US20010000761A1 - Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants - Google Patents
Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants Download PDFInfo
- Publication number
- US20010000761A1 US20010000761A1 US09/730,038 US73003800A US2001000761A1 US 20010000761 A1 US20010000761 A1 US 20010000761A1 US 73003800 A US73003800 A US 73003800A US 2001000761 A1 US2001000761 A1 US 2001000761A1
- Authority
- US
- United States
- Prior art keywords
- titanium
- deposition chamber
- titanium tetrachloride
- hydrocarbon gas
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 title claims abstract description 40
- 239000010936 titanium Substances 0.000 title claims abstract description 36
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 33
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 33
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 32
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 31
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 15
- 239000000376 reactant Substances 0.000 title description 6
- 238000000034 method Methods 0.000 claims abstract description 58
- 239000007789 gas Substances 0.000 claims abstract description 48
- 238000000151 deposition Methods 0.000 claims abstract description 41
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 5
- 230000008021 deposition Effects 0.000 claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000012159 carrier gas Substances 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 150000001348 alkyl chlorides Chemical class 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 239000006200 vaporizer Substances 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 15
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 abstract description 9
- -1 methyl radicals Chemical class 0.000 abstract description 9
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 abstract description 3
- 150000003254 radicals Chemical class 0.000 abstract description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 abstract description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 229910021341 titanium silicide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910001502 inorganic halide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28568—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/909—Controlled atmosphere
Definitions
- This invention relates to chemical vapor deposition reactions, integrated circuit manufacturing and, more particularly, to methods for depositing titanium metal layers on in-process integrated circuits.
- Ti metal layers are being used with increasing frequency in integrated circuits.
- One important application involves the formation of contact structures within a dielectric layer.
- the processing of wafers for the manufacture of integrated circuits commonly requires that contact openings be etched through an insulative layer down to implant or diffusion regions in a semiconductor layer to which electrical contact is to be made.
- Titanium metal is then deposited over a wafer so that the surface of each exposed implant/diffusion region is coated.
- the titanium metal is eventually converted to titanium silicide.
- a silicide is a binary compound formed by the reaction of silicon with the metal at elevated temperatures.
- the titanium silicide layer serves as an excellent conductive interface at the surface of the implant/diffusion region.
- a titanium nitride barrier layer is then deposited, coating the walls and floor of the contact opening.
- the contact plugs are formed by depositing a tungsten or polysilicon layer via chemical vapor deposition.
- the titanium nitride layer provides greatly improved adhesion between the walls of the opening and the tungsten metal.
- the titanium nitride layer acts as a barrier against dopant diffusion from the polysilicon layer into the diffusion region.
- Deposited titanium metal layers are also used as an underlayment for aluminum alloy layers deposited on interlevel dielectric layers.
- the titanium and aluminum alloy layer stack is etched to form interconnect lines within the integrated circuit.
- the titanium metal layer not only provides increased resistance to electromigration of aluminum atoms, but also provides improved adhesion of the aluminum alloy layer to the dielectric layer as compared with an aluminum alloy layer without the titanium underlayment.
- the deposition rate of this reaction can be enhanced by striking a radio-frequency plasma in the deposition chamber. Because the diatomic hydrogen molecule is relatively difficult to ionize, the flow rate of hydrogen gas into the deposition chamber must be considerably greater than that for titanium tetrachloride. The low ratio of titanium tetrachloride molecules to hydrogen molecules is not conducive to high deposition rates.
- the present invention aims at providing a chemical vapor deposition process for titanium having increased conformality and more rapid deposition rates.
- This invention is embodied in a new process for depositing titanium metal layers via chemical vapor deposition.
- the process provides deposited titanium layers having a high degree of conformality, even in trenches and contact openings having aspect ratios greater than 1:5.
- the reaction gases for the improved process are titanium tetrachloride and a hydrocarbon gas, which for a preferred embodiment of the process is methane.
- the chemical reaction is as follows:
- the reaction is carried out in a plasma environment created by a radio frequency AC source greater than 10 KHz.
- the standard FCC-assigned frequencies of 400 KHz and 13.56 MHz are entirely satisfactory.
- the key to obtaining the proper reaction products is to set the plasma sustaining electrical power within a range that will break just one hydrogen bond from the hydrocarbon gas.
- highly reactive methyl radicals CH 3 -
- These radicals attack the titanium-chlorine bonds of the tetrachloride molecule and form chloromethane, which is evacuated from the chamber as it is formed.
- highly reactive alkyl radicals are formed.
- the alkyl radicals attack the titanium tetrachloride and form an alkyl chloride gas which is evacuated from the chamber.
- FIG. 1 is a diagrammatical view of a pressurized, chemical vapor deposition chamber showing an arrangement for the introduction of the reactants of the new chemical vapor deposition process for titanium metal.
- This new process for depositing titanium metal layers via chemical vapor deposition provides titanium layers having a high degree of conformality, even in trenches and contact openings having width-to-depth aspect ratios greater than 1:5.
- the reaction gases for the improved process are titanium tetrachloride (TiCl 4 ) and a hydrocarbon gas, which for a preferred embodiment of the process is methane (CH 4 ).
- Other hydrocarbon gases having the general formulas C n H 2n+2 , C n H 2n and C n H 2n ⁇ 2 are also potential candidates.
- the reaction is carried out in a plasma environment created by a radio frequency AC source greater than 10 KHz.
- the standard FCC-assigned frequencies of 400 KHz and 13.56 MHz are entirely satisfactory for carrying out the reaction.
- the key to obtaining the proper reaction products i.e., titanium metal rather than titanium carbide
- the power setting is maintained at a level that is greater than the first ionization energy, but less than the second ionization energy for the selected hydrocarbon gas or gases.
- a power range of about 20 to 100 watts meets this requirement when methane is selected as the reactant hydrocarbon gas.
- PECVD plasma enhanced chemical vapor deposition
- the process may be practiced in either cold-wall or hot-wall plasma-enhanced chemical vapor deposition chambers, with or without premixing of the reactants.
- the invention is directed to a technique for depositing conformal titanium layers for use in the manufacture of integrated circuits, the process is also applicable to the deposition of titanium on substrates other than semiconductor wafers.
- a titanium tetrachloride (TiCl 4 ) source gas is produced by heating liquid TiCl 4 .
- the gas phase TiCl 4 is admitted into a premixing chamber 3 through control valve 1 and a hydrocarbon gas such as methane CH 4 is admitted into the premixing chamber 3 through control valve 2 .
- a hydrocarbon gas such as methane CH 4 is admitted into the premixing chamber 3 through control valve 2 .
- the premixed gases are admitted to the deposition chamber 4 .
- the gas-phase TiCl 4 or the hydrocarbon gas, or both, may be mixed with a carrier gas such as argon (Ar) or helium (He).
- helium gas may be bubbled through the heated TiCl 4 to further enhance the complete gasification of that reactant, while argon gas might be added to the hydrocarbon gas in order to dilute that reactant and/or set a desired deposition pressure.
- liquid TiCl 4 may be converted to a fine spray or mist by a liquid injector (not shown). The mist is then passed through a vaporizer chamber (also not shown) en route to the deposition chamber.
- the flow rate of the hydrocarbon gas in standard cubic centimeters per minute (scc/m) should be four to about 1,000 times that for the TiCl 4 .
- a semiconductor wafer 5 is heated by convection from substrate holder 6 (such as a graphite or alumina boat) that in turn is heated to a preferred temperature of 200 to 500° C. via halogen lamps 7 .
- substrate holder 6 such as a graphite or alumina boat
- the walls of the chamber are maintained at a temperature which will prevent condensation of titanium tetrachloride thereon. By maintaining the wafer at a temperature that is considerably higher than the chamber walls, deposition of titanium metal on the walls can be minimized.
- the temperature of the chamber walls should be maintained within a range of about 50-400° C., and optimally within a range of about 100-200° C.
- the premixed gas combination of TiCl 4 and the hydrocarbon gas enters deposition chamber 4 through shower head 15 .
- a radio-frequency voltage, supplied by radio-frequency generator 8 is applied between substrate holder 6 and deposition chamber 4 , thus forming alkyl radicals from the hydrocarbon gas in the space above the semiconductor wafer 5 .
- the TiCl 4 is adsorbed on the surface of the semiconductor wafer 5 , and alkyl radicals react with the adsorbed TiCl 4 molecules to deposit a uniformly thick titanium metal layer on all exposed surfaces of the wafer.
- the reaction temperature is maintained within a range of about 200° C. to 500° C.
- a preferred range is deemed to be about 2 to 5 torr.
- a constant deposition pressure within that preferred range is monitored and maintained by conventional pressure control components consisting of pressure sensor 9 , pressure switch 10 , air operating vacuum valve 11 and pressure control valve 12 .
- the alkyl chloride gas given off as a byproduct of the reaction, whether methyl chloride (CH 3 Cl) or an alkyl chloride, and the carrier gases (if carrier gases are used) pass through particulate filter 15 and escape through exhaust vent 14 with the aid of a Roots blower 13 to complete the process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
- This application is a continuation of application Ser. No. 09/292,993, filed Apr. 16, 1999, pending, which is a continuation of application Ser. No. 08/581,765, filed Jan. 2, 1996, now U.S. Pat. No. 5,946,594, issued Aug. 31, 1999.
- 1. Field of the Invention
- This invention relates to chemical vapor deposition reactions, integrated circuit manufacturing and, more particularly, to methods for depositing titanium metal layers on in-process integrated circuits.
- 2. Background of Related Art
- Deposited titanium metal layers are being used with increasing frequency in integrated circuits. One important application involves the formation of contact structures within a dielectric layer. The processing of wafers for the manufacture of integrated circuits commonly requires that contact openings be etched through an insulative layer down to implant or diffusion regions in a semiconductor layer to which electrical contact is to be made. Titanium metal is then deposited over a wafer so that the surface of each exposed implant/diffusion region is coated. The titanium metal is eventually converted to titanium silicide. A silicide is a binary compound formed by the reaction of silicon with the metal at elevated temperatures. The titanium silicide layer serves as an excellent conductive interface at the surface of the implant/diffusion region. A titanium nitride barrier layer is then deposited, coating the walls and floor of the contact opening. The contact plugs are formed by depositing a tungsten or polysilicon layer via chemical vapor deposition. In the case of tungsten, the titanium nitride layer provides greatly improved adhesion between the walls of the opening and the tungsten metal. In the case of the polysilicon, the titanium nitride layer acts as a barrier against dopant diffusion from the polysilicon layer into the diffusion region.
- Deposited titanium metal layers are also used as an underlayment for aluminum alloy layers deposited on interlevel dielectric layers. The titanium and aluminum alloy layer stack is etched to form interconnect lines within the integrated circuit. The titanium metal layer not only provides increased resistance to electromigration of aluminum atoms, but also provides improved adhesion of the aluminum alloy layer to the dielectric layer as compared with an aluminum alloy layer without the titanium underlayment.
- Two principal techniques are presently available for creating thin titanium films: deposition via reactive sputtering of a titanium target and chemical vapor deposition. When topography is present, reactive sputtering results in titanium films having poor step coverage. Although collimated sputtering improves the coverage on trench floors, it does not help coverage on vertical surfaces. In fact, as trench aspect ratios (the ratio of depth to width) exceed 4 or 5 to 1, the deposition rate at the bottom of the trench is minimal because of the buildup of deposited metal at the mouth of the trench. As the mouth of the trench narrows during the deposition process, the corners of the trench floor receive increasingly less deposited material. Because of the step-coverage problem, sputter-deposited films are limited primarily to underlayment layers on relatively planar surfaces. Another problem related to collimated sputtering is that the collimator grid dramatically slows the deposition rate and must be cleaned frequently.
- Chemical vapor deposition processes have an important advantage over sputter deposition techniques in that the deposited layers have much higher conformality (i.e., uniform thickness on both horizontal and vertical surfaces), layers of any thickness may be deposited, and the deposition rate does not slow with time (as with collimated sputtering). This is especially advantageous in modern ultra-large-scale-integration (ULSI) circuits, where minimum feature widths may be smaller than 0.3 μm and trenches and contact openings may have width to depth aspect ratios of 1:5 or more. In U.S. Pat. No. 5,173,327, a chemical vapor deposition process for titanium is disclosed. Titanium tetrachloride and hydrogen gas are admitted to a chemical vapor deposition chamber in which a substrate (i.e., semiconductor wafer) has been heated to about 400° C. Titanium tetrachloride molecules are adsorbed on the substrate surface and react with hydrogen with the following chemical equation: TiCl4+2H2=Ti+4HCL. The deposition rate of this reaction can be enhanced by striking a radio-frequency plasma in the deposition chamber. Because the diatomic hydrogen molecule is relatively difficult to ionize, the flow rate of hydrogen gas into the deposition chamber must be considerably greater than that for titanium tetrachloride. The low ratio of titanium tetrachloride molecules to hydrogen molecules is not conducive to high deposition rates. In addition, as the aspect ratio of trenches and contact openings increases, step-coverage worsens due to the limited amount of titanium tetrachloride that is adsorbed toward the bottom of the trenches and contact openings. Although the aforementioned titanium deposition process is satisfactory for many applications, the present invention aims at providing a chemical vapor deposition process for titanium having increased conformality and more rapid deposition rates.
- This invention is embodied in a new process for depositing titanium metal layers via chemical vapor deposition. The process provides deposited titanium layers having a high degree of conformality, even in trenches and contact openings having aspect ratios greater than 1:5. The reaction gases for the improved process are titanium tetrachloride and a hydrocarbon gas, which for a preferred embodiment of the process is methane. The chemical reaction is as follows:
- TiCl4+4 CH4=Ti+4Ch3Cl+2H2
- The reaction is carried out in a plasma environment created by a radio frequency AC source greater than 10 KHz. The standard FCC-assigned frequencies of 400 KHz and 13.56 MHz are entirely satisfactory. The key to obtaining the proper reaction products (i.e., titanium metal rather than titanium carbide) is to set the plasma sustaining electrical power within a range that will break just one hydrogen bond from the hydrocarbon gas. In the case of methane, highly reactive methyl radicals (CH3-) are formed. These radicals attack the titanium-chlorine bonds of the tetrachloride molecule and form chloromethane, which is evacuated from the chamber as it is formed. In the case of other hydrocarbon gases, highly reactive alkyl radicals are formed. The alkyl radicals attack the titanium tetrachloride and form an alkyl chloride gas which is evacuated from the chamber.
- FIG. 1 is a diagrammatical view of a pressurized, chemical vapor deposition chamber showing an arrangement for the introduction of the reactants of the new chemical vapor deposition process for titanium metal.
- This new process for depositing titanium metal layers via chemical vapor deposition provides titanium layers having a high degree of conformality, even in trenches and contact openings having width-to-depth aspect ratios greater than 1:5. The reaction gases for the improved process are titanium tetrachloride (TiCl4) and a hydrocarbon gas, which for a preferred embodiment of the process is methane (CH4). Other hydrocarbon gases having the general formulas CnH2n+2, CnH2n and CnH2n−2 are also potential candidates.
- The chemical reaction of the preferred embodiment of the process, which employs methane gas, is as follows:
- TiCl4+4 CH4=Ti+4CH3Cl+2H2
- The reaction is carried out in a plasma environment created by a radio frequency AC source greater than 10 KHz. The standard FCC-assigned frequencies of 400 KHz and 13.56 MHz are entirely satisfactory for carrying out the reaction. The key to obtaining the proper reaction products (i.e., titanium metal rather than titanium carbide) is to set the plasma sustaining electrical power within a range that will break just one hydrogen bond of the hydrocarbon gas molecules. In other words, the power setting is maintained at a level that is greater than the first ionization energy, but less than the second ionization energy for the selected hydrocarbon gas or gases. A power range of about 20 to 100 watts meets this requirement when methane is selected as the reactant hydrocarbon gas. It may be necessary to adjust both the power setting and the AC source frequency when other hydrocarbon gases are used. By breaking just one hydrogen bond in the methane molecule, highly reactive methyl radicals (CH3-) are formed. These radicals attack the titanium-chlorine bonds of the tetrachloride molecule and form chloromethane, which is evacuated from the chamber as it is formed. In the case of other hydrocarbon gases, highly reactive alkyl radicals are formed. The alkyl radicals attack the titanium tetrachloride and form an alkyl chloride gas which is evacuated from the chamber.
- The process will now be described in reference to the diagrammatic representation of the plasma enhanced chemical vapor deposition (PECVD) chamber of FIG. 1. Although the following description of the process represents what the inventors believe is the preferred embodiment of the process, the process may be practiced in either cold-wall or hot-wall plasma-enhanced chemical vapor deposition chambers, with or without premixing of the reactants. Furthermore, although the invention is directed to a technique for depositing conformal titanium layers for use in the manufacture of integrated circuits, the process is also applicable to the deposition of titanium on substrates other than semiconductor wafers. Referring now to FIG. 1, a titanium tetrachloride (TiCl4) source gas is produced by heating liquid TiCl4. The gas phase TiCl4 is admitted into a
premixing chamber 3 throughcontrol valve 1 and a hydrocarbon gas such as methane CH4 is admitted into thepremixing chamber 3 throughcontrol valve 2. Following the premixing of the gas phase TiCl4 and the CH4 inpremixing chamber 3, the premixed gases are admitted to thedeposition chamber 4. Optionally, the gas-phase TiCl4 or the hydrocarbon gas, or both, may be mixed with a carrier gas such as argon (Ar) or helium (He). For example, helium gas may be bubbled through the heated TiCl4 to further enhance the complete gasification of that reactant, while argon gas might be added to the hydrocarbon gas in order to dilute that reactant and/or set a desired deposition pressure. As a further option, liquid TiCl4 may be converted to a fine spray or mist by a liquid injector (not shown). The mist is then passed through a vaporizer chamber (also not shown) en route to the deposition chamber. The flow rate of the hydrocarbon gas in standard cubic centimeters per minute (scc/m) should be four to about 1,000 times that for the TiCl4. Within the deposition chamber, asemiconductor wafer 5 is heated by convection from substrate holder 6 (such as a graphite or alumina boat) that in turn is heated to a preferred temperature of 200 to 500° C. via halogen lamps 7. The walls of the chamber are maintained at a temperature which will prevent condensation of titanium tetrachloride thereon. By maintaining the wafer at a temperature that is considerably higher than the chamber walls, deposition of titanium metal on the walls can be minimized. The temperature of the chamber walls should be maintained within a range of about 50-400° C., and optimally within a range of about 100-200° C. - Still referring to FIG. 1, the premixed gas combination of TiCl4 and the hydrocarbon gas enters
deposition chamber 4 throughshower head 15. A radio-frequency voltage, supplied by radio-frequency generator 8, is applied betweensubstrate holder 6 anddeposition chamber 4, thus forming alkyl radicals from the hydrocarbon gas in the space above thesemiconductor wafer 5. The TiCl4 is adsorbed on the surface of thesemiconductor wafer 5, and alkyl radicals react with the adsorbed TiCl4 molecules to deposit a uniformly thick titanium metal layer on all exposed surfaces of the wafer. As high temperatures favor the formation of inorganic halides as opposed to titanium metal, the reaction temperature is maintained within a range of about 200° C. to 500° C. Although the desired reaction will occur at a pressure within a range of about 2 to 100 torr, a preferred range is deemed to be about 2 to 5 torr. A constant deposition pressure within that preferred range is monitored and maintained by conventional pressure control components consisting ofpressure sensor 9,pressure switch 10, air operatingvacuum valve 11 andpressure control valve 12. The alkyl chloride gas given off as a byproduct of the reaction, whether methyl chloride (CH3Cl) or an alkyl chloride, and the carrier gases (if carrier gases are used) pass throughparticulate filter 15 and escape throughexhaust vent 14 with the aid of aRoots blower 13 to complete the process. - It is to be understood that although the present invention has been described with reference to a preferred embodiment, various modifications known to those skilled in the art may be made to the process steps presented herein without departing from the scope and spirit of the invention as hereinafter claimed.
Claims (28)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/730,038 US6340637B2 (en) | 1996-01-02 | 2000-12-05 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US10/011,134 US6653234B2 (en) | 1996-01-02 | 2001-12-07 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US10/706,244 US6977225B2 (en) | 1996-01-02 | 2003-11-12 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US11/298,978 US7268078B2 (en) | 1996-01-02 | 2005-12-09 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/581,765 US5946594A (en) | 1996-01-02 | 1996-01-02 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US09/292,993 US6184136B1 (en) | 1996-01-02 | 1999-04-16 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US09/730,038 US6340637B2 (en) | 1996-01-02 | 2000-12-05 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/292,993 Continuation US6184136B1 (en) | 1996-01-02 | 1999-04-16 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/011,134 Continuation US6653234B2 (en) | 1996-01-02 | 2001-12-07 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010000761A1 true US20010000761A1 (en) | 2001-05-03 |
US6340637B2 US6340637B2 (en) | 2002-01-22 |
Family
ID=24326470
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/581,765 Expired - Lifetime US5946594A (en) | 1996-01-02 | 1996-01-02 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US09/292,993 Expired - Lifetime US6184136B1 (en) | 1996-01-02 | 1999-04-16 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US09/730,038 Expired - Lifetime US6340637B2 (en) | 1996-01-02 | 2000-12-05 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US10/011,134 Expired - Fee Related US6653234B2 (en) | 1996-01-02 | 2001-12-07 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US10/706,244 Expired - Fee Related US6977225B2 (en) | 1996-01-02 | 2003-11-12 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US11/298,978 Expired - Fee Related US7268078B2 (en) | 1996-01-02 | 2005-12-09 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/581,765 Expired - Lifetime US5946594A (en) | 1996-01-02 | 1996-01-02 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US09/292,993 Expired - Lifetime US6184136B1 (en) | 1996-01-02 | 1999-04-16 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/011,134 Expired - Fee Related US6653234B2 (en) | 1996-01-02 | 2001-12-07 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US10/706,244 Expired - Fee Related US6977225B2 (en) | 1996-01-02 | 2003-11-12 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US11/298,978 Expired - Fee Related US7268078B2 (en) | 1996-01-02 | 2005-12-09 | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
Country Status (1)
Country | Link |
---|---|
US (6) | US5946594A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014107271A1 (en) * | 2013-01-02 | 2014-07-10 | International Business Machines Corporation | Deposition of pure metals in 3d structures |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5946594A (en) * | 1996-01-02 | 1999-08-31 | Micron Technology, Inc. | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
US6188097B1 (en) | 1997-07-02 | 2001-02-13 | Micron Technology, Inc. | Rough electrode (high surface area) from Ti and TiN |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
KR100259352B1 (en) * | 1998-01-09 | 2000-08-01 | 김영환 | Dry etching method of multilayer for semiconductor device |
US6291341B1 (en) | 1999-02-12 | 2001-09-18 | Micron Technology, Inc. | Method for PECVD deposition of selected material films |
US6169031B1 (en) * | 1999-05-28 | 2001-01-02 | National Science Council | Chemical vapor deposition for titanium metal thin film |
US6451692B1 (en) * | 2000-08-18 | 2002-09-17 | Micron Technology, Inc. | Preheating of chemical vapor deposition precursors |
US7402173B2 (en) * | 2000-09-18 | 2008-07-22 | Boston Scientific Scimed, Inc. | Metal stent with surface layer of noble metal oxide and method of fabrication |
US7101391B2 (en) * | 2000-09-18 | 2006-09-05 | Inflow Dynamics Inc. | Primarily niobium stent |
WO2003012567A1 (en) * | 2001-07-30 | 2003-02-13 | Tokyo Electron Limited | Plasma chamber wall segment temperature control |
US6696368B2 (en) * | 2001-07-31 | 2004-02-24 | Micron Technology, Inc. | Titanium boronitride layer for high aspect ratio semiconductor devices |
US6746952B2 (en) | 2001-08-29 | 2004-06-08 | Micron Technology, Inc. | Diffusion barrier layer for semiconductor wafer fabrication |
US7067416B2 (en) * | 2001-08-29 | 2006-06-27 | Micron Technology, Inc. | Method of forming a conductive contact |
US7311942B2 (en) | 2002-08-29 | 2007-12-25 | Micron Technology, Inc. | Method for binding halide-based contaminants during formation of a titanium-based film |
US7132201B2 (en) * | 2003-09-12 | 2006-11-07 | Micron Technology, Inc. | Transparent amorphous carbon structure in semiconductor devices |
US8628564B2 (en) * | 2004-05-25 | 2014-01-14 | Covidien Lp | Methods and apparatus for luminal stenting |
KR100587687B1 (en) * | 2004-07-27 | 2006-06-08 | 삼성전자주식회사 | Method and apparatus of forming thin film using atomic layer deposition |
US7225621B2 (en) * | 2005-03-01 | 2007-06-05 | Ormat Technologies, Inc. | Organic working fluids |
US8993055B2 (en) | 2005-10-27 | 2015-03-31 | Asm International N.V. | Enhanced thin film deposition |
KR101313706B1 (en) * | 2006-08-23 | 2013-10-14 | 주성엔지니어링(주) | Apparatus and method of depositing aluminum electrode of organic light emitting diode device |
US8268409B2 (en) * | 2006-10-25 | 2012-09-18 | Asm America, Inc. | Plasma-enhanced deposition of metal carbide films |
US7611751B2 (en) | 2006-11-01 | 2009-11-03 | Asm America, Inc. | Vapor deposition of metal carbide films |
US7700480B2 (en) * | 2007-04-27 | 2010-04-20 | Micron Technology, Inc. | Methods of titanium deposition |
US7713874B2 (en) * | 2007-05-02 | 2010-05-11 | Asm America, Inc. | Periodic plasma annealing in an ALD-type process |
WO2009129332A2 (en) | 2008-04-16 | 2009-10-22 | Asm America, Inc. | Atomic layer deposition of metal carbide films using aluminum hydrocarbon compounds |
US7666474B2 (en) | 2008-05-07 | 2010-02-23 | Asm America, Inc. | Plasma-enhanced pulsed deposition of metal carbide films |
CN102171326A (en) * | 2008-08-06 | 2011-08-31 | 尹斯特有限公司 | Creation of high density multidimensional addressable assemblies |
KR20100086853A (en) * | 2009-01-23 | 2010-08-02 | 삼성전자주식회사 | Method of fabricating phase change memory device having tic layer |
US9412602B2 (en) | 2013-03-13 | 2016-08-09 | Asm Ip Holding B.V. | Deposition of smooth metal nitride films |
US8841182B1 (en) | 2013-03-14 | 2014-09-23 | Asm Ip Holding B.V. | Silane and borane treatments for titanium carbide films |
US8846550B1 (en) | 2013-03-14 | 2014-09-30 | Asm Ip Holding B.V. | Silane or borane treatment of metal thin films |
US9394609B2 (en) | 2014-02-13 | 2016-07-19 | Asm Ip Holding B.V. | Atomic layer deposition of aluminum fluoride thin films |
US10643925B2 (en) | 2014-04-17 | 2020-05-05 | Asm Ip Holding B.V. | Fluorine-containing conductive films |
US10002936B2 (en) | 2014-10-23 | 2018-06-19 | Asm Ip Holding B.V. | Titanium aluminum and tantalum aluminum thin films |
US9941425B2 (en) | 2015-10-16 | 2018-04-10 | Asm Ip Holdings B.V. | Photoactive devices and materials |
US9786492B2 (en) | 2015-11-12 | 2017-10-10 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
US9786491B2 (en) | 2015-11-12 | 2017-10-10 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
KR102378021B1 (en) | 2016-05-06 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Formation of SiOC thin films |
US10468264B2 (en) * | 2016-07-04 | 2019-11-05 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor device |
US10186420B2 (en) | 2016-11-29 | 2019-01-22 | Asm Ip Holding B.V. | Formation of silicon-containing thin films |
KR102384805B1 (en) * | 2017-03-30 | 2022-04-08 | 인텔 코포레이션 | Metal Chemical Vapor Deposition Approaches and Results Structures for Fabricating Wrap-Around Contacts |
US10847529B2 (en) | 2017-04-13 | 2020-11-24 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by the same |
US10504901B2 (en) | 2017-04-26 | 2019-12-10 | Asm Ip Holding B.V. | Substrate processing method and device manufactured using the same |
KR20240010760A (en) | 2017-05-05 | 2024-01-24 | 에이에스엠 아이피 홀딩 비.브이. | Plasma Enhanced Deposition Processes for Controlled Formation of Oxygen Containing Thin Film |
KR102103346B1 (en) * | 2017-11-15 | 2020-04-22 | 에스케이트리켐 주식회사 | Precursor Solution for Vapor Deposition and Fabrication Method of Thin Film Using the Same |
US10991573B2 (en) | 2017-12-04 | 2021-04-27 | Asm Ip Holding B.V. | Uniform deposition of SiOC on dielectric and metal surfaces |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2633451B1 (en) * | 1988-06-24 | 1990-10-05 | Labo Electronique Physique | PROCESS FOR PRODUCING SEMICONDUCTOR DEVICES INCLUDING AT LEAST ONE REACTIVE ION ETCHING STEP |
US5094711A (en) * | 1988-09-12 | 1992-03-10 | Gte Valenite Corporation | Process for producing single crystal titanium carbide whiskers |
US5052339A (en) * | 1990-10-16 | 1991-10-01 | Air Products And Chemicals, Inc. | Radio frequency plasma enhanced chemical vapor deposition process and reactor |
JPH07109034B2 (en) * | 1991-04-08 | 1995-11-22 | ワイケイケイ株式会社 | Hard multilayer film forming body and method for producing the same |
US5173327A (en) * | 1991-06-18 | 1992-12-22 | Micron Technology, Inc. | LPCVD process for depositing titanium films for semiconductor devices |
US5665431A (en) * | 1991-09-03 | 1997-09-09 | Valenite Inc. | Titanium carbonitride coated stratified substrate and cutting inserts made from the same |
US5344792A (en) * | 1993-03-04 | 1994-09-06 | Micron Technology, Inc. | Pulsed plasma enhanced CVD of metal silicide conductive films such as TiSi2 |
US5645900A (en) * | 1993-04-22 | 1997-07-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Diamond composite films for protective coatings on metals and method of formation |
US5846881A (en) | 1995-12-28 | 1998-12-08 | Micron Technology, Inc. | Low cost DRAM metallization |
US5946594A (en) * | 1996-01-02 | 1999-08-31 | Micron Technology, Inc. | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants |
JP2991192B1 (en) * | 1998-07-23 | 1999-12-20 | 日本電気株式会社 | Plasma processing method and plasma processing apparatus |
US6210745B1 (en) * | 1999-07-08 | 2001-04-03 | National Semiconductor Corporation | Method of quality control for chemical vapor deposition |
US6348458B1 (en) * | 1999-12-28 | 2002-02-19 | U & I Pharmaceuticals Ltd. | Polymorphic forms of olanzapine |
-
1996
- 1996-01-02 US US08/581,765 patent/US5946594A/en not_active Expired - Lifetime
-
1999
- 1999-04-16 US US09/292,993 patent/US6184136B1/en not_active Expired - Lifetime
-
2000
- 2000-12-05 US US09/730,038 patent/US6340637B2/en not_active Expired - Lifetime
-
2001
- 2001-12-07 US US10/011,134 patent/US6653234B2/en not_active Expired - Fee Related
-
2003
- 2003-11-12 US US10/706,244 patent/US6977225B2/en not_active Expired - Fee Related
-
2005
- 2005-12-09 US US11/298,978 patent/US7268078B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014107271A1 (en) * | 2013-01-02 | 2014-07-10 | International Business Machines Corporation | Deposition of pure metals in 3d structures |
Also Published As
Publication number | Publication date |
---|---|
US20060134912A1 (en) | 2006-06-22 |
US6340637B2 (en) | 2002-01-22 |
US5946594A (en) | 1999-08-31 |
US20040097073A1 (en) | 2004-05-20 |
US6184136B1 (en) | 2001-02-06 |
US20030162390A1 (en) | 2003-08-28 |
US6977225B2 (en) | 2005-12-20 |
US6653234B2 (en) | 2003-11-25 |
US7268078B2 (en) | 2007-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6653234B2 (en) | Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants | |
USRE35785E (en) | Low-pressure chemical vapor deposition process for depositing high-density highly-conformal, titanium nitride films of low bulk resistivity | |
KR100355914B1 (en) | Direct Circuit Manufacturing Method Using Low Temperature Plasma | |
US6274496B1 (en) | Method for single chamber processing of PECVD-Ti and CVD-TiN films for integrated contact/barrier applications in IC manufacturing | |
KR100380598B1 (en) | Method for forming a contact and apparatus including the contact | |
TWI523103B (en) | Method of forming conformal film having si-n bonds on high-aspect ratio pattern | |
US6291341B1 (en) | Method for PECVD deposition of selected material films | |
US6812146B2 (en) | Chemical vapor deposition process for depositing titanium nitride films from an organo-metallic compound | |
EP1295332A2 (en) | Highly conformal titanium nitride deposition process for high aspect ratio structures | |
JP7296378B2 (en) | Systems and methods for depositing homogeneous interfacial layers for PECVD metal-doped carbon hardmasks | |
US5827408A (en) | Method and apparatus for improving the conformality of sputter deposited films | |
JPH101774A (en) | Formation of thin coating by plasma cvd and plasma cvd device | |
KR100195681B1 (en) | Method to deposit tin | |
US5061514A (en) | Chemical vapor deposition (CVD) process for plasma depositing silicon carbide films onto a substrate | |
US6500501B1 (en) | Chemical vapor deposition process for depositing titanium silicide films from an organometallic compound | |
JPH10209073A (en) | Formation of barrier film | |
JP2000058484A (en) | Plasma cvd system and method for forming thin film by plasma cvd | |
WO1998023389A1 (en) | Nitrogen-bearing cvd films from nf3, as a nitrogen source | |
JP2677230B2 (en) | Method for forming TiN film | |
JPH06252051A (en) | Chemical method for depositing metal and metalloid layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: MOSAID TECHNOLOGIES INCORPORATED, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023220/0243 Effective date: 20090609 |
|
AS | Assignment |
Owner name: MOSAID TECHNOLOGIES INCORPORATED,CANADA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE TO CORRECT THE ASSIGNEES' ADDRESS PREVIOUSLY RECORDED ON REEL 023220 FRAME 0243. ASSIGNOR(S) HEREBY CONFIRMS THE MOSAID TECHNOLOGIES INCORPORATED 6 SAUBLE DRIVE, SUITE 203, OTTAWA,ONTARIO, CANADA K2K 2X1;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:024225/0878 Effective date: 20090609 |
|
AS | Assignment |
Owner name: ROYAL BANK OF CANADA, CANADA Free format text: U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) - SHORT FORM;ASSIGNORS:658276 N.B. LTD.;658868 N.B. INC.;MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:027512/0196 Effective date: 20111223 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., Free format text: CHANGE OF NAME;ASSIGNOR:MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:032439/0638 Effective date: 20140101 |
|
AS | Assignment |
Owner name: CONVERSANT IP N.B. 276 INC., CANADA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344 Effective date: 20140611 Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344 Effective date: 20140611 Owner name: CONVERSANT IP N.B. 868 INC., CANADA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344 Effective date: 20140611 |
|
AS | Assignment |
Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CANADA Free format text: CHANGE OF ADDRESS;ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033678/0096 Effective date: 20140820 Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., Free format text: CHANGE OF ADDRESS;ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033678/0096 Effective date: 20140820 |
|
AS | Assignment |
Owner name: CPPIB CREDIT INVESTMENTS INC., AS LENDER, CANADA Free format text: U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033706/0367 Effective date: 20140611 Owner name: ROYAL BANK OF CANADA, AS LENDER, CANADA Free format text: U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.;REEL/FRAME:033706/0367 Effective date: 20140611 |
|
AS | Assignment |
Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., CANADA Free format text: RELEASE OF U.S. PATENT AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:ROYAL BANK OF CANADA, AS LENDER;REEL/FRAME:047645/0424 Effective date: 20180731 Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC., Free format text: RELEASE OF U.S. PATENT AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:ROYAL BANK OF CANADA, AS LENDER;REEL/FRAME:047645/0424 Effective date: 20180731 |