US20010010808A1 - Catalyst for preparation of synthesis gas and process for preparing carbon - Google Patents
Catalyst for preparation of synthesis gas and process for preparing carbon Download PDFInfo
- Publication number
- US20010010808A1 US20010010808A1 US09/254,634 US25463499A US2001010808A1 US 20010010808 A1 US20010010808 A1 US 20010010808A1 US 25463499 A US25463499 A US 25463499A US 2001010808 A1 US2001010808 A1 US 2001010808A1
- Authority
- US
- United States
- Prior art keywords
- catalyst
- reaction
- carrier
- metal
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/40—Carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
- C01B2203/107—Platinum catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a catalyst for producing a synthesis gas and to a process for the production of carbon monoxide.
- a synthesis gas is a mixed gas containing hydrogen and carbon monoxide and is widely used as a raw material for the synthesis of ammonia, methanol, acetic acid, etc.
- Such a synthesis gas may be produced by reaction of a hydrocarbon with steam and/or carbon dioxide in the presence of a catalyst. In the reaction, however, carbon deposition reactions occur as side reactions to cause carbon deposition which brings about a problem of catalyst poisoning.
- the raw materials for the carbon deposition are a carbon-containing organic compound used as a raw material and CO produced in situ.
- the carbon deposition is accelerated as the partial pressures of these raw materials increase. Therefore, it is possible to reduce the amount of the carbon deposition by increasing the feed amount of steam and carbon dioxide while reducing the reaction pressure. In this case, however, it is necessary to excessively use steam and carbon dioxide in order to reduce the partial pressures of the carbon-containing organic compound and CO, so that several disadvantages are caused. For example, consumption of heat energy required for preheating steam and carbon dioxide increases. Further, costs for the separation of these gases from the product increase. Moreover, since a large reaction apparatus is required, the apparatus costs increase.
- JP-A-5-208801 discloses a carbon dioxide-reforming catalyst containing a Group VIII metal supported on high purity, super-fine single crystal magnesium oxide.
- JP-A-6-279003 discloses a carbon dioxide-reforming catalyst containing a ruthenium compound supported on a carrier composed of a compound of at least one alkaline earth metal oxide and aluminum oxide.
- JP-A-9-168740 discloses a carbon dioxide-reforming catalyst containing rhodium supported on a carrier formed of a Group II-IV metal oxide or a lanthanoid metal oxide or a composite carrier composed of the above metal oxide and alumina.
- the reaction experiments using these catalysts are performed under ambient pressure. At a high pressure, which is industrially significant, these catalysts show a high carbon deposition activity and, hence, are not satisfactory as industrially applicable catalysts.
- Carbon monoxide is widely utilized as a raw material for the synthesis of industrial products by, for example, hydroformylation. Carbon monoxide is generally produced by the reforming of methane with steam according to the reaction shown below to obtain a synthesis gas, from which carbon monoxide is subsequently separated:
- the concentration of carbon monoxide in the product gas further increases. Therefore, the reforming with carbon dioxide is effective in the production of carbon monoxide.
- the product gas obtained by this reaction has a composition in an equilibrium which favors the carbon deposition, so that the catalyst used for this reaction causes considerable deactivation of the catalyst.
- a catalyst for producing a synthesis gas comprising a carrier formed of a metal oxide and at least one catalytic metal selected from rhodium, ruthenium, iridium, palladium and platinum and supported on said carrier, characterized in that said catalyst has a specific surface area of 25 m 2 /g or less, in that the electronegativity of the metal ion of said carrier metal oxide is 13.0 or less and in that the amount of said supported catalytic metal is 0.0005-0.1 mole %, in terms of a metal, based on said carrier metal oxide.
- the present invention also provides a process for producing carbon monoxide, which comprises a step of reacting a carbon-containing organic compound with carbon dioxide at an elevated temperature in a pressurized condition in the presence of a catalyst to produce a synthesis gas, and a step of concentrating carbon monoxide in the thus obtained synthesis gas, said process being characterized in that said catalyst comprises a carrier formed of a metal oxide and at least one catalytic metal selected from rhodium, ruthenium, iridium, palladium and platinum and supported on said carrier, in that said catalyst has a specific surface area of 25 m 2 /g or less, in that the electronegativity of the metal ion of said carrier metal oxide is 13.0 or less and in that the amount of said catalytic metal is 0.0005-0.1 mole %, in terms of metal, based on said carrier metal oxide.
- said catalyst comprises a carrier formed of a metal oxide and at least one catalytic metal selected from rhodium, ruthenium, iridium, pal
- the catalyst of the present invention is used for the production of a synthesis gas using a carbon-containing organic compound as a raw material.
- the processes for producing a synthesis gas include various conventionally known processes, for example, (i) a process in which a carbon-containing organic compound is reacted with steam, (ii) a process in which a carbon-containing organic compound is reacted with carbon dioxide, (iii) a process in which a carbon-containing organic compound is reacted with a mixture of steam with carbon dioxide and (iv) a process in which a carbon-containing organic compound is reacted with oxygen.
- the catalyst of the present invention contains at least one catalytic metal selected from rhodium (Rh), ruthenium (Ru), iridium (Ir), palladium (Pd) and platinum (Pt) supported on a carrier metal oxide having specific characteristics.
- the catalytic metal can be supported in the form of a metallic state or in the form of a metal compound such as an oxide.
- the catalyst of the present invention is characterized in that the catalyst has activity required for converting a carbon-containing organic compound into a synthesis gas while exhibiting a function to significantly suppress side reactions of carbon deposition reactions.
- the catalyst according to the present invention can significantly suppress the carbon deposition reactions is characterized in that:
- the catalyst has a specific surface area of 25 m 2 /g or less.
- the amount of the supported catalytic metal is 0.0005-0.1 mole % based on the carrier metal oxide.
- the metal oxide used as a carrier may be a single metal oxide or a mixed metal oxide.
- the electronegativity of the metal ion in the carrier metal oxide is 13 or less, preferably 12 or less, more preferably 10 or less.
- the lower limit is about 4.
- the electronegativity of the metal ion in the carrier metal oxide used in the present invention is 4-13, preferably 4-12.
- the electronegativity of the metal ion in the metal oxide in excess of 13 is not preferable, because carbon deposition occurs significantly.
- the electronegativity of the metal ion in the metal oxide is defined by the following formula:
- the metal oxide is a mixed metal oxide
- an average electronegativity of the metal ions is used.
- the average value is a sum of the products of the electronegativity of each of the metal ions contained in the mixed metal oxide by the molar fraction of the corresponding metal oxide of the mixed metal oxide.
- the electronegativity (Xo) of a metal is in accordance with Pauling.
- the electronegativity in accordance with Pauling is as shown in “W. J. Moore Physical Chemistry, Vol. 1 translated by FUJISHIRO, Ryoichi”, 4th Edition, Tokyo Kagaku Dojin, p. 707 (1974), Table 15.4.
- the metal oxides may include those containing one or at least two metals such as Mg, Ca, Ba, Zn, Al, Zr and La.
- metal oxides such as magnesia (MgO), calcium oxide (CaO), barium oxide (BaO), zinc oxide (ZnO), alumina (Al 2 O 3 ), zirconia (ZrO 2 ) and lanthanum oxide (La 2 O 3 ), and mixed metal oxides such as MgO/CaO, MgO/BaO, MgO/ZnO, MgO/Al 2 O 3 , MgO/ZrO 2 , CaO/BaO, CaO/ZnO, CaO/Al 2 O 3 , CaO/ZrO 2 , BaO/ZnO, BaO/Al 2 O 3 , BaO/ZrO 2 , ZnO/Al 2 O 3 , ZnO/ZrO 2 , Al 2
- the catalyst according to the present invention having a specific surface area of 25 m 2 /g or less may be obtained by calcining a carrier metal oxide before the support of a catalytic metal at 300-1,300 20 C., preferably 650-1,200° C. After the catalytic metal has been supported, the catalytic metal-supported carrier is further calcined at 600-1,300° C., preferably 650-1,200° C. It is also possible to obtain the catalyst by supporting a catalytic metal on a carrier metal oxide, followed by the calcination of the catalytic metal supporting product at 600-1,300° C., preferably 650-1,200° C.
- the upper limit of the calcination temperature is not specifically limited but is generally 1,500° C. or less, preferably 1,300° C. or less.
- the specific surface area of the catalyst or the carrier metal oxide can be controlled by the calcination temperature and calcination time.
- the specific surface area of the catalyst or the carrier metal oxide used in the present invention is preferably 20 m 2 /g or less, more preferably 15 m 2 /g or less, most preferably 10 m 2 /g or less.
- the lower limit of the specific surface area is about 0.01 m 2 /g.
- the amount of the catalytic metal supported on the carrier metal oxide is at least 0.0005 mole %, preferably at least 0.001 mole %, more preferably at least 0.002 mole %, in terms of metal, based on the carrier metal oxide.
- the upper limit is generally 0.1 mole %, preferably 0.09 mole %.
- the amount of metal supported is desirably in the range of 0.0005 -0.1 mole %, preferably 0.001-0.1 mole %.
- the specific surface area of the catalyst is substantially the same as that of the carrier metal oxide.
- the term “specific surface area of a catalyst” is used as having the same meaning as “specific surface area of a carrier metal oxide thereof”.
- the catalyst according to the present invention has a small specific surface area and has an extremely small amount of a supported catalytic metal so that the carbon deposition activity thereof is considerably suppressed. Yet, the catalyst has satisfactory activity for converting a raw material carbon-containing organic compound into a synthesis gas.
- the catalyst of the present invention may be prepared by conventional methods.
- One preferred method of preparing the catalyst of the present invention is an impregnation method.
- a catalyst metal salt or an aqueous solution thereof is added to and mixed with an aqueous dispersion containing a carrier metal oxide.
- the carrier metal oxide is then separated from the aqueous solution, followed by drying and calcination.
- a method incipient-wetness method is also effective in which a carrier metal oxide is added with a solution of a metal salt little by little in an amount corresponding to a pore volume to uniformly wet the surface of the carrier, followed by drying and calcination.
- a water soluble salt is used as the catalyst metal salt.
- a water soluble salt may be a salt of an inorganic acid, such as a nitrate or a hydrochloride, or a salt of an organic acid, such as an acetate or an oxalate.
- a metal acetylacetonate, etc. may be dissolved in an organic solvent such as acetone and the solution may be impregnated into the carrier metal oxide.
- the drying is performed at a temperature of 100-200° C., preferably 100-150° C. when the metal oxide is impregnated with an aqueous solution of a catalytic metal salt.
- the drying is performed at a temperature higher by 50-100° C. than the boiling point of the solvent.
- the calcination temperature and time are adequately selected according to the specific surface area of the carrier metal oxide or catalyst obtained (the specific surface area of the catalyst). Generally, a calcination temperature in the range of 500-1,100° C. is used.
- the metal oxide used as a carrier may be a product obtained by calcining a commercially available metal oxide or a commercially available metal hydroxide.
- the purity of the metal oxide is at least 98% by weight, preferably at least 99% by weight. It is, however, undesirable that components which enhance carbon deposition activity or components which are decomposed under reducing conditions, such as metals, e.g. iron and nickel, and silicon dioxide (SiO 2 ) .
- Such impurities in the metal oxide are desired to be not greater than 1% by weight, preferably not greater than 0.1% by weight.
- the catalyst of the present invention may be used in various forms such as powdery, granular, spherical, columnar and cylindrical forms.
- the form may be appropriately selected according to the catalytic bed system used.
- the production of a synthesis gas using the catalyst of the present invention may be performed by reacting a carbon-containing organic compound with steam and/or carbon dioxide (CO 2 ) or by reacting a carbon-containing organic compound with oxygen in the presence of the catalyst.
- a carbon-containing organic compound a lower hydrocarbon such as methane, ethane, propane, butane or naphtha or a non-hydrocarbon compound such as methanol or dimethyl ether may be used.
- methane is preferred.
- a natural gas (methane gas) containing carbon dioxide is advantageously used.
- the reaction temperature is 500-1,200° C., preferably 600-1,000° C. and the reaction pressure is an elevated pressure of 5-40 kg/cm 2 G, preferably 5-30 kg/cm 2 G.
- the gas space velocity (GHSV) is 1,000-10,000 hr ⁇ 1 , preferably 2,000-8,000 hr ⁇ 1 .
- the amount of CO 2 relative to the raw material carbon-containing organic compound is 20-0.5 mole, preferably 10-1 mole, per mole of carbon of the raw material compound.
- the reaction temperature is 600-1,200° C., preferably 600-1,000° C. and the reaction pressure is an elevated pressure of 1-40 kg/cm 2 G, preferably 5-30 kg/cm 2 G.
- the gas space velocity (GHSV) is 1,000-10,000 hr ⁇ 1 , preferably 2,000-8,000 hr ⁇ 1 .
- the amount of steam relative to the raw material carbon-containing organic compound is 0.5-5 moles, preferably 1-2 moles, more preferably 1-1.5 moles, per mole of carbon of the raw material compound.
- the catalyst of the present invention which can permit the reforming reaction to smoothly proceed with an amount of steam of 2 moles or less, has a great industrial merit.
- the catalyst of the present invention is favorably used as a catalyst for reacting a carbon-containing organic compound with a mixture of steam and CO 2 .
- the mixing proportion of steam and CO 2 is not specifically limited but is generally such as to provide a H 2 O/CO 2 molar ratio of 0.1-10.
- the carbon-containing organic compound may be such a hydrocarbon or non-hydrocarbon organic compound as described previously and is preferably methane.
- the source of oxygen there may be used oxygen, air or oxygen-rich air.
- a natural gas (methane gas) containing carbon dioxide is advantageously used as a reaction raw material.
- the reaction temperature is 500-1,500° C., preferably 700-1,200° C. and the reaction pressure is an elevated pressure of 5-50 kg/cm 2 G, preferably 10-40 kg/cm 2 G.
- the gas space velocity (GHSV) is 1,000-50,000 hr ⁇ 1 , preferably 2,000-20,000 hr ⁇ 1 .
- the amount of oxygen relative to the raw material carbon-containing organic compound is such as provide a molar ratio of carbon of the raw material carbon-containing organic compound to oxygen molecules C/O 2 of 4-0.1 mole, preferably 2-0.5 mole. Since the partial oxidation method is a greatly exothermic reaction, it is possible to adopt a reaction system of autothermic system while adding steam and carbon dioxide to the raw material.
- a process for the production of carbon monoxide according to the present invention includes, as a first step, a synthesis gas producing step.
- the first step is carried out by reacting a carbon-containing organic compound with carbon dioxide in the presence of a catalyst.
- the previously described catalyst is used as the synthesis gas production catalyst.
- the reaction temperature is 500-1,200° C., preferably 600-1,000° C. and the reaction pressure is an elevated pressure of 1-40 kg/cm 2 G, preferably 5-30 kg/cm 2 G.
- the gas space velocity (GHSV) is 1,000-10,000 hr ⁇ 1 , preferably 2,000-8,000 hr ⁇ 1 .
- the amount of carbon dioxide relative to the raw material carbon-containing organic compound is 1-10 moles, preferably 1-5 moles, more preferably 1-3 moles, per mole of carbon of the raw material compound.
- a synthesis gas can be produced in an industrially advantageous manner while preventing carbon deposition, even when the amount of CO 2 is maintained no more than 3 moles per mole of carbon of the raw material compound.
- the above-described reforming with CO 2 may be carried out with various catalyst systems such as a packed bed system, a fluidized bed system, a suspension bed system and a moving bed system and is preferably performed using a packed bed system.
- the synthesis gas has, for example, a composition containing 10-30 vol % of H 2 , 35-45 vol % of CO, 5-40 vol % of unreacted CO 2 , 0-30 vol % of unreacted CH 4 and 5-20 vol % of H 2 O.
- the thus obtained synthesis gas is used as a raw material and carbon monoxide (CO) is concentrated therefrom.
- CO concentration may be carried out by a customarily employed CO concentration method such as a cryogenic separation and a absorption method using an aqueous copper salt solution as an absorbent.
- the Ru concentration in the aqueous solution of ruthenium(III) chloride added dropwise was 0.05% by weight.
- the impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,000° C. for 1.5 h in the same atmosphere to obtain the Ru-supporting Al 2 O 3 catalyst (surface area: 18.6 m 2 /g).
- the electronegativity Xi of Al 3+ of Al 2 O 3 is 11.3.
- Rh content was 8.4 ⁇ 10 ⁇ 6 g per 1 g of ZrO 2 and, in terms of molar amount, 0.001 mol %).
- the above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined ZrO 2 , with mixing by shaking after each dropwise addition.
- Rh concentration in the aqueous solution of rhodium(III) acetate added dropwise was 0.0065% by weight.
- the impregnated material was dried at 120° C. for 2.5 h in air and calcined at 970° C. for 2 h in the same atmosphere to obtain the Rh-supporting ZrO 2 catalyst (surface area: 8.6 m 2 /g).
- the electronegativity Xi of Zr 4+ of ZrO 2 is 12.0.
- Rh concentration in the aqueous solution of rhodium(III) acetate added dropwise was 1.7% by weight.
- the impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,100° C. for 2 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 0.6 m 2 /g).
- the electronegativity Xi of Mg 2+ of MgO is 6.6.
- Rh was supported on magnesium oxide (in the form of 1 ⁇ 8 inch pellets), calcined at 1,100° C. for 3 h in air, by an impregnation method. This was further calcined at 400° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 1.5 ⁇ 10 ⁇ 3 g per 1 g of MgO and, in terms of molar amount, 0.06 mol %).
- the above impregnated material was obtained by soaking the calcined MgO pellets in an aqueous solution of rhodium(III) acetate having a Rh concentration of 1.0% by weight for about 3 h. The impregnated material was then dried at 120° C.
- Rh-supporting MgO catalyst surface area: 0.7 m 2 /g.
- the electronegativity Xi of Mg 2+ of MgO is 6.6.
- Rh was supported on magnesium oxide (in the form of 1 ⁇ 8 inch pellets), calcined at 1,100° C. for 3 h in air, by an impregnation method. This was further calcined at 1,000° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 2.6 ⁇ 10 ⁇ 5 g per 1 g of MgO and, in terms of molar amount, 0.001 mol %).
- the above impregnated material was obtained by soaking the calcined MgO pellets in an acetone solution of rhodium(III) acetylacetonate having a Rh concentration of 0.017% by weight for about 3 h. The impregnated material was then dried at 120° C.
- Rh-supporting MgO catalyst surface area: 0.6 m 2 /g.
- the electronegativity Xi of Mg 2+ of MgO is 6.6.
- Rh was supported on magnesium oxide (in the form of 1 ⁇ 8 inch pellets), containing 5 mol % of calcium oxide and calcined at 1,100° C. for 3 h in air, by an impregnation method. This was further calcined at 950° C. in air to obtain a Rh-supporting CaO/MgO catalyst (Rh content was 7.5 ⁇ 10 ⁇ 4 g per 1 g of CaO/MgO and, in terms of molar amount, 0.03 mol). The above impregnated material was obtained by soaking the calcined CaO/MgO pellets in an aqueous solution of rhodium(III) acetate having a Rh concentration of 0.5% by weight for about 3 h.
- the impregnated material was then dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Rh-supporting CaO/MgO catalyst (surface area: 0.8 m 2 /g)
- the average electronegativity Xi of the metal ions of the carrier is 6.5.
- Rh was supported on magnesium oxide (in the form of 1 ⁇ 8 inch pellets), containing 10 mol % of lanthanum oxide and calcined at 1,100° C. for 3 h in air, by an impregnation method. This was further calcined at 950° C. in air to obtain a Rh-supporting La 2 O 3 /MgO catalyst (Rh content was 9.0 ⁇ 10 ⁇ 5 g per 1 g of La 2 O 3 /MgO and, in terms of molar amount, 0.006 mol %).
- the above impregnated material was obtained by soaking the calcined La 2 O 3 /MgO pellets in an acetone solution of rhodium(III) acetylacetonate having a Rh concentration of 0.1% by weight for about 3 h.
- the impregnated material was then dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Rh-supporting La 2 O 3 /MgO catalyst (surface area: 0.8 m 2 /g).
- the average electronegativity Xi of the metal ions of the carrier is 6.7.
- the rhodium(III) acetate aqueous solution had a Rh concentration of 0.17% by weight.
- the Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 950° C. for 1.5 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 5.8 m 2 /g).
- the rhodium(III) chloride aqueous solution had a Ru concentration of 1.0% by weight.
- the Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 920° C. for 2 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 9.6 m 2 /g).
- the iridium(IV) chloride aqueous solution had a Ir concentration of 3.2% by weight.
- the Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 600° C. for 3 h in the same atmosphere to obtain the Ir-supporting MgO catalyst (surface area: 24.8 m 2 /g).
- the chloroplatinic acid aqueous solution had a Pt concentration of 3.2% by weight.
- the Pt-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 750° C. for 3 h in the same atmosphere to obtain the Pt-supporting MgO catalyst (surface area: 18.4 m 2 /g).
- the rhodium(III) acetate aqueous solution had a Rh concentration of 0.68% by weight.
- the Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 6.0 m 2 /g)
- the ruthenium(III) chloride aqueous solution had a Ru concentration of 0.50% by weight.
- the Ru-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 970° C. for 3 h in the same atmosphere to obtain the Ru-supporting MgO catalyst (surface area: 5.2 m 2 /g).
- the rhodium(III) acetate aqueous solution had a Rh concentration of 1.3% by weight.
- the Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,050° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 1.5 m 2 /g)
- the ruthenium(III) chloride hydrate aqueous solution had a Ru concentration of 0.17% by weight.
- the Ru-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Ru-supporting MgO catalyst (surface area: 4.8 m 2 /g). In this case, Ru was found to be supported as ruthenium oxide.
- the rhodium(III) acetate aqueous solution had a Rh concentration of 1.5% by weight.
- the Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,050° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 2.0 m 2 /g). In this case, Rh was found to be supported as rhodium oxide.
- the rhodium(III) acetate aqueous solution had a Rh concentration of 0.1% by weight.
- the Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 5.6 m 2 /g).
- the above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) and chloroplatinic acid ([H 2 PtCl 6 ])acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition.
- the mixed aqueous solution had Rh and Pt concentrations of 1.2% by weight and 0.32% by weight, respectively.
- the Rh- and Pt-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,050° C. for 3 h in the same atmosphere to obtain the Rh- and Pt-supporting MgO catalyst (surface area: 1.4 m 2 /g)
- the rhodium(III) acetate aqueous solution had a Rh concentration of 1.7% by weight.
- the Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 370° C. for h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 98 m 2 /g).
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream to convert oxidized Rh into metallic Rh.
- CH 4 conversion herein is defined by the following formula:
- B mole number of CH 4 in the product.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream to convert oxidized Rh into metallic Rh.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 920° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream to convert oxidized Rh into metallic Rh.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- Example 8 was repeated in the same manner as described except that steam was used in lieu of CO 2 .
- the CH 4 conversions at 5 h and 320 h after the commencement of the reaction were 52% and 51%, respectively.
- the catalyst was previously subjected to a reduction treatment at 850° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 800° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 1,100° C. for 1 h in a H 2 stream.
- the catalyst was previously subjected to a reduction treatment at 850° C. for 1 h in a H 2 stream.
- the reaction conditions included a temperature of 700° C. and a pressure of 20 kg/cm 2 G.
- the CH 4 conversion was 46.7% and the contents of H 2 and CO in the product gas were 19.6 mol % and 16.1 mol %, respectively.
- the CH 4 conversion at 150 h after the commencement of the reaction was 46.5%.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream to convert oxidized Rh into metallic Rh.
- a raw material gas having a molar ratio of CH 4 :CO 2 1:3 was then treated at a temperature of 850° C. and a pressure of 25 kg/cm 2 G and with GHSV (methane basis) of 6,000 hr ⁇ 1 .
- the CH 4 conversion at 280 h after the commencement of the reaction was 85.7%.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- the CH 4 conversion at 400 h after the commencement of the reaction was 95.4%.
- the catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H 2 stream.
- the CH 4 conversion at 150 h after the commencement of the reaction was 45.2%.
- the catalyst according to the present invention shows considerably suppressed carbon deposition activity, while retaining activity required for converting a carbon-containing organic compound into a synthesis gas.
- a synthesis gas can be produced continuously with a good yield for a long period of time while preventing carbon deposition.
- the use of the catalyst of the present invention can effectively suppress the carbon deposition even at a high pressure, so that a small size apparatus of producing a synthesis gas can be used and the device costs can be reduced.
- the above-described specific catalyst is used in a synthesis gas producing step.
- This catalyst shows considerably suppressed carbon deposition activity while retaining the activity required for converting a carbon-containing organic compound into a systhesis gas. Therefore, the synthesis gas producing step of the present invention can continuously produce a synthesis gas for a long period of time with a good yield while preventing carbon deposition.
- the use of the catalyst of the present invention can effectively suppress the carbon deposition even at a high pressure and with a small amount of CO 2 feed, so that a small size apparatus of producing a synthesis gas can be used and the device costs can be reduced.
- the concentration of CO can be efficiently performed with a small-sized device.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
- The present invention relates to a catalyst for producing a synthesis gas and to a process for the production of carbon monoxide.
- A synthesis gas is a mixed gas containing hydrogen and carbon monoxide and is widely used as a raw material for the synthesis of ammonia, methanol, acetic acid, etc.
- Such a synthesis gas may be produced by reaction of a hydrocarbon with steam and/or carbon dioxide in the presence of a catalyst. In the reaction, however, carbon deposition reactions occur as side reactions to cause carbon deposition which brings about a problem of catalyst poisoning.
- The raw materials for the carbon deposition are a carbon-containing organic compound used as a raw material and CO produced in situ. The carbon deposition is accelerated as the partial pressures of these raw materials increase. Therefore, it is possible to reduce the amount of the carbon deposition by increasing the feed amount of steam and carbon dioxide while reducing the reaction pressure. In this case, however, it is necessary to excessively use steam and carbon dioxide in order to reduce the partial pressures of the carbon-containing organic compound and CO, so that several disadvantages are caused. For example, consumption of heat energy required for preheating steam and carbon dioxide increases. Further, costs for the separation of these gases from the product increase. Moreover, since a large reaction apparatus is required, the apparatus costs increase.
- JP-A-5-208801 discloses a carbon dioxide-reforming catalyst containing a Group VIII metal supported on high purity, super-fine single crystal magnesium oxide. JP-A-6-279003 discloses a carbon dioxide-reforming catalyst containing a ruthenium compound supported on a carrier composed of a compound of at least one alkaline earth metal oxide and aluminum oxide. JP-A-9-168740 discloses a carbon dioxide-reforming catalyst containing rhodium supported on a carrier formed of a Group II-IV metal oxide or a lanthanoid metal oxide or a composite carrier composed of the above metal oxide and alumina. The reaction experiments using these catalysts are performed under ambient pressure. At a high pressure, which is industrially significant, these catalysts show a high carbon deposition activity and, hence, are not satisfactory as industrially applicable catalysts.
- Carbon monoxide is widely utilized as a raw material for the synthesis of industrial products by, for example, hydroformylation. Carbon monoxide is generally produced by the reforming of methane with steam according to the reaction shown below to obtain a synthesis gas, from which carbon monoxide is subsequently separated:
- In this reaction, however, only 1 mole of carbon monoxide is produced per 3 mole of hydrogen. Thus, the process for the production of carbon monoxide is not efficient. In contrast, the reforming of methane with carbon dioxide proceeds as follows:
- Thus, hydrogen and carbon monoxide are produced in an equimolar amount so that this process is more efficient than the reforming with steam. In this case, when carbon dioxide is added in excess relative to methane, carbon monoxide is produced from carbon dioxide and hydrogen by the following reverse shifting reaction:
- so that the concentration of carbon monoxide in the product gas further increases. Therefore, the reforming with carbon dioxide is effective in the production of carbon monoxide. However, the product gas obtained by this reaction has a composition in an equilibrium which favors the carbon deposition, so that the catalyst used for this reaction causes considerable deactivation of the catalyst.
- The objects of the present invention are:
- (1) to provide a catalyst for use in a process for the production of a synthesis gas by reaction of a carbon-containing organic compound with steam and/or carbon dioxide, which catalyst has suppressed carbon deposition activity;
- (2) to provide a catalyst for use in a process for the production of a synthesis gas by reaction of a carbon-containing organic compound with oxygen, which catalyst has suppressed carbon deposition activity; and
- (3) to provide a process which includes a step of reacting a carbon-containing organic compound with carbon dioxide to produce a synthesis gas, and a step of concentrating carbon monoxide in the thus obtained synthesis gas and which can produce carbon monoxide in an economically favorable manner by using a catalyst having suppressed carbon deposition activity in the synthesis gas producing step.
- Other objects of the present invention will be understood from the following description of the specification.
- The present inventors have made an intensive study to accomplish the above-described objects and, as a result, have completed the present invention.
- In accordance with the present invention there is provided a catalyst for producing a synthesis gas comprising a carrier formed of a metal oxide and at least one catalytic metal selected from rhodium, ruthenium, iridium, palladium and platinum and supported on said carrier, characterized in that said catalyst has a specific surface area of 25 m2/g or less, in that the electronegativity of the metal ion of said carrier metal oxide is 13.0 or less and in that the amount of said supported catalytic metal is 0.0005-0.1 mole %, in terms of a metal, based on said carrier metal oxide.
- The present invention also provides a process for producing carbon monoxide, which comprises a step of reacting a carbon-containing organic compound with carbon dioxide at an elevated temperature in a pressurized condition in the presence of a catalyst to produce a synthesis gas, and a step of concentrating carbon monoxide in the thus obtained synthesis gas, said process being characterized in that said catalyst comprises a carrier formed of a metal oxide and at least one catalytic metal selected from rhodium, ruthenium, iridium, palladium and platinum and supported on said carrier, in that said catalyst has a specific surface area of 25 m2/g or less, in that the electronegativity of the metal ion of said carrier metal oxide is 13.0 or less and in that the amount of said catalytic metal is 0.0005-0.1 mole %, in terms of metal, based on said carrier metal oxide.
- The catalyst of the present invention is used for the production of a synthesis gas using a carbon-containing organic compound as a raw material. In this case, the processes for producing a synthesis gas include various conventionally known processes, for example, (i) a process in which a carbon-containing organic compound is reacted with steam, (ii) a process in which a carbon-containing organic compound is reacted with carbon dioxide, (iii) a process in which a carbon-containing organic compound is reacted with a mixture of steam with carbon dioxide and (iv) a process in which a carbon-containing organic compound is reacted with oxygen.
- The catalyst of the present invention contains at least one catalytic metal selected from rhodium (Rh), ruthenium (Ru), iridium (Ir), palladium (Pd) and platinum (Pt) supported on a carrier metal oxide having specific characteristics. In this case, the catalytic metal can be supported in the form of a metallic state or in the form of a metal compound such as an oxide.
- The catalyst of the present invention is characterized in that the catalyst has activity required for converting a carbon-containing organic compound into a synthesis gas while exhibiting a function to significantly suppress side reactions of carbon deposition reactions.
- The catalyst according to the present invention can significantly suppress the carbon deposition reactions is characterized in that:
- (i) the electronegativity of the metal ion of the carrier metal oxide is 13.0 or less;
- (ii) the catalyst has a specific surface area of 25 m2/g or less; and
- (iii) the amount of the supported catalytic metal is 0.0005-0.1 mole % based on the carrier metal oxide. Such a catalyst having a considerably suppressed carbon deposition activity has been first found by the present inventors.
- The metal oxide used as a carrier may be a single metal oxide or a mixed metal oxide. In the present invention, the electronegativity of the metal ion in the carrier metal oxide is 13 or less, preferably 12 or less, more preferably 10 or less. The lower limit is about 4. Thus, the electronegativity of the metal ion in the carrier metal oxide used in the present invention is 4-13, preferably 4-12. The electronegativity of the metal ion in the metal oxide in excess of 13 is not preferable, because carbon deposition occurs significantly.
- The electronegativity of the metal ion in the metal oxide is defined by the following formula:
- Xi=(1+2i)Xo
- wherein Xi: electronegativity of the metal ion
- Xo: electronegativity of the metal
- i: valence electron number.
- When the metal oxide is a mixed metal oxide, an average electronegativity of the metal ions is used. The average value is a sum of the products of the electronegativity of each of the metal ions contained in the mixed metal oxide by the molar fraction of the corresponding metal oxide of the mixed metal oxide.
- The electronegativity (Xo) of a metal is in accordance with Pauling. The electronegativity in accordance with Pauling is as shown in “W. J. Moore Physical Chemistry, Vol. 1 translated by FUJISHIRO, Ryoichi”, 4th Edition, Tokyo Kagaku Dojin, p. 707 (1974), Table 15.4.
- The electronegativity of metal ion in a metal oxide is described in detail in, for example, “Syokubaikoza, vol. 2, p145 (1985) edited by Catalyst Society of Japan”.
- The metal oxides may include those containing one or at least two metals such as Mg, Ca, Ba, Zn, Al, Zr and La. Illustrative of such metal oxides are single metal oxides such as magnesia (MgO), calcium oxide (CaO), barium oxide (BaO), zinc oxide (ZnO), alumina (Al2O3), zirconia (ZrO2) and lanthanum oxide (La2O3), and mixed metal oxides such as MgO/CaO, MgO/BaO, MgO/ZnO, MgO/Al2O3, MgO/ZrO2, CaO/BaO, CaO/ZnO, CaO/Al2O3, CaO/ZrO2, BaO/ZnO, BaO/Al2O3, BaO/ZrO2, ZnO/Al2O3, ZnO/ZrO2, Al2O3/ZrO2, La2O3/MgO, La2O3/Al2O3 and La2O3/CaO.
- The catalyst according to the present invention having a specific surface area of 25 m2/g or less may be obtained by calcining a carrier metal oxide before the support of a catalytic metal at 300-1,30020 C., preferably 650-1,200° C. After the catalytic metal has been supported, the catalytic metal-supported carrier is further calcined at 600-1,300° C., preferably 650-1,200° C. It is also possible to obtain the catalyst by supporting a catalytic metal on a carrier metal oxide, followed by the calcination of the catalytic metal supporting product at 600-1,300° C., preferably 650-1,200° C. The upper limit of the calcination temperature is not specifically limited but is generally 1,500° C. or less, preferably 1,300° C. or less. In this case, the specific surface area of the catalyst or the carrier metal oxide can be controlled by the calcination temperature and calcination time.
- The specific surface area of the catalyst or the carrier metal oxide used in the present invention is preferably 20 m2/g or less, more preferably 15 m2/g or less, most preferably 10 m2/g or less. The lower limit of the specific surface area is about 0.01 m2/g. By specifying the specific surface area of the catalyst or the carrier metal oxide in which the electronegativity of the metal ion is 13 or less in the above range, the carbon deposition activity of the catalyst can be significantly suppressed.
- The amount of the catalytic metal supported on the carrier metal oxide is at least 0.0005 mole %, preferably at least 0.001 mole %, more preferably at least 0.002 mole %, in terms of metal, based on the carrier metal oxide. The upper limit is generally 0.1 mole %, preferably 0.09 mole %. In the present invention, the amount of metal supported is desirably in the range of 0.0005 -0.1 mole %, preferably 0.001-0.1 mole %.
- In the catalyst of the present invention, the specific surface area of the catalyst is substantially the same as that of the carrier metal oxide. Thus, in the present specification, the term “specific surface area of a catalyst” is used as having the same meaning as “specific surface area of a carrier metal oxide thereof”.
- The term “specific surface area” referred to in the present specification in connection with a catalyst or a carrier metal oxide is as measured by the “BET method” at a temperature of 15° C. using a measuring device “SA-100” manufactured by Shibata Science Inc.
- The catalyst according to the present invention has a small specific surface area and has an extremely small amount of a supported catalytic metal so that the carbon deposition activity thereof is considerably suppressed. Yet, the catalyst has satisfactory activity for converting a raw material carbon-containing organic compound into a synthesis gas.
- The catalyst of the present invention may be prepared by conventional methods. One preferred method of preparing the catalyst of the present invention is an impregnation method. To prepare the catalyst of the present invention by the impregnation method, a catalyst metal salt or an aqueous solution thereof is added to and mixed with an aqueous dispersion containing a carrier metal oxide. The carrier metal oxide is then separated from the aqueous solution, followed by drying and calcination. A method (incipient-wetness method) is also effective in which a carrier metal oxide is added with a solution of a metal salt little by little in an amount corresponding to a pore volume to uniformly wet the surface of the carrier, followed by drying and calcination. In these methods, a water soluble salt is used as the catalyst metal salt. Such a water soluble salt may be a salt of an inorganic acid, such as a nitrate or a hydrochloride, or a salt of an organic acid, such as an acetate or an oxalate. Alternately, a metal acetylacetonate, etc. may be dissolved in an organic solvent such as acetone and the solution may be impregnated into the carrier metal oxide. The drying is performed at a temperature of 100-200° C., preferably 100-150° C. when the metal oxide is impregnated with an aqueous solution of a catalytic metal salt. When the impregnation is performed using an organic solvent, the drying is performed at a temperature higher by 50-100° C. than the boiling point of the solvent. The calcination temperature and time are adequately selected according to the specific surface area of the carrier metal oxide or catalyst obtained (the specific surface area of the catalyst). Generally, a calcination temperature in the range of 500-1,100° C. is used.
- In the preparation of the catalyst of the present invention, the metal oxide used as a carrier may be a product obtained by calcining a commercially available metal oxide or a commercially available metal hydroxide. The purity of the metal oxide is at least 98% by weight, preferably at least 99% by weight. It is, however, undesirable that components which enhance carbon deposition activity or components which are decomposed under reducing conditions, such as metals, e.g. iron and nickel, and silicon dioxide (SiO2) . Such impurities in the metal oxide are desired to be not greater than 1% by weight, preferably not greater than 0.1% by weight.
- The catalyst of the present invention may be used in various forms such as powdery, granular, spherical, columnar and cylindrical forms. The form may be appropriately selected according to the catalytic bed system used.
- The production of a synthesis gas using the catalyst of the present invention may be performed by reacting a carbon-containing organic compound with steam and/or carbon dioxide (CO2) or by reacting a carbon-containing organic compound with oxygen in the presence of the catalyst. As the carbon-containing organic compound, a lower hydrocarbon such as methane, ethane, propane, butane or naphtha or a non-hydrocarbon compound such as methanol or dimethyl ether may be used. The use of methane is preferred. In the present invention, a natural gas (methane gas) containing carbon dioxide is advantageously used.
- In the case of a method of reacting methane with carbon dioxide (CO2) (reforming with CO2), the reaction is as follows:
- In the case of a method of reacting methane with steam (reforming with steam), the reaction is as follows:
- In the reforming with CO2, the reaction temperature is 500-1,200° C., preferably 600-1,000° C. and the reaction pressure is an elevated pressure of 5-40 kg/cm2G, preferably 5-30 kg/cm2G. When the reaction is performed with a packed bed system, the gas space velocity (GHSV) is 1,000-10,000 hr−1, preferably 2,000-8,000 hr−1. The amount of CO2 relative to the raw material carbon-containing organic compound is 20-0.5 mole, preferably 10-1 mole, per mole of carbon of the raw material compound.
- In the reforming with steam, the reaction temperature is 600-1,200° C., preferably 600-1,000° C. and the reaction pressure is an elevated pressure of 1-40 kg/cm2G, preferably 5-30 kg/cm2G. When the reaction is performed with a packed bed system, the gas space velocity (GHSV) is 1,000-10,000 hr−1, preferably 2,000-8,000 hr−1. The amount of steam relative to the raw material carbon-containing organic compound is 0.5-5 moles, preferably 1-2 moles, more preferably 1-1.5 moles, per mole of carbon of the raw material compound.
- In the reforming with steam according to the present invention, it is possible to produce a synthesis gas in an industrially favorable manner while suppressing the carbon deposition, even when the amount of steam (H2O) is maintained 2 moles or less per mole of carbon of the raw material compound. In view of the fact that 2-5 moles of steam per mole of carbon in the raw material compound is required in the conventional method, the catalyst of the present invention, which can permit the reforming reaction to smoothly proceed with an amount of steam of 2 moles or less, has a great industrial merit.
- The catalyst of the present invention is favorably used as a catalyst for reacting a carbon-containing organic compound with a mixture of steam and CO2. In this case, the mixing proportion of steam and CO2 is not specifically limited but is generally such as to provide a H2O/CO2 molar ratio of 0.1-10.
- When a carbon-containing organic compound is reacted with oxygen using the catalyst of the present invention, the carbon-containing organic compound may be such a hydrocarbon or non-hydrocarbon organic compound as described previously and is preferably methane. As the source of oxygen, there may be used oxygen, air or oxygen-rich air. In the present invention a natural gas (methane gas) containing carbon dioxide is advantageously used as a reaction raw material.
- In the case of the reaction of methane with oxygen, the reaction is as shown below:
- In partial oxidation of the carbon-containing organic compound, the reaction temperature is 500-1,500° C., preferably 700-1,200° C. and the reaction pressure is an elevated pressure of 5-50 kg/cm2G, preferably 10-40 kg/cm2G. When the reaction is performed with a packed bed system, the gas space velocity (GHSV) is 1,000-50,000 hr−1, preferably 2,000-20,000 hr−1. The amount of oxygen relative to the raw material carbon-containing organic compound is such as provide a molar ratio of carbon of the raw material carbon-containing organic compound to oxygen molecules C/O2 of 4-0.1 mole, preferably 2-0.5 mole. Since the partial oxidation method is a greatly exothermic reaction, it is possible to adopt a reaction system of autothermic system while adding steam and carbon dioxide to the raw material.
- The above-described various reactions using the catalyst of the present invention may be carried out with various catalyst systems such as a packed bed system, a fluidized bed system, a suspension bed system and a moving bed system.
- A process for the production of carbon monoxide according to the present invention includes, as a first step, a synthesis gas producing step. The first step is carried out by reacting a carbon-containing organic compound with carbon dioxide in the presence of a catalyst. In this case, the previously described catalyst is used as the synthesis gas production catalyst.
- In the reaction of the carbon-containing organic compound with carbon dioxide (reforming with CO2), the reaction temperature is 500-1,200° C., preferably 600-1,000° C. and the reaction pressure is an elevated pressure of 1-40 kg/cm2G, preferably 5-30 kg/cm2G. When the reaction is performed with a packed bed system, the gas space velocity (GHSV) is 1,000-10,000 hr−1, preferably 2,000-8,000 hr−1. The amount of carbon dioxide relative to the raw material carbon-containing organic compound is 1-10 moles, preferably 1-5 moles, more preferably 1-3 moles, per mole of carbon of the raw material compound.
- In the reforming with CO2 according to the present invention, a synthesis gas can be produced in an industrially advantageous manner while preventing carbon deposition, even when the amount of CO2 is maintained no more than 3 moles per mole of carbon of the raw material compound.
- The above-described reforming with CO2 may be carried out with various catalyst systems such as a packed bed system, a fluidized bed system, a suspension bed system and a moving bed system and is preferably performed using a packed bed system.
- As a result of the above-described reforming with CO2, a synthesis gas containing hydrogen and carbon monoxide is obtained. When methane is used as a raw material, the synthesis gas has, for example, a composition containing 10-30 vol % of H2, 35-45 vol % of CO, 5-40 vol % of unreacted CO2, 0-30 vol % of unreacted CH4 and 5-20 vol % of H2O.
- In the second step of the present invention, the thus obtained synthesis gas is used as a raw material and carbon monoxide (CO) is concentrated therefrom. The CO concentration may be carried out by a customarily employed CO concentration method such as a cryogenic separation and a absorption method using an aqueous copper salt solution as an absorbent.
- The present invention will be further described in detail below by examples.
- The particle size of aluminum oxide calcined at 650° C. for 1.5 h (hour) in air was adjusted to 0.27-0.75 mm. Thereafter, Ru was supported on the aluminum oxide by an impregnation method (incipient-wetness method) . This was further calcined at 1,000° C. in air to obtain a Ru-supporting Al2O3 catalyst (Ru content was 3.0×10−4 g per 1 g of Al2O3 and, in terms of molar amount, 0.03 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of ruthenium(III) chloride extremely little by little to the calcined Al2O3, with mixing by shaking after each dropwise addition. The Ru concentration in the aqueous solution of ruthenium(III) chloride added dropwise was 0.05% by weight. The impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,000° C. for 1.5 h in the same atmosphere to obtain the Ru-supporting Al2O3 catalyst (surface area: 18.6 m2/g). The electronegativity Xi of Al3+ of Al2O3 is 11.3.
- The particle size of zirconium oxide calcined at 600° C. for 2 h in air was adjusted to 0.27-0.75 mm. Thereafter, Rh was supported on the zirconium oxide by an impregnation method. This was further calcined at 970° C. in air to obtain a Rh-supporting ZrO2 catalyst (Rh content was 8.4×10−6 g per 1 g of ZrO2 and, in terms of molar amount, 0.001 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined ZrO2, with mixing by shaking after each dropwise addition. The Rh concentration in the aqueous solution of rhodium(III) acetate added dropwise was 0.0065% by weight. The impregnated material was dried at 120° C. for 2.5 h in air and calcined at 970° C. for 2 h in the same atmosphere to obtain the Rh-supporting ZrO2 catalyst (surface area: 8.6 m2/g). The electronegativity Xi of Zr4+ of ZrO2 is 12.0.
- The particle size of magnesium oxide (magnesia) calcined at 600° C. for 2 h in air was adjusted to 0.27-0.75 mm. Thereafter, Rh was supported on the magnesium oxide by an impregnation method. This was further calcined at 1,100° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 2.6×10−3 g per 1 g of Mg and, in terms of molar amount, 0.1 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The Rh concentration in the aqueous solution of rhodium(III) acetate added dropwise was 1.7% by weight. The impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,100° C. for 2 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 0.6 m2/g). The electronegativity Xi of Mg2+ of MgO is 6.6.
- Rh was supported on magnesium oxide (in the form of ⅛ inch pellets), calcined at 1,100° C. for 3 h in air, by an impregnation method. This was further calcined at 400° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 1.5×10−3 g per 1 g of MgO and, in terms of molar amount, 0.06 mol %). The above impregnated material was obtained by soaking the calcined MgO pellets in an aqueous solution of rhodium(III) acetate having a Rh concentration of 1.0% by weight for about 3 h. The impregnated material was then dried at 120° C. for 2.5 h in air and calcined at 400° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 0.7 m2/g). The electronegativity Xi of Mg2+ of MgO is 6.6.
- Rh was supported on magnesium oxide (in the form of ⅛ inch pellets), calcined at 1,100° C. for 3 h in air, by an impregnation method. This was further calcined at 1,000° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 2.6×10−5 g per 1 g of MgO and, in terms of molar amount, 0.001 mol %). The above impregnated material was obtained by soaking the calcined MgO pellets in an acetone solution of rhodium(III) acetylacetonate having a Rh concentration of 0.017% by weight for about 3 h. The impregnated material was then dried at 120° C. for 2.5 h in air and calcined at 1,000° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 0.6 m2/g). The electronegativity Xi of Mg2+ of MgO is 6.6.
- Rh was supported on magnesium oxide (in the form of ⅛ inch pellets), containing 5 mol % of calcium oxide and calcined at 1,100° C. for 3 h in air, by an impregnation method. This was further calcined at 950° C. in air to obtain a Rh-supporting CaO/MgO catalyst (Rh content was 7.5×10−4 g per 1 g of CaO/MgO and, in terms of molar amount, 0.03 mol). The above impregnated material was obtained by soaking the calcined CaO/MgO pellets in an aqueous solution of rhodium(III) acetate having a Rh concentration of 0.5% by weight for about 3 h. The impregnated material was then dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Rh-supporting CaO/MgO catalyst (surface area: 0.8 m2/g) The average electronegativity Xi of the metal ions of the carrier is 6.5.
- Rh was supported on magnesium oxide (in the form of ⅛ inch pellets), containing 10 mol % of lanthanum oxide and calcined at 1,100° C. for 3 h in air, by an impregnation method. This was further calcined at 950° C. in air to obtain a Rh-supporting La2O3/MgO catalyst (Rh content was 9.0×10−5 g per 1 g of La2O3/MgO and, in terms of molar amount, 0.006 mol %). The above impregnated material was obtained by soaking the calcined La2O3/MgO pellets in an acetone solution of rhodium(III) acetylacetonate having a Rh concentration of 0.1% by weight for about 3 h. The impregnated material was then dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Rh-supporting La2O3/MgO catalyst (surface area: 0.8 m2/g). The average electronegativity Xi of the metal ions of the carrier is 6.7.
- The particle size of magnesium oxide calcined at 1,000° C. for 1.5 h in air was adjusted to 0.27-0.75 mm. Thereafter, Rh was supported on the magnesium oxide by an impregnation method. This was further calcined at 950° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 2.6×10−4 g per 1 g of MgO and, in terms of molar amount, 0.01 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The rhodium(III) acetate aqueous solution had a Rh concentration of 0.17% by weight. The Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 950° C. for 1.5 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 5.8 m2/g).
- The particle size of magnesium oxide calcined at 920° C. for 2 h in air was adjusted to 0.27-0.75 mm. Thereafter, Ru was supported on the magnesium oxide by an impregnation method. This was further calcined at 920° C. in air to obtain a Ru-supporting MgO catalyst (Ru content was 1.5×10−3 g per 1 g of MgO and, in terms of molar amount, 0.06 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of hydrated ruthenium(III) chloride extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The rhodium(III) chloride aqueous solution had a Ru concentration of 1.0% by weight. The Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 920° C. for 2 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 9.6 m2/g).
- The particle size of magnesium oxide calcined at 300° C. for 3 h in air was adjusted to 0.27-0.75 mm. Thereafter, Ir was supported on the magnesium oxide by an impregnation method. This was further calcined at 600° C. in air to obtain a Ir-supporting MgO catalyst (Ir content was 4.8×10−3 g per 1 g of MgO and, in terms of molar amount, 0.10 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of iridium(IV) chloride extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The iridium(IV) chloride aqueous solution had a Ir concentration of 3.2% by weight. The Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 600° C. for 3 h in the same atmosphere to obtain the Ir-supporting MgO catalyst (surface area: 24.8 m2/g).
- The particle size of magnesium oxide calcined at 500° C. for 3 h in air was adjusted to 0.27-0.75 mm. Thereafter, Pt was supported on the magnesium oxide by an impregnation method. This was further calcined at 750° C. in air to obtain a Pt-supporting MgO catalyst (Pt content was 4.8×10−3 g per 1 g MgO and, in terms of molar amount, 0.10 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of chloroplatinic acid ([H2PtCl6]) extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The chloroplatinic acid aqueous solution had a Pt concentration of 3.2% by weight. The Pt-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 750° C. for 3 h in the same atmosphere to obtain the Pt-supporting MgO catalyst (surface area: 18.4 m2/g).
- The particle size of magnesium oxide calcined at 300° C. for 3 h in air was adjusted to 1.2-2.5 mm. Thereafter, Rh was supported on the magnesium oxide by an impregnation method. This was further calcined at 950° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 1.0×10−3 g per 1 g of MgO and, in terms of molar amount, 0.04 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The rhodium(III) acetate aqueous solution had a Rh concentration of 0.68% by weight. The Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 6.0 m2/g)
- The particle size of magnesium oxide calcined at 930° C. for 3 h in air was adjusted to 0.27-0.75 mm. Thereafter, Ru was, supported on the magnesium oxide by an impregnation method. This was further calcined at 970° C. in air to obtain a Ru-supporting MgO catalyst (Ru content was 7.5×10−4 g per 1 g of MgO and, in terms of molar amount, 0.03 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of ruthenium(III) chloride extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The ruthenium(III) chloride aqueous solution had a Ru concentration of 0.50% by weight. The Ru-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 970° C. for 3 h in the same atmosphere to obtain the Ru-supporting MgO catalyst (surface area: 5.2 m2/g).
- The particle size of magnesium oxide calcined at 350° C. for 3 h in air was adjusted to 0.27-0.75 mm. Thereafter, Rh was supported on the magnesium oxide by an impregnation method. This was further calcined at 1,050° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 2.0×10−3 g per 1 g of Mg and, in terms of molar amount, 0.08 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The rhodium(III) acetate aqueous solution had a Rh concentration of 1.3% by weight. The Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,050° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 1.5 m2/g)
- The particle size of magnesium oxide calcined at 950° C. for 3 h in air was adjusted to 0.27-0.75 mm. Thereafter, Ru was supported on the magnesium oxide by an impregnation method. This was further calcined at 950° C. in air to obtain a Ru-supporting MgO catalyst (Ru content was 2.5×10−4 g per 1 g of MgO and, in terms of molar amount, 0.01 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of ruthenium(III) chloride hydrate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The ruthenium(III) chloride hydrate aqueous solution had a Ru concentration of 0.17% by weight. The Ru-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Ru-supporting MgO catalyst (surface area: 4.8 m2/g). In this case, Ru was found to be supported as ruthenium oxide.
- The particle size of magnesium oxide calcined at 300° C. for 3 h in air was adjusted to 0.27-0.75 mm. Thereafter, Rh was supported on the magnesium oxide by an impregnation method. This was further calcined at 1,050° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 2.3×10−3 g per 1 g of MgO and, in terms of molar amount, 0.09 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The rhodium(III) acetate aqueous solution had a Rh concentration of 1.5% by weight. The Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,050° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 2.0 m2/g). In this case, Rh was found to be supported as rhodium oxide.
- The particle size of magnesium oxide calcined at 1,000° C. for 3 h in, air was adjusted to 0.27-0.75 mm. Thereafter, Rh was supported on the magnesium oxide by an impregnation method. This was further calcined at 950° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 1.5×10−4 g per 1 g of MgO and, in terms of molar amount, 0.006 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The rhodium(III) acetate aqueous solution had a Rh concentration of 0.1% by weight. The Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 950° C. for 3 h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 5.6 m2/g).
- The particle size of magnesium oxide calcined at 500° C. for 3 h in air was adjusted to 0.27-0.75 mm. Thereafter, Rh and Pt were supported on the magnesium oxide by an impregnation method. This was further calcined at 1,050° C. in air to obtain a Rh- and Pt-supporting MgO catalyst (Rh and Pt contents were 1.8×10−3 g and 4.8×10−4 g, respectively, per 1 g of MgO and, in terms of molar amount, 0.07 and 0.01 mol %, respectively). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) and chloroplatinic acid ([H2PtCl6])acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The mixed aqueous solution had Rh and Pt concentrations of 1.2% by weight and 0.32% by weight, respectively. The Rh- and Pt-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 1,050° C. for 3 h in the same atmosphere to obtain the Rh- and Pt-supporting MgO catalyst (surface area: 1.4 m2/g)
- The particle size of magnesium oxide calcined at 370° C. for 3 h in air was adjusted to 0.27-0.75 mm. Thereafter, Rh was supported on the magnesium oxide by an impregnation method. This was further calcined at 370° C. in air to obtain a Rh-supporting MgO catalyst (Rh content was 2.6×10−3 g per 1 g of MgO and, in terms of molar amount, 0.10 mol %). The above impregnated material was obtained by adding dropwise an aqueous solution of rhodium(III) acetate extremely little by little to the calcined MgO, with mixing by shaking after each dropwise addition. The rhodium(III) acetate aqueous solution had a Rh concentration of 1.7% by weight. The Rh-impregnated material was dried at 120° C. for 2.5 h in air and calcined at 370° C. for h in the same atmosphere to obtain the Rh-supporting MgO catalyst (surface area: 98 m2/g).
- The catalyst (5 cc) obtained in Catalyst Preparation Example 1 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream to convert oxidized Rh into metallic Rh. A raw material gas having a molar ratio of CH4:CO2=1:1 was then treated at a temperature of 850° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 4,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 55% (equilibrium CH4 conversion under the experimental condition=55%), and the CH4 conversion at 100 h after the commencement of the reaction was 54%. The term “CH4 conversion” herein is defined by the following formula:
- CH 4 Conversion (%)=(A−B)/A×100
- A: mole number of CH4 in the raw material
- B: mole number of CH4 in the product.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 2 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:CO2=1:1 was then treated at a temperature of 870° C. and a pressure of 10 kg/cm2G and with GHSV (methane basis) of 2,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 71% (equilibrium CH4 conversion under the experimental condition=71%), and the CH4 conversion at 50 h after the commencement of the reaction was 71%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 3 was packed in a reactor to perform a methane reforming test.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:CO2:H2O=1:0.5:1.0 was then treated at a temperature of 850° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 4,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 61.5% (equilibrium CH4 conversion under the experimental condition=62%), and the CH4 conversion at 400 h after the commencement of the reaction was 61.0%.
- The catalyst (20 cc) obtained in Catalyst Preparation Example 4 was packed in a reactor to perform a methane reforming test.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream to convert oxidized Rh into metallic Rh. A raw material gas having a molar ratio of CH4:CO2:H2O=1:0.5:1.0 was then treated at a temperature of 850° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 3,500 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 61.0% (equilibrium CH4 conversion under the experimental condition=62.0%), and the CH4 conversion at 280 h after the commencement of the reaction was 61.0%.
- The catalyst (20 cc) obtained in Catalyst Preparation Example 5 was packed in a reactor to perform a test of reforming methane with H2O.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:H2O=1:2 was then treated at a temperature of 850° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 2,000 hr−1. The CH4 conversion and the H2/CO molar ratio of the product gas at 5 h after the commencement of the reaction were 72.0% (equilibrium CH4 conversion under the experimental condition=71%) and 4.6, respectively, and the CH4 conversion at 280 h after the commencement of the reaction was 71.8%.
- The catalyst (20 cc) obtained in Catalyst Preparation Example 6 was packed in a reactor to perform a test of reforming methane with H2O.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4: H2O=1:1 was then treated at a temperature of 850° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 5,500 hr−1. The CH4 conversion and the H2/CO molar ratio of the product gas at 5 h after the commencement of the reaction were 52.2% (equilibrium CH4 conversion under the experimental condition=52.3%) and 3.8, respectively, and the CH4 conversion at 250 h after the commencement of the reaction was 52.0%.
- The catalyst (20 cc) obtained in Catalyst Preparation Example 7 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 920° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:CO2=1:1 was then treated at a temperature of 850° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 4,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 54.0% (equilibrium CH4 conversion under the experimental condition=55%), and the CH4 conversion at 380 h after the commencement of the reaction was 53.5%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 8 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream to convert oxidized Rh into metallic Rh. A raw material gas having a molar ratio of CH4:CO2=1:1 was then treated at a temperature of 850° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 4,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 55% (equilibrium CH4 conversion under the experimental condition=55%), and the CH4 conversion at 320 h after the commencement of the reaction was 54%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 9 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4: CO2=1:1 was then treated at a temperature of 870° C. and a pressure of 10 kg/cm2G and with GHSV (methane basis) of 6,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 71% (equilibrium CH4 conversion under the experimental condition=71%), and the CH4 conversion at 520 h after the commencement of the reaction was 71%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 10 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:CO2=1:1 was then treated at a temperature of 830° C. and a pressure of 5 kg/cm2G and with GHSV (methane basis) of 2,500 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 73% (equilibrium CH4 conversion under the experimental condition=73%), and the CH4 conversion at 100 h after the commencement of the reaction was 71%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 11 was packed in a reactor to perform a methane reforming test.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:CO2:H2O=1:0.5:0.5 was then treated at a temperature of 880° C. and a pressure of 10 kg/cm2G and with GHSV (methane basis) of 3,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 70% (equilibrium CH4 conversion under the experimental condition=70%), and the CH4 conversion at 120 h after the commencement of the reaction was 67%.
- Example 8 was repeated in the same manner as described except that steam was used in lieu of CO2. The CH4 conversions at 5 h and 320 h after the commencement of the reaction were 52% and 51%, respectively.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 12 was packed in a reactor to perform a test of partial oxidation of methane.
- The catalyst was previously subjected to a reduction treatment at 850° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:O2=1:0.5 was then treated at a temperature of 800° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 5,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 55% (equilibrium CH4 conversion under the experimental condition=56%), and the CH4 conversion at 200 h after the commencement of the reaction was 53%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 13 was packed in a reactor to perform a test of partial oxidation of methane.
- The catalyst was previously subjected to a reduction treatment at 800° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:O2=1:0.5 was then treated at a temperature of 750° C. and a pressure of 15 kg/cm2G and with GHSV (methane basis) of 4,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 52% (equilibrium CH4 conversion under the experimental condition=52%), and the CH4 conversion at 150 h after the commencement of the reaction was 50%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 14 was packed in a reactor to perform a test of partial oxidation of methane.
- The catalyst was previously subjected to a reduction treatment at 1,100° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:O2:H2O=1:0.5:0.5 was then treated at a temperature of 1,000° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 5,000 hr−1. The CH4 conversion at 5 h after the commencement of the reaction was 93% (equilibrium CH4 conversion under the experimental condition=94%), and the CH4 conversion at 100 h after the commencement of the reaction was 93%.
- Using two interconnected reactors, an automthermal reforming test was carried out. A raw material gas having a molar ratio of CH4:O2=1:0.25 was fed to a first reactor with GHSV (based on a catalyst contained in a second reactor) of 6,000 hr−1 and subjected to a combustion reaction at a temperature of 950° C. and a pressure of 25 kg/cm2G. To the second reactor, a gas discharged from the first reactor, oxygen and carbon dioxide were added (molar ratio of CH4 (as raw material CH4 fed to the first reactor):O2:CO2=1:0.25:0.5), so that a reforming reaction was carried out using the catalyst (5 cc) obtained in Catalyst Preparation Example 17. The catalyst was previously subjected to a reduction treatment at 950° C. for 1 h in a H2 stream. The reaction conditions included a temperature of 850° C. and a pressure of 25 kg/cm2G. After 5 h from the commencement of the reaction, the CH4 conversion was 71.8% and the contents of H2 and CO in the product gas were 33.8 mol % and 30.0 mol %, respectively. The CH4 conversion at 200 h after the commencement of the reaction was 71.6%.
- Using two interconnected reactors, an autothermal reforming test was carried out. A raw material gas having a molar ratio of CH4:O2=1:0.5 was fed to a first reactor with GHSV (based on a catalyst contained in a second reactor) of 5,000 hr−1 and subjected to a combustion reaction at a temperature of 1,050° C. and a pressure of 25 kg/cm2G. To the second reactor, a gas discharged from the first reactor and carbon dioxide were added (molar ratio of CH4(as raw material CH4 fed to the first reactor) :CO2= 1:0.5) so that a reforming reaction was carried out using the catalyst (5 cc) obtained in Catalyst Preparation Example 18. The catalyst was previously subjected to a reduction treatment at 850° C. for 1 h in a H2 stream. The reaction conditions included a temperature of 700° C. and a pressure of 20 kg/cm2G. After 5 h from the commencement of the reaction, the CH4 conversion was 46.7% and the contents of H2 and CO in the product gas were 19.6 mol % and 16.1 mol %, respectively. The CH4 conversion at 150 h after the commencement of the reaction was 46.5%.
- A test of reforming methane with CO2 was performed in the same manner as described in Reaction Example 1 except that the catalyst (5 cc) prepared in Comparative Catalyst Preparation Example 1 was used. In this case, the CH4 conversions at 5 h and 15 h after the commencement of the reaction were 40% and 8%, respectively.
- A test of reforming methane with H2O was performed in the same manner as described in Reaction Example 6 except that the catalyst prepared in Comparative Catalyst Preparation Example 1 was used. In this case, the CH4 conversions at 5 h and 20 h after the commencement of the reaction were 45% and 10%, respectively.
- A reaction experiment was performed in the same manner as described in Reaction Example 13 except that the catalyst prepared in Comparative Catalyst Preparation Example 1 was used. In this case, the CH4 conversions at 5 h and 40 h after the commencement of the reaction were 13% and 9%, respectively.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 17 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream to convert oxidized Rh into metallic Rh. A raw material gas having a molar ratio of CH4:CO2=1:3 was then treated at a temperature of 850° C. and a pressure of 25 kg/cm2G and with GHSV (methane basis) of 6,000 hr−1. After 5 h from the commencement of the reaction, the CH4 conversion was 86.1% (equilibrium CH4 conversion under the experimental condition=86.1%) and the CO/H2 molar ratio of the product gas was 2.2. The CH4 conversion at 280 h after the commencement of the reaction was 85.7%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 7 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:CO2=1:5 was then treated at a temperature of 830° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 5,500 hr−1. After 5 h from the commencement of the reaction, the CH4 conversion was 95.7% (equilibrium CH4 conversion under the experimental condition=95.8%) and the CO/H2 molar ratio of the product gas was 3.2. The CH4 conversion at 400 h after the commencement of the reaction was 95.4%.
- The catalyst (5 cc) obtained in Catalyst Preparation Example 9 was packed in a reactor to perform a test of reforming methane with CO2.
- The catalyst was previously subjected to a reduction treatment at 900° C. for 1 h in a H2 stream. A raw material gas having a molar ratio of CH4:CO2=1:1 was then treated at a temperature of 800° C. and a pressure of 20 kg/cm2G and with GHSV (methane basis) of 4,000 hr−1. After 5 h from the commencement of the reaction, the CH4 conversion was 45.5% (equilibrium CH4 conversion under the experimental condition=45.5%) and the CO/H2 molar ratio of the product gas was 1.6. The CH4 conversion at 150 h after the commencement of the reaction was 45.2%.
- Methane reforming with CO2 was repeated in the same manner as described in Reaction Example 20 except that 5 cc of the catalyst obtained in Comparative Catalyst Preparation Example 1 was used. After 5 h from the commencement of the reaction, the CH4 conversion was 42.0% (equilibrium CH4 conversion under the experimental condition=45.5%) and the CO/H2 molar ratio of the product gas was 1.7. The CH4 conversion at 15 h after the commencement of the reaction was 5.0%.
- The synthesis gas obtained in Reaction Example 18 and having a CO/H2 molar ratio of 2.2 was concentrated by an absorption method using a CuCl solution acidified with hydrochloric acid as an absorbent, thereby obtaining concentrated CO having CO concentration of 96%.
- The catalyst according to the present invention shows considerably suppressed carbon deposition activity, while retaining activity required for converting a carbon-containing organic compound into a synthesis gas. By using the catalyst of the present invention, therefore, a synthesis gas can be produced continuously with a good yield for a long period of time while preventing carbon deposition.
- Further, the use of the catalyst of the present invention can effectively suppress the carbon deposition even at a high pressure, so that a small size apparatus of producing a synthesis gas can be used and the device costs can be reduced.
- In the process for the production of carbon monoxide according to the present invention, the above-described specific catalyst is used in a synthesis gas producing step. This catalyst shows considerably suppressed carbon deposition activity while retaining the activity required for converting a carbon-containing organic compound into a systhesis gas. Therefore, the synthesis gas producing step of the present invention can continuously produce a synthesis gas for a long period of time with a good yield while preventing carbon deposition.
- Further, the use of the catalyst of the present invention can effectively suppress the carbon deposition even at a high pressure and with a small amount of CO2 feed, so that a small size apparatus of producing a synthesis gas can be used and the device costs can be reduced.
- Moreover, since the synthesis gas obtained in the synthesis gas production step has a small content of CO2, the concentration of CO can be efficiently performed with a small-sized device.
Claims (11)
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-110436 | 1997-04-11 | ||
JP11043697 | 1997-04-11 | ||
JP12630497 | 1997-04-30 | ||
JP9-126304 | 1997-04-30 | ||
JP22009297 | 1997-07-31 | ||
JP9-250061 | 1997-08-29 | ||
JP25006297 | 1997-08-29 | ||
JP9-220092 | 1997-08-29 | ||
JP9-250062 | 1997-08-29 | ||
JP25006197 | 1997-08-29 | ||
PCT/JP1998/001686 WO1998046523A1 (en) | 1997-04-11 | 1998-04-13 | Catalyst for preparation of synthesis gas and process for preparing carbon monoxide |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010010808A1 true US20010010808A1 (en) | 2001-08-02 |
US6376423B2 US6376423B2 (en) | 2002-04-23 |
Family
ID=27526446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/254,634 Expired - Lifetime US6376423B2 (en) | 1997-04-11 | 1998-04-13 | Catalyst for preparation of synthesis gas and process for preparing carbon monoxide |
Country Status (8)
Country | Link |
---|---|
US (1) | US6376423B2 (en) |
EP (1) | EP0974550B1 (en) |
JP (1) | JP3345782B2 (en) |
AT (1) | ATE273238T1 (en) |
AU (1) | AU6749198A (en) |
DE (1) | DE69825576T2 (en) |
DK (1) | DK0974550T3 (en) |
WO (1) | WO1998046523A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030082635A1 (en) * | 2001-10-16 | 2003-05-01 | Lockheed Martin Corporation | System and method for large scale detection of hazardous materials in the mail or in other objects |
US20030114405A1 (en) * | 2001-08-13 | 2003-06-19 | Linnik Matthew D. | Methods of treating systemic lupus erythematosus in individuals having significantly impaired renal function |
US20040208864A1 (en) * | 2002-12-27 | 2004-10-21 | Vibeke Strand | Methods of improving health-related quality of life in individuals with systemic lupus erythematosus |
US20040258683A1 (en) * | 2003-03-30 | 2004-12-23 | Linnik Matthew D. | Methods of treating and monitoring systemic lupus erythematosus in individuals |
US20060142229A1 (en) * | 1999-11-28 | 2006-06-29 | La Jolla Pharmaceutical Company | Methods of treating lupus based on antibody affinity and screening methods and compositions for use thereof |
US20150284571A1 (en) * | 2012-10-26 | 2015-10-08 | Technip France | Protective coating for metal surfaces |
KR20190017887A (en) * | 2016-06-10 | 2019-02-20 | 치요다가코겐세츠가부시키가이샤 | Carrier for synthesis gas production catalyst and production method thereof, synthesis gas production catalyst and production method thereof, and production method of synthesis gas |
US11192791B2 (en) | 2018-04-11 | 2021-12-07 | National University Corporation Hokkaido University | Light hydrocarbon partial oxidation catalyst and carbon monoxide production method using same |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9806198D0 (en) * | 1998-03-24 | 1998-05-20 | Johnson Matthey Plc | Ctalytic generation of hydrogen |
EP0947550A1 (en) * | 1998-03-30 | 1999-10-06 | Union Carbide Chemicals & Plastics Technology Corporation | Tree resistant cable |
SE516260C2 (en) * | 1999-07-01 | 2001-12-10 | Borealis Polymers Oy | Insulating composition for an electric power cable |
EP1077198A3 (en) * | 1999-08-19 | 2001-03-07 | Haldor Topsoe A/S | Process for pre-reforming of oxygen-containing gas |
US6290877B2 (en) | 1999-11-30 | 2001-09-18 | Honda Giken Kogyo Kabushiki Kaisha | Method of starting and stopping methanol reforming apparatus and apparatus for supplying fuel to said apparatus |
JP2001232195A (en) * | 1999-12-17 | 2001-08-28 | Ngk Insulators Ltd | Catalyst body |
DE10025032A1 (en) * | 2000-05-20 | 2001-11-29 | Dmc2 Degussa Metals Catalysts | Process for the autothermal, catalytic steam reforming of hydrocarbons |
US6586650B2 (en) * | 2000-07-21 | 2003-07-01 | Exxonmobil Research And Engineering Company | Ring opening with group VIII metal catalysts supported on modified substrate |
DE10157155A1 (en) * | 2001-11-22 | 2003-06-12 | Omg Ag & Co Kg | Process for the catalytic autothermal steam reforming of higher alcohols, especially ethanol |
US6958309B2 (en) | 2002-08-01 | 2005-10-25 | Conocophillips Company | Hydrothermal pretreatment for increasing average pore size in a catalyst support |
JP4555961B2 (en) * | 2003-12-10 | 2010-10-06 | 独立行政法人産業技術総合研究所 | FUEL CELL AND METHOD OF OPERATING FUEL CELL |
DK1703979T3 (en) * | 2003-12-18 | 2011-09-05 | Chiyoda Corp | Catalyst for producing synthesis gas and process for producing synthesis gas using it |
US20050202966A1 (en) * | 2004-03-11 | 2005-09-15 | W.C. Heraeus Gmbh | Catalyst for the decomposition of N2O in the Ostwald process |
DE102004024026A1 (en) * | 2004-03-11 | 2005-09-29 | W.C. Heraeus Gmbh | Catalyst for decomposition of nitrous oxide under conditions of Ostwald process, comprises carrier material, and coating of rhodium, rhodium oxide, or palladium-rhodium alloy |
JP4528059B2 (en) * | 2004-08-24 | 2010-08-18 | 千代田化工建設株式会社 | Synthesis gas production catalyst, synthesis gas production catalyst preparation method, and synthesis gas production method |
JP4681265B2 (en) * | 2004-08-24 | 2011-05-11 | 千代田化工建設株式会社 | Syngas production method and synthesis gas production reactor. |
US20080016768A1 (en) | 2006-07-18 | 2008-01-24 | Togna Keith A | Chemically-modified mixed fuels, methods of production and used thereof |
US20080260631A1 (en) * | 2007-04-18 | 2008-10-23 | H2Gen Innovations, Inc. | Hydrogen production process |
US20090114881A1 (en) * | 2007-11-05 | 2009-05-07 | Vanden Bussche Kurt M | Process for Conversion of Natural Gas to Syngas Using a Solid Oxidizing Agent |
JP5531462B2 (en) * | 2008-07-04 | 2014-06-25 | 株式会社村田製作所 | Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas |
US10180253B2 (en) | 2012-10-31 | 2019-01-15 | Korea Institute Of Machinery & Materials | Integrated carbon dioxide conversion system for connecting oxyfuel combustion and catalytic conversion process |
KR101825495B1 (en) * | 2015-11-24 | 2018-02-05 | 한국화학연구원 | Cobalt-supported catalyst for low-temperature methane reformation using carbon dioxide, and the fabrication method thereof |
JP6650140B2 (en) * | 2016-04-22 | 2020-02-19 | 国立研究開発法人産業技術総合研究所 | Catalyst composition for producing carbon monoxide and method for producing carbon monoxide |
KR101983444B1 (en) * | 2017-02-15 | 2019-05-28 | 고려대학교 세종산학협력단 | Catalyst System Containing Iridium(Ir) Complexes and TiO2/Re(I) Complex Catalyst |
MY192134A (en) * | 2019-09-20 | 2022-07-29 | Univ Kebangsaan Malaysia Ukm | A catalyst composition and method of making thereof for carbon monoxide production |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3222132A (en) | 1961-11-06 | 1965-12-07 | Ici Ltd | Steam reforming of hydrocarbons |
JPS5815013B2 (en) * | 1980-07-17 | 1983-03-23 | 株式会社豊田中央研究所 | Steam reforming catalyst and its manufacturing method |
JPS5849602A (en) | 1981-09-18 | 1983-03-23 | Matsushita Electric Ind Co Ltd | Steam reformer |
US4415484A (en) | 1982-04-26 | 1983-11-15 | United Technologies Corporation | Autothermal reforming catalyst |
JPS60202740A (en) | 1984-03-22 | 1985-10-14 | Mitsubishi Heavy Ind Ltd | Catalyst for reforming methanol |
GB2182932B (en) | 1985-11-14 | 1990-04-11 | Atomic Energy Authority Uk | Catalysts : higher alkanol synthesis |
US5246791A (en) | 1988-07-06 | 1993-09-21 | Johnson Matthey Public Limited Company | Fuel cell containing a reforming catalyst |
JPH0611401B2 (en) | 1989-02-28 | 1994-02-16 | 智行 乾 | Methanol reforming catalyst |
JPH02307802A (en) | 1989-05-19 | 1990-12-21 | Mitsubishi Heavy Ind Ltd | Method for reforming methanol |
JPH04331704A (en) | 1991-04-26 | 1992-11-19 | Ube Ind Ltd | Production of synthetic gas containing both carbon monoxide and hydrogen |
US5439861A (en) * | 1991-08-16 | 1995-08-08 | Amoco Corporation | Catalyzed vapor phase process for making synthesis gas |
PL175047B1 (en) | 1993-04-22 | 1998-10-30 | Kti Group Bv | Catalyst for use in production of synthesis gas |
US5395406A (en) * | 1993-05-11 | 1995-03-07 | Exxon Research And Engineering Company | Structurally modified alumina supports, and heat transfer solids for high temperature fluidized bed reactions |
KR0145631B1 (en) | 1993-07-30 | 1998-08-01 | 사토 후미오 | Luminescent material for mercury discharge lamp including phosphor and a continuous protective layer |
ZA9510014B (en) | 1994-11-28 | 1996-06-04 | Shell Int Research | Process for preparation of supports |
US5919425A (en) * | 1995-09-21 | 1999-07-06 | Engelhard Corporation | Catalyzed packing material for regenerative catalytic oxidation |
JP3761947B2 (en) | 1995-11-08 | 2006-03-29 | 石油資源開発株式会社 | Catalyst composition for producing synthesis gas and method for producing synthesis gas using the same |
-
1998
- 1998-04-13 US US09/254,634 patent/US6376423B2/en not_active Expired - Lifetime
- 1998-04-13 JP JP54372898A patent/JP3345782B2/en not_active Expired - Lifetime
- 1998-04-13 AT AT98912781T patent/ATE273238T1/en not_active IP Right Cessation
- 1998-04-13 WO PCT/JP1998/001686 patent/WO1998046523A1/en active IP Right Grant
- 1998-04-13 DE DE69825576T patent/DE69825576T2/en not_active Expired - Lifetime
- 1998-04-13 DK DK98912781T patent/DK0974550T3/en active
- 1998-04-13 AU AU67491/98A patent/AU6749198A/en not_active Abandoned
- 1998-04-13 EP EP98912781A patent/EP0974550B1/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060142229A1 (en) * | 1999-11-28 | 2006-06-29 | La Jolla Pharmaceutical Company | Methods of treating lupus based on antibody affinity and screening methods and compositions for use thereof |
US7081242B1 (en) | 1999-11-28 | 2006-07-25 | La Jolla Pharmaceutical Company | Methods of treating lupus based on antibody affinity and screening methods and compositions for use thereof |
US20030114405A1 (en) * | 2001-08-13 | 2003-06-19 | Linnik Matthew D. | Methods of treating systemic lupus erythematosus in individuals having significantly impaired renal function |
US20030082635A1 (en) * | 2001-10-16 | 2003-05-01 | Lockheed Martin Corporation | System and method for large scale detection of hazardous materials in the mail or in other objects |
US20040208864A1 (en) * | 2002-12-27 | 2004-10-21 | Vibeke Strand | Methods of improving health-related quality of life in individuals with systemic lupus erythematosus |
US20070218072A1 (en) * | 2002-12-27 | 2007-09-20 | Vibeke Strand | Methods of improving health-related quality of life in individuals with systemic lupus erythematosus |
US20070191297A1 (en) * | 2003-03-30 | 2007-08-16 | Linnik Matthew D | Methods of treating and monitoring systemic lupus erythematosus in individuals |
US20040258683A1 (en) * | 2003-03-30 | 2004-12-23 | Linnik Matthew D. | Methods of treating and monitoring systemic lupus erythematosus in individuals |
US20150284571A1 (en) * | 2012-10-26 | 2015-10-08 | Technip France | Protective coating for metal surfaces |
US10040951B2 (en) * | 2012-10-26 | 2018-08-07 | Technip France | Protective coating for metal surfaces |
KR20190017887A (en) * | 2016-06-10 | 2019-02-20 | 치요다가코겐세츠가부시키가이샤 | Carrier for synthesis gas production catalyst and production method thereof, synthesis gas production catalyst and production method thereof, and production method of synthesis gas |
US10376864B2 (en) | 2016-06-10 | 2019-08-13 | Chiyoda Corporation | Carrier for synthesis gas production catalyst, method of manufacturing the same, synthesis gas production catalyst, method of manufacturing the same and method of producing synthesis gas |
KR102207675B1 (en) * | 2016-06-10 | 2021-01-25 | 치요다가코겐세츠가부시키가이샤 | Synthetic gas production catalyst carrier and its production method, synthesis gas production catalyst and its production method, and synthesis gas production method |
US11192791B2 (en) | 2018-04-11 | 2021-12-07 | National University Corporation Hokkaido University | Light hydrocarbon partial oxidation catalyst and carbon monoxide production method using same |
Also Published As
Publication number | Publication date |
---|---|
US6376423B2 (en) | 2002-04-23 |
EP0974550A4 (en) | 2000-05-24 |
AU6749198A (en) | 1998-11-11 |
DE69825576T2 (en) | 2005-08-11 |
EP0974550B1 (en) | 2004-08-11 |
DK0974550T3 (en) | 2004-12-06 |
WO1998046523A1 (en) | 1998-10-22 |
DE69825576D1 (en) | 2004-09-16 |
JP3345782B2 (en) | 2002-11-18 |
ATE273238T1 (en) | 2004-08-15 |
EP0974550A1 (en) | 2000-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6376423B2 (en) | Catalyst for preparation of synthesis gas and process for preparing carbon monoxide | |
US6312660B1 (en) | Process for preparing synthesis gas | |
US6340437B1 (en) | Process for preparing synthesis gas by autothermal reforming | |
US4743576A (en) | Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst | |
EP1399256B1 (en) | A process for the activation of a catalyst comprising a cobalt compound and a support | |
US9981252B2 (en) | Catalyst preparation method | |
EP0640559B1 (en) | Process of catalytic partial oxidation of natural gas in order to obtain synthesis gas and formaldehyde | |
EP1481729A1 (en) | Process for the autothermal reforming of a hydrocarbon feedstock | |
EP3549667B1 (en) | Eggshell catalyst | |
US5336655A (en) | Catalytic system and process for producing synthesis gas by reforming light hydrocarbons with CO2 | |
US20100227232A1 (en) | Initiating a Reaction Between Hydrogen Peroxide and an Organic Compound | |
US11213805B2 (en) | Catalyst for the conversion of natural or associated gas into synthesis gas in an autothermal reforming process and method for preparing the same | |
JP4132295B2 (en) | Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas | |
JP4226684B2 (en) | Method for producing synthesis gas by partial oxidation method | |
US6387843B1 (en) | Method of preparing Rh- and/or Ru-catalyst supported on MgO carrier and reforming process using the catalyst | |
JP4163292B2 (en) | Hydrocarbon reforming catalyst and reforming method | |
JP4163302B2 (en) | Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier | |
JP4226685B2 (en) | Method for producing hydrogen | |
JPH11323352A (en) | Manufacture of hydrocarbon oil | |
JP4189068B2 (en) | Method for producing dimethyl ether from lower hydrocarbon gas | |
JP2008136907A (en) | Catalyst for manufacturing synthetic gas | |
JP2003154270A (en) | Hydrogen production catalyst and method for producing hydrogen using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHIYODA CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WAKAMATSU, SHUHEI;SHIMURA, MITSUNORI;NAGUMO, ATSURO;AND OTHERS;REEL/FRAME:010361/0868 Effective date: 19990305 |
|
CC | Certificate of correction | ||
REMI | Maintenance fee reminder mailed | ||
REIN | Reinstatement after maintenance fee payment confirmed | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060423 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20070905 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |