US20010015568A1 - Occupant protective apparatus - Google Patents
Occupant protective apparatus Download PDFInfo
- Publication number
- US20010015568A1 US20010015568A1 US09/732,490 US73249000A US2001015568A1 US 20010015568 A1 US20010015568 A1 US 20010015568A1 US 73249000 A US73249000 A US 73249000A US 2001015568 A1 US2001015568 A1 US 2001015568A1
- Authority
- US
- United States
- Prior art keywords
- seat
- vehicle body
- occupant
- collision
- protective apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D39/00—Vehicle bodies not otherwise provided for, e.g. safety vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60N—SEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
- B60N2/00—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
- B60N2/24—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
- B60N2/42—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
- B60N2/4207—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats characterised by the direction of the g-forces
- B60N2/4214—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats characterised by the direction of the g-forces longitudinal
- B60N2/4221—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats characterised by the direction of the g-forces longitudinal due to impact coming from the front
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60N—SEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
- B60N2/00—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
- B60N2/24—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
- B60N2/42—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
- B60N2/427—Seats or parts thereof displaced during a crash
- B60N2/42727—Seats or parts thereof displaced during a crash involving substantially rigid displacement
- B60N2/42736—Seats or parts thereof displaced during a crash involving substantially rigid displacement of the whole seat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60N—SEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
- B60N2/00—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
- B60N2/24—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
- B60N2/42—Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
- B60N2/427—Seats or parts thereof displaced during a crash
- B60N2/42772—Seats or parts thereof displaced during a crash characterised by the triggering system
- B60N2/42781—Seats or parts thereof displaced during a crash characterised by the triggering system mechanical triggering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D21/00—Understructures, i.e. chassis frame on which a vehicle body may be mounted
- B62D21/15—Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
- B62D21/152—Front or rear frames
Definitions
- the present invention relates to an occupant protective apparatus and, in particular, to an occupant protective apparatus which is capable of reducing deceleration to be applied to an occupant when a vehicle collision occurs.
- the deceleration of the occupant constrained to a seat by a seat belt can firstly start at the time when a forward going inertial force acting on the occupant in the collision is received by the seat belt.
- the inertial force causes the occupant to move forward and the deceleration of the occupant reaches its peak value at the time when the extension of the seat belt reaches its limit. It is generally said that the peak value of the occupant deceleration increases as the moving amount of the occupant due to the inertial force increases and, normally, the peak value of the occupant deceleration becomes higher than the average deceleration of the passenger room portion of the vehicle body.
- the deceleration of the vehicle body must be adjusted in such a manner that a delay in the starting time of the occupant deceleration with respect to the vehicle body deceleration can be minimized.
- the present invention aims at eliminating the drawbacks found in the above-mentioned conventional occupant protective apparatus. Accordingly, it is an object of the invention to provide an occupant protective apparatus which can reduce not only the size of the vehicle body but also the deceleration of the occupant at a further improved manner.
- an occupant protective apparatus which comprises: one or more seats ( 1 ) respectively supported on a vehicle body so as to be movable along the direction of a force acting on the vehicle body in the case of a collision, and each including a seat belt ( 3 ) for constraining an occupant ( 2 ) seated on the seat ( 1 ); an inertia mass member (in the illustrated embodiment, a battery 5 ) supported on the vehicle body in such a manner that, when the vehicle body stops suddenly in the collision, it continues to move in the advancing direction of a vehicle in which the vehicle has been advancing until the time just before the collision occurs; and, a mutually reversing mechanism (in the illustrated embodiment, two parallel links 6 ) for connecting together the seat and inertia mass member in such a manner that they can move the seat in the opposite direction to the moving direction of the inertia mass member in the collision.
- the present occupant protective apparatus for example, as soon as a forward running vehicle collides head on with a structure on the road, a backward going acceleration is applied to the seat, so that higher deceleration than the deceleration of the vehicle body is generated in the seat. Therefore, the constraining force of the seat belt for constraining the forward movement of the occupant can be enhanced.
- the present occupant protective apparatus may further include force generating mechanism (in the illustrated embodiment, a stopper 7 ) for applying a forward going force to the seat after the above-mentioned backward going acceleration is applied. That is, after occurrence of the collision, in case where a forward going force is applied to the seat with a proper time delay with respect to the backward going acceleration, a forward going inertial force acting on the occupant in the collision can be made constant instantaneously, so that the deceleration of the vehicle body and the deceleration of the seat and occupant can be made equal to each other in the early stage of the collision.
- force generating mechanism in the illustrated embodiment, a stopper 7
- FIG. 1 is a schematic perspective view of a vehicle body to which a first embodiment of an occupant protective apparatus according to the invention is applied;
- FIG. 2 is an explanatory view of a process in the first embodiment when the collision occurs
- FIG. 3 is a graphical representation of a deceleration waveform obtained when the collision occurs.
- FIG. 4 similarly to FIG. 1, is a schematic perspective view of a vehicle body to which a second embodiment of an occupant protective apparatus according to the invention is applied.
- FIG. 1 show a schematic structure of a vehicle to which is applied a first embodiment of an occupant protective apparatus according to the invention.
- a seat belt 3 is connected to the seat 1 .
- the seat 1 is mounted on a floor 4 , which forms part of the passenger room portion of a vehicle body of the vehicle, through guide mechanism G 1 such as a seat slide rail in such a manner that it can be moved by a certain distance along the advancing direction of the vehicle with respect to the floor 4 .
- a battery 5 serving as an inertia mass member through guide mechanism G 2 such as a seat slide rail in such a manner that it can be moved by a certain distance along the advancing direction of the vehicle with respect to the floor 4 .
- the seat 1 and battery 5 are connected together by two parallel links 6 the respective intermediate portions of which are rotatably supported on a member formed integral with the floor 4 . Due to the actions of the parallel links 6 , the seat 1 and battery 5 are able to move in the mutually opposite directions; that is, in case where one of them moves forward, the other moves backward.
- At least one of the seat 1 and battery 5 are locked to the floor 4 through trigger mechanism (not shown) actuatable in accordance with deceleration in such a manner that, in the normal running operation of the vehicle, the seat 1 and battery 5 can be connected to the floor 4 as an integral unit and, only when deceleration of a given value or higher is applied, they can be moved with respect to the floor 4 .
- a stopper 7 which is used to limit the backward movement of the seat 1 .
- This stopper 7 preferably, may be formed of a honeycomb structure member made of aluminum alloy so that, while it is plastically deformed, it can generate a given stress.
- a front side member 9 which is formed integral with the floor 4 and extended forwardly from the floor 4 , starts to buckle and deform due to an impact load applied to the front bumper beam 10 .
- the floor 4 which, while receiving deceleration due to a deforming stress produced in the front side member 11 , is caused to contract due to the plastic deformation of the front side member 9 , continues its forward movement.
- the trigger mechanism is removed due to the excessive deceleration that is caused by the collision, so that the locking of the seat 1 and battery 5 to the floor 4 is removed.
- the seat 1 and battery 5 are both going to continue moving forward due to their respective inertial forces; but, because the inertia mass of the battery 5 is set sufficiently large with respect to the seat 1 , and also because the seat 1 and battery 5 are connected together by the two parallel links 6 , the battery 5 moves forward with respect to the floor 4 which is going to stop, whereas the seat 1 moves backward with respect to the floor 4 (see FIG. 2-A). Due to the backward movement of the seat 1 , in the seat 1 , there is generated deceleration which is larger than the deceleration of the floor 4 , that is, the passenger room portion of the vehicle body (in FIG. 3, an area shown by a).
- the occupant 2 is going to continue its forward movement due to an inertial force thereof with respect to the vehicle body (in more concrete, the passenger room portion thereof) which is going to stop due to the collision; but, since backward going acceleration is applied to the seat 1 at the same time when the collision occurs, by the seat belt 3 that is formed integral with the seat 1 , the occupant 2 is instantaneously constrained to the seat 1 while generating little relative speed with respect to the floor 4 .
- the seat 1 is contacted with the stopper 7 . Due to this contact of the seat 1 , the stopper 7 is plastically deformed (FIG. 2-B) and, owing to a stress generated at the then time by the stopper 7 , a forward going force is applied to the seat 1 , so that the seat 1 is accelerated forward with respect to the floor 4 (in FIG. 3, an area shown by b). That is, since the deceleration of the seat 1 is reduced due to the reaction of the stopper 7 , the forward inertial force applied to the occupant 2 in the early stage of the collision 2 can be made constant instantaneously. By the way, the rate of variation of the deceleration in this area can be adjusted according to the deforming characteristic of the stopper.
- the deforming characteristic of the front side member 9 , the elastic characteristic of the seat belt 3 , the inertia mass of the battery 5 , the moving amount of the seat 1 , and the deforming characteristic of the stopper 7 may be set properly such that, at the time when the relative speed between the seat 1 and floor 4 becomes zero as well as the deceleration of the seat 1 and the deceleration of the floor 4 are equal to each other, the relative speed between the occupant 2 and floor 4 can approach zero as much as possible and the constraining load of the seat belt 3 can balance as equally as possible with the vehicle body deceleration in the late stage of the collision.
- FIG. 4 shows a second embodiment of an occupant protective apparatus according to the invention.
- a pinion 11 which is rotatably supported on the floor 4
- rack gears 12 , 13 which are respectively fixed to the seat 1 and battery 5
- the rack gears 12 , 13 are meshingly engaged with the upper and lower sides of the pinion 11 respectively.
- the second embodiment in the case of a collision, when the battery 5 is moved forward, the seat 1 is moved backward. That is, there can be obtained a similar operation to the previously described first embodiment.
- the inertia mass member is not limited to the above-mentioned battery 5 but it is also possible to use other member such as an engine or a transmission, provided that it can secure given inertia mass and, in the collision, it can be moved in the advancing direction of the vehicle due to an inertial force.
- the inertia mass member in the collision, is moved in the acting direction of the collision load to thereby accelerate the seat with a seat belt in the opposite direction to the advancing direction of the vehicle, so that the higher deceleration than the vehicle body deceleration is generated in the seat and seat belt in the early stage of the collision to thereby enhance the constraining force of the occupant and, next, the acceleration going in the opposite direction to the direction of the above acceleration is generated by the force generating mechanism in the seat and seat belt to thereby control an increase in the inertial force of the occupant going to move forward, whereby, in the late stage of the collision, the deceleration of the vehicle body can be made equal to the deceleration of the seat and occupant.
- a deceleration waveform preferable for reduction of the occupant deceleration can be generated in the seat and seat belt, which makes it possible to reduce greatly the peak value of the occupant deceleration with a smaller vehicle body deforming amount than in the conventional occupant protective apparatus. Also, since the moving amount of the occupant within the passenger room with respect to the vehicle body can be minimized, it is possible to reduce the possibility of a secondary collision in which the occupant can be butted against structures existing within the passenger room and can be thereby damaged.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Seats For Vehicles (AREA)
- Body Structure For Vehicles (AREA)
Abstract
The occupant protective apparatus comprises one or more seats 1 respectively supported on a vehicle body so as to be movable along the direction of a force acting on the vehicle body in the case of a collision and each including a seat belt 3 for constraining an occupant 2 seated on the seat 1, a battery 5, as an inertia mass member, supported on the vehicle body in such a manner that, when the vehicle body stops suddenly in the collision, it continues to move in the advancing direction of a vehicle in which the vehicle has been advancing until the time just before the collision occurs, and, a mutually reversing mechanism (in the illustrated embodiment, a pair of parallel links 6) for connecting together the seat and inertia mass member in such a manner that they can move the seat in the opposite direction to the moving direction of the inertia mass member in the collision. Due to this, for example, in case where a vehicle running in the advancing direction thereof collides head on with a structure on the road, backward going acceleration is applied to the seat at the same time with the occurrence of the vehicle head-on collision to thereby generate in the seat higher deceleration than the deceleration of the vehicle body.
Description
- The present invention relates to an occupant protective apparatus and, in particular, to an occupant protective apparatus which is capable of reducing deceleration to be applied to an occupant when a vehicle collision occurs.
- Recently, in order to enhance the effect of occupant protection in a collision, there have been proposed various vehicle body structures in which a deforming mode of the other remaining portions of a vehicle body than the passenger room portion of the vehicle body in a collision is set properly to thereby be able not only to reduce the deceleration of the passenger room portion of the vehicle body but also to prevent the deformation of the other remaining portions of the vehicle body from extending over to the passenger room portion of the vehicle body (see Japanese Patent Unexamined Publication No. Hei. 7-101354).
- On the other hand, the deceleration of the occupant constrained to a seat by a seat belt can firstly start at the time when a forward going inertial force acting on the occupant in the collision is received by the seat belt. Here, since the spring action of the seat belt cannot be removed, the inertial force causes the occupant to move forward and the deceleration of the occupant reaches its peak value at the time when the extension of the seat belt reaches its limit. It is generally said that the peak value of the occupant deceleration increases as the moving amount of the occupant due to the inertial force increases and, normally, the peak value of the occupant deceleration becomes higher than the average deceleration of the passenger room portion of the vehicle body. Therefore, in order to reduce an impact to be given against the occupant due to the collision, the deceleration of the vehicle body must be adjusted in such a manner that a delay in the starting time of the occupant deceleration with respect to the vehicle body deceleration can be minimized.
- However, it is substantially impossible to connect the occupant to the vehicle body as an integral unit and, especially, in the case of a compact vehicle in which it is difficult to secure a sufficient stroke in the other remaining portions of the vehicle body than the passenger room portion thereof, it is difficult to reduce the occupant deceleration further simply using a conventional occupant protecting method in which the deceleration of the passenger room portion in a collision is reduced by setting the deforming mode of the vehicle body properly.
- The present invention aims at eliminating the drawbacks found in the above-mentioned conventional occupant protective apparatus. Accordingly, it is an object of the invention to provide an occupant protective apparatus which can reduce not only the size of the vehicle body but also the deceleration of the occupant at a further improved manner.
- In attaining the above object, according to the invention, there is provided an occupant protective apparatus which comprises: one or more seats (1) respectively supported on a vehicle body so as to be movable along the direction of a force acting on the vehicle body in the case of a collision, and each including a seat belt (3) for constraining an occupant (2) seated on the seat (1); an inertia mass member (in the illustrated embodiment, a battery 5) supported on the vehicle body in such a manner that, when the vehicle body stops suddenly in the collision, it continues to move in the advancing direction of a vehicle in which the vehicle has been advancing until the time just before the collision occurs; and, a mutually reversing mechanism (in the illustrated embodiment, two parallel links 6) for connecting together the seat and inertia mass member in such a manner that they can move the seat in the opposite direction to the moving direction of the inertia mass member in the collision.
- According to the present occupant protective apparatus, for example, as soon as a forward running vehicle collides head on with a structure on the road, a backward going acceleration is applied to the seat, so that higher deceleration than the deceleration of the vehicle body is generated in the seat. Therefore, the constraining force of the seat belt for constraining the forward movement of the occupant can be enhanced.
- Especially, the present occupant protective apparatus may further include force generating mechanism (in the illustrated embodiment, a stopper7) for applying a forward going force to the seat after the above-mentioned backward going acceleration is applied. That is, after occurrence of the collision, in case where a forward going force is applied to the seat with a proper time delay with respect to the backward going acceleration, a forward going inertial force acting on the occupant in the collision can be made constant instantaneously, so that the deceleration of the vehicle body and the deceleration of the seat and occupant can be made equal to each other in the early stage of the collision.
- FIG. 1 is a schematic perspective view of a vehicle body to which a first embodiment of an occupant protective apparatus according to the invention is applied;
- FIG. 2 is an explanatory view of a process in the first embodiment when the collision occurs;
- FIG. 3 is a graphical representation of a deceleration waveform obtained when the collision occurs; and,
- FIG. 4, similarly to FIG. 1, is a schematic perspective view of a vehicle body to which a second embodiment of an occupant protective apparatus according to the invention is applied.
- Now, description will be given below in detail of the invention with reference to the preferred embodiments of an occupant protective apparatus according to the invention shown in the accompanying drawings.
- FIG. 1 show a schematic structure of a vehicle to which is applied a first embodiment of an occupant protective apparatus according to the invention. In the present embodiment, in order to constrain the movement of an
occupant 2 with respect to aseat 1, aseat belt 3 is connected to theseat 1. And, theseat 1 is mounted on afloor 4, which forms part of the passenger room portion of a vehicle body of the vehicle, through guide mechanism G1 such as a seat slide rail in such a manner that it can be moved by a certain distance along the advancing direction of the vehicle with respect to thefloor 4. - Below the
seat 1, there is disposed abattery 5 serving as an inertia mass member through guide mechanism G2 such as a seat slide rail in such a manner that it can be moved by a certain distance along the advancing direction of the vehicle with respect to thefloor 4. - The
seat 1 andbattery 5 are connected together by twoparallel links 6 the respective intermediate portions of which are rotatably supported on a member formed integral with thefloor 4. Due to the actions of theparallel links 6, theseat 1 andbattery 5 are able to move in the mutually opposite directions; that is, in case where one of them moves forward, the other moves backward. - Also, at least one of the
seat 1 andbattery 5 are locked to thefloor 4 through trigger mechanism (not shown) actuatable in accordance with deceleration in such a manner that, in the normal running operation of the vehicle, theseat 1 andbattery 5 can be connected to thefloor 4 as an integral unit and, only when deceleration of a given value or higher is applied, they can be moved with respect to thefloor 4. - On a projecting
portion 8 made of a rigid body and formed integral with thefloor 4, specifically at a position thereof, which is opposed to the rear surface of theseat 1, there is arranged astopper 7 which is used to limit the backward movement of theseat 1. This stopper 7, preferably, may be formed of a honeycomb structure member made of aluminum alloy so that, while it is plastically deformed, it can generate a given stress. - Next, description will be given below of the operation of the occupant protective apparatus of the invention with reference to FIGS. 2 and 3, assuming a case in which a vehicle is collided head on with a structure on the road.
- Just at the same time when the collision occurs, a
front side member 9, which is formed integral with thefloor 4 and extended forwardly from thefloor 4, starts to buckle and deform due to an impact load applied to thefront bumper beam 10. At this time, thefloor 4, which, while receiving deceleration due to a deforming stress produced in thefront side member 11, is caused to contract due to the plastic deformation of thefront side member 9, continues its forward movement. - On the other hand, the trigger mechanism is removed due to the excessive deceleration that is caused by the collision, so that the locking of the
seat 1 andbattery 5 to thefloor 4 is removed. As a result of this, theseat 1 andbattery 5 are both going to continue moving forward due to their respective inertial forces; but, because the inertia mass of thebattery 5 is set sufficiently large with respect to theseat 1, and also because theseat 1 andbattery 5 are connected together by the twoparallel links 6, thebattery 5 moves forward with respect to thefloor 4 which is going to stop, whereas theseat 1 moves backward with respect to the floor 4 (see FIG. 2-A). Due to the backward movement of theseat 1, in theseat 1, there is generated deceleration which is larger than the deceleration of thefloor 4, that is, the passenger room portion of the vehicle body (in FIG. 3, an area shown by a). - During the above process, the
occupant 2 is going to continue its forward movement due to an inertial force thereof with respect to the vehicle body (in more concrete, the passenger room portion thereof) which is going to stop due to the collision; but, since backward going acceleration is applied to theseat 1 at the same time when the collision occurs, by theseat belt 3 that is formed integral with theseat 1, theoccupant 2 is instantaneously constrained to theseat 1 while generating little relative speed with respect to thefloor 4. - In case where the
front side member 9 continues its deformation and thebattery 5 moves forward, theseat 1 is contacted with thestopper 7. Due to this contact of theseat 1, thestopper 7 is plastically deformed (FIG. 2-B) and, owing to a stress generated at the then time by thestopper 7, a forward going force is applied to theseat 1, so that theseat 1 is accelerated forward with respect to the floor 4 (in FIG. 3, an area shown by b). That is, since the deceleration of theseat 1 is reduced due to the reaction of thestopper 7, the forward inertial force applied to theoccupant 2 in the early stage of thecollision 2 can be made constant instantaneously. By the way, the rate of variation of the deceleration in this area can be adjusted according to the deforming characteristic of the stopper. - In the late stage of the collision, just at the same time when the
stopper 7 is bottomed, the deceleration of theseat 1 increases again (in FIG. 3, an area shown by c); and, after then, theseat 1 andfloor 4 continue to decelerate as an integral unit with the deceleration that is determined by the deforming stress of thefront side member 9. Also, in this state, because, as described above, the relative speed between theoccupant 2 andfloor 4 is zero, and also because the constraining load of theseat belt 3 balances well with the deceleration of the vehicle body in the late stage of the collision, theoccupant 2 continues to decelerate integrally with the floor 4 (see FIG. 2-C). That is, in this state, the deceleration of the occupant is equal to the deceleration of the vehicle body until the vehicle body stops perfectly (in FIG. 3, an area shown by d). - To reduce the impact given to the
occupant 2 in the collision, firstly, it is important to reduce the deceleration of the occupant. In view of this, as described above, in case where there is set a deceleration waveform (which is shown by a solid line in FIG. 3) in which, in the early stage of the collision, the higher deceleration than the average deceleration of the vehicle body is generated in theseat 1 andseat belt 3 for a short period of time, next, the oppositely going acceleration is generated in theseat 1 andseat belt 3 for a short period of time, and, after then, theseat 1 andseat belt 3 are allowed to decelerate with the average vehicle body deceleration, when compared with a vehicle which does not incorporate therein the present occupant protective apparatus, the deceleration of the occupant can be reduced in such a manner as shown by a broken line in FIG. 3, assuming that the respective vehicle bodies of the two vehicles are deformed in the same amount. - In order to enhance the effects of the invention structured in the above-mentioned manner, preferably, the deforming characteristic of the
front side member 9, the elastic characteristic of theseat belt 3, the inertia mass of thebattery 5, the moving amount of theseat 1, and the deforming characteristic of thestopper 7 may be set properly such that, at the time when the relative speed between theseat 1 andfloor 4 becomes zero as well as the deceleration of theseat 1 and the deceleration of thefloor 4 are equal to each other, the relative speed between theoccupant 2 andfloor 4 can approach zero as much as possible and the constraining load of theseat belt 3 can balance as equally as possible with the vehicle body deceleration in the late stage of the collision. - Now, FIG. 4 shows a second embodiment of an occupant protective apparatus according to the invention. In the present embodiment, as a mutually reversing mechanism for moving the
seat 1 andbattery 5 in their mutually opposite directions, there are used apinion 11 which is rotatably supported on thefloor 4, andrack gears seat 1 andbattery 5, while therack gears pinion 11 respectively. In the second embodiment as well, in the case of a collision, when thebattery 5 is moved forward, theseat 1 is moved backward. That is, there can be obtained a similar operation to the previously described first embodiment. - By the way, the inertia mass member is not limited to the above-mentioned
battery 5 but it is also possible to use other member such as an engine or a transmission, provided that it can secure given inertia mass and, in the collision, it can be moved in the advancing direction of the vehicle due to an inertial force. - While there has been described in connection with the preferred embodiment of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the invention, and it is aimed, therefore, to cover in the appended claim all such changes and modifications as fall within the true spirit and scope of the invention.
- As has been described heretofore, according to the invention, in the collision, the inertia mass member is moved in the acting direction of the collision load to thereby accelerate the seat with a seat belt in the opposite direction to the advancing direction of the vehicle, so that the higher deceleration than the vehicle body deceleration is generated in the seat and seat belt in the early stage of the collision to thereby enhance the constraining force of the occupant and, next, the acceleration going in the opposite direction to the direction of the above acceleration is generated by the force generating mechanism in the seat and seat belt to thereby control an increase in the inertial force of the occupant going to move forward, whereby, in the late stage of the collision, the deceleration of the vehicle body can be made equal to the deceleration of the seat and occupant. Therefore, according to the invention, a deceleration waveform preferable for reduction of the occupant deceleration can be generated in the seat and seat belt, which makes it possible to reduce greatly the peak value of the occupant deceleration with a smaller vehicle body deforming amount than in the conventional occupant protective apparatus. Also, since the moving amount of the occupant within the passenger room with respect to the vehicle body can be minimized, it is possible to reduce the possibility of a secondary collision in which the occupant can be butted against structures existing within the passenger room and can be thereby damaged.
Claims (10)
1. An occupant protective apparatus comprising:
a seat supported on a vehicle body so as to be movable along a direction of a force acting on said vehicle body in the case of a vehicle collision, said seat including a seat belt for constraining an occupant seated on said seat;
an inertia mass member supported on said vehicle body so as to be continuously movable, when said vehicle body stops suddenly in the vehicle collision, in the advancing direction of the vehicle in which said vehicle has been advancing until the time just before said collision occurs; and,
a mutually reversing mechanism connecting said seat and said inertia mass member together so as to move said seat in the opposite direction to the moving direction of said inertia mass member when said collision occurs.
2. The occupant protective apparatus as set forth in , wherein said inertia mass member is a battery.
claim 1
3. The occupant protective apparatus as set forth in , wherein mutually reversing mechanism is a link member connecting said seat and said inertia mass member.
claim 1
4. The occupant protective apparatus as set forth in , wherein mutually reversing mechanism comprises:
claim 1
a first rack gear attached to said seat;
a second rack gear attached to said inertia mass member; and
a pinion intermeshed with said first and second rack gears.
5. The occupant protective apparatus as set forth in , further comprising:
claim 1
a guide rail attached to said vehicle body so as to make, said inertia mass member being slidable along said guide rail.
6. The occupant protective apparatus as set forth in , further comprising:
claim 1
a stopper attached to said vehicle body and being plastically deformable when said stopper undergoes a predetermined force or more.
7. The occupant protective apparatus as set forth in , wherein said stopper is made of an aluminam alloy.
claim 6
8. The occupant protective apparatus as set forth in , wherein said stopper has a honeycomb structure.
claim 6
9. The occupant protective apparatus as set forth in , further comprising:
claim 1
a force generating mechanism for applying said seat a force going in the opposite direction to the moving direction of the said seats in said collision.
10. The occupant protective apparatus as set forth in , wherein said force generating mechanism is a plastically deformable stopper.
claim 9
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-346015 | 1999-12-06 | ||
JP34601599A JP2001163136A (en) | 1999-12-06 | 1999-12-06 | Occupant crash protection device |
JPP.HEI.11-346015 | 1999-12-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010015568A1 true US20010015568A1 (en) | 2001-08-23 |
US6454351B2 US6454351B2 (en) | 2002-09-24 |
Family
ID=18380564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/732,490 Expired - Fee Related US6454351B2 (en) | 1999-12-06 | 2000-12-06 | Occupant protective apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US6454351B2 (en) |
EP (1) | EP1106481B1 (en) |
JP (1) | JP2001163136A (en) |
DE (1) | DE60008205T2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070063542A1 (en) * | 2005-09-16 | 2007-03-22 | Fong Jian J | Shock and energy dissipating assembly |
US20100320012A1 (en) * | 2009-06-16 | 2010-12-23 | Stappen Wim Van Der | Motor vehicle with electric drive |
CN104002708A (en) * | 2013-08-30 | 2014-08-27 | 关朝坚 | Inertial force removing device for car seat |
CN105905010A (en) * | 2016-06-18 | 2016-08-31 | 金余和 | Safety seat with safety belt assembly and hinge locking mechanism |
CN106004550A (en) * | 2016-06-18 | 2016-10-12 | 金余和 | Child safety seat with bidirectional sliding rod buffer mechanism |
US20170087972A1 (en) * | 2015-09-30 | 2017-03-30 | Fuji Jukogyo Kabushiki Kaisha | Vehicle body structure and onboard battery for vehicle |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3904384B2 (en) * | 2000-10-31 | 2007-04-11 | 本田技研工業株式会社 | Crew protection device |
JP4621384B2 (en) * | 2001-07-18 | 2011-01-26 | 本田技研工業株式会社 | Crew protection device |
JP4448626B2 (en) * | 2001-07-18 | 2010-04-14 | 本田技研工業株式会社 | Crew protection device |
US20060220426A1 (en) * | 2005-04-05 | 2006-10-05 | Edward Moffatt | Rollover deployed reclining seatback |
US7461889B1 (en) * | 2006-01-25 | 2008-12-09 | Elham Sahraei Esfahani | Collision safety structure |
FR2911825B1 (en) * | 2007-01-29 | 2009-10-23 | Peugeot Citroen Automobiles Sa | "DEVICE FOR FASTENING A PARTS, SUCH AS AN OPTICAL BLOCK, ON THE STRUCTURE OF A MOTOR VEHICLE INCORPORATING A MEANS OF AMORTIZATION OF A PIECE IMPACT" |
DE102007062599B4 (en) * | 2007-12-22 | 2017-12-07 | Daimler Ag | vehicle |
US20100001568A1 (en) * | 2008-07-03 | 2010-01-07 | Dalton Trybus | Vehicle seat with cushion carrier |
JP4770940B2 (en) * | 2009-02-16 | 2011-09-14 | トヨタ自動車株式会社 | Crew protection device |
JP2011136685A (en) * | 2009-12-09 | 2011-07-14 | Tk Holdings Inc | Occupant safety system |
DE102010053752A1 (en) * | 2010-12-08 | 2012-06-14 | Grammer Aktiengesellschaft | Vehicle vibration device for vehicle seats or vehicle cabins |
EP2546097B1 (en) * | 2012-01-30 | 2015-12-16 | Metalsa Automotive GmbH | Crash drive for a vehicle seat rail on a vehicle seat which can be adjusted longitudinally |
CN103287291B (en) * | 2013-06-18 | 2015-09-09 | 蔡珉 | A kind of safety chair seats of car |
US9352671B1 (en) | 2015-01-29 | 2016-05-31 | Autoliv Asp, Inc. | Vehicle seat displacement systems and related methods and apparatus |
US10384783B2 (en) * | 2015-09-11 | 2019-08-20 | Safran Seats Usa Llc | Inertial breakover mechanism |
CN105882462A (en) * | 2016-06-18 | 2016-08-24 | 金余和 | Safety seat with pedal and bidirectional slide rod buffering mechanism |
CN106143229A (en) * | 2016-06-18 | 2016-11-23 | 金余和 | Basket type safety seat with spring rocker arm body |
CN106080280A (en) * | 2016-06-18 | 2016-11-09 | 金余和 | Band anti-splash two-way basket type safety seat |
CN106080293A (en) * | 2016-06-18 | 2016-11-09 | 金余和 | basket type seat with safety belt assembly |
CN106004548A (en) * | 2016-06-18 | 2016-10-12 | 金余和 | Neck protection type child safety seat |
CN106042998A (en) * | 2016-06-18 | 2016-10-26 | 金余和 | Infant safety seat with side protection |
CN106043004A (en) * | 2016-06-18 | 2016-10-26 | 金余和 | Infant safety seat with splashing prevention |
DE102019127876A1 (en) * | 2019-10-16 | 2021-04-22 | Schaeffler Technologies AG & Co. KG | Vehicle frame |
DE102019128940A1 (en) * | 2019-10-27 | 2021-04-29 | Ford Global Technologies Llc | Battery tray to protect the vehicle battery for a hybrid vehicle |
US11400839B2 (en) * | 2020-09-22 | 2022-08-02 | Ford Global Technologies, Llc | Energy absorbing vehicle seat |
DE102021127481A1 (en) | 2021-10-22 | 2023-04-27 | Man Truck & Bus Se | Motor vehicle with a traction battery that can be moved in the event of a crash |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2959466A (en) | 1956-11-21 | 1960-11-08 | Rofusa N V | Process for the recovery of synthetic anhydrite |
US3001815A (en) | 1958-02-25 | 1961-09-26 | Robert C Weber | Bumper actuated vehicle safety seat |
GB1043695A (en) | 1962-09-19 | 1966-09-21 | Nat Res Dev | Improvements in or relating to safety harness and like safety devices for occupants of vehicles |
US3732944A (en) | 1971-04-12 | 1973-05-15 | Menasco Mfg Co | Automatic vacuum restraint apparatus |
US3897101A (en) | 1973-05-18 | 1975-07-29 | Brose & Co Metallwerk Max | Driver{3 s seat with inertia-responsive locking arrangement |
DE2344689A1 (en) | 1973-09-05 | 1975-03-13 | Porsche Ag | SAFETY DEVICE FOR MOTOR VEHICLES |
DE2416313C3 (en) | 1974-04-04 | 1978-11-23 | Roland 8731 Euerdorf Satzinger | Safety device for the occupants of vehicles, in particular motor vehicles |
US3998291A (en) | 1975-08-06 | 1976-12-21 | Edwin George Davis | Automotive safety seat |
CH612503A5 (en) | 1977-05-13 | 1979-07-31 | Mettler Instrumente Ag | |
DE3424928A1 (en) | 1984-07-06 | 1986-01-16 | Walter 8720 Schweinfurt Lindwurm | Catapult seat safety system for motor vehicles |
US4881781A (en) | 1987-09-08 | 1989-11-21 | General Motors Corporation | Restraint belt load capacity fore and aft power seat adjuster apparatus and method |
US4832409A (en) | 1987-09-08 | 1989-05-23 | General Motors Corporation | Restraint belt load capacity fore and aft power seat adjuster apparatus |
US5286085A (en) | 1989-06-30 | 1994-02-15 | Takata Corporation | Restraining protective seat for infants |
US5167421A (en) | 1990-07-16 | 1992-12-01 | Liu Yunzhao | Safety seat equipped in automobile |
JPH06509040A (en) | 1991-07-19 | 1994-10-13 | マサチューセッツ インスチテュート オブ テクノロジー | safety seat |
US5518271A (en) * | 1991-10-03 | 1996-05-21 | Amerigon, Inc. | Inertial mass safety system activation of a seat belt restraint system in personal vehicles |
JP3327297B2 (en) | 1992-02-26 | 2002-09-24 | マツダ株式会社 | Vehicle impact control structure and impact control method |
JPH05246252A (en) | 1992-03-04 | 1993-09-24 | Toyota Motor Corp | Battery fixing structure of electric vehicle |
JP2866998B2 (en) | 1992-03-04 | 1999-03-08 | トヨタ自動車株式会社 | Battery fixing structure for electric vehicles |
US5437494A (en) | 1992-10-29 | 1995-08-01 | Life Force Associates, L.P. | Rearward moving seat |
DE4345185C2 (en) | 1993-03-31 | 1995-03-23 | Mueller Franz Dipl Ing Fh | Method for reducing the forces acting on a seat belted vehicle occupant in the event of a vehicle colliding with an obstacle using airbags |
US5409262A (en) | 1993-08-31 | 1995-04-25 | Mclennan; Ronald A. | Vehicle safety system |
JPH07101354A (en) | 1993-10-05 | 1995-04-18 | Isuzu Motors Ltd | Side member for vehicle |
JPH07205733A (en) | 1994-01-20 | 1995-08-08 | Kunihiro Hasegawa | Vehicle safety mechanism |
US5681057A (en) | 1995-02-17 | 1997-10-28 | U.S. Electricar | Crash energy-management structure |
US5810417A (en) | 1995-09-28 | 1998-09-22 | Mongkol Jesadanont | Automatic safety car seats and sheet-type safety-belt |
US5626203A (en) | 1995-11-01 | 1997-05-06 | Habib; Mostafa S. | Active control of a vehicle occupant's body in frontal collision |
GB9525033D0 (en) | 1995-12-07 | 1996-02-07 | Henlys Group Plc | Safety seat |
US5685603A (en) | 1996-03-05 | 1997-11-11 | Trw Vehicle Safety Systems Inc. | Apparatus with a child seat and an energy absorption mechanism |
DE69821222D1 (en) | 1997-03-11 | 2004-02-26 | Autoliv Dev | DEVICE FOR AVOIDING WHIP EFFECT IN THE EVENT OF A BREAKDOWN ACCIDENT |
US6092853A (en) | 1997-04-03 | 2000-07-25 | Hubbard; Leo James | Vehicle safety system |
JP3459776B2 (en) | 1998-08-20 | 2003-10-27 | 本田技研工業株式会社 | Occupant protection device |
JP2000062557A (en) | 1998-08-20 | 2000-02-29 | Honda Motor Co Ltd | Passenger protecting device |
US6116561A (en) | 1998-08-28 | 2000-09-12 | Lear Corporation | Method and apparatus for seat track construction |
US6170865B1 (en) | 1999-01-23 | 2001-01-09 | Martin Barron | Electromagnetic car seat release upon deployment of vehicular air bag |
US6227597B1 (en) | 1999-09-27 | 2001-05-08 | Trw Inc. | Vehicle seat with limited rearward movement |
-
1999
- 1999-12-06 JP JP34601599A patent/JP2001163136A/en active Pending
-
2000
- 2000-12-05 EP EP00126700A patent/EP1106481B1/en not_active Expired - Lifetime
- 2000-12-05 DE DE60008205T patent/DE60008205T2/en not_active Expired - Fee Related
- 2000-12-06 US US09/732,490 patent/US6454351B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070063542A1 (en) * | 2005-09-16 | 2007-03-22 | Fong Jian J | Shock and energy dissipating assembly |
US7341645B2 (en) * | 2005-09-16 | 2008-03-11 | Jian Jhong Fong | Shock and energy dissipating assembly |
US20100320012A1 (en) * | 2009-06-16 | 2010-12-23 | Stappen Wim Van Der | Motor vehicle with electric drive |
US8534398B2 (en) | 2009-06-16 | 2013-09-17 | Benteler Automobiltechnik Gmbh | Motor vehicle with electric drive |
CN104002708A (en) * | 2013-08-30 | 2014-08-27 | 关朝坚 | Inertial force removing device for car seat |
US20170087972A1 (en) * | 2015-09-30 | 2017-03-30 | Fuji Jukogyo Kabushiki Kaisha | Vehicle body structure and onboard battery for vehicle |
US9975416B2 (en) * | 2015-09-30 | 2018-05-22 | Subaru Corporation | Vehicle body structure and onboard battery for vehicle |
CN105905010A (en) * | 2016-06-18 | 2016-08-31 | 金余和 | Safety seat with safety belt assembly and hinge locking mechanism |
CN106004550A (en) * | 2016-06-18 | 2016-10-12 | 金余和 | Child safety seat with bidirectional sliding rod buffer mechanism |
Also Published As
Publication number | Publication date |
---|---|
DE60008205T2 (en) | 2004-07-15 |
DE60008205D1 (en) | 2004-03-18 |
EP1106481A2 (en) | 2001-06-13 |
EP1106481A3 (en) | 2002-05-08 |
EP1106481B1 (en) | 2004-02-11 |
JP2001163136A (en) | 2001-06-19 |
US6454351B2 (en) | 2002-09-24 |
EP1106481A4 (en) | 2002-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1106481B1 (en) | Occupant protective apparatus | |
EP1106483B1 (en) | Occupant protective apparatus | |
JP3459776B2 (en) | Occupant protection device | |
US6186574B1 (en) | Vehicle occupant protection system | |
EP1266804B1 (en) | Vehicle occupant side crash protection system | |
EP1106480B1 (en) | Occupant protective apparatus | |
US6254164B1 (en) | Vehicle occupant protection system | |
EP1078812B1 (en) | Vehicle occupant protection system | |
US6578894B2 (en) | Automotive vehicle occupant protection system | |
EP1266809B1 (en) | Automotive vehicle occupant protection system | |
US6705645B2 (en) | Vehicle occupant protection system | |
EP1106482B1 (en) | Occupant protective apparatus | |
JP2001163175A (en) | Occupant crash protection device | |
Zhao et al. | Boundary control for improving limiting performance in a new seatbelt model: A technique proposal | |
JP2003306108A (en) | Occupant crash protection device | |
JP2000344035A (en) | Occupant protecting device | |
JP2002137704A (en) | Occupant crash protection device | |
JP2000344133A (en) | Body structure of car | |
JP2002120680A (en) | Occupant crash protection device | |
JP2003306109A (en) | Occupant crash protection device | |
JP2001163261A (en) | Occupant crash protection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONDA GIKEN KOGYO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOTOZAWA, YASUKI;NAKAMICHI, HIDEAKI;REEL/FRAME:011668/0079 Effective date: 20010226 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20060924 |