor unit is omitted, a blank insert may be placed to plug opening 17 b or 117 b.
  • The size and dimensions of rain [0056] sensor mounting buttons 17, 117, rain sensor modules 22, 122, 222 and mirror mounts 42, 142, 242 are preferably generally commensurate in size so that the installation of a rain sensor module assembly 10, 110, or 210 is compact and unobtrusive. In preferred form, the footprint of rain sensor module assembly 10, 110, 210 is less than about four square inches. In a more preferred form, the footprint of rain sensor module assembly 10, 110, 210 is less than about two square inches. In a most preferred form, the footprint of rain sensor module assembly 10, 110, 210 is less than about one square inch.
  • As previously described and as shown in the various figures, it is desirable that the rain sensor mounting member attached to the windshield and the rearview mirror mounting button provided on the rain sensor module are generally aligned along a common axis when the rain sensor module is mounted to the vehicle in order to provide a mounting of a rearview mirror assembly to the rain sensor module that is generally coaxial with the mounting of the rain sensor module to the windshield. Such is shown in FIGS. 1 and 2 where the rain [0057] sensor mounting button 17, the rain sensor unit 22, detecting surface 24 and mirror mounting button 35 are substantially aligned along common axis AA, thus minimizing the footprint presented by the assembly when installed to the windshield in the vehicle.
  • Optionally, a ceramic black frit layer, as is commonly known in the windshield fabrication art, can be used on the [0058] inner surface 11, 11′, 11″ of windshield 12, 12′, 12″ to hide the attachment of location of rain sensor module 10, 110, 210. However, the center portion of such a ceramic layer should include a central opening or at least provide efficient transmission for the output of the light emitters and the rain sensor unit at the point of contact a detecting surface 24, 124, 224 to windshield 12, 12′, 12″ or to the adhesive layer 18, 118, 218.
  • It should be understood that rain [0059] sensor module assembly 10, 110, 210 can accommodate a wide variety of mirror assemblies. Therefore, rain sensor module assemblies 10, 110, 210 have broad application and may be used in most countries. Furthermore, rain sensor module assemblies 10, 110, 210 permit the automaker to have essentially unlimited choices of mirror supplier. Moreover, rain sensor module assemblies 10, 110, 210 do not increase the weight of the respective mirror assembly and, therefore, do not negatively impact the vibration characteristics of the mirror assembly. In addition, as described above, rain sensor module assemblies 10, 110, 210 may optionally include a second rain sensor unit for detecting moisture on the inner surface of the windshield. In this embodiment, the second rain sensor may be similarly optically coupled to the inner surface of the windshield and further, coupled to the controls of the blower of the defrost and ventilation system of the vehicle, for example via a car area network, in order to activate the blower to demist the inner surface of the windshield.
  • Also, while illustrated herein is a mount for application to a vehicle windshield, the concept of this invention can also be beneficially applied to other glass or other transparent panels. Also, aspects of this invention can be applied to a variety of rain sensor types including windshield contacting units where the detecting surface contacts the windshield surface, and non-windshield contacting units, such as are described in PCT Application WO 94/27262 published Nov. 24, 1994 to Dennis Hegyl, the disclosure of which is incorporated by reference in its entirety herein, where the detecting surface of the rain sensor does not contact the windshield surface, and is stood-off therefrom. Also, the rain sensor module may optionally accommodate sensor/circuit/displays for vehicle functions and accessories other than for a moisture sensing function. For example, a compass sensor such as a flux gate, magnetoinductive, magnetoresistive or magnetocapacitive sensor and/or a compass display can be accommodated at, within or on the rain sensor module. Other sensors and/or displays can be similarly accommodated such as of vehicle altitude and/or incline (of particular interest in sport utility vehicles), seat occupancy, air bag activation enable/disable, and headlamp intensity/daylight intensity photosensors, and their like. Optionally, antennae, transmitters and receivers, along with any associated displays and sensors, for geographic positioning satellite (GPS) systems, pagers, cellular phone systems, pagers, cellular phone systems, ONSTAR systems, security systems, tire monitoring systems, remote fueling systems where vehicle fueling and/or payment/charging for fuel is remotely achieved, remote keyless entry systems, garage and/or security door opener systems, INTERNET interfaces, vehicle tracking systems, remote car door unlock systems, e-mail systems, toll booth interactions systems, highway information systems, traffic warning systems, home access systems and their like can be mounted at, within or on the rain sensor module, or at, within or on the rearview mirror attached thereto, or at, within or on a pod attached to the rain sensor module or to the rearview mirror attached thereto. Therefore, it will be understood that the embodiments shown in the drawings and described above are merely for illustrative purposes, and are not intended to limit the scope of the invention which is defined by claims which follow. [0060]

Claims (78)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A rain sensor mounting assembly for mounting a rain sensor to a vehicle windshield, said assembly comprising:
a first mounting member adapted to mount to the vehicle windshield and to receive a rain sensor module, said first mounting member positioning said rain sensor module adjacent an inner surface of the vehicle windshield;
said rain sensor module comprising a housing and a rain sensor having a detecting surface, said rain sensor being contained in said module, said rain sensor module being adapted to engage said first mounting member for mounting said rain sensor module to the windshield;
a biasing member provided in said rain sensor module, said biasing member for urging said detecting surface of said rain sensor to optically couple to the inner surface of the vehicle windshield for detecting moisture on the outer surface of the vehicle windshield; and
a second mounting member provided on said rain sensor module for releasably mounting a rearview mirror assembly to said module.
2. The rain sensor mounting assembly of
claim 1
, wherein said first mounting member and said second mounting member are generally aligned along a common axis when said rain sensor module is mounted to the vehicle windshield in order to provide a mounting of a rearview mirror assembly to said module generally coaxial with the mounting of said module to the windshield.
3. The rain sensor mounting assembly of
claim 1
, wherein said first mounting member encompasses an opening, and wherein said biasing member urges said detecting surface of said rain sensor to optically couple to the inner surface of the windshield at said opening of said first mounting member.
4. The rain sensor mounting assembly of
claim 3
, wherein said first mounting member comprises an annular member and with said opening comprising a central opening in said annular member.
5. The rain sensor mounting assembly of
claim 1
, wherein said second mounting member provides a breakaway mounting for the rearview mirror assembly to said rain sensor module.
6. The rain sensor mounting assembly of
claim 5
, wherein said second mounting member comprises a mirror mounting button fabricated of one of a metal and a polymer.
7. The rain sensor mounting assembly of
claim 6
, wherein said metal comprises one of a steel, a sintered steel, an aluminum, a zinc, a titanium, and a nickel material.
8. The rain sensor mounting assembly of
claim 6
, wherein said polymer comprises one of a nylon, an ABS, a polyolefin, and an engineering resin material.
9. The rain sensor mounting assembly of
claim 5
, wherein said rearview mirror assembly comprises a double pivot joint support arm.
10. The rain sensor mounting assembly of
claim 1
, wherein said biasing member comprises a resilient polymer material.
11. The rain sensor mounting assembly of
claim 10
, wherein said resilient polymer material comprises one of a rubber, a silicone, a urethane, an elastomeric, and a vinyl material.
12. The rain sensor mounting assembly of
claim 10
, wherein said resilient polymer material comprises an internal structure of said housing.
13. The rain sensor mounting assembly of
claim 1
, wherein said detecting surface of said rain sensor comprises a resilient optical material.
14. The rain sensor mounting assembly of
claim 13
, wherein said optical material comprises one of a silicone and a plasticized polymer material.
15. The rain sensor mounting assembly of
claim 1
wherein said rain sensor includes a light emitter and a light detector for detecting presence of moisture on the vehicle windshield.
16. The rain sensor mounting assembly of
claim 1
, wherein said rain sensor module includes electronic circuitry for generating an electrical signal indicative of detection of moisture on the vehicle windshield.
17. The rain sensor mounting assembly of
claim 16
, wherein said rain sensor comprises electronic circuitry.
18. The rain sensor mounting assembly of
claim 1
, wherein said housing is fabricated of one of a rigid metal and a rigid polymer material.
19. The rain sensor mounting assembly of
claim 1
, wherein said housing is fabricated of a polymer material and said second mounting member is fabricated of a metal material.
20. The rain sensor mounting assembly of
claim 1
, wherein said second mounting member is provided on said housing.
21. The rain sensor mounting assembly of
claim 20
, wherein said second mounting member is provided on said housing by an integral molding operation.
22. The rain sensor mounting assembly of
claim 1
, wherein said second mounting member and said rain sensor module comprise a unitary construction.
23. The rain sensor mounting assembly of
claim 22
, wherein said unitary construction further comprises said rain sensor.
24. The rain sensor mounting assembly of
claim 1
, wherein said rain sensor module received on said first mounting member has a footprint less than about four square inches.
25. The rain sensor mounting assembly of
claim 24
, wherein said rain sensor received on said first mounting member has a footprint less than about two square inches.
26. The rain sensor mounting assembly of
claim 1
, wherein said first mounting member includes a layer of adhesive for mounting said first mounting member to the vehicle windshield.
27. The rain sensor mounting assembly of
claim 26
, wherein said adhesive comprises one of a polyvinyl butyral material, an epoxy material, a urethan material, an acrylic material and a silicone material.
28. The rain sensor mounting assembly of
claim 26
, wherein said layer of adhesive includes an opening whereby said detecting surface of said rain sensor directly contacts the vehicle windshield.
29. The rain sensor mounting assembly of
claim 26
, wherein said detecting surface of said rain sensor contacts said layer.
30. The rain sensor mounting assembly of
claim 1
, wherein said biasing member comprises a spring element.
31. The rain sensor mounting assembly of
claim 30
, wherein said spring element comprises one of a helical spring element and a leaf spring element.
32. The rain sensor mounting assembly of
claim 1
wherein said biasing member comprises a flexible polymer.
33. The rain sensor mounting assembly of
claim 1
, wherein said biasing member comprises a urethane disc.
34. The rain sensor mounting assembly of
claim 1
, wherein said housing substantially covers and conceals said first mounting member from view from the interior cabin of the vehicle.
35. The rain sensor mounting assembly of
claim 1
, wherein said module further includes a second sensor for detecting moisture on the inner surface of the vehicle windshield.
36. The rain sensor mounting assembly of
claim 1
, wherein said second mounting member provided on said rain sensor module is adapted for releasably mounting a prismatic rearview mirror assembly to said rain sensor module.
37. The rain sensor mounting assembly of
claim 1
, wherein said second mounting member provided on said rain sensor module is adapted for releasably mounting an electrochromic rearview mirror assembly to said rain sensor module.
38. A rain sensor module assembly for attachment to a vehicle windshield, said rain sensor module assembly comprising:
a housing, said housing having a first end adapted to releasably attach to a support mounted to the inner surface of the vehicle windshield;
a rain sensor having a detecting surface, said rain sensor contained in said housing;
a biasing member provided in said module, said biasing member for urging said detecting surface of said rain sensor to optically couple to the inner surface of the vehicle windshield for detecting moisture on the outer surface of the vehicle windshield; and
said housing having an opposing second end provided with a mirror mounting button for releasably mounting a rearview mirror assembly to said module.
39. The rain sensor module assembly according to
claim 38
, wherein said first end includes a layer of adhesive for mounting said housing to the vehicle windshield.
40. The rain sensor module assembly according to
claim 39
, wherein said adhesive comprises one of a polyvinyl butyral material, an epoxy material, a urethane material, an acrylate material, an acrylic material, and a silicone adhesive material.
41. The rain sensor module assembly according to
claim 39
, wherein said layer includes an opening, said rain sensor extending through said opening of said layer to position said detecting surface of said rain sensor for directly contacting the windshield.
42. The rain sensor module assembly of
claim 39
, wherein said detecting surface of said rain sensor contacts said layer.
43. The rain sensor module assembly to
claim 38
, wherein said mirror mounting button is integrally formed with said housing.
44. The rain sensor module assembly according to
claim 38
, wherein said mirror mounting button is releasably secured to said housing.
45. The rain sensor module assembly of
claim 38
, wherein said biasing member comprises one of a helical spring element and a leaf spring element.
46. The rain sensor module assembly according to
claim 38
, wherein said biasing member comprises a urethane disc.
47. The rain sensor module assembly of
claim 38
wherein said mirror mounting button is adapted for releasably mounting a prismatic rearview mirror assembly to said module assembly.
48. The rain sensor module assembly of
claim 38
wherein mirror mounting button is adapted for releasably mounting an electrochromic rearview mirror assembly to said module assembly.
49. A rain sensor mounting assembly comprising:
a mounting member encompassing an opening, said mounting member being adapted to mount on an inner surface of a vehicle windshield;
a housing having a first end adapted to releasably attach to said mounting member;
a rain sensor having a detecting surface, said rain sensor contained in said housing;
a biasing member provided in said housing, said biasing member for urging said detecting surface of said rain sensor to optically couple to the inner surface of the vehicle windshield for detecting moisture on an outer surface of the vehicle windshield; and
said housing having an opposing second end, said second end including a mirror mounting button for releasably mounting a rearview mirror assembly to said rain sensor mounting assembly.
50. The rain sensor mounting according to
claim 49
wherein said mounting member includes a layer of adhesive for mounting said mounting member to the vehicle windshield.
51. The rain sensor mounting according to
claim 49
wherein said mounting member includes an outer peripheral portion, said housing releasably engaging said peripheral portion of said mounting member.
52. The rain sensor mounting according to
claim 50
, wherein said layer of adhesive includes a transverse opening, said rain sensor extending through said transverse opening of said layer of adhesive for directly contacting the inner surface of the windshield.
53. The rain sensor mounting according to
claim 49
, wherein said housing includes a footprint, said footprint being less than the about four square inches.
54. The rain sensor mounting according to
claim 49
, wherein said housing includes a footprint, said footprint being less than the about two square inches.
55. The rain sensor mounting according to
claim 49
, wherein said housing includes a footprint, said footprint being less than the about one square inch.
56. The rain sensor mounting according to
claim 49
, wherein said first end of said housing substantially covers and conceals said mounting member.
57. The rain sensor mounting assembly of
claim 49
, wherein said mirror mounting button is adapted for releasably mounting a prismatic rearview mirror assembly to said module assembly to said rain sensor mount assembly.
58. The rain sensor mounting assembly of
claim 49
, wherein said mirror mounting button is adapted for releasably mounting an electrochromic rearview mirror assembly to said rain sensor mount assembly.
59. A rain sensor mounting assembly for mounting a rain sensor to a vehicle windshield, said rain sensor mounting comprising:
a mounting member adapted for mounting to the inner surface of the vehicle windshield, said mounting member encompassing an opening;
said mounting member adapted to releasably receive a rain sensor module, said rain sensor module comprising a rain sensor having a detecting surface and a housing provided with a mirror mounting button for releasably mounting a rearview mirror assembly to said module, said detecting surface of said rain sensor for optically coupling with the inner surface of the inner surface of the vehicle windshield at said opening of said mounting member when mounted in the vehicle for detecting moisture on the outer surface of the vehicle windshield;
said mounting member and said mirror mounting button generally aligned along a common axis when said module is received by said mounting member;
said rearview mirror assembly comprising a rearview mirror housing including a mirror element therein, a support arm connected to said rearview mirror housing, said support arm terminating in a mirror mount adapted to provide a break-away connection to said mirror mounting button of said rain sensor module; and
wherein said support arm is connected to said rearview mirror housing by a pivot joint to permit repositioning of said reflective element and wherein said support arm is connected to said mirror mounting button by a second pivot joint to permit a further range of positions for said rearview mirror reflective element.
60. The rain sensor mounting assembly according to
claim 59
, wherein said mirror mounting button and said housing comprise a unitary member.
61. The rain sensor mounting assembly according to
claim 59
, wherein said mounting member includes a layer of adhesive for mounting said housing to the vehicle windshield.
62. The rain sensor mounting assembly according to
claim 61
, wherein said adhesive comprises one of a polyvinyl butyral material, an epoxy material, a urethane material, an acrylate material, an acrylic material, and a silicone material.
63. The rain sensor mounting assembly according to
claim 61
, wherein said layer includes a transverse opening, said rain sensor extending through said transverse opening whereby said detecting surface of said rain sensor is positioned for directly contacting the windshield.
64. The rain sensor mounting assembly according to
claim 59
, wherein said rain sensor module housing includes a footprint, said footprint being less than about four square inches.
65. The rain sensor mounting assembly according to
claim 59
, wherein said second side of said rain sensor module housing substantially covers and conceals said mounting member.
66. The rain sensor mounting assembly according to
claim 59
, wherein said mounting member comprises an annular member having a central opening defining said transverse opening, said rain sensor module housing being secured to said annular member, and said rain sensor being positioned in said central opening and being urged for optically coupling said detecting surface of said rain sensor to the vehicle windshield for detecting moisture on an outer surface of the vehicle windshield.
67. The rain sensor mounting assembly of
claim 59
, wherein said rearview mirror assembly comprises a prismatic rearview mirror assembly.
68. The rain sensor mounting assembly of
claim 59
, wherein said rearview mirror assembly comprises an electrochromic rearview mirror assembly.
69. A rain sensor assembly for attachment to a vehicle windshield, said rain sensor assembly comprising:
a rain sensor module housing a rain sensor, said rain sensor having a detecting surface, said detecting surface being exposed at a first end of said module so as to optically couple to the inner surface of the vehicle windshield when said module is mounted in the vehicle for detecting moisture on the outer surface of the vehicle windshield;
a mirror mounting button positioned on said module at a second end opposing said first end; and
wherein said detecting surface and said mirror mounting button are substantially aligned along a common axis when said rain sensor module is mounted in the vehicle.
70. The rain sensor assembly according to
claim 69
, wherein said rain sensor module includes a footprint, said footprint being less than about four square inches.
71. The rain sensor assembly according to
claim 69
, wherein said rain sensor module includes a footprint, said footprint being less than about two square inches.
72. The rain sensor assembly according to
claim 69
, wherein said rain sensor module includes a footprint, said footprint being less than about one square inch.
73. The rain sensor assembly according to
claim 69
, further comprising a prismatic rearview mirror assembly, said prismatic rearview mirror assembly releasably engaging said mirror mounting button.
74. The rain sensor assembly according to
claim 73
, further comprising a support arm supporting said prismatic rearview mirror assembly on said rain sensor module housing, said support arm including a first ball and socket connection to said prismatic rearview mirror assembly and a second ball and socket connection to said mirror mounting button.
75. The rain sensor assembly of
claim 69
, further comprising an electrochromic rearview mirror assembly, said electrochromic rearview mirror assembly releasably engaging said mirror mounting button.
76. The rain sensor assembly according to
claim 75
, further comprising a support arm supporting said electrochromic rearview mirror assembly on said rain sensor module housing, said support arm including a first ball and socket connection to said electrochromic rearview mirror assembly and a second ball and socket connection to said mirror mounting button.
77. The rain sensor assembly according to
claim 69
, wherein said module is adapted to attach a rain sensor mounting member, said rain sensor mounting member for attaching to the inner surface of the windshield.
78. The rain sensor assembly according to
claim 77
, wherein said rain sensor mounting module comprises a member having an opening, said rain sensor module housing being secured to said rain sensor mounting member, and said rain sensor being positioned in said opening and being urged for optically coupling said detecting surface of said rain sensor to be vehicle windshield for detecting moisture on an outer surface of the windshield.
US09/860,361 1998-01-07 2001-05-18 Rain sensor mount for use in a vehicle Expired - Lifetime US6341523B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/860,361 US6341523B2 (en) 1998-01-07 2001-05-18 Rain sensor mount for use in a vehicle
US10/023,162 US6516664B2 (en) 1998-01-07 2001-12-17 Rain sensor mount for use in a vehicle
US10/348,514 US6968736B2 (en) 1998-01-07 2003-01-21 Rain sensor mounting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/003,966 US6250148B1 (en) 1998-01-07 1998-01-07 Rain sensor mount for use in a vehicle
US09/860,361 US6341523B2 (en) 1998-01-07 2001-05-18 Rain sensor mount for use in a vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/003,966 Continuation US6250148B1 (en) 1997-08-25 1998-01-07 Rain sensor mount for use in a vehicle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/023,162 Continuation US6516664B2 (en) 1998-01-07 2001-12-17 Rain sensor mount for use in a vehicle

Publications (2)

Publication Number Publication Date
US20010018847A1 true US20010018847A1 (en) 2001-09-06
US6341523B2 US6341523B2 (en) 2002-01-29

Family

ID=21708444

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/003,966 Expired - Fee Related US6250148B1 (en) 1997-08-25 1998-01-07 Rain sensor mount for use in a vehicle
US09/860,361 Expired - Lifetime US6341523B2 (en) 1998-01-07 2001-05-18 Rain sensor mount for use in a vehicle
US10/023,162 Expired - Fee Related US6516664B2 (en) 1998-01-07 2001-12-17 Rain sensor mount for use in a vehicle
US10/348,514 Expired - Fee Related US6968736B2 (en) 1998-01-07 2003-01-21 Rain sensor mounting system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/003,966 Expired - Fee Related US6250148B1 (en) 1997-08-25 1998-01-07 Rain sensor mount for use in a vehicle

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/023,162 Expired - Fee Related US6516664B2 (en) 1998-01-07 2001-12-17 Rain sensor mount for use in a vehicle
US10/348,514 Expired - Fee Related US6968736B2 (en) 1998-01-07 2003-01-21 Rain sensor mounting system

Country Status (3)

Country Link
US (4) US6250148B1 (en)
EP (1) EP0928723B1 (en)
DE (1) DE69826101T2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232773A1 (en) * 2003-05-20 2004-11-25 Parker Brian R. Rearview mirror system for accommodating a rain sensor
US20070222997A1 (en) * 2006-03-23 2007-09-27 Denso Corporation Raindrop detection device
US20080121034A1 (en) * 2004-09-15 2008-05-29 Magna Donnelly Electronics Naas Limited Environmental Control System for a Vehicle
CN104986115A (en) * 2006-03-01 2015-10-21 大众汽车有限公司 Holding device for an interior vehicle mirror
JP2016164041A (en) * 2015-03-06 2016-09-08 市光工業株式会社 Vehicle inside mirror device
EP3279043A1 (en) 2016-08-05 2018-02-07 MEAS France Sensor mounting system
CN108591779A (en) * 2018-05-02 2018-09-28 郑州天点科技有限公司 A kind of camera height adjustment device
CN109000129A (en) * 2018-09-13 2018-12-14 泰州市创新电子有限公司 A kind of display bracket
WO2019108986A1 (en) * 2017-11-30 2019-06-06 Michael Munoz Internet of things (iot) enabled wireless sensor system enabling process control, predictive maintenance of electrical distribution networks, liquid and gas pipelines and monitoring of air pollutants including nuclear, chemical, and biological agents using attached and/or embedded passive electromagnetic sensors

Families Citing this family (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US5877897A (en) 1993-02-26 1999-03-02 Donnelly Corporation Automatic rearview mirror, vehicle lighting control and vehicle interior monitoring system using a photosensor array
US6822563B2 (en) 1997-09-22 2004-11-23 Donnelly Corporation Vehicle imaging system with accessory control
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5668663A (en) 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US6891563B2 (en) 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US7655894B2 (en) 1996-03-25 2010-02-02 Donnelly Corporation Vehicular image sensing system
ES2202895T3 (en) * 1997-08-19 2004-04-01 Valeo Wischersysteme Gmbh SENSOR COUPLED TO A MOON WITH A SILICONE GEL.
US6326613B1 (en) 1998-01-07 2001-12-04 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
US8294975B2 (en) 1997-08-25 2012-10-23 Donnelly Corporation Automotive rearview mirror assembly
US6124886A (en) 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
US6172613B1 (en) 1998-02-18 2001-01-09 Donnelly Corporation Rearview mirror assembly incorporating vehicle information display
US6250148B1 (en) 1998-01-07 2001-06-26 Donnelly Corporation Rain sensor mount for use in a vehicle
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6690268B2 (en) 2000-03-02 2004-02-10 Donnelly Corporation Video mirror systems incorporating an accessory module
US6445287B1 (en) * 2000-02-28 2002-09-03 Donnelly Corporation Tire inflation assistance monitoring system
US6278377B1 (en) 1999-08-25 2001-08-21 Donnelly Corporation Indicator for vehicle accessory
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
US6329925B1 (en) 1999-11-24 2001-12-11 Donnelly Corporation Rearview mirror assembly with added feature modular display
US6477464B2 (en) 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
US6420975B1 (en) 1999-08-25 2002-07-16 Donnelly Corporation Interior rearview mirror sound processing system
US7769620B1 (en) 1998-09-01 2010-08-03 Dennis Fernandez Adaptive direct transaction for networked client group
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
DE29906013U1 (en) * 1999-04-01 1999-06-17 Reitter & Schefenacker GmbH & Co. KG, 73730 Esslingen Interior rear view mirror for vehicles, in particular for motor vehicles
US7370983B2 (en) 2000-03-02 2008-05-13 Donnelly Corporation Interior mirror assembly with display
WO2007053710A2 (en) 2005-11-01 2007-05-10 Donnelly Corporation Interior rearview mirror with display
US7480149B2 (en) 2004-08-18 2009-01-20 Donnelly Corporation Accessory module for vehicle
US7167796B2 (en) 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
US6318870B1 (en) * 2000-03-23 2001-11-20 Donnelly Corporation Toggle assembly for rearview mirror
US6396408B2 (en) 2000-03-31 2002-05-28 Donnelly Corporation Digital electrochromic circuit with a vehicle network
US6698905B1 (en) * 2000-05-16 2004-03-02 Donnelly Corporation Memory mirror system for vehicle
KR100371547B1 (en) * 2000-12-05 2003-02-07 현대자동차주식회사 Structure for assembling a rain sensor cover and inside mirror stay cover
US7255451B2 (en) 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
ATE363413T1 (en) 2001-01-23 2007-06-15 Donnelly Corp IMPROVED VEHICLE LIGHTING SYSTEM
US7581859B2 (en) 2005-09-14 2009-09-01 Donnelly Corp. Display device for exterior rearview mirror
DE10127070B4 (en) * 2001-05-23 2005-12-08 Magna Reflex Holding Gmbh Interior mirror arrangement
US6882287B2 (en) 2001-07-31 2005-04-19 Donnelly Corporation Automotive lane change aid
US7697027B2 (en) 2001-07-31 2010-04-13 Donnelly Corporation Vehicular video system
JP3679041B2 (en) * 2001-09-17 2005-08-03 株式会社青山製作所 Resin bracket and opening / closing mechanism using the same
KR20030032472A (en) * 2001-10-18 2003-04-26 기아자동차주식회사 One Body Cover of Room Mirror and Rain Sensor of Front Wind Shield Glass for Passenger Car
FR2831863B1 (en) * 2001-11-07 2004-04-02 Saint Gobain FIXING BASE FOR AN ACCESSORY, ON WINDOWS, PARTICULARLY AUTOMOBILE
WO2003065084A1 (en) 2002-01-31 2003-08-07 Donnelly Corporation Vehicle accessory module
US7011282B2 (en) * 2002-02-05 2006-03-14 Mirror Lite Bell mount for mounting exterior mirror to a vehicle
US6802205B2 (en) * 2002-02-28 2004-10-12 Ppg Industries Ohio, Inc. Moisture detection system and method of use thereof
DE10211443B4 (en) * 2002-03-15 2006-03-16 Daimlerchrysler Ag Sensor-mirror assembly on a windshield
US6918674B2 (en) 2002-05-03 2005-07-19 Donnelly Corporation Vehicle rearview mirror system
AU2003225228A1 (en) 2002-05-03 2003-11-17 Donnelly Corporation Object detection system for vehicle
US7329013B2 (en) 2002-06-06 2008-02-12 Donnelly Corporation Interior rearview mirror system with compass
US20060061008A1 (en) 2004-09-14 2006-03-23 Lee Karner Mounting assembly for vehicle interior mirror
EP1514246A4 (en) 2002-06-06 2008-04-16 Donnelly Corp Interior rearview mirror system with compass
US6726340B1 (en) * 2002-06-14 2004-04-27 Cornelis Visser Rear view mirror apparatus
DE10235368A1 (en) * 2002-08-02 2004-02-19 Robert Bosch Gmbh Device for automatically switching lighting devices, in particular for a motor vehicle
US10144353B2 (en) 2002-08-21 2018-12-04 Magna Electronics Inc. Multi-camera vision system for a vehicle
EP1543358A2 (en) 2002-09-20 2005-06-22 Donnelly Corporation Mirror reflective element assembly
US7253723B2 (en) * 2003-05-19 2007-08-07 Donnelly Corporation Mirror assembly
US7310177B2 (en) 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
DE10256243A1 (en) * 2002-12-02 2004-06-09 Robert Bosch Gmbh Surface mount sensor and method of surface mount sensor
DE10256259A1 (en) * 2002-12-03 2004-06-24 Robert Bosch Gmbh Sensor device, in particular rain sensor and assembly method for a sensor device
US7204130B2 (en) * 2002-12-03 2007-04-17 Ppg Industries Ohio, Inc. Windshield moisture detector
US7296461B2 (en) * 2002-12-03 2007-11-20 Ppg Industries Ohio, Inc. Temperature compensated windshield moisture detector
EP1579412B1 (en) * 2002-12-20 2007-09-12 Donnelly Corporation Accessory system for vehicle
US7289037B2 (en) 2003-05-19 2007-10-30 Donnelly Corporation Mirror assembly for vehicle
US7420756B2 (en) 2003-05-20 2008-09-02 Donnelly Corporation Mirror reflective element
DE10328468B4 (en) * 2003-06-25 2017-06-08 Kronowetter Kunststoff- Und Metalltechnik Gmbh Mirror adhesive plate for fixing an interior mirror to a window pane of a motor vehicle
DE10336972A1 (en) * 2003-08-12 2005-03-10 Hella Kgaa Hueck & Co Electrical connection for a vehicle optical rain sensor comprises printed tracks that run along the inside surface of the windscreen from the sensor to the windscreen edge
US7446924B2 (en) 2003-10-02 2008-11-04 Donnelly Corporation Mirror reflective element assembly including electronic component
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
KR200343556Y1 (en) * 2003-12-09 2004-03-02 (주)씨에이치테크 Multi-functional attaching member in automobil
US10664115B2 (en) 2004-01-09 2020-05-26 Donnelly Corporation Vehicular vision system with head up display
US7526103B2 (en) 2004-04-15 2009-04-28 Donnelly Corporation Imaging system for vehicle
US20060006701A1 (en) * 2004-07-06 2006-01-12 Jason Wells System and method for rain detection and automatic operation of power roof and power windows
DE102004032749B3 (en) * 2004-07-07 2006-01-05 A. Raymond & Cie Device for attaching a rain sensor to a carrier
US7881496B2 (en) 2004-09-30 2011-02-01 Donnelly Corporation Vision system for vehicle
US7263875B2 (en) * 2004-10-11 2007-09-04 Ppg Industries Ohio, Inc. Multi-layer windshield moisture detector
WO2006063827A1 (en) 2004-12-15 2006-06-22 Magna Donnelly Electronics Naas Limited An accessory module system for a vehicle window
US7720580B2 (en) 2004-12-23 2010-05-18 Donnelly Corporation Object detection system for vehicle
ATE517368T1 (en) 2005-05-16 2011-08-15 Donnelly Corp VEHICLE MIRROR ARRANGEMENT WITH CHARACTER ON THE REFLECTIVE PART
US7527403B2 (en) * 2005-06-14 2009-05-05 Donnelly Corp. Mirror assembly for vehicle
US11242009B2 (en) 2005-07-06 2022-02-08 Donnelly Corporation Vehicular exterior mirror system with blind spot indicator
US11498487B2 (en) 2005-07-06 2022-11-15 Magna Mirrors Of America, Inc. Vehicular exterior mirror system with blind spot indicator
DE102005042961A1 (en) * 2005-09-09 2007-03-22 Hella Kgaa Hueck & Co. Device for fixing an interior mirror to a windscreen of a motor vehicle and interior mirror assembly
US9371032B2 (en) 2006-01-10 2016-06-21 Guardian Industries Corp. Moisture sensor and/or defogger with Bayesian improvements, and related methods
US7551095B2 (en) * 2006-01-10 2009-06-23 Guardian Industries Corp. Rain sensor with selectively reconfigurable fractal based sensors/capacitors
US7551094B2 (en) 2006-01-10 2009-06-23 Guardian Industries Corp. Rain sensor with fractal capacitor(s)
US20070188122A1 (en) * 2006-02-16 2007-08-16 Denso International America, Inc. Rain sensing automatic power windows
JP4816212B2 (en) 2006-04-10 2011-11-16 日産自動車株式会社 Glass temperature detection device, window fogging detection device, vehicle air conditioner, and window fogging detection method
WO2007124875A1 (en) * 2006-04-26 2007-11-08 Richard Fritz Gmbh + Co. Kg Method of mating a holder to a disc and means of implementing the method
DE102006035184A1 (en) * 2006-07-29 2008-02-07 Preh Gmbh Modular sensor unit for a motor vehicle
US7972045B2 (en) 2006-08-11 2011-07-05 Donnelly Corporation Automatic headlamp control system
US7722199B2 (en) * 2006-08-23 2010-05-25 Donnelly Corporation Vehicle interior rearview mirror assembly with actuator
US11890991B2 (en) 2006-10-24 2024-02-06 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element
US8058977B2 (en) 2006-10-24 2011-11-15 Donnelly Corporation Exterior mirror having a display that can be viewed by a host driver or drivers of other vehicles
US7944371B2 (en) 2007-11-05 2011-05-17 Magna Mirrors Of America, Inc. Exterior mirror with indicator
US8013780B2 (en) 2007-01-25 2011-09-06 Magna Electronics Inc. Radar sensing system for vehicle
US7748856B2 (en) 2007-05-23 2010-07-06 Donnelly Corporation Exterior mirror element with integral wide angle portion
DE102007027071B4 (en) * 2007-06-12 2019-09-12 Bcs Automotive Interface Solutions Gmbh Method and sensor for detecting wetting events on a disk
US7914187B2 (en) 2007-07-12 2011-03-29 Magna Electronics Inc. Automatic lighting system with adaptive alignment function
US8786704B2 (en) 2007-08-09 2014-07-22 Donnelly Corporation Vehicle mirror assembly with wide angle element
US8017898B2 (en) 2007-08-17 2011-09-13 Magna Electronics Inc. Vehicular imaging system in an automatic headlamp control system
US8451107B2 (en) 2007-09-11 2013-05-28 Magna Electronics, Inc. Imaging system for vehicle
WO2009046268A1 (en) 2007-10-04 2009-04-09 Magna Electronics Combined rgb and ir imaging sensor
DE102007049256A1 (en) * 2007-10-15 2009-04-23 Daimler Ag Multifunction sensor system for the detection of precipitation and environmental detection in vehicles
US7866850B2 (en) * 2008-02-26 2011-01-11 Journée Lighting, Inc. Light fixture assembly and LED assembly
DE102008011871A1 (en) 2008-02-29 2009-09-03 Volkswagen Ag Inner mirror base arrangement for motor vehicle, comprises panel support, mirror base and sensor, and panel support with panel connection is placed at panel of motor vehicle, and mirror base is connected with panel support
US8154418B2 (en) 2008-03-31 2012-04-10 Magna Mirrors Of America, Inc. Interior rearview mirror system
ITMI20081038A1 (en) * 2008-06-06 2009-12-07 Selle Italia Srl MULTIFUNCTIONAL DEVICE FOR VEHICLES
US20100085653A1 (en) * 2008-09-15 2010-04-08 Magna Mirrors Of America, Inc. Mirror assembly for vehicle
US8491137B2 (en) 2008-09-19 2013-07-23 Magna Mirrors Of America, Inc. Vehicle mirror assembly with wide angle element
US7837173B2 (en) * 2008-10-10 2010-11-23 Gm Global Technology Operations, Inc. Rearview mirror bracket
US8465161B2 (en) 2008-10-14 2013-06-18 Magna Mirrors Of America, Inc. Interior rearview mirror assembly with button module
US9487144B2 (en) 2008-10-16 2016-11-08 Magna Mirrors Of America, Inc. Interior mirror assembly with display
EP2179892A1 (en) 2008-10-24 2010-04-28 Magna Electronics Europe GmbH & Co. KG Method for automatic calibration of a virtual camera
US8570374B2 (en) 2008-11-13 2013-10-29 Magna Electronics Inc. Camera for vehicle
US8964032B2 (en) 2009-01-30 2015-02-24 Magna Electronics Inc. Rear illumination system
WO2010099416A1 (en) 2009-02-27 2010-09-02 Magna Electronics Alert system for vehicle
US8060288B2 (en) * 2009-03-20 2011-11-15 Toyota Motor Engineering & Manufacturing North America, Inc. Control system and method to inhibit automatic transmission downshifting during trailer sway
WO2010111173A1 (en) 2009-03-23 2010-09-30 Magna Mirrors Of America, Inc. Interior mirror assembly with adjustable mounting assembly
US20100266326A1 (en) * 2009-04-21 2010-10-21 Chuang Cheng-Hua Mark-erasable pen cap
US8376595B2 (en) 2009-05-15 2013-02-19 Magna Electronics, Inc. Automatic headlamp control
US8965645B2 (en) * 2009-06-25 2015-02-24 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for automated control of transmission ratio change
US9495876B2 (en) 2009-07-27 2016-11-15 Magna Electronics Inc. Vehicular camera with on-board microcontroller
US8874317B2 (en) 2009-07-27 2014-10-28 Magna Electronics Inc. Parking assist system
WO2011019945A1 (en) 2009-08-12 2011-02-17 Journee Lighting, Inc. Led light module for use in a lighting assembly
WO2011028686A1 (en) 2009-09-01 2011-03-10 Magna Mirrors Of America, Inc. Imaging and display system for vehicle
US20110068809A1 (en) * 2009-09-18 2011-03-24 Rainmaker Holding Company System and method for determining moisture content in a bale of hay
US8851690B2 (en) 2009-10-27 2014-10-07 Magna Mirrors Of America, Inc. Mounting assembly for vehicle interior mirror
WO2011085489A1 (en) 2010-01-13 2011-07-21 Magna Electronics Inc. Vehicular camera and method for periodic calibration of vehicular camera
US8585551B2 (en) * 2010-01-27 2013-11-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for adaptive continuously variable transmission gear ratio control
US8890955B2 (en) 2010-02-10 2014-11-18 Magna Mirrors Of America, Inc. Adaptable wireless vehicle vision system based on wireless communication error
US8655569B2 (en) * 2010-03-02 2014-02-18 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for varying an output of a driveforce unit based on load data
US8751124B2 (en) * 2010-03-02 2014-06-10 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for adaptive electronic driveforce unit control
US9117123B2 (en) 2010-07-05 2015-08-25 Magna Electronics Inc. Vehicular rear view camera display system with lifecheck function
WO2012068331A1 (en) 2010-11-19 2012-05-24 Magna Electronics Inc. Lane keeping system and lane centering system
WO2012075250A1 (en) 2010-12-01 2012-06-07 Magna Electronics Inc. System and method of establishing a multi-camera image using pixel remapping
US9264672B2 (en) 2010-12-22 2016-02-16 Magna Mirrors Of America, Inc. Vision display system for vehicle
WO2012103193A1 (en) 2011-01-26 2012-08-02 Magna Electronics Inc. Rear vision system with trailer angle detection
US9194943B2 (en) 2011-04-12 2015-11-24 Magna Electronics Inc. Step filter for estimating distance in a time-of-flight ranging system
US9380219B2 (en) 2011-04-20 2016-06-28 Magna Electronics Inc. Angular filter for vehicle mounted cameras
WO2012145818A1 (en) 2011-04-25 2012-11-01 Magna International Inc. Method and system for dynamically calibrating vehicular cameras
WO2012145819A1 (en) 2011-04-25 2012-11-01 Magna International Inc. Image processing method for detecting objects using relative motion
WO2012145822A1 (en) 2011-04-25 2012-11-01 Magna International Inc. Method and system for dynamically calibrating vehicular cameras
DE102011107353B4 (en) * 2011-07-14 2022-03-24 HELLA GmbH & Co. KGaA Holding device for a disk sensor
WO2013016409A1 (en) 2011-07-26 2013-01-31 Magna Electronics Inc. Vision system for vehicle
WO2013019707A1 (en) 2011-08-01 2013-02-07 Magna Electronics Inc. Vehicle camera alignment system
US9487159B2 (en) 2011-08-02 2016-11-08 Magna Electronics Inc. Vehicle vision system with camera module mounting bracket
US9871971B2 (en) 2011-08-02 2018-01-16 Magma Electronics Inc. Vehicle vision system with light baffling system
WO2013019795A1 (en) 2011-08-02 2013-02-07 Magna Electronics Inc. Vehicular camera system
US20140218535A1 (en) 2011-09-21 2014-08-07 Magna Electronics Inc. Vehicle vision system using image data transmission and power supply via a coaxial cable
US8736940B2 (en) 2011-09-30 2014-05-27 Magna Mirrors Of America, Inc. Exterior mirror with integral spotter mirror and method of making same
US9146898B2 (en) 2011-10-27 2015-09-29 Magna Electronics Inc. Driver assist system with algorithm switching
US8801245B2 (en) 2011-11-14 2014-08-12 Magna Mirrors Of America, Inc. Illumination module for vehicle
US9491451B2 (en) 2011-11-15 2016-11-08 Magna Electronics Inc. Calibration system and method for vehicular surround vision system
US10071687B2 (en) 2011-11-28 2018-09-11 Magna Electronics Inc. Vision system for vehicle
US9762880B2 (en) 2011-12-09 2017-09-12 Magna Electronics Inc. Vehicle vision system with customized display
US10457209B2 (en) 2012-02-22 2019-10-29 Magna Electronics Inc. Vehicle vision system with multi-paned view
US8694224B2 (en) 2012-03-01 2014-04-08 Magna Electronics Inc. Vehicle yaw rate correction
US9319637B2 (en) 2012-03-27 2016-04-19 Magna Electronics Inc. Vehicle vision system with lens pollution detection
US10089537B2 (en) 2012-05-18 2018-10-02 Magna Electronics Inc. Vehicle vision system with front and rear camera integration
US8925881B2 (en) * 2012-05-28 2015-01-06 Anna Genevieve Diatzikis Magnetic mount
US8917437B2 (en) 2012-07-18 2014-12-23 Magna Mirrors Of America, Inc. Mirror assembly with formed reflective element substrate
DE102012213164A1 (en) * 2012-07-26 2014-01-30 Mahle International Gmbh Fresh air supply system
US9340227B2 (en) 2012-08-14 2016-05-17 Magna Electronics Inc. Vehicle lane keep assist system
CN103625376A (en) * 2012-08-24 2014-03-12 成都弥荣科技发展有限公司 Support of hung and adjustable type automobile detection displayer
US9573525B2 (en) 2012-08-27 2017-02-21 Gentex Corporation Mirror mounting assembly
DE102013217430A1 (en) 2012-09-04 2014-03-06 Magna Electronics, Inc. Driver assistance system for a motor vehicle
US9446713B2 (en) 2012-09-26 2016-09-20 Magna Electronics Inc. Trailer angle detection system
US9558409B2 (en) 2012-09-26 2017-01-31 Magna Electronics Inc. Vehicle vision system with trailer angle detection
US9244249B2 (en) 2012-09-28 2016-01-26 Gentex Corporation Double ball slide on mount with screw over sensor
US9723272B2 (en) 2012-10-05 2017-08-01 Magna Electronics Inc. Multi-camera image stitching calibration system
US9707896B2 (en) 2012-10-15 2017-07-18 Magna Electronics Inc. Vehicle camera lens dirt protection via air flow
US9352691B2 (en) 2012-11-05 2016-05-31 Magna Mirrors Of America, Inc. Interior rearview mirror assembly
CN103075625B (en) * 2012-11-14 2015-04-08 天津市亚安科技股份有限公司 Cloud deck driven by single motor
US9090234B2 (en) 2012-11-19 2015-07-28 Magna Electronics Inc. Braking control system for vehicle
ITTO20121088A1 (en) * 2012-12-17 2014-06-18 Fiat Group Automobiles Spa CONNECTION ARM TO CONNECT A REAR-VIEW MIRROR TO A SUPPORT ELEMENT FIXED TO A WINDSCREEN
US9092986B2 (en) 2013-02-04 2015-07-28 Magna Electronics Inc. Vehicular vision system
US9565782B2 (en) 2013-02-15 2017-02-07 Ecosense Lighting Inc. Field replaceable power supply cartridge
US9445057B2 (en) 2013-02-20 2016-09-13 Magna Electronics Inc. Vehicle vision system with dirt detection
US9216691B2 (en) 2013-02-25 2015-12-22 Magna Mirrors Of America, Inc. Exterior mirror with spotter mirror
US9688200B2 (en) 2013-03-04 2017-06-27 Magna Electronics Inc. Calibration system and method for multi-camera vision system
US10027930B2 (en) 2013-03-29 2018-07-17 Magna Electronics Inc. Spectral filtering for vehicular driver assistance systems
US9327693B2 (en) 2013-04-10 2016-05-03 Magna Electronics Inc. Rear collision avoidance system for vehicle
US20140313337A1 (en) 2013-04-23 2014-10-23 Magna Electronics Inc. Vehicle vision system with fastenerless lens attachment
US9508014B2 (en) 2013-05-06 2016-11-29 Magna Electronics Inc. Vehicular multi-camera vision system
US9205776B2 (en) 2013-05-21 2015-12-08 Magna Electronics Inc. Vehicle vision system using kinematic model of vehicle motion
US9563951B2 (en) 2013-05-21 2017-02-07 Magna Electronics Inc. Vehicle vision system with targetless camera calibration
US9260095B2 (en) 2013-06-19 2016-02-16 Magna Electronics Inc. Vehicle vision system with collision mitigation
US20140375476A1 (en) 2013-06-24 2014-12-25 Magna Electronics Inc. Vehicle alert system
US9487161B2 (en) 2013-10-04 2016-11-08 Magna Mirrors Of America, Inc. Accessory system for a vehicle
US9499139B2 (en) 2013-12-05 2016-11-22 Magna Electronics Inc. Vehicle monitoring system
US9988047B2 (en) 2013-12-12 2018-06-05 Magna Electronics Inc. Vehicle control system with traffic driving control
DE102013226029A1 (en) 2013-12-16 2015-06-18 Robert Bosch Gmbh An integrated sensor device, communication system and method for communicating by means of an integrated sensor device
US11235699B2 (en) 2014-02-07 2022-02-01 Magna Mirrors Of America, Inc. Illumination module for vehicle
US9352692B2 (en) 2014-03-10 2016-05-31 Magna Mirrors Of America, Inc. Vehicle vision system with camera and mirror mount
US9896039B2 (en) 2014-05-09 2018-02-20 Magna Electronics Inc. Vehicle vision system with forward viewing camera
US10328932B2 (en) 2014-06-02 2019-06-25 Magna Electronics Inc. Parking assist system with annotated map generation
US9621769B2 (en) 2014-06-11 2017-04-11 Magna Electronics Inc. Camera module for vehicle vision system
KR101592737B1 (en) * 2014-07-17 2016-02-12 현대자동차주식회사 Integrated inside mirror assembly of vehicle
US9761144B2 (en) 2014-09-11 2017-09-12 Magna Mirrors Of America, Inc. Exterior mirror with blind zone indicator
US10477636B1 (en) 2014-10-28 2019-11-12 Ecosense Lighting Inc. Lighting systems having multiple light sources
US9916660B2 (en) 2015-01-16 2018-03-13 Magna Electronics Inc. Vehicle vision system with calibration algorithm
US11306897B2 (en) 2015-02-09 2022-04-19 Ecosense Lighting Inc. Lighting systems generating partially-collimated light emissions
US9869450B2 (en) 2015-02-09 2018-01-16 Ecosense Lighting Inc. Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
US9746159B1 (en) 2015-03-03 2017-08-29 Ecosense Lighting Inc. Lighting system having a sealing system
US9651227B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Low-profile lighting system having pivotable lighting enclosure
US9568665B2 (en) 2015-03-03 2017-02-14 Ecosense Lighting Inc. Lighting systems including lens modules for selectable light distribution
US9651216B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
US10112552B2 (en) 2015-03-11 2018-10-30 Magna Electronics Inc. Vehicle vision system with camera viewing through windshield
US10023118B2 (en) 2015-03-23 2018-07-17 Magna Electronics Inc. Vehicle vision system with thermal sensor
US10946799B2 (en) 2015-04-21 2021-03-16 Magna Electronics Inc. Vehicle vision system with overlay calibration
US10819943B2 (en) 2015-05-07 2020-10-27 Magna Electronics Inc. Vehicle vision system with incident recording function
US10000156B2 (en) 2015-06-02 2018-06-19 Magna Mirrors Of America, Inc. Vehicle mirror mount assembly
USD785218S1 (en) 2015-07-06 2017-04-25 Ecosense Lighting Inc. LED luminaire having a mounting system
US10214206B2 (en) 2015-07-13 2019-02-26 Magna Electronics Inc. Parking assist system for vehicle
US10078789B2 (en) 2015-07-17 2018-09-18 Magna Electronics Inc. Vehicle parking assist system with vision-based parking space detection
USD782093S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782094S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
US9651232B1 (en) 2015-08-03 2017-05-16 Ecosense Lighting Inc. Lighting system having a mounting device
US10137904B2 (en) 2015-10-14 2018-11-27 Magna Electronics Inc. Driver assistance system with sensor offset correction
US10267908B2 (en) * 2015-10-21 2019-04-23 Waymo Llc Methods and systems for clearing sensor occlusions
DE102015220706A1 (en) 2015-10-22 2017-04-27 Magna Mirrors Holding Gmbh Haltefußanordnung
US9881501B2 (en) 2015-11-02 2018-01-30 Magna Electronics Inc. Driver assistance system with traffic light alert
US11277558B2 (en) 2016-02-01 2022-03-15 Magna Electronics Inc. Vehicle vision system with master-slave camera configuration
US11433809B2 (en) 2016-02-02 2022-09-06 Magna Electronics Inc. Vehicle vision system with smart camera video output
US11639039B1 (en) 2016-02-04 2023-05-02 Maurice Paperi Matching pieces and kits for repairing broken structures and related methods
CN105650432B (en) * 2016-02-24 2018-05-15 成都市宏山科技有限公司 Display fixed equipment
US10160437B2 (en) 2016-02-29 2018-12-25 Magna Electronics Inc. Vehicle control system with reverse assist
US20170253237A1 (en) 2016-03-02 2017-09-07 Magna Electronics Inc. Vehicle vision system with automatic parking function
US10055651B2 (en) 2016-03-08 2018-08-21 Magna Electronics Inc. Vehicle vision system with enhanced lane tracking
US20170274832A1 (en) * 2016-03-24 2017-09-28 Nidec Elesys Corporation Windshield including vehicle-mounted radar
US10865967B1 (en) 2016-04-04 2020-12-15 Emergency Technology, Inc. Reconfigurable vehicle control system
US10119940B2 (en) * 2016-08-25 2018-11-06 The Boeing Company Acoustic emission sensor holder
US10227034B2 (en) 2016-09-16 2019-03-12 Emergency Technology, Inc. Integrated lighting
US10612583B2 (en) * 2017-03-28 2020-04-07 GM Global Technology Operations LLC Retention device for a ball joint assembly
FR3066160B1 (en) * 2017-05-11 2020-11-06 Saint Gobain VEHICLE WINDOWS INCLUDING AN ACCESSORY MOUNTING BASE WITH METAL PIECE AND ACCESSORY MOUNTING BASE.
US10752175B2 (en) 2017-08-07 2020-08-25 Magna Mirrors Of America, Inc. Pivot mounting assembly for interior rearview mirror
US10190610B1 (en) 2017-10-13 2019-01-29 Gentex Corporation Mounting assembly for rearview device
JP6885315B2 (en) * 2017-12-06 2021-06-09 トヨタ自動車株式会社 Sensor mounting structure
US11040663B2 (en) 2017-12-08 2021-06-22 Gentex Corporation Pre-loaded two-lobe spring twist-on rearview mounting assembly
US10974650B2 (en) * 2017-12-11 2021-04-13 Gentex Corporation Rearview device mount and attachment method
JP7549413B2 (en) * 2018-01-31 2024-09-11 株式会社村上開明堂 Sensor assembly structure for a rotating windshield-mounted inner mirror for vehicles
US20190246074A1 (en) * 2018-02-05 2019-08-08 Honda Motor Co., Ltd. High temperature video camera system
US11148578B2 (en) * 2018-03-25 2021-10-19 Maurice Paperi Universal mounting tabs and kits for automotive components
WO2020070570A1 (en) 2018-10-02 2020-04-09 Gentex Corporation Adjustable mounting mechanism for a rearview assembly
FR3089905A1 (en) * 2018-12-17 2020-06-19 Renault S.A.S. INTERIOR REAR VISION ARRANGEMENT IN THE TOP WINDSHIELD AND INTERIOR MIRROR WITH TWO POSITIONS
CN113647089B (en) * 2019-03-27 2024-06-04 索尼集团公司 Imaging system
CN110356329A (en) * 2019-07-09 2019-10-22 东风柳州汽车有限公司 Inside rear-view mirror mounting rack
CN111142072B (en) * 2020-01-09 2022-07-29 上海索辰信息科技股份有限公司 Microphone array optimization method for sound source localization
CN112197148A (en) * 2020-10-09 2021-01-08 三桥惠(佛山)新材料有限公司 Humidity transducer of convenient equipment
US20220324309A1 (en) * 2021-04-13 2022-10-13 Ford Global Technologies, Llc System for controlling a closure panel of a vehicle
CN113119875A (en) * 2021-04-14 2021-07-16 深圳市有方科技股份有限公司 Locking mechanism and vehicle event data recorder
DE102021122226A1 (en) 2021-08-27 2023-03-02 HELLA GmbH & Co. KGaA Method and sensor device for detecting deposits on a pane
US20230211755A1 (en) * 2022-01-06 2023-07-06 GM Global Technology Operations LLC Capacitive/acoustic sensor lenses for cleaning feedback
CN114475428B (en) * 2022-02-16 2023-08-01 湖州中有铁科信息技术有限公司 Intelligent driving auxiliary terminal with collision alarm function
CN114451770A (en) * 2022-03-25 2022-05-10 广东奥科伟业科技发展有限公司 Method and device for controlling opening and closing of curtain according to wind direction
CN115097442B (en) * 2022-08-24 2022-11-22 陕西欧卡电子智能科技有限公司 Water surface environment map construction method based on millimeter wave radar
US12123747B2 (en) * 2023-02-06 2024-10-22 Agc Automotive Americas Co. Mounting system, a window assembly including the same, and a method of forming the window assembly

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367593A (en) 1940-08-03 1945-01-16 Avey Drilling Machine Company Machine tool
JPS5929539A (en) * 1982-08-07 1984-02-16 Nippon Denso Co Ltd Detector for automobile
US4712879A (en) 1986-04-02 1987-12-15 Donnelly Corporation Electrochromic mirror
US4930742A (en) 1988-03-25 1990-06-05 Donnelly Corporation Rearview mirror and accessory mount for vehicles
US4871917A (en) 1988-04-19 1989-10-03 Donnelly Corporation Vehicular moisture sensor and mounting apparatus therefor
US4859867A (en) 1988-04-19 1989-08-22 Donnelly Corporation Windshield moisture sensing control circuit
US4936533A (en) 1988-11-15 1990-06-26 Donnelly Corporation Mounting assembly for vehicle accessories
US4956591A (en) 1989-02-28 1990-09-11 Donnelly Corporation Control for a moisture sensor
US4916374A (en) 1989-02-28 1990-04-10 Donnelly Corporation Continuously adaptive moisture sensor system for wiper control
US4973844A (en) 1989-07-10 1990-11-27 Donnelly Corporation Vehicular moisture sensor and mounting apparatus therefor
US5140455A (en) 1989-11-29 1992-08-18 Donnelly Corporation High performance electrochemichromic solutions and devices thereof
US5014167A (en) 1990-02-20 1991-05-07 K. W. Muth Company, Inc. Visual signaling apparatus
DE4019066A1 (en) * 1990-06-15 1991-12-19 Bosch Gmbh Robert DEVICE FOR OPTICALLY DETECTING A COVER
US5100095A (en) 1991-03-01 1992-03-31 Donnelly Corporation Breakaway vehicle accessory mount
FR2676202B1 (en) * 1991-05-10 1997-01-17 Dynamad Sa AUTOMATICALLY CONTROLLED CLEANING DEVICE, PARTICULARLY FOR A WINDSCREEN OF A MOTOR VEHICLE.
US5535056A (en) 1991-05-15 1996-07-09 Donnelly Corporation Method for making elemental semiconductor mirror for vehicles
DE4214223A1 (en) * 1992-04-30 1993-11-04 Daimler Benz Ag Light or rain sensor integrated with self supporting internal rear view mirror holder for vehicle - forms work surface facing inside of windscreen as part of contact surface of mirror holder fixed by adhesive to inner side of screen.
WO1994027262A1 (en) 1993-05-07 1994-11-24 Hegyi Dennis J Multi-fonction light sensor for vehicle
DE4410217C2 (en) * 1994-03-24 2003-12-11 Bosch Gmbh Robert Attachment and coupling of an opto-electronic sensor to a pane and construction of the sensor
US5668663A (en) 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US5798575A (en) 1996-07-11 1998-08-25 Donnelly Corporation Vehicle mirror digital network and dynamically interactive mirror system
US5820097A (en) * 1997-01-10 1998-10-13 Donnelly Corporation Breakaway accessory mounting assembly for vehicles and windshield mounted button therefor
US5923027A (en) * 1997-09-16 1999-07-13 Gentex Corporation Moisture sensor and windshield fog detector using an image sensor
US6250148B1 (en) * 1998-01-07 2001-06-26 Donnelly Corporation Rain sensor mount for use in a vehicle
US6087953A (en) * 1998-02-18 2000-07-11 Donnelly Corporation Rearview mirror support incorporating vehicle information display

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446427B2 (en) * 2003-05-20 2008-11-04 Gentex Corporation Rearview mirror system for accommodating a rain sensor
US20040232773A1 (en) * 2003-05-20 2004-11-25 Parker Brian R. Rearview mirror system for accommodating a rain sensor
US9910000B2 (en) * 2004-09-15 2018-03-06 Magna Mirrors Holding Gmbh Temperature sensor system for a vehicle
US20140341250A1 (en) * 2004-09-15 2014-11-20 Magna Donnelly Engineering Gmbh Temperature sensor system for a vehicle
US20080121034A1 (en) * 2004-09-15 2008-05-29 Magna Donnelly Electronics Naas Limited Environmental Control System for a Vehicle
US7946505B2 (en) * 2004-09-15 2011-05-24 Magna Donnelly Engineering Gmbh Environmental control system for a vehicle
US20110216429A1 (en) * 2004-09-15 2011-09-08 Magna Donnelly Engineering Gmbh Temperature sensor assembly for a vehicle
US8794304B2 (en) * 2004-09-15 2014-08-05 Magna Donnelly Engineering Gmbh Temperature sensor assembly for a vehicle
CN104986115A (en) * 2006-03-01 2015-10-21 大众汽车有限公司 Holding device for an interior vehicle mirror
US7658101B2 (en) * 2006-03-23 2010-02-09 Denso Corporation Raindrop detection device
US20070222997A1 (en) * 2006-03-23 2007-09-27 Denso Corporation Raindrop detection device
JP2016164041A (en) * 2015-03-06 2016-09-08 市光工業株式会社 Vehicle inside mirror device
EP3279043A1 (en) 2016-08-05 2018-02-07 MEAS France Sensor mounting system
US10627264B2 (en) 2016-08-05 2020-04-21 MEAS France Sensor mounting system for a sensing device having a cover that moves pivotally relative to the sensing device
WO2019108986A1 (en) * 2017-11-30 2019-06-06 Michael Munoz Internet of things (iot) enabled wireless sensor system enabling process control, predictive maintenance of electrical distribution networks, liquid and gas pipelines and monitoring of air pollutants including nuclear, chemical, and biological agents using attached and/or embedded passive electromagnetic sensors
CN108591779A (en) * 2018-05-02 2018-09-28 郑州天点科技有限公司 A kind of camera height adjustment device
CN109000129A (en) * 2018-09-13 2018-12-14 泰州市创新电子有限公司 A kind of display bracket

Also Published As

Publication number Publication date
US6516664B2 (en) 2003-02-11
DE69826101T2 (en) 2005-09-22
US6250148B1 (en) 2001-06-26
EP0928723A3 (en) 2002-05-02
US20030126924A1 (en) 2003-07-10
US20020053237A1 (en) 2002-05-09
US6341523B2 (en) 2002-01-29
US6968736B2 (en) 2005-11-29
EP0928723A2 (en) 1999-07-14
EP0928723B1 (en) 2004-09-08
DE69826101D1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US6250148B1 (en) Rain sensor mount for use in a vehicle
US8481916B2 (en) Accessory mounting system for a vehicle having a light absorbing layer with a light transmitting portion for viewing through from an accessory
US8513590B2 (en) Vehicular accessory system with a cluster of sensors on or near an in-cabin surface of the vehicle windshield
EP0899157B1 (en) Modular rearview mirror assembly
US20050078389A1 (en) Interior rearview mirror assembly
US20040240090A1 (en) An information display system for a vehicle
CN111448102A (en) External rearview device, external rearview device kit and vehicle
CN212353803U (en) Automobile inner rear-view mirror mounting structure

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: MAGNA DONNELLY CORPORATION, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:DONNELLY CORPORATION;REEL/FRAME:030663/0173

Effective date: 20030113

Owner name: MAGNA MIRRORS OF AMERICA, INC., MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:MAGNA DONNELLY CORPORATION;REEL/FRAME:030663/0210

Effective date: 20080814

Owner name: DONNELLY CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LYNAM, NIALL R.;REEL/FRAME:030667/0746

Effective date: 19980106

AS Assignment

Owner name: MAGNA ELECTRONICS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAGNA MIRRORS OF AMERICA, INC.;REEL/FRAME:030751/0605

Effective date: 20130708