[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US10265489B2 - Foam-based interfacing structure - Google Patents

Foam-based interfacing structure Download PDF

Info

Publication number
US10265489B2
US10265489B2 US14/524,097 US201414524097A US10265489B2 US 10265489 B2 US10265489 B2 US 10265489B2 US 201414524097 A US201414524097 A US 201414524097A US 10265489 B2 US10265489 B2 US 10265489B2
Authority
US
United States
Prior art keywords
cushioning component
mask
foam
component
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/524,097
Other versions
US20150040912A1 (en
Inventor
Alicia Kristianne Wells
Lee James VELISS
Melanie Lucia Cariola
Fiona Catherine Carroll
Scott Alexander Howard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resmed Pty Ltd
Precision Foam Manufacturing Pty Ltd
Original Assignee
Resmed Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008904769A external-priority patent/AU2008904769A0/en
Assigned to RESMED LIMITED reassignment RESMED LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOWARD, SCOTT ALEXANDER
Priority to US14/524,097 priority Critical patent/US10265489B2/en
Assigned to RESMED LIMITED reassignment RESMED LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARROLL, FIONA CATHERINE, VELISS, LEE JAMES, WELLS, ALICIA KRISTIANNE, CARIOLA, MELANIE LUCIA
Application filed by Resmed Pty Ltd filed Critical Resmed Pty Ltd
Assigned to PRECISION FOAM MANUFACTURING PTY LTD reassignment PRECISION FOAM MANUFACTURING PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GILLIVER, DAVID MARK
Assigned to RESMED LIMITED reassignment RESMED LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRECISION FOAM MANUFACTURING PTY LTD
Publication of US20150040912A1 publication Critical patent/US20150040912A1/en
Priority to US16/288,495 priority patent/US12070552B2/en
Publication of US10265489B2 publication Critical patent/US10265489B2/en
Application granted granted Critical
Assigned to ResMed Pty Ltd reassignment ResMed Pty Ltd CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RESMED LIMITED
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0605Means for improving the adaptation of the mask to the patient
    • A61M16/0616Means for improving the adaptation of the mask to the patient with face sealing means comprising a flap or membrane projecting inwards, such that sealing increases with increasing inhalation gas pressure
    • A61M16/0622Means for improving the adaptation of the mask to the patient with face sealing means comprising a flap or membrane projecting inwards, such that sealing increases with increasing inhalation gas pressure having an underlying cushion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0605Means for improving the adaptation of the mask to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0683Holding devices therefor
    • A61M16/0688Holding devices therefor by means of an adhesive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0605Means for improving the adaptation of the mask to the patient
    • A61M16/0633Means for improving the adaptation of the mask to the patient with forehead support
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • A61M2207/10Device therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/02Equipment for testing the apparatus

Definitions

  • the present invention relates to an interface between a human and a piece of equipment, for example respiratory devices that include a foam-based interfacing structure.
  • apparatus for delivery of therapy includes a rigid component and a soft, cushioning component positioned between a patient and the rigid component.
  • the rigid component may be a mask frame defining a nose and/or mouth-receiving chamber.
  • the mask frame may include a flange around its periphery or other connecting means.
  • the cushioning component may be glued or otherwise coupled to the flange or connecting means.
  • the cushioning component may form a seal with the skin of the patient in some forms of respiratory therapy. In other devices, for example headphones, it may not be necessary for a seal to be formed.
  • a first aspect of the invention is to provide a mask assembly with a foam interfacing structure.
  • Another aspect of the invention is to provide a mask assembly with a foam interfacing structure where at least a part of the foam (e.g., an unskinned part of the foam) is in direct contact with the skin of the mask user.
  • a part of the foam e.g., an unskinned part of the foam
  • Another aspect of the invention is to provide a mask assembly with a foam interfacing structure where the foam is unskinned and has a cellular structure of the foam in direct contact with the skin of the mask user.
  • Another aspect of the invention is to provide a mask assembly with a removable foam interfacing structure.
  • Another aspect of the invention is to provide a mask assembly with at least two different types of removably replaceable interfacing structures.
  • Another aspect of the invention is to include a softer interfacing structure having portion adapted for engagement with a more rigid component.
  • Another aspect of the invention is to provide a respiratory mask assembly including a frame and an interfacing structure wherein the interfacing structure includes a foam-based cushion component and a clip portion adapted for removable engagement with the frame portion.
  • Another aspect of the invention is to provide a support structure for a cushioning component wherein the support structure supports the cushioning element on one side and allows movement on another side.
  • a cushion for a respiratory mask including a clip portion and a cushioning component wherein the cushioning component is constructed from a foam material and the clip portion is narrower than the cushioning component.
  • a respiratory mask assembly including a frame having a channel and an interfacing structure including a clip portion adapted for interference seal and retention in the channel.
  • the interfacing structure includes a cushion component constructed from foam and having a wider width than the clip portion.
  • Another aspect is a foam-based cushioning component preferably having a first cross-section in a nasal bridge region, a second cross-section in a lip region and a third cross-section in the cheek region.
  • Another aspect is a method of manufacturing a cushioning component, e.g., die cutting and/or machining, etc.
  • Another aspect is a method of insert molding a clip component to a cushioning component to form an interfacing structure.
  • a cushioning component for use with a mask, wherein the cushioning component is constructed of foam material.
  • a patient contacting surface that is adapted to contact a patient, in use, may have a rounded cross sectional profile and a base surface opposed to the patient contacting surface.
  • a removable interfacing structure for use with a mask including a cushioning component constructed of foam material wherein a patient contacting surface that is adapted to contact a patient, in use, has a rounded cross sectional profile and a base surface opposed to the patient contacting surface is joined to a clip portion, and wherein the clip portion is adapted to be removably joined to a frame of the mask.
  • a mask including a removable interfacing structure and a frame
  • the interfacing structure includes a clip portion and a cushioning component constructed of foam material having a patient contacting surface that is adapted to contact a patient, in use, has a rounded cross sectional profile and a base surface opposed to the patient contacting surface is joined to the clip portion, and wherein the clip portion is adapted to be removably joined to a frame of the mask.
  • Another aspect is a mask including a frame and an interfacing structure, wherein the interfacing structure includes a clip portion joined to cushioning component, and wherein the frame is more rigid than the clip portion and the clip portion is more rigid than the cushioning portion.
  • Another aspect is a cushioning component for use with a mask, wherein at least a portion of the cross section of the cushioning component includes an inner side defined by the side facing the centre of the mask, an outer side defined by a side facing away from the centre of the mask and a base side facing the frame or clip portion, wherein the length of outer side is greater than the inner side.
  • Another aspect is an interfacing structure for a mask including a clip portion joined to a cushioning component, wherein an upper surface of the clip portion is joined to a base surface of the cushioning component and wherein at least a portion of the upper surface is angled to provide a moment force on cushioning component, when force is applied into the cushioning component.
  • Another aspect is an interfacing structure for a mask including a clip portion joined to a cushioning component, wherein an upper surface of the clip portion is joined to a base surface of the cushioning component and wherein the cross sectional width of the clip portion is less than the cross sectional width of the cushioning component.
  • a cushioning component for use with a mask, wherein at least a portion of the cross section of the cushioning component includes an inner side defined by the side facing the centre of the mask, an outer side defined by a side facing away from the centre of the mask and a base side facing the frame or clip portion, wherein the outer side further includes at least an upper and a lower portion, wherein the upper portion is positioned at a reduced angle in comparison to the lower portion.
  • a nasal mask including a frame removably connected to an interfacing structure, wherein the interfacing structure includes a cushioning component constructed of foam material, and wherein the height of the interfacing structure is reduced in relation to region that is adapted to contact the upper lip region of a patient's face.
  • a respiratory mask including a frame, a foam cushion and a substructure.
  • the mask includes a nose receiving cavity.
  • the cushion includes at least two sides: an inner side wall, which may be a wall at least partially facing the cavity; and an outer side wall.
  • the foam cushion is soft and conforming.
  • the substructure is constructed from a more rigid material.
  • the foam cushion is adapted to form a seal with at least one region of a face of a patient. In use the foam cushion is supported by the substructure.
  • a connecting surface of the substructure is defined.
  • a patient side of the foam cushion is defined.
  • a non-patient side of the cushion is defined. In use the non-patient side of the cushion is arranged adjacent the connecting surface of the substructure.
  • the foam cushion is glued to the substructure. In another form the foam cushion is insert moulded with the substructure.
  • a first region of the face is defined as a corner of the mouth of the patient.
  • a second region of the face is defined as a chin region, or alternatively a lip region of the face of the patient.
  • An interior region of the cushion is defined as the region or cavity into which a nose of a patient is inserted in use.
  • a part of the connecting surface in use adjacent the first region is structured in to direct a corresponding portion of the foam cushion in an inward direction towards the interior region of the cushion in the first region in use.
  • the cross-section of the cushion defines a radial axis and a longitudinal axis is normal to said radial axis.
  • at least a portion of the foam cushion is adapted to rotate towards the centre of the mask about said longitudinal axis when pressure is applied into the cushion by the patient's face and wherein at least a portion of the outer side wall of said cushion is adapted to form a seal against the face of a patient.
  • portions of the cushion rotate or roll inwards towards the centre of the mask.
  • the feature of rolling or rotating inwards may prevent or limits the possibility of the seal “blowing out” when air pressure is applied to the mask cavity. “Blowing out” is defined by the seal between the cushion and the patient's face breaking due to pressure exerted by air pressure lifting the cushion from a sealing relationship with the face.
  • a part of the connecting surface in use adjacent the second region is structured to direct the foam in an outward direction away from the interior region of the cushion in the second region in use.
  • the cross-section of the cushion defines a radial axis and a longitudinal axis is normal to said radial axis.
  • at least a portion of the foam cushion is adapted to rotate away from the centre of the mask about said longitudinal axis when pressure is applied into the cushion by the patient's face and wherein at least a portion of the outer side wall of said cushion is adapted to form a seal against the face of a patient.
  • further portions of the cushion may rotate inwards or outwards relative to the centre of the mask in positions defined as being proximal to the patient's chin.
  • this rotation may allow for seal to accommodate different sizes of chin and/or accommodate moderate amounts of mouth or jaw movement that may otherwise destruct the seal formed between the mask and the patient's face.
  • Another aspect of the present technology is a foam cushion for a respiratory mask wherein the cushion includes a face-contacting portion arranged in use to be adjacent the face of the patient.
  • a cross section of the cushion tapers from a wider cross-section to a narrower cross-section closer to the face.
  • the tapered portion defines an inside surface adjacent an interior of the cushion and an outside surface.
  • the inside surface and the outside surface may be adjacent, in another form they may be non-adjacent.
  • the inside and outside surfaces may be arranged at an acute angle with respect to one another.
  • the outside surface is longer than the inside surface in certain regions of the cushion, preferably in the nasal bridge region, or in the cheek region, or more preferably in both.
  • the inside and outside surfaces have the same length in a chin region.
  • the inside surface is longer than the outside surface in cross-section.
  • the cushion is structured to at least partially form a seal on an outside surface of a face in a chin region of the cushion.
  • a tapered sealing portion may improve the seal.
  • FIG. 1 shows a side view of a mask assembly including a foam interfacing structure according to an embodiment of the invention
  • FIG. 2 shows a schematic diagram of a channel of a portion of a mask frame and a clip portion of an interfacing structure retained by an interference fit according to an embodiment of the invention
  • FIGS. 3 a , 3 b , and 3 c show a range of rib engagement fitting arrangements between a mask frame and a clip portion of an interfacing structure according to embodiments of the invention
  • FIG. 4 a shows a patient contacting side of an interfacing structure according to an embodiment of the invention
  • FIG. 4 b shows a bottom view of the interfacing structure of FIG. 4 a
  • FIG. 4 c shows a top view of the interfacing structure of FIG. 4 a
  • FIG. 4 d shows a side view of the interfacing structure of FIG. 4 a
  • FIG. 4 e shows a frame contacting side of the interfacing structure of FIG. 4 a
  • FIG. 4 f shows a patient contacting side isometric view of the interfacing structure of FIG. 4 a;
  • FIG. 4 g shows a frame contacting side isometric view of the interfacing structure of FIG. 4 a;
  • FIG. 5 a is a plan view showing a die cut interfacing structure wherein the clip portion includes a slot for engagement with the frame according to an embodiment of the invention
  • FIG. 5 b is an isometric view of the interfacing structure shown in FIG. 5 a;
  • FIG. 5 c is an assembly view of the interfacing structure shown in FIG. 5 a with a mask frame;
  • FIG. 6 a shows a cross-section from a prior art nasal mask with foam cushion
  • FIG. 6 b shows a detail in the nasal bridge region of the mask of FIG. 6 a
  • FIG. 7 a shows an elevation view detail from the frame side of the interfacing structure shown in FIG. 4 e;
  • FIG. 7 b is a cross-section along line 7 b - 7 b of FIG. 7 a;
  • FIG. 7 c is a cross-sectional view showing the interfacing structure of FIGS. 7 a and 7 b in use;
  • FIG. 8 is a cross-sectional view showing the assembly of the interfacing structure of FIGS. 7 a and 7 b and a frame according to an embodiment of the invention
  • FIGS. 9 a to 9 d show various views of a foam-based interfacing structure according to an embodiment of the present invention.
  • FIGS. 10 a to 10 c show various views of a foam-based interfacing structure according to another embodiment of the present invention.
  • FIGS. 11 a to 11 c show various views of a foam-based interfacing structure according to another embodiment of the present invention.
  • FIGS. 12 a to 12 f show various views of a foam-based interfacing structure according to another embodiment of the present invention.
  • FIG. 13 is a perspective view of a clip portion according to an embodiment of the present invention.
  • FIGS. 14 a to 14 f show various views of a foam-based interfacing structure according to an embodiment of the present invention
  • FIGS. 15 a to 15 e show various views of a cushion-to-frame component of the interfacing structure shown in FIGS. 14 a to 14 f;
  • FIGS. 16 a to 16 i show various views of the cushioning component of the interfacing structure shown in FIGS. 14 a to 14 f;
  • FIGS. 17 a to 17 h illustrate a tool and manufacturing process for manufacturing an interfacing structure according to an embodiment of the present invention
  • FIGS. 18 a to 18 c show various views of a tool for molding a clip portion according to an embodiment of the present invention
  • FIG. 19 is a front view of a further embodiment of a full face cushioning component
  • FIGS. 20-25 depict various cross-sectional views of the embodiment shown in FIG. 19 ;
  • FIG. 26 is a front view of a further embodiment showing an interfacing structure for use with a full face mask including a cushioning component and clip portion;
  • FIGS. 27-32 depict various cross-sectional views of the embodiment shown in FIG. 26 .
  • FIG. 29 defines a horizontal plane of connection between the cushion and the clip portion.
  • the plane of connection is at an angle with respect to the horizontal.
  • the plane of connection is at a downward angle when moving from the outside to the inside of the interfacing portion.
  • the plane of connection is at an upward angle when moving from the outside to the inside of the interfacing portion.
  • FIG. 33 is a perspective view of full face interfacing structure including a cushioning component and clip portion;
  • FIG. 34 is a side view of the embodiment shown in FIG. 33 ;
  • FIG. 35 is a top view of the embodiment shown in FIG. 33 ;
  • FIG. 36 is a bottom view of the embodiment shown in FIG. 33 ;
  • FIG. 37 is a back view of the embodiment shown in FIG. 33 ;
  • FIG. 38 is a front view of the embodiment shown in FIG. 33 ;
  • FIG. 39 is a front view of a further embodiment of a interfacing structure for use with a nasal mask
  • FIG. 40 is a top view of the embodiment shown in FIG. 39 ;
  • FIG. 41 is a bottom view of the embodiment shown in FIG. 39 ;
  • FIG. 42 is a side view of the embodiment shown in FIG. 39 ;
  • FIG. 43 is a back view of the embodiment shown in FIG. 39 ;
  • FIG. 44 is a front view of a further embodiment of an interfacing structure for use with a nasal mask
  • FIGS. 45-47 depict various cross-sectional views of the embodiment shown in FIG. 44 ;
  • FIG. 48 is a chart showing exemplary material properties for a cushion component according to an embodiment of the invention.
  • FIG. 49 is a chart showing exemplary material properties for a clip portion according to an embodiment of the invention.
  • FIGS. 50-1 to 57-2 illustrate alternative mechanisms for attaching a clip portion to a frame according to embodiments of the invention
  • FIGS. 58 and 59 illustrate the rolling effect of a cushioning component according to an embodiment of the invention
  • FIGS. 60-1 to 60-8 illustrate different parameters and apparatus for testing air permeability according to an embodiment of the invention
  • FIG. 61 illustrates apparatus for testing hardness according to an embodiment of the invention
  • FIGS. 62-1 to 62-2 illustrate different parameters and apparatus for testing tensile strength according to an embodiment of the invention
  • FIGS. 63-1 to 63-4 illustrate different parameters and apparatus for testing tear resistance according to an embodiment of the invention.
  • FIG. 64 illustrates apparatus for testing total mask flow according to an embodiment of the invention.
  • air will be taken to include breathable gases, for example air with supplemental oxygen.
  • seal will be taken to mean to reduce the flow of air between the pressurized interior of the mask and the ambient conditions to a level sufficient to maintain a therapeutic pressure in the airways to effect treatment. Hence in some cases, there may be an air tight seal, in other cases there may be a small leak.
  • a mask assembly used to facilitate the delivery of a supply of air or breathable gas to the entrance of the airways of a patient typically includes a generally soft, conforming interfacing structure, at least a portion of which is in contact with the patient's face and a stabilizing structure that positions and retains the interfacing structure in a suitable position with respect to the patient.
  • the mask assembly typically includes some form of anchor point to which various components may be connected, or about which they may be arranged. In this specification, this anchor point will be referred to as the frame.
  • the stabilizing structure of the mask assembly may be called “headgear” and both the headgear and interfacing structure may be connected to a frame.
  • the boundary lines between the different components may be blurred.
  • aspects of frame and headgear may be combined.
  • the interfacing structure may perform two or more functions: (i) a cushioning function, performed by a cushioning component, and (ii) an interconnection function, performed by a cushion-to-frame component or clip portion.
  • a cushioning function performed by a cushioning component
  • an interconnection function performed by a cushion-to-frame component or clip portion.
  • clip or “clip portion” may describe the aforementioned clip portion or a cushion to frame component for securing the cushioning component to a frame of a mask.
  • Forming the interfacing structure from two separate elements enables each to have different properties, such as different densities or air permeabilities as suits their different roles, as will be described in more detail in the following sections.
  • the different properties of different materials can act to influence the other component.
  • a more rigid clip or cushion-to-frame portion can act as a support structure for a softer cushioning component.
  • the interfacing structure may be constructed from a single component with different properties in different regions of the interfacing structure.
  • the interfacing structure may be formed from more than two components.
  • the interfacing structure may be constructed and arranged to apply air or breathable gas to both the nose and mouth (a “nose & mouth” or “full-face” mask), or to the just the nose (a “nose” or “nasal” mask), or just the mouth (a “mouth” mask).
  • the cushioning component may be made from an unskinned, low density, permeable foam.
  • the cushion component is constructed from a low resilience viscoelastic polyurethane foam.
  • the cushioning component material may be manufactured from a free rising slabstock foam process. In other embodiments the material may be manufactured by other processes such as molding or other known processes used to produce soft and cellular materials.
  • One or more fabrication steps may then be applied to the material to partially or completely form the geometry of the cushion component. These conversion techniques are described herein and in other related specifications referenced herein. Such a foam material and conversion techniques are disclosed in PCT Publication Nos. WO 2008/011682, published Jan. 31, 2008, and WO 2008/070929, published Jun.
  • the cushioning component may be formed in whole or in part by a known method such as die cutting. Die cutting is disclosed in PCT Application PCT/AU2009/000262, filed Mar. 4, 2009. In another form the cushioning component may be formed in whole or in part by using other methods such as those disclosed in AU 2008904769 and AU 2008904778.
  • foam material production techniques produce a material that has a substantially skinned material such that the density of the material at the surface is greater than the density of the material's bulk (internal) properties.
  • the utilization of particular manufacturing techniques, such as foam conversion processes involving cutting, may allow the production of a unskinned cushioning component such that the bulk properties of the cellular material are exposed at the surface of the cushioning component, providing a number of advantages to the design, manufacture and performance of the mask assembly.
  • the unskinned cushion component provides improved sealing, comfort and fit range performance, sealing properties sufficient to not require a silicone membrane, and a unskinned mask assembly that allows utilization of the bulk properties of the unskinned material, e.g., porosity for breathability, fine cell structure for a comfortable feel.
  • the interfacing structure is preferably constructed and arranged to have a three dimensional shape defined in part by a locus of points surrounding and complementary to the entrance to the relevant airways. Furthermore, the interfacing structure has a cross-section chosen at different points around its perimeter to provide efficacy and comfort by being suitably shaped to adapt and conform to the face of the user forming a compression-type seal. In another configuration, a flap-type seal is formed.
  • the shape of the interfacing structure may be adapted to allow the cushioning component to provide a better fit and seal against the face of the patient.
  • the geometry of the cushion may be at least partly determined by the geometry of the frame to which it is to be attached.
  • the general shape of a small size cushion may be different than the general shape of a large size cushion because the small and large size frames may be different, e.g., the small may be more stout or wide while the large may be more elongated and thinner.
  • FIGS. 16 g to 16 i show various cross-sections through one embodiment of the cushioning component 932 (origin of cross section shown in FIG. 16 f ).
  • FIG. 19 shows an alternative embodiment of the present invention with corresponding cross sections in FIGS. 20-25 .
  • FIGS. 33-38 depict a further preferred embodiment of a interfacing structure wherein the interfacing structure includes a co-molded or otherwise attached cushioning component and a clip portion
  • the full face masks depicted in this specification may have cushioning components about 105-110 mm in width (as measured from the outer most edges of the base surfaces); and a length of between 120-150 mm.
  • the cross section at the nasal bridge region NB is generally triangular.
  • the cross section at the nasal bridge region NB may also be another other reasonable shape, such as generally rectangular, oval, octagonal etc.
  • the cross section at the nasal bridge region may also be an irregular shape.
  • FIG. 20 shows an alternative cross section for the nasal bridge region.
  • radius r 1 at the apex 2010 of the cross section may be relatively small or sharp radius at the nasal bridge region NB.
  • radius r 1 may be between 1 to 4 mm.
  • This relatively small or sharp radius at radius r 1 provides the advantage that the cushioning component is kept away from the patient's eyes, especially when the cushioning component is compressed and inflated with air pressure in use.
  • the relatively small or sharp radius at radius r 1 may also enable minimal contact of the mask with the patient's skin, so as to make the mask feel more comfortable and less obtrusive.
  • apex 2010 of the generally triangular cross section may be skewed or offset.
  • the apexes or the corners of the generally triangular cross sectional may be rounded to promote a better fit with the patient and/or a better seal.
  • This offset is shown on FIG. 20 , where apex 2010 and center line 2015 are spaced by distance 2020 .
  • Distance 2020 may be preferably around 1-2 mm at the position proximal to the patient's nose.
  • the comparable offset in the cushioning component about the portion adapted to cover the bottom lip of the patient is preferably 8 mm.
  • the comparable offset in the cushioning component about the portion adapted to cover the cheeks of the patient is preferably 1.25 mm.
  • FIG. 20 demonstrates an offset towards the inner edge of the cushioning component. Alternatively the apex may be skewed, or over the outer edge of the cushioning component.
  • the generally triangular cross section of the cushioning portion may also additionally be defined has having three sides: an inner side which faces into the centre of the mask; an outer side facing away from the centre of the mask and a base surface, which may be adapted to be joined to a clip portion, at least in part.
  • the outer side of surface of the cushioning portion is generally adapted to be longer than the inner surface. This may allow the cushioning component to, in effect, roll, bend or move inwards. The rolling motion leads to an extension of the sealing surface formed between the skin of the patient and the cushioning component. As the cushioning component is depressed, the contact region against the patient's skin is lengthened from the minimum contact point which is the apex to at least partially extending along the outer surface or side of the cushioning component.
  • the apex of the triangle that contacts the user's face ( FIG. 58 ) enables the cushion component 932 to deflect or roll such that if the apex is towards the inner part of the cushion component, the cushion component will roll inwards and over the clip portion 934 about hinge point 939 .
  • Air pressure AP from the CPAP device acts on the back of the rolled section of the cushion component 932 such that the air pressure forces the cushion component into sealing engagement on the patient's face.
  • the rolling effect or the turning moment force, when the mask is pressed onto the face, can be also increased or assisted the positioning or shape of the clip portion attached to the cushioning portion.
  • the clip portion 3234 may be joined to the base surface of the cross section of the cushioning component. More preferably, the clip is mounted proximal to the outer side of the cushioning component, and provides little or no support relative to the inner side of the cushioning component. Preferably, the clip portion may not generally support the inner side of the cushioning component.
  • the clip portion includes a stepped configuration when viewed in accordance with its cross section.
  • a preferred clip portion is joined to a cushioning portion.
  • the stepped configuration is adapted to mate with a corresponding groove, slot or recess in the frame to provide a seal.
  • the step formation is oriented towards the outer side of the cushioning component for ease of use by the patient.
  • the clip portion is joined to the cushioning component by an upper side.
  • the upper side of the clip portion may be shaped to assist with: sealing of the cushioning component; comfort; and/or the aforementioned rolling effect of the cushioning component.
  • the upper side of the clip portion has been angled towards the centre of the mask by lengthening the outer side of the clip portion relative to the shorter inner side of the clip portion. This angling of the upper surface of the clip portion is adapted to aid or assist in the rolling in effect of the cushioning component.
  • the angled upper side of the clip portion has been included on the lower corners of the mask. For example, as shown in FIGS.
  • the upper surface of the clip portion is angled to enhance rolling and sealing in lower cheek and lip regions (e.g., a 1 and a 2 between about 0-20°).
  • the angle of the upper surface in the chin region e.g., a 3 between about 0-20°
  • the angle of the upper surface in the chin region is oriented opposite that in the lower cheek and lip regions (e.g., the bottom lip region) ( FIGS. 30 and 31 ), e.g., for manufacturability.
  • the upper corner which is adapted to engage the nasal bridge of the patient the upper surface of the clip portion is flat and not angled towards to the centre of the mask. This is generally because the region around the nose doesn't require as much “roll” as the sealing area against the sides of the nose is relatively long compared the regions around or about the cheeks of the patient. This feature is demonstrated in FIGS. 27 and 28 .
  • the nasal bridge region also includes a modification to the base surface, wherein the base surface has been reduced or shortened to thereby reduce the volume of foam material rolled inwards at the nasal bridge.
  • FIG. 32 depicts the interfacing structure wherein the upper surface of the clip surface has been angled outwards relative to the centre of the mask. This reduces the effect of “roll in” in the predetermined regions including this outwardly disposed angle of the upper surface.
  • the outwardly disposed angle of the upper surface is suitable for regions requiring reduced “roll in” such as around the bottom lip or around the upper lip (in the nasal mask configurations).
  • Another way to regulate “roll in” is by changing the amount of overhang of the cushioning component with respect to the clip portion.
  • the inner apex 2050 of the cushion has the radius of curvature of between 3 to 10 mm (most preferably 3-5 mm). This is similarly shown in FIG. 19 , where the inner apex 2050 of the cushion has the radius of curvature.
  • the size of this radius may affect the durability, and more specifically the tear strength of this region.
  • inner edge 2090 may have an angle 2100 from the base of the cushioning component.
  • Angle 2100 may influence the amount of the cushioning component that may contact the patient.
  • angle 2100 shown in FIG. 16 f may be larger than angle 2100 shown in FIG. 20 , such that more of the cushioning component in FIG. 16 f may contact the patient's face than that of FIG. 20 .
  • angle 2100 may be about 90-95 degrees.
  • the angle of the outer side or edge meeting the base surface is preferably between 78-83.
  • the angle by which the outer side meets with the base surface is generally less than the angle formed between the inner side and the base surface.
  • the most preferred maximum width of the nose bridge region (as measured along the base surface) is 22 mm and most preferred maximum height of the cushioning component at the nose bridge position is approximately 24 mm.
  • the cross section at the bottom lip region BL may preferably be generally trapezoidal.
  • the cross section at the bottom lip region BL may also be another other reasonable shape, such as generally rectangular, oval, octagonal etc.
  • the cross section at the bottom lip region may also be an irregular shape.
  • FIG. 25 demonstrates this feature in a cross section for the bottom lip region.
  • the apex 950 is skewed towards the centre of the mask, the outer side or surface of the cushioning component at the region that is adapted to contact the bottom lip region of the patient.
  • the outer side has been divided into an upper and a lower portion, wherein the upper portion is at a reduced angle in respect to the lower portion.
  • the apex 950 is adapted to rest or engage the cleft formed between the bottom lip of the patient and lower extremity of the chin.
  • the upper portion is adapted to engage the patient's face at a position lower and extending away from the cleft. Thereby providing an increased sealing surface between: the patient's face at the location between the bottom lip and the lower extremity of the chin; and the outer side of the cushioning component.
  • the patient contacting surface 940 is generally flat or has a larger radius r 2 when compared to the nasal bridge region radius r 1 . This arrangement aids in comfort and increases the length of the sealing surface such that a better seal may be maintained.
  • the radius r 2 at the apex of the cushion is preferably about 5 mm.
  • patient contacting surface 940 may have apex 950 that may first contacts the patients face and anchors the cushion in the dimple of the chin or curvature between the lower lip and chin region.
  • Apex 950 may have a relatively small radius r 2 when compared to that radius r 2 shown in FIG. 16 g . Radius r 2 may be about 5 mm.
  • Patient contacting surface 940 may also have a kink or inflexion 960 that may generally match the approximate curvature of the chin so as to rest the cushion on the chin to sealingly engage the cushion with the patient.
  • This kink 960 also allows apex 950 to flex inwards towards the centre of the cushion, and outwards away from the centre of the cushion, so as to accommodate movement of the patient's chin or jaw. For example, it is possible for patients to drop their jaw during sleep, so in order to maintain a seal with the patient, the mask must be able to move with the patient's jaw. This arrangement further enables a greater fit range of patients, i.e. kink 960 may flex either inwards or outwards on a patient's jaw depending on the length and depth of their chin, other facial features etc.
  • the internal wall 942 of the cushioning component is arranged substantially vertical or normal to the face of the patient in use as demonstrated by angle 2150 . This arrangement reduces the likelihood of the foam cushioning component touching the patient's bottom lip when compressed in use, a problem that may occur for larger faces within each size range.
  • the preferred maximum width of the cushioning component as measured in respect of the base surface is generally about 35 mm in relation to the bottom lip region.
  • the preferred maximum height of the cushioning component is generally about 26 mm in relation to the bottom lip region.
  • the angle formed between the outer side and base surface is approximately between 80-90 degrees; and the angle formed between the inner side and the base surface is approximately between 90 to 100 degrees.
  • the angle by which the outer side meets with the base surface is generally less than the angle formed between the inner side and the base surface.
  • the cross section at the side nose SN is generally triangular.
  • the cross section at the side nose region SN may also be another other reasonable shape, such as generally rectangular, oval, octagonal etc.
  • the cross section at the side nose region may also be an irregular shape.
  • FIGS. 21 and 22 show an alternative cross section for the side of nose region.
  • FIG. 16 h shows a cross-section of the cushioning component in a side of nose region SN. Similar to the nasal bridge region NB as shown in FIG. 16 g , the cross section is generally triangular. However the triangular cross section is skewed or biased towards the inner edge of the cushioning component. This arrangement aids with sealing because inner wall 944 abuts the side of the patient's nose in use, thereby increasing the sealing surface. This is similarly demonstrated in FIGS. 21 and 22 .
  • the outer side is longer than the inner side.
  • the angle formed between the outer side and the base surface is generally less than the angle formed between the inner side and the base surface.
  • the most preferred maximum width of the side of nose region (as measured along the base surface) is 22 mm and most preferred maximum height of the cushioning component at the side of nose position is approximately 24 mm.
  • the cross section at the cheeks C is generally trapezoidal or triangular.
  • the cross section at the cheeks region C may also be another other reasonable shape, such as generally rectangular, oval, octagonal etc.
  • the cross section at the cheeks region may also be an irregular shape.
  • FIGS. 23 and 24 show an alternative cross section for the cheek region.
  • FIG. 16 i shows a cross-section of the cushioning component in a cheek region C.
  • the contacting surface or apex 946 where the cushioning component contacts the patient's cheek is similar to that at the bottom lip region BL as shown in FIG. 16 g .
  • the cross section is generally triangular, and may have a smaller top surface 946 when compared to the top surface 940 of the bottom lip region BL. This arrangement aids sealing around the patient's cheeks in use and increases the comfort of the interfacing portion, while reducing the bulk of the interfacing portion at the cheek region C.
  • inflexion 950 changes the curvature of the side wall of the cushion so that it may hinge or bend inwards. This may increase the ability for the cushion to seal on the patient's face when in use.
  • the outer side of cushioning component is longer than the inner side.
  • the angle formed between the outer side and the base surface is generally less than the angle formed between the inner side and the base surface.
  • the most preferred maximum width of the cheek region (as measured along the base surface) is 23 mm and most preferred maximum height of the cushioning component at the cheek region is approximately 24 mm.
  • the apex of the cushion is additionally offset towards the centre or middle of the mask.
  • the apex may be offset to the extent that it overhangs the point formed between the inner side and the base surface.
  • FIGS. 39 to 47 show an alternative embodiment of the present invention.
  • Cushion component 4000 may be used as a nasal mask that only covers the nose of the patient in use, and is positioned on the nose bridge, side of nose, cheeks and or upper lip region and may not cover the patient's mouth.
  • the cushioning component of the nasal mask shown in respect of these embodiments is preferably: 70-75 mm in length (when measured from the outer most edges of the base surface of the cushioning component); and the width of the cushioning component is approximately 75-80 mm.
  • the nasal bridge region 4200 , side of nose region 4300 and cheek region 4400 may be generally similar to that described above for a full face cushion.
  • the preferred height of the cushioning component at the region designated to correspond to the nasal bridge of the patient is approximately 22 mm.
  • the height of the cushioning component at the position designated to meet the side of the nose is approximately 25-27 mm.
  • the height of the cushioning component at the position designated to meet the patient's cheek regions is approximately 27 mm.
  • the preferred width of the cushioning component in the side of nose regions is typically about 20 mm. Whereas the preferred width of the cushioning component in the cheek regions is typically about 18 mm.
  • cushion component 4000 may have an upper lip region 4100 that has a dip or region of reduced height (when viewed from a side view as shown in FIG. 41 ) relative to the height of other regions 4200 .
  • This feature may accommodate various upper lip regions of patients whilst avoiding accidental occlusion of the nares.
  • the overall reduction in the amount of foam material may reduce the risks for patients.
  • the preferred width of the cushioning component in the upper lip region is typically about 16 mm.
  • the width of the cushioning component in the upper lip region may be 10-20 mm.
  • the width of the cushioning component in the upper lip region may be 15-20 mm.
  • the width of the cushioning component in the upper lip region may be 12-20 mm.
  • the width of the cushioning component in the upper lip region may be 10-15 mm.
  • the width of the cushioning component in the upper lip region may be 10-18 mm.
  • the width of the cushioning component in the upper lip region may be 10-14 mm.
  • the preferred height of the cushioning component at the region designated to correspond to the upper lip of the patient is approximately 18 mm.
  • the height of the cushioning component in the upper lip region may be 10-20 mm.
  • the height of the cushioning component in the upper lip region may be 10-25 mm.
  • the height of the cushioning component in the upper lip region may be 15-20 mm.
  • the height of the cushioning component in the upper lip region may be 16-23 mm.
  • a mask assembly in accordance with the invention provides an improved fit range. This maybe preferably achieved by combining a more comfortable and compliant material with a more anatomically neutral geometry that seals against a wider range of facial anatomy for a given shape.
  • the versatility of a chosen cushion shape, and hence its fit range performance, is also enhanced by the ‘hovercraft’ behavior exhibited by the cushion.
  • the “hovercraft’ behavior is generally defined by the air pressure in the cavity of the mask when the air pressure in cavity of the mask is greater than the outside environmental air pressure and thereby allows the mask to float on the face of the wearer.
  • the pressure seal is preferably formed by the cushioning component. This feature may enhance the ease and speed of fitting the mask.
  • the cushion material When pressurized with air the cushion material has extra extensibility compared to other known cushion materials.
  • the soft flexible cells in the foam material effectively stretch when inflated allowing the material the freedom to enlarge.
  • the foam being less sticky than silicone also has a significant advantage in achieving an easy, fast and comfortable fit.
  • the cushioning component is preferably made from unskinned foam, one or more cutting processes may be used to create the part, such cutting processes including die cutting, and/or machining, etc.
  • the cushioning component may be molded with measures taken in the process to minimize the skin on the foam component, or the skin being subsequently removed from the molded component in a post process e.g. machined.
  • the foam material used in the herein described embodiments may be an open and closed cell foam.
  • the foam material used may be an open cell foam.
  • the foam material used may be a closed cell foam.
  • both an inside surface and an outside surface of the foam cushion component 232 are die cut. This typically results in generally straight cut edges.
  • the cushion in these embodiments may have a generally rectangular cross section, where the top surface is generally substantially parallel to the patient's face in use, and the inner and outer side surfaces are generally perpendicular to the patient's face in use. It may be possible to die cut the foam using additional processing steps to create a non-rectangular cross section, e.g. the use of shims.
  • the die cutting of a cushion component then from a flat sheet of foam results in a flat backed cushion component which may subsequently take the shape of a clip that it is assembled to e.g. glued.
  • the foam cushion is therefore deformed into its final intended shape.
  • the cushion component may be die cut from a foam sheet that is cut into a curved shape rather than a flat sheet.
  • the curved sheets may be formed from a known process referred to as contour cutting, where a foam block is cut into curved sheets by being fed into an oscillating blade that changes position and orientation during the cutting process.
  • the cushioning component e.g., as shown in FIGS. 9 a to 12 f , may be cut into a three-dimensional shape or geometry using the techniques described in AU 2008904769 and AU 2008904778.
  • FIGS. 9 a to 9 d illustrate a foam-based interfacing structure 430 including a foam cushion component 432 and a clip portion 434 .
  • Outer wall 400 may include contours and curvature incorporated into the design.
  • the inner, patient contacting wall (or orifice) 402 may be die cut as known in the art. Again, this typically results in straight cut edges (e.g., see FIGS. 9 b and 9 d ).
  • FIGS. 10 a to 10 c illustrate a foam-based interfacing structure 330 including a foam cushion component 332 and a clip portion 334 , wherein the cushion component 332 includes localized regions with curvature or ridges, e.g., ridges 350 along cheek regions of the cushion component, a curvature 352 along the nasal bridge region of the cushion component, etc.
  • the cushion component 332 is contoured along the chin region of the cushion component. The straight die cut inner and outer edges remain perpendicular to the patient's face in use similar to the previous embodiment.
  • FIGS. 11 a to 11 c illustrate a foam-based interfacing structure 530 where a localized region 552 in the cushion component 532 at the nasal bridge has been raised, e.g., formed with a curved surface.
  • FIGS. 12 a to 12 f illustrate another embodiment in which a foam-based interfacing structure 630 including a foam cushion component 632 and a clip portion 634 , wherein the foam cushion component 632 includes a slab of foam that is cut using methods known in the art. This process may be repeated in order to cut the outer wall 600 of the cushion component and then the inner, patient contacting wall (or orifice) 602 of the cushion component.
  • the cushion-to-frame component may be made from a material that has greater structural integrity than the cushioning component.
  • the clip is made from polyurethane foam that has higher hardness, higher density, and lower permeability than the foam used for the cushioning component.
  • the clip/cushion-to-frame component may be formed in a mould giving rise to a harder, denser, lower permeability foam having a skin.
  • the clip may be constructed of a non-foamed polymer, for example (but not limited to), nylon, polycarbonate, polypropylene.
  • the clip portion or clip component may be of reduced hardness or increased flexibility in comparison to the frame portion of the mask to which it is to connected or secured with.
  • the clip 934 is shown generally in FIG. 13 , and in more detail in FIGS. 15 a -15 e .
  • the clip 934 is generally shaped in order to align with the frame.
  • the general curvature of the clip 934 can be altered to suit the frame to which it is to be fitted.
  • the general curvature of the clip may also be used to shape the cushion component. Since the cushion component is made from compliant foam, it will readily adapt to the shape of the clip when joined together. An example of where this may be an advantage is when the cushion component is made to have a flat back (from a flat foam sheet as described previously) and is given its final shape by assembly (e.g. glued) to a clip that gives the cushion its intended shape (e.g. curved).
  • the clip may also be made flat.
  • the cushion can therefore also be made with a flat back to match the clip.
  • the overall intended shape of the interfacing structure (combination of clip and cushion) can therefore be alternatively achieved by the flat clip and cushion being deformed and retained into a curved frame.
  • This embodiment allows clip to be manufactured flat which can have several advantages including ease of handling and alignment during manufacture, packaging and transportation.
  • the clip can therefore be formed by alternative methods e.g. die cutting from flat sheet material.
  • the clip may also be made curved. This may be achieved by several means including molding directly into a curved shape, die cutting from curved (contour cut) sheet, or heat forming a flat clip die cut from a thermoformable material. Having the clip curved allows ease of alignment and assembly to a curved frame, as well as giving the cushion a curved shape if the cushion is made from a process that results in it having a flat back.
  • the clip is made from molded polyurethane.
  • the cushion contacting surface 935 is generally smooth so that it can continuously join and seal to the underside of the cushion.
  • Cushion contacting surface 935 has a lip 935 a to enable alignment of the clip to the frame.
  • Frame contacting surface 937 has three alignment tabs 938 protruding from its surface that engage with the frame. There may be any number of alignment tabs 938 to aid the patient in aligning the interface structure with the anchoring structure. It should also be appreciated that the clip need not have alignment tabs 938 to engage the clip with the frame.
  • the clip may also be made to incorporate features that engage the frame to aid retention of the interfacing structure to the frame. Examples include, but are not limited to, surface roughening, ribs, notches, snaps etc.
  • the clip component may be separately formed as will be now described, or insert molded as will be described later in this specification.
  • FIGS. 18 a to 18 c illustrate a tool to mold a clip portion by itself, where the clip portion may subsequently be attached to the cushion component, e.g., by an adhesive or simply adhesion between the clip and cushion component.
  • the tool includes a top half 1560 and a bottom half 1565 which are adapted to be joined together to form the clip portion.
  • the tool provides a curved parting line PL between the top and bottom halves 1560 , 1565 .
  • the bottom half 1565 includes a cavity 1567 adapted to receive the material (e.g., foaming mixture) that will form the clip portion. Also, the center section 1568 of the bottom half 1565 accommodates a separate insert that acts as a manual ejection feature after molding.
  • the top half 1560 provides a surface 1562 that will form the side of the clip portion for interfacing or joining with the cushion component.
  • the top and bottom halves 1560 , 1565 of the tool are constructed and/or arranged to facilitate demolding of the clip portion from the tool so that the clip portion will not adhere to the tool.
  • the top and bottom halves 1560 , 1565 may be constructed of a material from which the mold material (e.g., foaming mixture) may be removed (e.g., high density polypropylene, silicone).
  • a demolding agent e.g., wax
  • An alternative demolding aid may be a release film that lines the tool and releases from the clip material easily after molding.
  • the release film may double, in whole or in part, as the packaging for the interfacing structure such that the product leaves the molding process already packaged.
  • the clip includes a tab at one or a number of locations that facilitates gripping of the part for demolding during the manufacturing process. This tab feature may also double as an alignment feature for assembly and a gripping feature for disassembly for the user of the mask assembly.
  • the clip may include a tab feature that includes an end of life indicator for the interfacing structure.
  • the width of the clip portion may preferably match or be less than the maximum width of the cushion component
  • the width of the cross section of clip portion may be less than the width of the cross section of the cushion component.
  • the clip portion provides different forms of support to the cushion component.
  • the clip portion and cushion component may be arranged such that (i) the outer perimeter of the clip portion and cushion component align (hides hardness of clip portion and provides desired freedom of movement in the cushion component), (ii) the inner perimeter of the clip portion and the cushion component align, or (iii) neither the inner or outer perimeter of the clip portion and the cushion component align.
  • the clip portion and cushion component may be arranged such that (i) the outer perimeter of the clip portion and cushion component align, (ii) the inner perimeter of the clip portion and cushion component align, or (iii) neither the inner or outer perimeter of the clip portion and the cushion component align.
  • the cushion component may preferably be more able to flex in regions or directions not having a clip portion next to it than in regions having a clip portion adjacent to it or supporting it. For example, where the cushion component overhangs the clip portion, that overhanging region of the cushion component has more freedom to move. This arrangement can be more comfortable and more able to adapt to different geometries of a person, and provide the correct vectors to seal the cushion component against the face.
  • the clip portion is to be joined to a cushioning component by a base surface of the cushioning component. It may also be preferably to arrange the clip portion to support the external extremity (relative to the circumference of the mask) of the base surface and to have no or little support inner extremity of the base surface.
  • the inner portion of the cushion component When used as part of a respiratory mask, it may be preferable that the inner portion of the cushion component overhang the clip portion.
  • the face of the patient may engage with an unsupported inner edge of the softer cushion component causing it to bend and conform to the individual patient's shape.
  • the cushioning component When the mask engages a patient's face, the cushioning component may roll inwards towards the centre of the mask when pressure is applied on the mask towards the patient's face.
  • FIG. 7 a shows an elevation view detail from the frame side of the interfacing structure 230 shown in FIG. 4 e in a nasal bridge region.
  • FIG. 7 b shows that the width w 2 of the clip portion 234 is less than the width w 1 of the cushion component 232 and that the outer perimeter of the clip portion 234 and the cushion component 232 are aligned.
  • FIG. 7 c shows an advantage of this arrangement where in use the nose is able to push the inner perimeter of the cushion component 232 in the direction shown by the arrow, in a cantilever manner as well as compressing.
  • FIG. 8 is a cross-section showing the clip portion 234 of the interfacing structure 230 received within the channel 22 of a mask frame 20 .
  • FIGS. 26-32 show an alternative embodiment of the present invention.
  • FIG. 26 shows the cross sections later shown in FIGS. 27-32 .
  • Cushion component 3232 may be attached to clip component 3234 .
  • Cushion component 3232 may be similar to that shown in FIGS. 19-25 .
  • Clip component 3234 may have upper surface 3500 that attaches to cushion component 3232 .
  • Upper surface 3500 may be generally horizontal when in use or assembled, as shown in FIGS. 27, 28, and 29 . In addition, this may position the tangent to apex 3600 of the cushion component 3232 generally parallel to upper surface 3500 .
  • upper surface 3500 may be generally curved or angled inwards towards the inner portion of the cushion so as to angle the cushion more towards the centre of the patient's face, as shown in FIGS.
  • tangent to apex 3600 may not be parallel to upper surface 3500 .
  • the upper surface 3500 may be angled in one or more selected regions, e.g., lower cheek or chin regions to fit patients with more narrow, shallow faces (see FIGS. 30-32 ).
  • the outer edge of the cushion component may slightly overhang (e.g., 1 mm overhang) the clip component, e.g., for manufacturability.
  • the two layers may be adhered to one another using polyurethane hot melt glue or cyanoacrylate.
  • the cushioning portion may be directly glued onto the frame.
  • insert molding may be used to assemble the cushioning component to the cushion-to-frame component.
  • An advantage of this approach include lower cost when compared to other processes such as gluing.
  • FIGS. 17 a to 17 h illustrate a tool and manufacturing process for manufacturing an interfacing structure according to an embodiment of the present invention.
  • the tool includes a first portion 1060 adapted to receive the cushioning component that may be cut from foam slabstock and a second portion 1065 adapted to receive the foaming mixture that will form the cushion-to-frame component.
  • the first portion 1060 of the tool may allow a vacuum to be applied to the cushioning component to retain it in position.
  • the walls of the cavity that receive the cushioning component include a plurality of orifices 1062 , and a vacuum is applied to an opening 1063 in the side wall of the first portion 1060 so that the cushioning component may be drawn into the cavity.
  • the first portion 1060 may be sized to provide an interference fit with the cushioning component.
  • the first and second portions 1060 , 1065 of the tool are arranged so that there will be a region of contact between the cushioning component and the cushion-to-frame component such that they will adhere to one another.
  • At least a second portion of the tool is constructed and/or arranged to facilitate demolding of the cushion-to-frame component that would otherwise adhere to the tool.
  • this is achieved by using a tool constructed of a material from which the foam may be removed (e.g., high density polypropylene, silicone).
  • a tool constructed of a material from which the foam may be removed e.g., high density polypropylene, silicone.
  • steel or aluminum tools may be used, provided an appropriate de-molding agent can be used, such as wax (e.g., agent that does not present biocompatibility issues).
  • the second portion 1065 includes three parts that are removably attached to one another, i.e., an inner portion 1066 ( 1 ), and outer portion 1066 ( 2 ), and a ring portion 1066 ( 3 ).
  • FIG. 17 a illustrates the first and second portions 1060 , 1065 of the tool separated from one another.
  • the cushioning component 1032 is placed in the first portion 1060 of the tool.
  • the cushioning component 1032 may be held in place in the first portion 1060 by a vacuum and may impart curvature on the cushioning component via the vacuum. This may be necessary if the cushion is made from a process that gives is a flat backed geometry. Placement of the cushioning component 1032 may be manual or automated. For example, the cushioning component 1032 may be sucked into the first portion 1060 using the vacuum.
  • a mixture of polyurethane e.g. foam or elastomer
  • the high-intensity mix is poured into the second portion 1065 of the tool. Pouring of the mix for the cushion-to-frame component 1034 may be manual or automated. If the cushion-to-frame component 1034 is made from a foam the cavity of the second portion 1065 will only be partly filled (e.g., 25%) and during the foaming process it will expand to fill the space and come into contact with the cushioning component where it will adhere.
  • the first and second portions 1060 , 1065 of the tool are clamped together or closed to allow the cushion-to-frame component foaming reaction to proceed in the tool. That is, the foam for the cushion-to-frame component 1034 can rise up and chemically bond or adhere to the foam cushioning component 1032 .
  • the choice of clip material may enhance the bonding or adhesion process.
  • both the clip and the cushion are made from polyurethane material for ideal bond integrity between the two components.
  • the clip component may infuse into gaps in the cell structure of the cushion component, forming small mechanical bonds between the components.
  • FIG. 17 f When the cushion-to-frame component 1034 has cured, the vacuum first portion and second portion are separated as shown in FIG. 17 f .
  • FIG. 17 g the ring portion 1066 ( 3 ) at the bottom of the second portion 1065 is removed and the inner portion 1066 ( 1 ) is ejected to demold the cushion-to-frame component 1034 .
  • FIG. 17 h shows the resulting interfacing structure 1030 removed from the tool with the cushioning component 1032 adhered to the cushion-to-frame component 1034 .
  • the cushion component is originally flat when vacuum inserted into the top half of the tool and is bonded to a curved clip during the insert molding process. The resultant interfacing structure then assumes an intended curved shape.
  • the cushion and clip are made flat but the cushion is made with sufficient depth to not require curvature to suitably adapt to the face when worn; but rather suitably deforms to the shape of the face due to the softness and depth of the cushion foam.
  • a film may be added to the second portion of the tool prior to the addition of the foaming mixture.
  • This film may be structured to facilitate removal of the otherwise adhering cushion-to-frame component.
  • the film may be used to form packaging for the interfacing structure.
  • the clip portion of the interfacing structure may be constructed from more rigid and denser foam than the cushion component.
  • the clip portion may be formed from nitrogen blown polyethylene, or some other biocompatible foam having a fine cell-structure.
  • the clip portion could be made from some other polymer or rubber.
  • the clip portion is adapted to form a cushion-to-frame engagement mechanism and to form a structural support for the cushion component.
  • the cushioning component is less rigid, less stiff or more flexible than the clip portion, which is in turn less rigid, less stiff or more flexible than the frame of the mask.
  • the frame gives shape to the mask interfacing structure, wherein the interfacing structure is relatively flexible and less rigid, overall than the frame. This feature adds comfort and also allows the interfacing structure to be easily replaced by the patient or user. Further improvements to the interfacing structure may be made to adapt the shape and configuration to be disposable.
  • FIG. 13 shows a clip portion 734 including a side 735 for interfacing with a foam-based cushion component and a side 737 for interfacing with a mask frame.
  • the clip portion 734 is constructed of a skinned foam and may be formed by molding.
  • the foam of the clip portion 734 may be harder or more dense than the foam of the cushion component.
  • the more dense or harder foam may be formed by cutting, e.g., die cutting, machining, and/or the methods set forth in AU 2008904769 and AU 2008904778.
  • This arrangement provides a one piece interfacing structure with a cushion component adapted to engage the patient's face and a clip portion adapted to interface with the mask frame.
  • a mask system may be provided that includes at least two different forms of interfacing structure chosen from the set of foam-based cushion, silicone-based cushion, and gel-based cushion.
  • FIGS. 14 a to 16 i illustrate an interfacing structure 930 including a cushion component 932 and a cushion-to-frame component or clip portion 934 provided to the cushioning component 932 .
  • FIGS. 14 a to 14 f show the cushioning component 932 attached to the cushion-to-frame component 934
  • FIGS. 15 a to 15 e are isolated views of the cushion-to-frame component 934
  • FIGS. 16 a to 16 i are isolated views of the cushioning component 932 .
  • the cushion-to-frame component 934 includes a side 935 for interfacing with the cushioning component 932 and a side 937 for interfacing with a mask frame.
  • the side 937 includes protrusions 938 to facilitate and/or enhance attachment to the mask frame.
  • the interfacing structure is constructed as described above and arranged for removable interconnection with the rest of the apparatus, for example a respiratory mask.
  • interfacing structure enables one to replace the interfacing structure should it become soiled, damaged, uncomfortable or otherwise aged as a result of usage. It also facilitates trial or testing of different arrays of interfacing structures which are selected on different patients facial types or features (e.g., narrower face, longer nose, or longer chin, etc.).
  • One form of interfacing structure for example a foam-based interfacing structure, may be used as a form of “training” system to allow a person to become accustomed to the sensation of wearing and using a mask.
  • a foam-cushion based mask may provide an initially more appealing and comfortable surface for a new patient than a gel or silicone-based cushion. The patient may subsequently switch from the foam-based cushion to a silicone or gel based cushion. In this way, the patient may be more likely to adhere to therapy because they are used to the very soft comfortable feeling of foam.
  • the interfacing structure When applied to respiratory equipment, the interfacing structure is adapted for connection with a mask frame. In use, a seal is formed between the interfacing structure and the frame. This arrangement could be used for both nasal and full-face masks. The seal between the frame and interfacing structure may seal better wherein the clip portion is less rigid or more flexible than the frame.
  • FIG. 1 illustrates a mask 10 including a mask frame 20 a foam-based interfacing structure 30 provided to the mask frame 20 .
  • the foam-based interfacing structure 30 provides a foam cushion component 32 adapted to contact the patient's face in use.
  • the foam-based interfacing structure 30 is adapted for use with an existing mask (e.g., ResMed's Mirage Quattro mask), which allows the patient to switch from the foam-based interfacing structure 30 to the masks existing silicone-based cushion if desired.
  • an existing mask e.g., ResMed's Mirage Quattro mask
  • FIGS. 4 a to 4 g show a foam-based interfacing structure 230 according to an embodiment of the invention.
  • the interfacing structure 230 includes a cushion component or face-contacting portion 232 and a clip portion 234 provided to the cushion component 232 .
  • the clip portion 234 is adapted for an interference fit with a mask frame, and the width of the clip portion 234 is narrower than the width of the cushion component 232 (e.g., see FIGS. 4 e and 4 g ).
  • the cushion-to-frame engagement and connection mechanism provided by the clip portion may include a channel-type engagement or rib-type engagement.
  • the channel-type engagement includes a foam clip portion 34 that is adapted to be received within the channel 22 of a mask frame 20 with an interference fit.
  • the foam clip portion 34 extends around the entire perimeter of the interfacing structure so as to form a seal and retention with the mask frame.
  • the rib-type engagement includes a foam clip portion 34 with one or more slots 38 to receive inner and/or outer ribs 23 , 24 of the mask frame 20 .
  • the slot to rib engagement may provide an inner frame rib engagement (see FIG. 3 a ), an outer frame rib engagement (see FIG. 3 b ), or an inner and outer frame rib engagement (see FIG. 3 c ). This arrangement provides a broader base of support for the sealing foam.
  • FIGS. 5 a and 5 b illustrate a foam-based interfacing structure 830 including a foam cushion component 832 and a clip portion 834
  • FIG. 5 c illustrates the interfacing structure 830 provided to a mask frame 20
  • the clip portion 834 includes a slot 838 adapted to receive a rib of the mask frame 20 . Also, providing a wider clip portion 834 allows more stiffness and structural integrity to be provided to the clip portion, making the clip portion easier to assemble to the mask frame.
  • the clip portion When structured to form an interference fit with the mask frame, the clip portion may have the following properties: appropriate rigidity (e.g., less than that of the frame and in one form more rigid than the foam cushion component); non-porous; and/or low compression set (the amount of deformation expressed as a percentage of original dimensions) which a material retains after compressive stress is released (in this way, the clip portion maintains its retention force during its usage life).
  • appropriate rigidity e.g., less than that of the frame and in one form more rigid than the foam cushion component
  • non-porous e.g., the amount of deformation expressed as a percentage of original dimensions
  • the clip portion may include an additional extension (not shown) that extends beyond the outer extremity of the frame which is adapted to be gripped by the patient for easier removal of the interfacing structure.
  • this extension would be positioned in a region that is easy for the patient to grip such as the nasal bridge of the mask.
  • the extension will be small enough not to impede vision of the user or to affect the overall efficiency or seal of the mask.
  • the extension may function as a finger grip for the patient to remove or replace the interfacing structure, when desired.
  • FIGS. 50-1 to 57-2 illustrate alternative mechanisms for attaching the clip portion to the frame.
  • the clip portion 5034 is in the form of a microcellular polyurethane clip adapted to engage within the frame channel 5022 with an interference fit.
  • the clip portion 5034 is in the form of a flexible plastic clip (e.g., Hytrel, TPE) adapted to engage the frame channel 5022 with a snap fit.
  • the clip portion also includes a lip seal 5035 adapted to engage the channel wall.
  • the clip portion 5034 is in the form of a flexible plastic clip adapted to engage the frame channel 5022 with a snap fit.
  • the clip portion also includes a sealing element 5035 (thermoplastic elastomer that may be over molded on to the clip portion) adapted to engage the channel wall.
  • a sealing element 5035 thermoplastic elastomer that may be over molded on to the clip portion
  • the clip portion 5034 is in the form of a polyurethane clip adapted to engage within the frame channel 5022 with an interference fit.
  • the clip portion also includes a flexible plastic clip 5036 (assembled to the polyurethane clip) adapted to engage the frame channel with a snap fit.
  • the clip portion 5034 is in the form of a polyurethane clip adapted to engage within the frame channel 5022 with an interference fit.
  • the clip portion also includes a flexible plastic clip 5036 (glued to the polyurethane clip) adapted to engage the frame channel with a snap fit.
  • the clip portion 5034 includes a flexible plastic clip adapted to engage the frame channel 5022 with a snap fit or other fitting means e.g. interference fit.
  • the clip is contoured such that the clip also engages the channel wall with an interference fit.
  • the clip portion 5034 includes a flexible plastic clip adapted to engage the frame channel with a snap fit.
  • the clip portion also includes a foam element 5037 adapted to cover the clip.
  • the clip portion 5034 includes a polyurethane clip (attached to cushion component by plastic element 5038 ) adapted to engage the frame channel 5022 with a snap fit.
  • the frame channel includes a plastic extension 5023 adapted to engage the clip. This arrangement allows replacement of the cushion component without the need to change the clip portion.
  • the following provides exemplary materials and properties of the cushion component and clip portion.
  • the cushion component may be made from polyurethane, be resistance to hydrolysis and/or resistant to microbial attack.
  • the cushion component may be air permeable. In an embodiment, the cushion component may not be air permeable.
  • the cushion component may be able to maintain its air permeability over a period of use.
  • the cushion component may not emit harmful or odorous volatiles or particulates.
  • the cushion component may be coloured and this colour may not fade.
  • FIG. 48 is a chart showing exemplary material properties for the cushion component.
  • properties of the foam cushion component may include: density (relates to other foam properties and affects cost and weight of the cushion, e.g., higher density can reduce air permeability and higher density can increase hardness); air permeability (flow of air through cushion contributes to total mask flow characteristic of the mask which may affect compatibility with PAP devices); hardness (affects comfort and sealing performance); tear resistance (contributes to durability); tensile strength (contributes to durability); and/or tensile stiffness (resists the deforming effects of positive air pressure inside the mask).
  • FIG. 49 is a chart showing exemplary material properties for the clip portion.
  • properties of the foam clip portion may include: density (affects weight); air permeability (permeability of the foam itself may not be critical if it is molded with a skin that renders it impermeable); hardness (soft and flexible enough to assemble to the frame with an interference fit and seal against the frame); elasticity/viscoelasticity (soft and flexible enough to assemble to the frame with an interference fit and seal against the frame); and/or compression set (should not deform over time to ensure easy assembly/retention).
  • the following provides exemplary testing methods for determining material properties.
  • Air permeability is defined as “the rate of air flowing through a foam sample (in L/min)”.
  • test measures the flow through a regular shape with a constant cross section, in a manner analogous to a cushion in real use.
  • the test specimen is an annulus of foam, about 30 mm thick. The circular shape ensures that pressure is evenly distributed and the foam inflates uniformly.
  • the foam sample is cut normal to cell rise direction as shown in FIG. 60-4 .
  • the wall section of the foam specimen may be rectangular (see FIG. 60-2 ), but it is possible for the wall section to have a concave outer surface and a convex inner surface (see FIG. 60-3 ).
  • FIG. 60-5 is a schematic of the test set up.
  • the test jig used to hold the foam consists of: an aluminum base plate that locates the foam and seals against the flat bottom surface of foam annulus; an air inlet and pressure port in the centre of the base plate; a clear polycarbonate top plate that seals against the flat bottom surface of foam annulus and allows observation of the test sample; and a part glued to the top plate to connect with a load cell attachment on the Universal Testing Machine (UTM).
  • UTM Universal Testing Machine
  • Hardness is defines as “force required to indent a test piece of foam to a stated percentage of its original thickness”.
  • Hardness may be tested using an IDM Universal Test Machine, or equivalent (e.g., see circular flat indenter of FIG. 61 )
  • the sag factor or support factor i.e., the ratio of 65% to 25% IFD value.
  • Tensile strength may be measured using an IDM Universal Test Machine, or equivalent. See FIG. 62-1 .
  • Test both directions, i.e., parallel to and normal to the direction of cell rise.
  • Three test pieces may be acceptable if the results are consistent (no individual value deviates more than 20% from the mean of the three values).
  • Tear resistance is defined as the force required to propagate a tear in a pre-cut sample. See FIG. 63-1 .
  • the speed of separation of the jaws holding the test piece shall be 200 mm/min.
  • the cushion is compressed by 40% of its 30 mm thickness, i.e., 12 mm.
  • a mask frame may be integrally molded or formed with the cushion-to-frame component 1034 .
  • the second portion 1065 of the tool may be structured to mold the cushion-to-frame component together with the mask frame.
  • a polyurethane foam cushioning component is provided to a polyurethane foam or polyurethane elastomer cushion-to-frame component.
  • one or both of the components may be constructed of a gel material.
  • both components may be constructed of gel, the cushioning component may be constructed of gel and the cushion-to-frame component may be constructed of foam, or the cushioning component may be constructed of foam and the cushion-to-frame component may be constructed of gel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

An interfacing structure is arranged to cooperate with a frame to contact with the skin of a patient. The interfacing structure includes a clip portion joined to a cushioning component. The frame is more rigid than the clip portion and the clip portion is more rigid than the cushioning component.

Description

CROSS-REFERENCE TO APPLICATION
This application is a continuation of U.S. patent application Ser. No. 12/737,919, filed Mar. 1, 2011, now allowed, which is the U.S. National Phase of International Application No. PCT/AU2009/001144, filed Sep. 3, 2009, which designated the U.S. and claims the benefit of Australian Provisional Patent Application Nos. AU 2008904769, filed Sep. 12, 2008, and AU 2008904778, filed Sep. 15, 2008, each of which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
The present invention relates to an interface between a human and a piece of equipment, for example respiratory devices that include a foam-based interfacing structure.
BACKGROUND OF THE INVENTION
In a number of fields, such as respiratory therapy, apparatus for delivery of therapy includes a rigid component and a soft, cushioning component positioned between a patient and the rigid component.
In the case of a respiratory device, the rigid component may be a mask frame defining a nose and/or mouth-receiving chamber. The mask frame may include a flange around its periphery or other connecting means. The cushioning component may be glued or otherwise coupled to the flange or connecting means.
The cushioning component may form a seal with the skin of the patient in some forms of respiratory therapy. In other devices, for example headphones, it may not be necessary for a seal to be formed.
SUMMARY OF THE INVENTION
A first aspect of the invention is to provide a mask assembly with a foam interfacing structure.
Another aspect of the invention is to provide a mask assembly with a foam interfacing structure where at least a part of the foam (e.g., an unskinned part of the foam) is in direct contact with the skin of the mask user.
Another aspect of the invention is to provide a mask assembly with a foam interfacing structure where the foam is unskinned and has a cellular structure of the foam in direct contact with the skin of the mask user.
Another aspect of the invention is to provide a mask assembly with a removable foam interfacing structure.
Another aspect of the invention is to provide a mask assembly with at least two different types of removably replaceable interfacing structures.
Another aspect of the invention is to include a softer interfacing structure having portion adapted for engagement with a more rigid component.
Another aspect of the invention is to provide a respiratory mask assembly including a frame and an interfacing structure wherein the interfacing structure includes a foam-based cushion component and a clip portion adapted for removable engagement with the frame portion.
Another aspect of the invention is to provide a support structure for a cushioning component wherein the support structure supports the cushioning element on one side and allows movement on another side.
Another aspect of the invention relates to a cushion for a respiratory mask including a clip portion and a cushioning component wherein the cushioning component is constructed from a foam material and the clip portion is narrower than the cushioning component.
Another aspect of the invention relates to a respiratory mask assembly including a frame having a channel and an interfacing structure including a clip portion adapted for interference seal and retention in the channel. The interfacing structure includes a cushion component constructed from foam and having a wider width than the clip portion.
Another aspect is a foam-based cushioning component preferably having a first cross-section in a nasal bridge region, a second cross-section in a lip region and a third cross-section in the cheek region.
Another aspect is a method of manufacturing a cushioning component, e.g., die cutting and/or machining, etc.
Another aspect is a method of insert molding a clip component to a cushioning component to form an interfacing structure.
Another aspect is a cushioning component for use with a mask, wherein the cushioning component is constructed of foam material. A patient contacting surface, that is adapted to contact a patient, in use, may have a rounded cross sectional profile and a base surface opposed to the patient contacting surface.
Another aspect is a removable interfacing structure for use with a mask including a cushioning component constructed of foam material wherein a patient contacting surface that is adapted to contact a patient, in use, has a rounded cross sectional profile and a base surface opposed to the patient contacting surface is joined to a clip portion, and wherein the clip portion is adapted to be removably joined to a frame of the mask.
Another aspect is a mask including a removable interfacing structure and a frame, wherein the interfacing structure includes a clip portion and a cushioning component constructed of foam material having a patient contacting surface that is adapted to contact a patient, in use, has a rounded cross sectional profile and a base surface opposed to the patient contacting surface is joined to the clip portion, and wherein the clip portion is adapted to be removably joined to a frame of the mask.
Another aspect is a mask including a frame and an interfacing structure, wherein the interfacing structure includes a clip portion joined to cushioning component, and wherein the frame is more rigid than the clip portion and the clip portion is more rigid than the cushioning portion.
Another aspect is a cushioning component for use with a mask, wherein at least a portion of the cross section of the cushioning component includes an inner side defined by the side facing the centre of the mask, an outer side defined by a side facing away from the centre of the mask and a base side facing the frame or clip portion, wherein the length of outer side is greater than the inner side.
Another aspect is an interfacing structure for a mask including a clip portion joined to a cushioning component, wherein an upper surface of the clip portion is joined to a base surface of the cushioning component and wherein at least a portion of the upper surface is angled to provide a moment force on cushioning component, when force is applied into the cushioning component.
Another aspect is an interfacing structure for a mask including a clip portion joined to a cushioning component, wherein an upper surface of the clip portion is joined to a base surface of the cushioning component and wherein the cross sectional width of the clip portion is less than the cross sectional width of the cushioning component.
Another aspect is a cushioning component for use with a mask, wherein at least a portion of the cross section of the cushioning component includes an inner side defined by the side facing the centre of the mask, an outer side defined by a side facing away from the centre of the mask and a base side facing the frame or clip portion, wherein the outer side further includes at least an upper and a lower portion, wherein the upper portion is positioned at a reduced angle in comparison to the lower portion.
Another aspect is a nasal mask including a frame removably connected to an interfacing structure, wherein the interfacing structure includes a cushioning component constructed of foam material, and wherein the height of the interfacing structure is reduced in relation to region that is adapted to contact the upper lip region of a patient's face.
One aspect of the present technology relates to a respiratory mask including a frame, a foam cushion and a substructure. The mask includes a nose receiving cavity. The cushion includes at least two sides: an inner side wall, which may be a wall at least partially facing the cavity; and an outer side wall. The foam cushion is soft and conforming. The substructure is constructed from a more rigid material. The foam cushion is adapted to form a seal with at least one region of a face of a patient. In use the foam cushion is supported by the substructure. A connecting surface of the substructure is defined. A patient side of the foam cushion is defined. A non-patient side of the cushion is defined. In use the non-patient side of the cushion is arranged adjacent the connecting surface of the substructure. In one form the foam cushion is glued to the substructure. In another form the foam cushion is insert moulded with the substructure. A first region of the face is defined as a corner of the mouth of the patient. A second region of the face is defined as a chin region, or alternatively a lip region of the face of the patient. An interior region of the cushion is defined as the region or cavity into which a nose of a patient is inserted in use.
In one form, a part of the connecting surface in use adjacent the first region is structured in to direct a corresponding portion of the foam cushion in an inward direction towards the interior region of the cushion in the first region in use. The cross-section of the cushion defines a radial axis and a longitudinal axis is normal to said radial axis. Preferably, at least a portion of the foam cushion is adapted to rotate towards the centre of the mask about said longitudinal axis when pressure is applied into the cushion by the patient's face and wherein at least a portion of the outer side wall of said cushion is adapted to form a seal against the face of a patient.
Wherein portions of the cushion rotate or roll inwards towards the centre of the mask. The feature of rolling or rotating inwards may prevent or limits the possibility of the seal “blowing out” when air pressure is applied to the mask cavity. “Blowing out” is defined by the seal between the cushion and the patient's face breaking due to pressure exerted by air pressure lifting the cushion from a sealing relationship with the face.
In one form, a part of the connecting surface in use adjacent the second region is structured to direct the foam in an outward direction away from the interior region of the cushion in the second region in use. The cross-section of the cushion defines a radial axis and a longitudinal axis is normal to said radial axis. Preferably, at least a portion of the foam cushion is adapted to rotate away from the centre of the mask about said longitudinal axis when pressure is applied into the cushion by the patient's face and wherein at least a portion of the outer side wall of said cushion is adapted to form a seal against the face of a patient.
Preferably, further portions of the cushion may rotate inwards or outwards relative to the centre of the mask in positions defined as being proximal to the patient's chin. In regions or portions of the cushion that can rotate or roll inwards and outwards, this rotation may allow for seal to accommodate different sizes of chin and/or accommodate moderate amounts of mouth or jaw movement that may otherwise destruct the seal formed between the mask and the patient's face.
Another aspect of the present technology is a foam cushion for a respiratory mask wherein the cushion includes a face-contacting portion arranged in use to be adjacent the face of the patient.
Preferably in at least some regions of the face contacting portion, a cross section of the cushion tapers from a wider cross-section to a narrower cross-section closer to the face. The tapered portion defines an inside surface adjacent an interior of the cushion and an outside surface. The inside surface and the outside surface may be adjacent, in another form they may be non-adjacent. The inside and outside surfaces may be arranged at an acute angle with respect to one another. In one form in cross-section the outside surface is longer than the inside surface in certain regions of the cushion, preferably in the nasal bridge region, or in the cheek region, or more preferably in both. In one form the inside and outside surfaces have the same length in a chin region. In one form in a lip region the inside surface is longer than the outside surface in cross-section.
In one form, the cushion is structured to at least partially form a seal on an outside surface of a face in a chin region of the cushion. We have found that a tapered sealing portion may improve the seal.
Other aspects are directed to methods for manufacturing the foam cushioning elements described above.
Other aspects, features, and advantages of this invention will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of this invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings facilitate an understanding of the various embodiments of this invention. In such drawings:
FIG. 1 shows a side view of a mask assembly including a foam interfacing structure according to an embodiment of the invention;
FIG. 2 shows a schematic diagram of a channel of a portion of a mask frame and a clip portion of an interfacing structure retained by an interference fit according to an embodiment of the invention;
FIGS. 3a, 3b, and 3c show a range of rib engagement fitting arrangements between a mask frame and a clip portion of an interfacing structure according to embodiments of the invention;
FIG. 4a shows a patient contacting side of an interfacing structure according to an embodiment of the invention;
FIG. 4b shows a bottom view of the interfacing structure of FIG. 4 a;
FIG. 4c shows a top view of the interfacing structure of FIG. 4 a;
FIG. 4d shows a side view of the interfacing structure of FIG. 4 a;
FIG. 4e shows a frame contacting side of the interfacing structure of FIG. 4 a;
FIG. 4f shows a patient contacting side isometric view of the interfacing structure of FIG. 4 a;
FIG. 4g shows a frame contacting side isometric view of the interfacing structure of FIG. 4 a;
FIG. 5a is a plan view showing a die cut interfacing structure wherein the clip portion includes a slot for engagement with the frame according to an embodiment of the invention;
FIG. 5b is an isometric view of the interfacing structure shown in FIG. 5 a;
FIG. 5c is an assembly view of the interfacing structure shown in FIG. 5a with a mask frame;
FIG. 6a shows a cross-section from a prior art nasal mask with foam cushion;
FIG. 6b shows a detail in the nasal bridge region of the mask of FIG. 6 a;
FIG. 7a shows an elevation view detail from the frame side of the interfacing structure shown in FIG. 4 e;
FIG. 7b is a cross-section along line 7 b-7 b of FIG. 7 a;
FIG. 7c is a cross-sectional view showing the interfacing structure of FIGS. 7a and 7b in use;
FIG. 8 is a cross-sectional view showing the assembly of the interfacing structure of FIGS. 7a and 7b and a frame according to an embodiment of the invention;
FIGS. 9a to 9d show various views of a foam-based interfacing structure according to an embodiment of the present invention;
FIGS. 10a to 10c show various views of a foam-based interfacing structure according to another embodiment of the present invention;
FIGS. 11a to 11c show various views of a foam-based interfacing structure according to another embodiment of the present invention;
FIGS. 12a to 12f show various views of a foam-based interfacing structure according to another embodiment of the present invention;
FIG. 13 is a perspective view of a clip portion according to an embodiment of the present invention;
FIGS. 14a to 14f show various views of a foam-based interfacing structure according to an embodiment of the present invention;
FIGS. 15a to 15e show various views of a cushion-to-frame component of the interfacing structure shown in FIGS. 14a to 14 f;
FIGS. 16a to 16i show various views of the cushioning component of the interfacing structure shown in FIGS. 14a to 14 f;
FIGS. 17a to 17h illustrate a tool and manufacturing process for manufacturing an interfacing structure according to an embodiment of the present invention;
FIGS. 18a to 18c show various views of a tool for molding a clip portion according to an embodiment of the present invention;
FIG. 19 is a front view of a further embodiment of a full face cushioning component;
FIGS. 20-25 depict various cross-sectional views of the embodiment shown in FIG. 19;
FIG. 26 is a front view of a further embodiment showing an interfacing structure for use with a full face mask including a cushioning component and clip portion;
FIGS. 27-32 depict various cross-sectional views of the embodiment shown in FIG. 26.
FIG. 29 defines a horizontal plane of connection between the cushion and the clip portion.
In FIGS. 30 to 32, the plane of connection is at an angle with respect to the horizontal. In FIG. 30, the plane of connection is at a downward angle when moving from the outside to the inside of the interfacing portion. In FIG. 32, the plane of connection is at an upward angle when moving from the outside to the inside of the interfacing portion.
FIG. 33 is a perspective view of full face interfacing structure including a cushioning component and clip portion;
FIG. 34 is a side view of the embodiment shown in FIG. 33;
FIG. 35 is a top view of the embodiment shown in FIG. 33;
FIG. 36 is a bottom view of the embodiment shown in FIG. 33;
FIG. 37 is a back view of the embodiment shown in FIG. 33;
FIG. 38 is a front view of the embodiment shown in FIG. 33;
FIG. 39 is a front view of a further embodiment of a interfacing structure for use with a nasal mask;
FIG. 40 is a top view of the embodiment shown in FIG. 39;
FIG. 41 is a bottom view of the embodiment shown in FIG. 39;
FIG. 42 is a side view of the embodiment shown in FIG. 39;
FIG. 43 is a back view of the embodiment shown in FIG. 39;
FIG. 44 is a front view of a further embodiment of an interfacing structure for use with a nasal mask;
FIGS. 45-47 depict various cross-sectional views of the embodiment shown in FIG. 44;
FIG. 48 is a chart showing exemplary material properties for a cushion component according to an embodiment of the invention;
FIG. 49 is a chart showing exemplary material properties for a clip portion according to an embodiment of the invention;
FIGS. 50-1 to 57-2 illustrate alternative mechanisms for attaching a clip portion to a frame according to embodiments of the invention;
FIGS. 58 and 59 illustrate the rolling effect of a cushioning component according to an embodiment of the invention;
FIGS. 60-1 to 60-8 illustrate different parameters and apparatus for testing air permeability according to an embodiment of the invention;
FIG. 61 illustrates apparatus for testing hardness according to an embodiment of the invention;
FIGS. 62-1 to 62-2 illustrate different parameters and apparatus for testing tensile strength according to an embodiment of the invention;
FIGS. 63-1 to 63-4 illustrate different parameters and apparatus for testing tear resistance according to an embodiment of the invention; and
FIG. 64 illustrates apparatus for testing total mask flow according to an embodiment of the invention.
DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS
The following description is provided in relation to several embodiments which may share common characteristics and features. It is to be understood that one or more features of any one embodiment may be combinable with one or more features of the other embodiments. In addition, any single feature or combination of features in any of the embodiments may constitute additional embodiments.
In this specification, the word “comprising” is to be understood in its “open” sense, that is, in the sense of “including”, and thus not limited to its “closed” sense, that is the sense of “consisting only of”. A corresponding meaning is to be attributed to the corresponding words “comprise”, “comprised” and “comprises” where they appear.
The term “air” will be taken to include breathable gases, for example air with supplemental oxygen.
The term “seal” will be taken to mean to reduce the flow of air between the pressurized interior of the mask and the ambient conditions to a level sufficient to maintain a therapeutic pressure in the airways to effect treatment. Hence in some cases, there may be an air tight seal, in other cases there may be a small leak.
1. Introduction
A mask assembly used to facilitate the delivery of a supply of air or breathable gas to the entrance of the airways of a patient typically includes a generally soft, conforming interfacing structure, at least a portion of which is in contact with the patient's face and a stabilizing structure that positions and retains the interfacing structure in a suitable position with respect to the patient. The mask assembly typically includes some form of anchor point to which various components may be connected, or about which they may be arranged. In this specification, this anchor point will be referred to as the frame.
By way of example, the stabilizing structure of the mask assembly may be called “headgear” and both the headgear and interfacing structure may be connected to a frame. In some forms of mask, the boundary lines between the different components may be blurred. For example, aspects of frame and headgear may be combined.
The interfacing structure may perform two or more functions: (i) a cushioning function, performed by a cushioning component, and (ii) an interconnection function, performed by a cushion-to-frame component or clip portion. Generally, in this specification the term “clip” or “clip portion” may describe the aforementioned clip portion or a cushion to frame component for securing the cushioning component to a frame of a mask.
Forming the interfacing structure from two separate elements enables each to have different properties, such as different densities or air permeabilities as suits their different roles, as will be described in more detail in the following sections. Furthermore, the different properties of different materials can act to influence the other component. For example, a more rigid clip or cushion-to-frame portion can act as a support structure for a softer cushioning component.
However, in another embodiment, the interfacing structure may be constructed from a single component with different properties in different regions of the interfacing structure. Furthermore, the interfacing structure may be formed from more than two components.
The interfacing structure may be constructed and arranged to apply air or breathable gas to both the nose and mouth (a “nose & mouth” or “full-face” mask), or to the just the nose (a “nose” or “nasal” mask), or just the mouth (a “mouth” mask).
The statement “more rigid” may be understood to mean less flexible and/or stiffer.
2. Cushion Component
2.1 Material
In one form, the cushioning component may be made from an unskinned, low density, permeable foam. In a preferred embodiment, the cushion component is constructed from a low resilience viscoelastic polyurethane foam. The cushioning component material may be manufactured from a free rising slabstock foam process. In other embodiments the material may be manufactured by other processes such as molding or other known processes used to produce soft and cellular materials. One or more fabrication steps (known as conversion techniques) may then be applied to the material to partially or completely form the geometry of the cushion component. These conversion techniques are described herein and in other related specifications referenced herein. Such a foam material and conversion techniques are disclosed in PCT Publication Nos. WO 2008/011682, published Jan. 31, 2008, and WO 2008/070929, published Jun. 19, 2008, each of which is incorporated herein by reference in its entirety. In one form, the cushioning component may be formed in whole or in part by a known method such as die cutting. Die cutting is disclosed in PCT Application PCT/AU2009/000262, filed Mar. 4, 2009. In another form the cushioning component may be formed in whole or in part by using other methods such as those disclosed in AU 2008904769 and AU 2008904778.
Most foam material production techniques produce a material that has a substantially skinned material such that the density of the material at the surface is greater than the density of the material's bulk (internal) properties. The utilization of particular manufacturing techniques, such as foam conversion processes involving cutting, may allow the production of a unskinned cushioning component such that the bulk properties of the cellular material are exposed at the surface of the cushioning component, providing a number of advantages to the design, manufacture and performance of the mask assembly.
The unskinned cushion component provides improved sealing, comfort and fit range performance, sealing properties sufficient to not require a silicone membrane, and a unskinned mask assembly that allows utilization of the bulk properties of the unskinned material, e.g., porosity for breathability, fine cell structure for a comfortable feel.
2.2 Shape
The interfacing structure is preferably constructed and arranged to have a three dimensional shape defined in part by a locus of points surrounding and complementary to the entrance to the relevant airways. Furthermore, the interfacing structure has a cross-section chosen at different points around its perimeter to provide efficacy and comfort by being suitably shaped to adapt and conform to the face of the user forming a compression-type seal. In another configuration, a flap-type seal is formed.
The shape of the interfacing structure may be adapted to allow the cushioning component to provide a better fit and seal against the face of the patient.
In an embodiment, the geometry of the cushion may be at least partly determined by the geometry of the frame to which it is to be attached. For example, the general shape of a small size cushion may be different than the general shape of a large size cushion because the small and large size frames may be different, e.g., the small may be more stout or wide while the large may be more elongated and thinner.
2.2.1 Full Face Mask
FIGS. 16g to 16i show various cross-sections through one embodiment of the cushioning component 932 (origin of cross section shown in FIG. 16f ). FIG. 19 shows an alternative embodiment of the present invention with corresponding cross sections in FIGS. 20-25.
FIGS. 33-38 depict a further preferred embodiment of a interfacing structure wherein the interfacing structure includes a co-molded or otherwise attached cushioning component and a clip portion
Preferably, the full face masks depicted in this specification may have cushioning components about 105-110 mm in width (as measured from the outer most edges of the base surfaces); and a length of between 120-150 mm.
Nasal Bridge Region
As shown in FIG. 16g , the cross section at the nasal bridge region NB is generally triangular. The cross section at the nasal bridge region NB may also be another other reasonable shape, such as generally rectangular, oval, octagonal etc. In addition, it is possible for the cross section at the nasal bridge region to include a shape with generally rounded or curved corners. The cross section at the nasal bridge region may also be an irregular shape. FIG. 20 shows an alternative cross section for the nasal bridge region.
There is a radius r1 at the apex 2010 of the cross section, that may be relatively small or sharp radius at the nasal bridge region NB. For example, radius r1 may be between 1 to 4 mm. This relatively small or sharp radius at radius r1 provides the advantage that the cushioning component is kept away from the patient's eyes, especially when the cushioning component is compressed and inflated with air pressure in use. The relatively small or sharp radius at radius r1 may also enable minimal contact of the mask with the patient's skin, so as to make the mask feel more comfortable and less obtrusive.
As best shown in FIG. 20, apex 2010 of the generally triangular cross section may be skewed or offset. The apexes or the corners of the generally triangular cross sectional may be rounded to promote a better fit with the patient and/or a better seal. This offset is shown on FIG. 20, where apex 2010 and center line 2015 are spaced by distance 2020. Distance 2020 may be preferably around 1-2 mm at the position proximal to the patient's nose. The comparable offset in the cushioning component about the portion adapted to cover the bottom lip of the patient is preferably 8 mm. The comparable offset in the cushioning component about the portion adapted to cover the cheeks of the patient is preferably 1.25 mm. FIG. 20 demonstrates an offset towards the inner edge of the cushioning component. Alternatively the apex may be skewed, or over the outer edge of the cushioning component.
Additionally, the generally triangular cross section of the cushioning portion may also additionally be defined has having three sides: an inner side which faces into the centre of the mask; an outer side facing away from the centre of the mask and a base surface, which may be adapted to be joined to a clip portion, at least in part.
The outer side of surface of the cushioning portion is generally adapted to be longer than the inner surface. This may allow the cushioning component to, in effect, roll, bend or move inwards. The rolling motion leads to an extension of the sealing surface formed between the skin of the patient and the cushioning component. As the cushioning component is depressed, the contact region against the patient's skin is lengthened from the minimum contact point which is the apex to at least partially extending along the outer surface or side of the cushioning component.
For example, the apex of the triangle that contacts the user's face (FIG. 58) enables the cushion component 932 to deflect or roll such that if the apex is towards the inner part of the cushion component, the cushion component will roll inwards and over the clip portion 934 about hinge point 939. Air pressure AP from the CPAP device (FIG. 59) acts on the back of the rolled section of the cushion component 932 such that the air pressure forces the cushion component into sealing engagement on the patient's face.
The rolling effect or the turning moment force, when the mask is pressed onto the face, can be also increased or assisted the positioning or shape of the clip portion attached to the cushioning portion. Preferably, the clip portion 3234 may be joined to the base surface of the cross section of the cushioning component. More preferably, the clip is mounted proximal to the outer side of the cushioning component, and provides little or no support relative to the inner side of the cushioning component. Preferably, the clip portion may not generally support the inner side of the cushioning component.
Preferably, the clip portion includes a stepped configuration when viewed in accordance with its cross section. In FIGS. 27-32, a preferred clip portion is joined to a cushioning portion. The stepped configuration is adapted to mate with a corresponding groove, slot or recess in the frame to provide a seal. In this embodiment, the step formation is oriented towards the outer side of the cushioning component for ease of use by the patient.
Preferably, the clip portion is joined to the cushioning component by an upper side. The upper side of the clip portion may be shaped to assist with: sealing of the cushioning component; comfort; and/or the aforementioned rolling effect of the cushioning component. In FIGS. 30-31, the upper side of the clip portion has been angled towards the centre of the mask by lengthening the outer side of the clip portion relative to the shorter inner side of the clip portion. This angling of the upper surface of the clip portion is adapted to aid or assist in the rolling in effect of the cushioning component. Additionally, in the embodiments shown in FIGS. 26-32, the angled upper side of the clip portion has been included on the lower corners of the mask. For example, as shown in FIGS. 30 and 31, the upper surface of the clip portion is angled to enhance rolling and sealing in lower cheek and lip regions (e.g., a1 and a2 between about 0-20°). As shown in FIG. 32, the angle of the upper surface in the chin region (e.g., a3 between about 0-20°) is oriented opposite that in the lower cheek and lip regions (e.g., the bottom lip region) (FIGS. 30 and 31), e.g., for manufacturability.
Preferably, the upper corner which is adapted to engage the nasal bridge of the patient, the upper surface of the clip portion is flat and not angled towards to the centre of the mask. This is generally because the region around the nose doesn't require as much “roll” as the sealing area against the sides of the nose is relatively long compared the regions around or about the cheeks of the patient. This feature is demonstrated in FIGS. 27 and 28.
Preferably, the nasal bridge region also includes a modification to the base surface, wherein the base surface has been reduced or shortened to thereby reduce the volume of foam material rolled inwards at the nasal bridge.
FIG. 32 depicts the interfacing structure wherein the upper surface of the clip surface has been angled outwards relative to the centre of the mask. This reduces the effect of “roll in” in the predetermined regions including this outwardly disposed angle of the upper surface. Generally, the outwardly disposed angle of the upper surface is suitable for regions requiring reduced “roll in” such as around the bottom lip or around the upper lip (in the nasal mask configurations). Another way to regulate “roll in” is by changing the amount of overhang of the cushioning component with respect to the clip portion.
As shown in FIG. 16f , the inner apex 2050 of the cushion has the radius of curvature of between 3 to 10 mm (most preferably 3-5 mm). This is similarly shown in FIG. 19, where the inner apex 2050 of the cushion has the radius of curvature. The size of this radius may affect the durability, and more specifically the tear strength of this region.
As shown on FIGS. 16g and 20, inner edge 2090 may have an angle 2100 from the base of the cushioning component. Angle 2100 may influence the amount of the cushioning component that may contact the patient. For example, angle 2100 shown in FIG. 16f may be larger than angle 2100 shown in FIG. 20, such that more of the cushioning component in FIG. 16f may contact the patient's face than that of FIG. 20. Preferably, angle 2100 may be about 90-95 degrees. The angle of the outer side or edge meeting the base surface is preferably between 78-83. Preferably, the angle by which the outer side meets with the base surface is generally less than the angle formed between the inner side and the base surface.
The most preferred maximum width of the nose bridge region (as measured along the base surface) is 22 mm and most preferred maximum height of the cushioning component at the nose bridge position is approximately 24 mm.
Bottom Lip Region
As shown in FIG. 16g , the cross section at the bottom lip region BL may preferably be generally trapezoidal. The cross section at the bottom lip region BL may also be another other reasonable shape, such as generally rectangular, oval, octagonal etc. In addition, it is possible for the cross section at the bottom lip region to include a shape with generally rounded or curved corners. The cross section at the bottom lip region may also be an irregular shape. FIG. 25 demonstrates this feature in a cross section for the bottom lip region.
Preferably, in the embodiment depicted in FIG. 25, the apex 950 is skewed towards the centre of the mask, the outer side or surface of the cushioning component at the region that is adapted to contact the bottom lip region of the patient. The outer side has been divided into an upper and a lower portion, wherein the upper portion is at a reduced angle in respect to the lower portion. The apex 950 is adapted to rest or engage the cleft formed between the bottom lip of the patient and lower extremity of the chin. The upper portion is adapted to engage the patient's face at a position lower and extending away from the cleft. Thereby providing an increased sealing surface between: the patient's face at the location between the bottom lip and the lower extremity of the chin; and the outer side of the cushioning component.
As best shown in FIGS. 16g and 25, the patient contacting surface 940 is generally flat or has a larger radius r2 when compared to the nasal bridge region radius r1. This arrangement aids in comfort and increases the length of the sealing surface such that a better seal may be maintained.
In FIG. 25, the radius r2 at the apex of the cushion is preferably about 5 mm.
Alternatively, patient contacting surface 940 may have apex 950 that may first contacts the patients face and anchors the cushion in the dimple of the chin or curvature between the lower lip and chin region. Apex 950 may have a relatively small radius r2 when compared to that radius r2 shown in FIG. 16g . Radius r2 may be about 5 mm. Patient contacting surface 940 may also have a kink or inflexion 960 that may generally match the approximate curvature of the chin so as to rest the cushion on the chin to sealingly engage the cushion with the patient. This kink 960 also allows apex 950 to flex inwards towards the centre of the cushion, and outwards away from the centre of the cushion, so as to accommodate movement of the patient's chin or jaw. For example, it is possible for patients to drop their jaw during sleep, so in order to maintain a seal with the patient, the mask must be able to move with the patient's jaw. This arrangement further enables a greater fit range of patients, i.e. kink 960 may flex either inwards or outwards on a patient's jaw depending on the length and depth of their chin, other facial features etc.
Additionally, as shown in FIGS. 16g and 25, the internal wall 942 of the cushioning component is arranged substantially vertical or normal to the face of the patient in use as demonstrated by angle 2150. This arrangement reduces the likelihood of the foam cushioning component touching the patient's bottom lip when compressed in use, a problem that may occur for larger faces within each size range.
The preferred maximum width of the cushioning component as measured in respect of the base surface is generally about 35 mm in relation to the bottom lip region. The preferred maximum height of the cushioning component is generally about 26 mm in relation to the bottom lip region.
In FIG. 25, the angle formed between the outer side and base surface is approximately between 80-90 degrees; and the angle formed between the inner side and the base surface is approximately between 90 to 100 degrees. Preferably, the angle by which the outer side meets with the base surface is generally less than the angle formed between the inner side and the base surface.
Side of Nose Region
As shown in FIG. 16h , the cross section at the side nose SN is generally triangular. The cross section at the side nose region SN may also be another other reasonable shape, such as generally rectangular, oval, octagonal etc. In addition, it is possible for the cross section at the side nose region to include a shape with generally rounded or curved corners. The cross section at the side nose region may also be an irregular shape. FIGS. 21 and 22 show an alternative cross section for the side of nose region.
FIG. 16h shows a cross-section of the cushioning component in a side of nose region SN. Similar to the nasal bridge region NB as shown in FIG. 16g , the cross section is generally triangular. However the triangular cross section is skewed or biased towards the inner edge of the cushioning component. This arrangement aids with sealing because inner wall 944 abuts the side of the patient's nose in use, thereby increasing the sealing surface. This is similarly demonstrated in FIGS. 21 and 22.
Preferably, the outer side is longer than the inner side. Also preferably, the angle formed between the outer side and the base surface is generally less than the angle formed between the inner side and the base surface.
The most preferred maximum width of the side of nose region (as measured along the base surface) is 22 mm and most preferred maximum height of the cushioning component at the side of nose position is approximately 24 mm.
Cheek Region
As shown in FIG. 16i , the cross section at the cheeks C is generally trapezoidal or triangular. The cross section at the cheeks region C may also be another other reasonable shape, such as generally rectangular, oval, octagonal etc. In addition, it is possible for the cross section at the cheeks region to include a shape with generally rounded or curved corners. The cross section at the cheeks region may also be an irregular shape. FIGS. 23 and 24 show an alternative cross section for the cheek region.
FIG. 16i shows a cross-section of the cushioning component in a cheek region C. As illustrated, the contacting surface or apex 946 where the cushioning component contacts the patient's cheek is similar to that at the bottom lip region BL as shown in FIG. 16g . The cross section is generally triangular, and may have a smaller top surface 946 when compared to the top surface 940 of the bottom lip region BL. This arrangement aids sealing around the patient's cheeks in use and increases the comfort of the interfacing portion, while reducing the bulk of the interfacing portion at the cheek region C.
A similar arrangement is shown in FIGS. 23 and 24. However, as shown in FIG. 24, inflexion 950 changes the curvature of the side wall of the cushion so that it may hinge or bend inwards. This may increase the ability for the cushion to seal on the patient's face when in use.
Preferably, the outer side of cushioning component is longer than the inner side. Also preferably, the angle formed between the outer side and the base surface is generally less than the angle formed between the inner side and the base surface.
The most preferred maximum width of the cheek region (as measured along the base surface) is 23 mm and most preferred maximum height of the cushioning component at the cheek region is approximately 24 mm.
Additionally, when the clip portion is joined or mounted to the cushioning component, the apex of the cushion is additionally offset towards the centre or middle of the mask. In the described embodiments, the apex may be offset to the extent that it overhangs the point formed between the inner side and the base surface.
2.2.2 Nasal Mask
FIGS. 39 to 47 show an alternative embodiment of the present invention. Cushion component 4000 may be used as a nasal mask that only covers the nose of the patient in use, and is positioned on the nose bridge, side of nose, cheeks and or upper lip region and may not cover the patient's mouth.
Preferably, the cushioning component of the nasal mask shown in respect of these embodiments is preferably: 70-75 mm in length (when measured from the outer most edges of the base surface of the cushioning component); and the width of the cushioning component is approximately 75-80 mm.
Nasal Bridge Region, Side of Nose Region and Cheek Region
The nasal bridge region 4200, side of nose region 4300 and cheek region 4400 may be generally similar to that described above for a full face cushion.
The preferred height of the cushioning component at the region designated to correspond to the nasal bridge of the patient is approximately 22 mm. The height of the cushioning component at the position designated to meet the side of the nose is approximately 25-27 mm. The height of the cushioning component at the position designated to meet the patient's cheek regions is approximately 27 mm.
The preferred width of the cushioning component in the side of nose regions is typically about 20 mm. Whereas the preferred width of the cushioning component in the cheek regions is typically about 18 mm.
Upper Lip Region
As shown in FIGS. 39 and 41, cushion component 4000 may have an upper lip region 4100 that has a dip or region of reduced height (when viewed from a side view as shown in FIG. 41) relative to the height of other regions 4200. This feature may accommodate various upper lip regions of patients whilst avoiding accidental occlusion of the nares. The overall reduction in the amount of foam material may reduce the risks for patients.
The preferred width of the cushioning component in the upper lip region is typically about 16 mm. The width of the cushioning component in the upper lip region may be 10-20 mm. The width of the cushioning component in the upper lip region may be 15-20 mm. The width of the cushioning component in the upper lip region may be 12-20 mm. The width of the cushioning component in the upper lip region may be 10-15 mm. The width of the cushioning component in the upper lip region may be 10-18 mm. The width of the cushioning component in the upper lip region may be 10-14 mm.
The preferred height of the cushioning component at the region designated to correspond to the upper lip of the patient is approximately 18 mm. The height of the cushioning component in the upper lip region may be 10-20 mm. The height of the cushioning component in the upper lip region may be 10-25 mm. The height of the cushioning component in the upper lip region may be 15-20 mm. The height of the cushioning component in the upper lip region may be 16-23 mm.
Fit Range
Because of the wide range of sizes and shapes of different people's faces, it is a continual challenge for mask designers to determine the least number of mask shapes required to fit the broadest range of patients. In one ideal form, a single mask shape would fit all patients.
A mask assembly in accordance with the invention provides an improved fit range. This maybe preferably achieved by combining a more comfortable and compliant material with a more anatomically neutral geometry that seals against a wider range of facial anatomy for a given shape.
The versatility of a chosen cushion shape, and hence its fit range performance, is also enhanced by the ‘hovercraft’ behavior exhibited by the cushion. In this context the “hovercraft’ behavior is generally defined by the air pressure in the cavity of the mask when the air pressure in cavity of the mask is greater than the outside environmental air pressure and thereby allows the mask to float on the face of the wearer. The pressure seal is preferably formed by the cushioning component. This feature may enhance the ease and speed of fitting the mask.
When pressurized with air the cushion material has extra extensibility compared to other known cushion materials. The soft flexible cells in the foam material effectively stretch when inflated allowing the material the freedom to enlarge. This allows the cushion material to have an extra dimension of conformability over other cushion materials known in the art e.g. silicone, by being able to expand and morph to facial anatomy when inflated with air pressure. This is, in part, also achieved by combining an expandable open-cellular structure in direct communication with the air that is providing the positive airway pressurization. It is the flow of air through the sealing material that forms a fine layer of pressurized air between the facial skin, and the flexible nature of the cushion material that enables this hovercraft effect, hence making it easier to fit to the face. The foam being less sticky than silicone also has a significant advantage in achieving an easy, fast and comfortable fit.
2.3 Method of Manufacturing
The following manufacturing techniques may be used to create a range of shapes and cross-sections as may be required for different facial shapes. Since the cushioning component is preferably made from unskinned foam, one or more cutting processes may be used to create the part, such cutting processes including die cutting, and/or machining, etc. Alternatively the cushioning component may be molded with measures taken in the process to minimize the skin on the foam component, or the skin being subsequently removed from the molded component in a post process e.g. machined. Preferably, the foam material used in the herein described embodiments may be an open and closed cell foam. The foam material used may be an open cell foam. The foam material used may be a closed cell foam.
2.3.1 Die Cutting
In the illustrated embodiment shown in FIGS. 4a-4g , both an inside surface and an outside surface of the foam cushion component 232 are die cut. This typically results in generally straight cut edges. The cushion in these embodiments may have a generally rectangular cross section, where the top surface is generally substantially parallel to the patient's face in use, and the inner and outer side surfaces are generally perpendicular to the patient's face in use. It may be possible to die cut the foam using additional processing steps to create a non-rectangular cross section, e.g. the use of shims. The die cutting of a cushion component then from a flat sheet of foam results in a flat backed cushion component which may subsequently take the shape of a clip that it is assembled to e.g. glued. The foam cushion is therefore deformed into its final intended shape.
To create a curved backed cushion, that for example matches the shape of a curved clip without stretching or deformation, the cushion component may be die cut from a foam sheet that is cut into a curved shape rather than a flat sheet. The curved sheets may be formed from a known process referred to as contour cutting, where a foam block is cut into curved sheets by being fed into an oscillating blade that changes position and orientation during the cutting process.
In addition to die cutting or in the alternative, the cushioning component, e.g., as shown in FIGS. 9a to 12f , may be cut into a three-dimensional shape or geometry using the techniques described in AU 2008904769 and AU 2008904778.
FIGS. 9a to 9d illustrate a foam-based interfacing structure 430 including a foam cushion component 432 and a clip portion 434. Outer wall 400 may include contours and curvature incorporated into the design. The inner, patient contacting wall (or orifice) 402 may be die cut as known in the art. Again, this typically results in straight cut edges (e.g., see FIGS. 9b and 9d ).
FIGS. 10a to 10c illustrate a foam-based interfacing structure 330 including a foam cushion component 332 and a clip portion 334, wherein the cushion component 332 includes localized regions with curvature or ridges, e.g., ridges 350 along cheek regions of the cushion component, a curvature 352 along the nasal bridge region of the cushion component, etc. In addition, the cushion component 332 is contoured along the chin region of the cushion component. The straight die cut inner and outer edges remain perpendicular to the patient's face in use similar to the previous embodiment.
FIGS. 11a to 11c illustrate a foam-based interfacing structure 530 where a localized region 552 in the cushion component 532 at the nasal bridge has been raised, e.g., formed with a curved surface.
FIGS. 12a to 12f illustrate another embodiment in which a foam-based interfacing structure 630 including a foam cushion component 632 and a clip portion 634, wherein the foam cushion component 632 includes a slab of foam that is cut using methods known in the art. This process may be repeated in order to cut the outer wall 600 of the cushion component and then the inner, patient contacting wall (or orifice) 602 of the cushion component.
3. Clip Component
3.1 Material
The cushion-to-frame component may be made from a material that has greater structural integrity than the cushioning component. In a preferred embodiment the clip is made from polyurethane foam that has higher hardness, higher density, and lower permeability than the foam used for the cushioning component. The clip/cushion-to-frame component may be formed in a mould giving rise to a harder, denser, lower permeability foam having a skin. In an alternatively preferred embodiment, the clip may be constructed of a non-foamed polymer, for example (but not limited to), nylon, polycarbonate, polypropylene.
Preferably, the clip portion or clip component may be of reduced hardness or increased flexibility in comparison to the frame portion of the mask to which it is to connected or secured with.
3.2 Shape
The clip 934 is shown generally in FIG. 13, and in more detail in FIGS. 15a-15e . The clip 934 is generally shaped in order to align with the frame. However, the general curvature of the clip 934 can be altered to suit the frame to which it is to be fitted. The general curvature of the clip may also be used to shape the cushion component. Since the cushion component is made from compliant foam, it will readily adapt to the shape of the clip when joined together. An example of where this may be an advantage is when the cushion component is made to have a flat back (from a flat foam sheet as described previously) and is given its final shape by assembly (e.g. glued) to a clip that gives the cushion its intended shape (e.g. curved).
The clip may also be made flat. The cushion can therefore also be made with a flat back to match the clip. The overall intended shape of the interfacing structure (combination of clip and cushion) can therefore be alternatively achieved by the flat clip and cushion being deformed and retained into a curved frame. This embodiment allows clip to be manufactured flat which can have several advantages including ease of handling and alignment during manufacture, packaging and transportation. The clip can therefore be formed by alternative methods e.g. die cutting from flat sheet material.
The clip may also be made curved. This may be achieved by several means including molding directly into a curved shape, die cutting from curved (contour cut) sheet, or heat forming a flat clip die cut from a thermoformable material. Having the clip curved allows ease of alignment and assembly to a curved frame, as well as giving the cushion a curved shape if the cushion is made from a process that results in it having a flat back.
In a preferred embodiment the clip is made from molded polyurethane. The cushion contacting surface 935 is generally smooth so that it can continuously join and seal to the underside of the cushion. Cushion contacting surface 935 has a lip 935 a to enable alignment of the clip to the frame.
Frame contacting surface 937 has three alignment tabs 938 protruding from its surface that engage with the frame. There may be any number of alignment tabs 938 to aid the patient in aligning the interface structure with the anchoring structure. It should also be appreciated that the clip need not have alignment tabs 938 to engage the clip with the frame.
The clip may also be made to incorporate features that engage the frame to aid retention of the interfacing structure to the frame. Examples include, but are not limited to, surface roughening, ribs, notches, snaps etc.
3.3 Method of Manufacturing
The clip component may be separately formed as will be now described, or insert molded as will be described later in this specification.
By way of example, FIGS. 18a to 18c illustrate a tool to mold a clip portion by itself, where the clip portion may subsequently be attached to the cushion component, e.g., by an adhesive or simply adhesion between the clip and cushion component. As illustrated, the tool includes a top half 1560 and a bottom half 1565 which are adapted to be joined together to form the clip portion. As shown in FIG. 18b , the tool provides a curved parting line PL between the top and bottom halves 1560, 1565.
The bottom half 1565 includes a cavity 1567 adapted to receive the material (e.g., foaming mixture) that will form the clip portion. Also, the center section 1568 of the bottom half 1565 accommodates a separate insert that acts as a manual ejection feature after molding. The top half 1560 provides a surface 1562 that will form the side of the clip portion for interfacing or joining with the cushion component.
The top and bottom halves 1560, 1565 of the tool are constructed and/or arranged to facilitate demolding of the clip portion from the tool so that the clip portion will not adhere to the tool. For example, the top and bottom halves 1560, 1565 may be constructed of a material from which the mold material (e.g., foaming mixture) may be removed (e.g., high density polypropylene, silicone). Alternatively, a demolding agent (e.g., wax) may be provided to the top and bottom halves to facilitate demolding.
An alternative demolding aid may be a release film that lines the tool and releases from the clip material easily after molding. In a preferred embodiment the release film may double, in whole or in part, as the packaging for the interfacing structure such that the product leaves the molding process already packaged. In another embodiment the clip includes a tab at one or a number of locations that facilitates gripping of the part for demolding during the manufacturing process. This tab feature may also double as an alignment feature for assembly and a gripping feature for disassembly for the user of the mask assembly.
In another embodiment the clip may include a tab feature that includes an end of life indicator for the interfacing structure.
4. Sub-Assembly
4.1 Relative Position
In accordance with an embodiment of the invention, a range of different arrangements of clip portions and cushion components may be provided. For example, the width of the clip portion may preferably match or be less than the maximum width of the cushion component, the width of the cross section of clip portion may be less than the width of the cross section of the cushion component. In these different configurations with different relative widths, the clip portion provides different forms of support to the cushion component.
Wherein the width of the cross section of the clip portion is less than the width of the cross section of cushion component, the clip portion and cushion component may be arranged such that (i) the outer perimeter of the clip portion and cushion component align (hides hardness of clip portion and provides desired freedom of movement in the cushion component), (ii) the inner perimeter of the clip portion and the cushion component align, or (iii) neither the inner or outer perimeter of the clip portion and the cushion component align.
Similarly, wherein the width of the clip portion is greater than the width of the cushion component, the clip portion and cushion component may be arranged such that (i) the outer perimeter of the clip portion and cushion component align, (ii) the inner perimeter of the clip portion and cushion component align, or (iii) neither the inner or outer perimeter of the clip portion and the cushion component align.
When the width of the clip portion is less than the width of the cushion component and the outer perimeter of the clip portion aligns with the cushion component, the cushion component may preferably be more able to flex in regions or directions not having a clip portion next to it than in regions having a clip portion adjacent to it or supporting it. For example, where the cushion component overhangs the clip portion, that overhanging region of the cushion component has more freedom to move. This arrangement can be more comfortable and more able to adapt to different geometries of a person, and provide the correct vectors to seal the cushion component against the face.
Preferably, the clip portion is to be joined to a cushioning component by a base surface of the cushioning component. It may also be preferably to arrange the clip portion to support the external extremity (relative to the circumference of the mask) of the base surface and to have no or little support inner extremity of the base surface.
When used as part of a respiratory mask, it may be preferable that the inner portion of the cushion component overhang the clip portion. In this arrangement in use, the face of the patient may engage with an unsupported inner edge of the softer cushion component causing it to bend and conform to the individual patient's shape. When the mask engages a patient's face, the cushioning component may roll inwards towards the centre of the mask when pressure is applied on the mask towards the patient's face.
FIG. 7a shows an elevation view detail from the frame side of the interfacing structure 230 shown in FIG. 4e in a nasal bridge region. As shown in cross-section in FIG. 7b , it is apparent that the width w2 of the clip portion 234 is less than the width w1 of the cushion component 232 and that the outer perimeter of the clip portion 234 and the cushion component 232 are aligned. An advantage of this arrangement is illustrated in FIG. 7c where in use the nose is able to push the inner perimeter of the cushion component 232 in the direction shown by the arrow, in a cantilever manner as well as compressing. FIG. 8 is a cross-section showing the clip portion 234 of the interfacing structure 230 received within the channel 22 of a mask frame 20.
This arrangement is in contrast to prior art cushions (such as the Lifecare™ mask shown in FIGS. 6a and 6b ) where the inner perimeter of the cushion C abuts the frame F, and hence it is not free to move inwardly and can only compress.
FIGS. 26-32 show an alternative embodiment of the present invention. FIG. 26 shows the cross sections later shown in FIGS. 27-32. Cushion component 3232 may be attached to clip component 3234. Cushion component 3232 may be similar to that shown in FIGS. 19-25. Clip component 3234 may have upper surface 3500 that attaches to cushion component 3232. Upper surface 3500 may be generally horizontal when in use or assembled, as shown in FIGS. 27, 28, and 29. In addition, this may position the tangent to apex 3600 of the cushion component 3232 generally parallel to upper surface 3500. Alternatively, upper surface 3500 may be generally curved or angled inwards towards the inner portion of the cushion so as to angle the cushion more towards the centre of the patient's face, as shown in FIGS. 30, 31, and 32. Therefore, tangent to apex 3600 may not be parallel to upper surface 3500. In an embodiment, the upper surface 3500 may be angled in one or more selected regions, e.g., lower cheek or chin regions to fit patients with more narrow, shallow faces (see FIGS. 30-32).
In an embodiment, as shown in FIGS. 27-32, the outer edge of the cushion component may slightly overhang (e.g., 1 mm overhang) the clip component, e.g., for manufacturability.
4.2 Glue
The two layers (i.e., the cushion component and the clip portion) may be adhered to one another using polyurethane hot melt glue or cyanoacrylate.
In alternate embodiments (not shown in Figures) the cushioning portion may be directly glued onto the frame.
4.3 Insert Molding
In a manufacturing process according to an embodiment of the present invention, insert molding may be used to assemble the cushioning component to the cushion-to-frame component. An advantage of this approach include lower cost when compared to other processes such as gluing.
FIGS. 17a to 17h illustrate a tool and manufacturing process for manufacturing an interfacing structure according to an embodiment of the present invention.
As best shown in FIG. 17a , the tool includes a first portion 1060 adapted to receive the cushioning component that may be cut from foam slabstock and a second portion 1065 adapted to receive the foaming mixture that will form the cushion-to-frame component.
The first portion 1060 of the tool may allow a vacuum to be applied to the cushioning component to retain it in position. For example, as shown in FIG. 17a , the walls of the cavity that receive the cushioning component include a plurality of orifices 1062, and a vacuum is applied to an opening 1063 in the side wall of the first portion 1060 so that the cushioning component may be drawn into the cavity. The first portion 1060 may be sized to provide an interference fit with the cushioning component.
The first and second portions 1060, 1065 of the tool are arranged so that there will be a region of contact between the cushioning component and the cushion-to-frame component such that they will adhere to one another.
At least a second portion of the tool is constructed and/or arranged to facilitate demolding of the cushion-to-frame component that would otherwise adhere to the tool. Preferably, this is achieved by using a tool constructed of a material from which the foam may be removed (e.g., high density polypropylene, silicone). Alternatively, steel or aluminum tools may be used, provided an appropriate de-molding agent can be used, such as wax (e.g., agent that does not present biocompatibility issues).
In the illustrated embodiment as best shown in FIG. 17a , the second portion 1065 includes three parts that are removably attached to one another, i.e., an inner portion 1066(1), and outer portion 1066(2), and a ring portion 1066(3).
An insert molding manufacturing process according to an embodiment of the invention will now be described in greater detail.
FIG. 17a illustrates the first and second portions 1060, 1065 of the tool separated from one another. In FIGS. 17b and 17c , the cushioning component 1032 is placed in the first portion 1060 of the tool. The cushioning component 1032 may be held in place in the first portion 1060 by a vacuum and may impart curvature on the cushioning component via the vacuum. This may be necessary if the cushion is made from a process that gives is a flat backed geometry. Placement of the cushioning component 1032 may be manual or automated. For example, the cushioning component 1032 may be sucked into the first portion 1060 using the vacuum.
In FIG. 17d , a mixture of polyurethane (e.g. foam or elastomer) is prepared to form the cushion-to-frame component 1034 and the high-intensity mix is poured into the second portion 1065 of the tool. Pouring of the mix for the cushion-to-frame component 1034 may be manual or automated. If the cushion-to-frame component 1034 is made from a foam the cavity of the second portion 1065 will only be partly filled (e.g., 25%) and during the foaming process it will expand to fill the space and come into contact with the cushioning component where it will adhere.
In FIG. 17e , the first and second portions 1060, 1065 of the tool are clamped together or closed to allow the cushion-to-frame component foaming reaction to proceed in the tool. That is, the foam for the cushion-to-frame component 1034 can rise up and chemically bond or adhere to the foam cushioning component 1032. The choice of clip material may enhance the bonding or adhesion process. In a preferred embodiment both the clip and the cushion are made from polyurethane material for ideal bond integrity between the two components. Additionally, should the cushion component have a regular, uniform, rough, irregular or non-uniform cell structure, the clip component may infuse into gaps in the cell structure of the cushion component, forming small mechanical bonds between the components.
When the cushion-to-frame component 1034 has cured, the vacuum first portion and second portion are separated as shown in FIG. 17f . In FIG. 17g , the ring portion 1066(3) at the bottom of the second portion 1065 is removed and the inner portion 1066(1) is ejected to demold the cushion-to-frame component 1034. FIG. 17h shows the resulting interfacing structure 1030 removed from the tool with the cushioning component 1032 adhered to the cushion-to-frame component 1034. In a preferred embodiment the cushion component is originally flat when vacuum inserted into the top half of the tool and is bonded to a curved clip during the insert molding process. The resultant interfacing structure then assumes an intended curved shape.
In an alternative embodiment the cushion and clip are made flat but the cushion is made with sufficient depth to not require curvature to suitably adapt to the face when worn; but rather suitably deforms to the shape of the face due to the softness and depth of the cushion foam.
In another alternative arrangement, a film may be added to the second portion of the tool prior to the addition of the foaming mixture. This film may be structured to facilitate removal of the otherwise adhering cushion-to-frame component. The film may be used to form packaging for the interfacing structure.
In an embodiment, the clip portion of the interfacing structure may be constructed from more rigid and denser foam than the cushion component. For example, the clip portion may be formed from nitrogen blown polyethylene, or some other biocompatible foam having a fine cell-structure. Alternatively, the clip portion could be made from some other polymer or rubber. In an embodiment, the clip portion is adapted to form a cushion-to-frame engagement mechanism and to form a structural support for the cushion component.
Preferably, the cushioning component is less rigid, less stiff or more flexible than the clip portion, which is in turn less rigid, less stiff or more flexible than the frame of the mask. Preferably, the frame gives shape to the mask interfacing structure, wherein the interfacing structure is relatively flexible and less rigid, overall than the frame. This feature adds comfort and also allows the interfacing structure to be easily replaced by the patient or user. Further improvements to the interfacing structure may be made to adapt the shape and configuration to be disposable.
For example, FIG. 13 shows a clip portion 734 including a side 735 for interfacing with a foam-based cushion component and a side 737 for interfacing with a mask frame. In this embodiment, the clip portion 734 is constructed of a skinned foam and may be formed by molding. The foam of the clip portion 734 may be harder or more dense than the foam of the cushion component. Alternatively, the more dense or harder foam may be formed by cutting, e.g., die cutting, machining, and/or the methods set forth in AU 2008904769 and AU 2008904778.
This arrangement provides a one piece interfacing structure with a cushion component adapted to engage the patient's face and a clip portion adapted to interface with the mask frame.
In one form, a mask system may be provided that includes at least two different forms of interfacing structure chosen from the set of foam-based cushion, silicone-based cushion, and gel-based cushion.
FIGS. 14a to 16i illustrate an interfacing structure 930 including a cushion component 932 and a cushion-to-frame component or clip portion 934 provided to the cushioning component 932. FIGS. 14a to 14f show the cushioning component 932 attached to the cushion-to-frame component 934, FIGS. 15a to 15e are isolated views of the cushion-to-frame component 934, and FIGS. 16a to 16i are isolated views of the cushioning component 932.
As shown in FIGS. 14a to 15e , the cushion-to-frame component 934 includes a side 935 for interfacing with the cushioning component 932 and a side 937 for interfacing with a mask frame. The side 937 includes protrusions 938 to facilitate and/or enhance attachment to the mask frame.
5. Assembling the Frame and Interfacing Structure
The interfacing structure is constructed as described above and arranged for removable interconnection with the rest of the apparatus, for example a respiratory mask.
The ability to removably connect the interfacing structure enables one to replace the interfacing structure should it become soiled, damaged, uncomfortable or otherwise aged as a result of usage. It also facilitates trial or testing of different arrays of interfacing structures which are selected on different patients facial types or features (e.g., narrower face, longer nose, or longer chin, etc.). One form of interfacing structure, for example a foam-based interfacing structure, may be used as a form of “training” system to allow a person to become accustomed to the sensation of wearing and using a mask. A foam-cushion based mask may provide an initially more appealing and comfortable surface for a new patient than a gel or silicone-based cushion. The patient may subsequently switch from the foam-based cushion to a silicone or gel based cushion. In this way, the patient may be more likely to adhere to therapy because they are used to the very soft comfortable feeling of foam.
When applied to respiratory equipment, the interfacing structure is adapted for connection with a mask frame. In use, a seal is formed between the interfacing structure and the frame. This arrangement could be used for both nasal and full-face masks. The seal between the frame and interfacing structure may seal better wherein the clip portion is less rigid or more flexible than the frame.
For example, FIG. 1 illustrates a mask 10 including a mask frame 20 a foam-based interfacing structure 30 provided to the mask frame 20. As illustrated, the foam-based interfacing structure 30 provides a foam cushion component 32 adapted to contact the patient's face in use. In this embodiment, the foam-based interfacing structure 30 is adapted for use with an existing mask (e.g., ResMed's Mirage Quattro mask), which allows the patient to switch from the foam-based interfacing structure 30 to the masks existing silicone-based cushion if desired.
FIGS. 4a to 4g show a foam-based interfacing structure 230 according to an embodiment of the invention. As illustrated, the interfacing structure 230 includes a cushion component or face-contacting portion 232 and a clip portion 234 provided to the cushion component 232. In this embodiment, the clip portion 234 is adapted for an interference fit with a mask frame, and the width of the clip portion 234 is narrower than the width of the cushion component 232 (e.g., see FIGS. 4e and 4g ).
5.1 Cushion-to-Frame Engagement Mechanisms
According to an aspect of the invention, the cushion-to-frame engagement and connection mechanism provided by the clip portion may include a channel-type engagement or rib-type engagement.
As shown in FIG. 2, the channel-type engagement includes a foam clip portion 34 that is adapted to be received within the channel 22 of a mask frame 20 with an interference fit. The foam clip portion 34 extends around the entire perimeter of the interfacing structure so as to form a seal and retention with the mask frame.
As shown in FIGS. 3a to 3c , the rib-type engagement includes a foam clip portion 34 with one or more slots 38 to receive inner and/or outer ribs 23, 24 of the mask frame 20. For example, the slot to rib engagement may provide an inner frame rib engagement (see FIG. 3a ), an outer frame rib engagement (see FIG. 3b ), or an inner and outer frame rib engagement (see FIG. 3c ). This arrangement provides a broader base of support for the sealing foam.
FIGS. 5a and 5b illustrate a foam-based interfacing structure 830 including a foam cushion component 832 and a clip portion 834, and FIG. 5c illustrates the interfacing structure 830 provided to a mask frame 20. As shown in FIGS. 5a and 5b , the clip portion 834 includes a slot 838 adapted to receive a rib of the mask frame 20. Also, providing a wider clip portion 834 allows more stiffness and structural integrity to be provided to the clip portion, making the clip portion easier to assemble to the mask frame.
When structured to form an interference fit with the mask frame, the clip portion may have the following properties: appropriate rigidity (e.g., less than that of the frame and in one form more rigid than the foam cushion component); non-porous; and/or low compression set (the amount of deformation expressed as a percentage of original dimensions) which a material retains after compressive stress is released (in this way, the clip portion maintains its retention force during its usage life).
Additionally, the clip portion may include an additional extension (not shown) that extends beyond the outer extremity of the frame which is adapted to be gripped by the patient for easier removal of the interfacing structure. Preferably, this extension would be positioned in a region that is easy for the patient to grip such as the nasal bridge of the mask. Preferably, the extension will be small enough not to impede vision of the user or to affect the overall efficiency or seal of the mask. Preferable, the extension may function as a finger grip for the patient to remove or replace the interfacing structure, when desired.
FIGS. 50-1 to 57-2 illustrate alternative mechanisms for attaching the clip portion to the frame. In FIGS. 50-1 and 50-1, the clip portion 5034 is in the form of a microcellular polyurethane clip adapted to engage within the frame channel 5022 with an interference fit. In FIGS. 51-1 and 51-2, the clip portion 5034 is in the form of a flexible plastic clip (e.g., Hytrel, TPE) adapted to engage the frame channel 5022 with a snap fit. The clip portion also includes a lip seal 5035 adapted to engage the channel wall. In FIGS. 52-2 and 52-2, the clip portion 5034 is in the form of a flexible plastic clip adapted to engage the frame channel 5022 with a snap fit. The clip portion also includes a sealing element 5035 (thermoplastic elastomer that may be over molded on to the clip portion) adapted to engage the channel wall. In FIGS. 53-1 and 53-2, the clip portion 5034 is in the form of a polyurethane clip adapted to engage within the frame channel 5022 with an interference fit. The clip portion also includes a flexible plastic clip 5036 (assembled to the polyurethane clip) adapted to engage the frame channel with a snap fit. In FIGS. 54-1 and 54-2, the clip portion 5034 is in the form of a polyurethane clip adapted to engage within the frame channel 5022 with an interference fit. The clip portion also includes a flexible plastic clip 5036 (glued to the polyurethane clip) adapted to engage the frame channel with a snap fit. In FIGS. 55-1 and 55-2, the clip portion 5034 includes a flexible plastic clip adapted to engage the frame channel 5022 with a snap fit or other fitting means e.g. interference fit. In addition, the clip is contoured such that the clip also engages the channel wall with an interference fit. In FIGS. 56-1 and 56-2, the clip portion 5034 includes a flexible plastic clip adapted to engage the frame channel with a snap fit. The clip portion also includes a foam element 5037 adapted to cover the clip. In FIGS. 57-1 and 57-2, the clip portion 5034 includes a polyurethane clip (attached to cushion component by plastic element 5038) adapted to engage the frame channel 5022 with a snap fit. The frame channel includes a plastic extension 5023 adapted to engage the clip. This arrangement allows replacement of the cushion component without the need to change the clip portion.
6. Exemplary Materials and Properties
The following provides exemplary materials and properties of the cushion component and clip portion.
6.1 Cushion Component
In an embodiment, the cushion component may be made from polyurethane, be resistance to hydrolysis and/or resistant to microbial attack.
In an embodiment, the cushion component may be air permeable. In an embodiment, the cushion component may not be air permeable.
In an embodiment, the cushion component may be able to maintain its air permeability over a period of use.
Preferably, the cushion component may not emit harmful or odorous volatiles or particulates.
Preferably, the cushion component may be coloured and this colour may not fade.
FIG. 48 is a chart showing exemplary material properties for the cushion component.
In one example, properties of the foam cushion component may include: density (relates to other foam properties and affects cost and weight of the cushion, e.g., higher density can reduce air permeability and higher density can increase hardness); air permeability (flow of air through cushion contributes to total mask flow characteristic of the mask which may affect compatibility with PAP devices); hardness (affects comfort and sealing performance); tear resistance (contributes to durability); tensile strength (contributes to durability); and/or tensile stiffness (resists the deforming effects of positive air pressure inside the mask).
6.2 Clip Portion
FIG. 49 is a chart showing exemplary material properties for the clip portion.
In one example, properties of the foam clip portion may include: density (affects weight); air permeability (permeability of the foam itself may not be critical if it is molded with a skin that renders it impermeable); hardness (soft and flexible enough to assemble to the frame with an interference fit and seal against the frame); elasticity/viscoelasticity (soft and flexible enough to assemble to the frame with an interference fit and seal against the frame); and/or compression set (should not deform over time to ensure easy assembly/retention).
6.3 Testing Methods
The following provides exemplary testing methods for determining material properties.
6.3.1 Air Permeability
Air permeability is defined as “the rate of air flowing through a foam sample (in L/min)”.
This test measures the flow through a regular shape with a constant cross section, in a manner analogous to a cushion in real use. In the example of FIG. 60-1, the test specimen is an annulus of foam, about 30 mm thick. The circular shape ensures that pressure is evenly distributed and the foam inflates uniformly.
The foam sample is cut normal to cell rise direction as shown in FIG. 60-4.
The wall section of the foam specimen may be rectangular (see FIG. 60-2), but it is possible for the wall section to have a concave outer surface and a convex inner surface (see FIG. 60-3).
The annular foam sample is held at a defined height between two plates in a Universal Test Machine (e.g., Instron). Air at a given pressure is directed into the centre of the annulus and flows out through the foam. The air flow rate and reaction force of the foam against the plates may be measured. FIG. 60-5 is a schematic of the test set up.
As shown in FIGS. 60-6, 60-7, and 60-8, the test jig used to hold the foam consists of: an aluminum base plate that locates the foam and seals against the flat bottom surface of foam annulus; an air inlet and pressure port in the centre of the base plate; a clear polycarbonate top plate that seals against the flat bottom surface of foam annulus and allows observation of the test sample; and a part glued to the top plate to connect with a load cell attachment on the Universal Testing Machine (UTM).
Once set up, attach the top plate to the crosshead of the UTM, zero the load cell of the UTM.
Zero the displacement of the UTM at the uncompressed height of the foam sample, i.e., 30 mm above the base plate sealing surface.
If there is variation of 1 mm or more in the thickness of the samples, then for each sample: (i) assemble the foam sample into the test jig; (ii) lower the crosshead just until a positive force is read on the UTM, e.g., 0.2 N; and (iii) zero the displacement.
Lower the crosshead at 50±20 mm/min until 40% compression displacement is reached.
Immediately record the reaction force, at 0 cmH2O.
Wait 60 seconds and again record the force.
Immediately but gradually adjust the flow generator to 4 cmH2O (and immediately record force and flow rate.
Wait 60 seconds and again record the force and flow rate.
Repeat steps 7 and 8 for 12 cmH2O and 20 cmH2O.
6.3.2 Hardness
Hardness is defines as “force required to indent a test piece of foam to a stated percentage of its original thickness”.
Hardness may be tested using an IDM Universal Test Machine, or equivalent (e.g., see circular flat indenter of FIG. 61)
If applicable, precondition the foam as specified in AS 2282.2-1999.
Test the foam according to AS 2282.8-1999 Method A—Indentation force on deflection test.
Report IF40, the reaction force at 40% compression after 60 seconds indentation, H60s.
Also report the reaction force at 40% compression after 2 seconds indentation, H2s.
Report the sag factor or support factor, i.e., the ratio of 65% to 25% IFD value.
6.3.3 Tensile Strength
Tensile strength may be measured using an IDM Universal Test Machine, or equivalent. See FIG. 62-1.
Test both directions, i.e., parallel to and normal to the direction of cell rise.
Apply the following deviations from AS 2282.6-1999:
Do not reject test pieces that break outside the gauge length.
Record whether the test piece did break, did not break or came out of the jaws before maximum elongation was reached.
Three test pieces may be acceptable if the results are consistent (no individual value deviates more than 20% from the mean of the three values).
Select a typical or representative results curve by inspecting the graphs. Select a suitably linear region near the start of the curve. (The start of the curve is more representative of real use than an extremely stretched region and also ensures the result is not affected by the test sample sliding out of the gripping jaws.)
Calculate the change in force over a distance of at least 25 mm and divide by the distance to obtain the stiffness value in N/mm.
For example, the curve in FIG. 62-2 is most linear near the start of the curve, between 25 mm and 50 mm. Stiffness was calculated as follows.
k tensile =ΔF/Δx=(F 50 mm −F 25 mm)/(50−25)
6.3.4 Tear Resistance
Tear resistance is defined as the force required to propagate a tear in a pre-cut sample. See FIG. 63-1.
Test according to AS 2282.7-1999 with the following parameters:
The speed of separation of the jaws holding the test piece shall be 200 mm/min.
Test all three directions defined in FIGS. 63-2, 63-3, and 63-4. Test and report the tear resistance results (σt) for each direction separately.
Apply the following deviations from AS 2282.7-1999:
Do not use a knife or blade to assist the direction of tear. Allow the foam to tear naturally.
It may not be possible to tear a 50 mm length of foam. Tear as far as possible up to 50 mm.
Total Mask Flow
This test measures the flow through only the foam cushion, by blocking the mask vent all other leak paths. See FIG. 64.
The cushion is compressed by 40% of its 30 mm thickness, i.e., 12 mm.
7. Other Features
In an embodiment, a mask frame may be integrally molded or formed with the cushion-to-frame component 1034. For example, the second portion 1065 of the tool may be structured to mold the cushion-to-frame component together with the mask frame.
In the illustrated embodiment, a polyurethane foam cushioning component is provided to a polyurethane foam or polyurethane elastomer cushion-to-frame component. In an alternative embodiment, one or both of the components may be constructed of a gel material. For example, both components may be constructed of gel, the cushioning component may be constructed of gel and the cushion-to-frame component may be constructed of foam, or the cushioning component may be constructed of foam and the cushion-to-frame component may be constructed of gel.
While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. For example the cutting techniques used for the cushioning component may also be used for the clip component, or the interfacing structure. Also, the various embodiments described above may be implemented in conjunction with other embodiments, e.g., aspects of one embodiment may be combined with aspects of another embodiment to realize yet other embodiments. Further, each independent feature or component of any given assembly may constitute an additional embodiment. In addition, while the invention has particular application to patients who suffer from OSA, it is to be appreciated that patients who suffer from other illnesses (e.g., congestive heart failure, diabetes, morbid obesity, stroke, bariatric surgery, etc.) can derive benefit from the above teachings. Moreover, the above teachings have applicability with patients and non-patients alike in non-medical applications.

Claims (47)

What is claimed is:
1. A mask to provide a supply of pressurized air to the entrance of the airways of a patient, comprising:
a frame; and
an interfacing structure including an attachment portion having a supporting surface, and a cushioning component including a base side joined to the supporting surface, the cushioning component being formed at least in part from foam which is configured to directly engage and form a seal with a region of the patient's face,
wherein the attachment portion is configured to directly connect to the frame, the attachment portion being arranged to support the foam of the cushioning component and connect the cushioning component to the frame such that the cushioning component is spaced-apart from the frame,
wherein the attachment portion consists of a material that has different material properties from a material of the cushioning component,
wherein the cushioning component includes:
an inner side facing the center of the mask,
an outer side facing away from the center of the mask; and
the base side which is arranged to face the frame and/or the supporting surface of the attachment portion, and
wherein the mask is arranged to promote a rolling-in effect of the foam of the cushioning component in at least one selected region of the cushioning component by way of at least one of the following:
the base side of the cushioning component having a base surface angled inwardly towards the center of the mask, the angle being arranged to vary along a circumference of the at least one selected region of the cushioning component;
an inner edge of the supporting surface of the attachment portion being offset outwardly from an inner edge of the base side of the cushioning component, leaving an inner portion of the cushioning component unsupported, with the offset varying along the at least one selected region of the cushioning component, and
in a cross-sectional view, a length of the outer side of the cushioning component being greater than a length of the inner side of the cushioning component.
2. The mask of claim 1, wherein the attachment portion comprises foam.
3. The mask of claim 1, wherein the attachment portion is at least partially constructed from foam and wherein the foam of the attachment portion is denser than the foam of the cushioning component.
4. The mask of claim 1, wherein the length of the outer side relative to the inner side facilitates the cushioning component in rolling inwards towards the center of the mask when a force is applied to the cushioning component by the patient's face.
5. The mask of claim 1, wherein the cushioning component includes an outer side wall formed on the outer side of the cushioning component, and at least a portion of the outer side wall is configured to form a seal against the patient's face when the cushioning component rolls inwards towards the center of the mask.
6. The mask of claim 1, wherein the foam of the cushioning component is substantially closed cell foam.
7. The mask of claim 1, wherein said attachment portion includes an extension that extends beyond an outer extremity of the frame to be adapted as a finger grip.
8. The mask of claim 1, wherein the attachment portion is joined to the cushioning component by glue.
9. The mask of claim 1, wherein the attachment portion is adapted to mate with a corresponding surface on the frame to provide a removable connection with an air tight seal.
10. The mask of claim 1, wherein an extension on the attachment portion is adapted to be received within a corresponding recess within the frame.
11. The mask of claim 1, wherein a foam portion of the cushioning component is joined to a portion of the attachment portion formed of compressed foam.
12. The mask of claim 1, wherein the attachment portion is integrally formed with, or connected to, the frame.
13. The mask of claim 1, wherein a foam portion of the cushioning component includes at least one weakened region arranged to be positioned on either side of the patient's nasal bridge to prevent pinching or buckling of the foam which may lead to leakage.
14. The mask of claim 1, wherein the attachment portion is formed from foam that has a higher hardness, a higher density and/or a lower permeability than a foam used for the cushioning component.
15. The mask of claim 1, wherein attachment portion is more rigid than the cushioning component.
16. The mask of claim 1, wherein the attachment portion is formed to be integral with the cushioning component.
17. The mask of claim 1, wherein the cushioning component includes viscoelastic polyurethane foam.
18. The mask of claim 1, wherein the cushioning component includes open cell unskinned foam.
19. The mask of claim 1, wherein, in use, the rolling-in effect increases the sealing area of the cushioning component with the patient's skin.
20. The mask of claim 1, wherein, in use, as a result of the rolling-in effect, air pressure acts on a back portion of a rolled-in section of the cushioning component to assist a sealing engagement of the cushioning component with the patient's face by complimenting a generally compression type of seal with a pneumatic type of seal.
21. The mask of claim 1, where the inner side, the outer side and the base side of the cushioning component form a generally triangular cross-section of the cushioning component.
22. The mask of claim 1, wherein the frame is more rigid than the attachment portion and the attachment portion is more rigid than the cushioning component.
23. The mask to claim 1, wherein the outer side further comprises at least an upper portion and a lower portion, wherein the upper portion is positioned at a reduced angle in comparison to the lower portion.
24. The mask of claim 1, wherein the cushioning component and the attachment portion contact one another along the base side so that the base side is arranged to lie at a first angle in a first region of the cushioning component and to lie at a second angle in a second region of the cushioning component, wherein the first and second angles are different.
25. The mask of claim 24, wherein, in use, the first region is a side of nose region and the second region is either one of a chin region, a lip region or a region adjacent a side of the mouth.
26. The mask of claim 24, wherein the second angle is arranged to direct the cushioning component inwardly, in use.
27. The mask of claim 1, wherein:
at least in selected regions along the circumference of the cushioning component, the inner edge of the attachment portion is offset from the inner edge of the cushioning component and towards the outer side of the cushioning component, thus providing less support to the inner side of the cushioning component relative to the outer side of the cushioning component; and
the offset between the inner edge of the cushioning component and the inner edge of the support structure varies along the inner periphery of the cushioning component.
28. The mask of claim 27, wherein, at least in selected regions of the cushioning component, a width of the attachment portion is less than a width of the cushioning component such that the cushioning component overhangs the attachment portion to facilitate the cushioning component in rolling inwards towards the center of the mask when a force is applied to the cushioning component by the patient's face.
29. The mask of claim 27, wherein an outer perimeter of the attachment portion is aligned with an outer perimeter of the cushioning component.
30. The mask of claim 1, wherein an upper surface of the attachment portion is joined to the base surface of the cushioning component, and wherein at least a portion of the upper surface is angled to provide an inwardly directed moment of force on the cushioning component when a force is applied to the cushioning component by the patient's face.
31. The mask of claim 30, wherein the upper surface is angled towards a center of the mask and the moment of force is directed into the center of the mask to assist the cushioning component in rolling inwards towards the center of the mask.
32. The mask of claim 1, wherein the cushioning component includes an outer side wall and an inner side wall arranged so that, in a cross-sectional view, at least a portion of a cushioning component tapers towards a surface of the cushioning component that, in use, is arranged to contact the patient's face.
33. The mask of claim 32, wherein at least a portion of the outer side wall is arranged to contact the patient's face, when in use.
34. The mask of claim 32, wherein said at least a portion of the cushioning component is located in a region of the cushioning component configured to contact the sides of the patient's nasal bridge or the patient's nasal bridge.
35. The mask of claim 32, wherein the inner side wall and the outer side wall taper together at an acute angle.
36. The mask of claim 35, wherein, in the cross-sectional view, the acute angle changes along the cross-section of the cushioning component.
37. The mask of claim 36, wherein the angle between the inner side wall and the outer side wall increases towards the surface of the cushioning component arranged to contact the patient's face.
38. The mask of claim 1, wherein the cushioning component includes at least first and second layers of foam, wherein the first layer is softer and/or less dense than the second layer.
39. The mask of claim 38, wherein the first layer is adapted to contact the patient's face.
40. The mask of claim 1, wherein said cross-section is located in at least one of: a side of the nose region of the cushioning component, a nasal bridge region of the cushioning component, or a side of a nasal bridge region of the cushioning component.
41. The mask of claim 40, wherein, in a cross-section, the outer side is approximately the same length as the inner side in a second region of the cushioning component, wherein the second region is a chin region or a lip region of the cushioning component.
42. The mask of claim 1, wherein the cross-section of the cushioning component is tapered towards an apex, at least in a portion of the cushioning component adjacent the apex.
43. The mask of claim 42, wherein a curvature of at least one of the outer side or the inner side is larger in the vicinity of the apex.
44. The mask of claim 1, wherein another region of the cushioning component is configured to reduce a rolling-in effect or to roll outwards, in use.
45. The mask of claim 44, wherein the another region of the cushioning component is configured to reduce a rolling-in effect or to roll outwards in at least one of the following ways:
by changing the amount of overhang of the cushioning component with respect to the attachment portion;
by the upper side supporting a portion of the cushioning component being angled outwards relative to the center of the mask assembly; and
by providing a kink in the outer side of the cushion in the portion of the cushioning component.
46. The mask of claim 44, wherein the at least one selected region is the same as the another region of the cushioning component and is configured to both 1) reduce a rolling-in effect and 2) roll outwards by comprising a kink or inflexion.
47. The mask of claim 44, wherein the another region of the cushioning component is located at a lower portion of the mask.
US14/524,097 2008-09-12 2014-10-27 Foam-based interfacing structure Active 2031-12-16 US10265489B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/524,097 US10265489B2 (en) 2008-09-12 2014-10-27 Foam-based interfacing structure
US16/288,495 US12070552B2 (en) 2008-09-12 2019-02-28 Foam-based interfacing structure

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
AU2008904769 2008-09-12
AU2008904769A AU2008904769A0 (en) 2008-09-12 A Foam-Based Interfacing Structure Method and Apparatus
AU2008904778A AU2008904778A0 (en) 2008-09-15 A Foam-Based Interfacing Structure Method and Apparatus
AU2008904778 2008-09-15
PCT/AU2009/001144 WO2010028425A1 (en) 2008-09-12 2009-09-03 A foam-based interfacing structure method and apparatus
US73791911A 2011-03-01 2011-03-01
US14/524,097 US10265489B2 (en) 2008-09-12 2014-10-27 Foam-based interfacing structure

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/737,919 Continuation US8869798B2 (en) 2008-09-12 2009-09-03 Foam-based interfacing structure method and apparatus
PCT/AU2009/001144 Continuation WO2010028425A1 (en) 2008-09-12 2009-09-03 A foam-based interfacing structure method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/288,495 Continuation US12070552B2 (en) 2008-09-12 2019-02-28 Foam-based interfacing structure

Publications (2)

Publication Number Publication Date
US20150040912A1 US20150040912A1 (en) 2015-02-12
US10265489B2 true US10265489B2 (en) 2019-04-23

Family

ID=42004706

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/737,919 Active 2030-06-12 US8869798B2 (en) 2008-09-12 2009-09-03 Foam-based interfacing structure method and apparatus
US14/524,097 Active 2031-12-16 US10265489B2 (en) 2008-09-12 2014-10-27 Foam-based interfacing structure
US16/288,495 Active 2032-12-31 US12070552B2 (en) 2008-09-12 2019-02-28 Foam-based interfacing structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/737,919 Active 2030-06-12 US8869798B2 (en) 2008-09-12 2009-09-03 Foam-based interfacing structure method and apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/288,495 Active 2032-12-31 US12070552B2 (en) 2008-09-12 2019-02-28 Foam-based interfacing structure

Country Status (8)

Country Link
US (3) US8869798B2 (en)
EP (2) EP2344225B1 (en)
JP (3) JP5554334B2 (en)
CN (2) CN102149422B (en)
AU (2) AU2009291491C1 (en)
CA (2) CA2941584C (en)
NZ (6) NZ705201A (en)
WO (1) WO2010028425A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11077277B2 (en) * 2008-03-04 2021-08-03 ResMed Pty Ltd Interface including a foam cushioning element
US12070552B2 (en) * 2008-09-12 2024-08-27 ResMed Pty Ltd Foam-based interfacing structure

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022146A1 (en) 2002-09-06 2004-03-18 Resmed Limited Cushion for a respiratory mask assembly
NZ591788A (en) 2002-11-06 2012-10-26 Resmed Ltd Layered mask cushion assembly
EP3228347B1 (en) 2003-12-31 2020-01-29 ResMed Pty Ltd Nozzle for a nasal patient interface
WO2005079726A1 (en) 2004-02-23 2005-09-01 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US9072852B2 (en) 2004-04-02 2015-07-07 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
ES2703450T3 (en) 2004-04-02 2019-03-08 Fisher & Paykel Healthcare Ltd Breathing assistance device
JP4787243B2 (en) 2004-06-03 2011-10-05 レスメド・リミテッド Cushion for patient intermediate attachment
EP2705870B1 (en) 2005-01-12 2019-11-13 ResMed Pty Ltd Cushion for patient interface
WO2007041751A1 (en) 2005-10-14 2007-04-19 Resmed Limited Cushion to frame assembly mechanism
NZ701505A (en) 2005-10-25 2016-06-24 Resmed Ltd Interchangeable mask assembly
CA2998247A1 (en) 2006-07-14 2008-01-17 Fisher & Paykel Healthcare Limited Breathing assistance apparatus with support member
NZ612086A (en) 2006-07-28 2014-12-24 Resmed Ltd Delivery of respiratory therapy
NZ596570A (en) 2006-07-28 2014-02-28 Resmed Ltd Delivery of respiratory therapy
EP2481435B1 (en) 2006-12-15 2016-02-24 ResMed Ltd. Delivery of respiratory therapy
US8517023B2 (en) 2007-01-30 2013-08-27 Resmed Limited Mask system with interchangeable headgear connectors
NZ578334A (en) 2007-04-19 2011-01-28 Resmed Ltd Mask frame connected to face cushion via intervening clip
EP2452716B1 (en) 2007-07-30 2017-06-21 ResMed Ltd. Patient interface
US11331447B2 (en) 2008-03-04 2022-05-17 ResMed Pty Ltd Mask system with snap-fit shroud
EP2259827B1 (en) 2008-03-04 2019-10-30 ResMed Pty Ltd A foam respiratory mask
DE202009019168U1 (en) 2008-03-04 2017-06-20 Resmed Ltd. mask system
US10792451B2 (en) 2008-05-12 2020-10-06 Fisher & Paykel Healthcare Limited Patient interface and aspects thereof
US10258757B2 (en) 2008-05-12 2019-04-16 Fisher & Paykel Healthcare Limited Patient interface and aspects thereof
US8905031B2 (en) 2008-06-04 2014-12-09 Resmed Limited Patient interface systems
AU2009202232B2 (en) 2008-06-04 2013-10-03 Resmed Limited Patient Interface Systems
US11660413B2 (en) 2008-07-18 2023-05-30 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US9901700B2 (en) 2008-10-10 2018-02-27 Fisher & Paykel Healthcare Limited Nasal pillows for a patient interface
EP2213324B1 (en) 2009-01-30 2016-07-27 ResMed R&D Germany GmbH Patient interface structure and method/tool for manufacturing same
USD665493S1 (en) * 2009-08-12 2012-08-14 Resmed Limited Cushion for respiratory mask
WO2011062510A1 (en) 2009-11-18 2011-05-26 Fisher & Paykel Healthcare Limited Nasal interface
EP4070841A1 (en) 2010-10-08 2022-10-12 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US10137269B2 (en) 2011-02-14 2018-11-27 Resmed Limited Cushion-to-frame component for an interfacing structure
ES2876306T3 (en) 2011-04-15 2021-11-12 Fisher & Paykel Healthcare Ltd Interface comprising a wave-shaped retractable nose bridge portion
US10603456B2 (en) 2011-04-15 2020-03-31 Fisher & Paykel Healthcare Limited Interface comprising a nasal sealing portion
EP3831435A1 (en) 2011-07-01 2021-06-09 Fisher & Paykel Healthcare Limited Mask's clip for overmoulding
US20140332007A1 (en) * 2011-12-27 2014-11-13 Koninklijke Philips N.V. Patient interface, cushion thereof, and manufacturing method
CN104066473B (en) 2012-01-16 2017-06-30 皇家飞利浦有限公司 Patient interface device with the engineered surface for providing the user low friction and the comfort level for improving
US9840109B2 (en) 2012-01-16 2017-12-12 Koninklijke Philips N.V. Engineered surface for providing low friction and improved comfort on devices that contact the skin or other external tissue of the user
BR112014030889A2 (en) * 2012-06-13 2017-06-27 Koninklijke Philips Nv pad for a patient interface device; cushion set; patient interface device; and system for administering a breathable gas flow to a patient
GB2558823B8 (en) 2012-08-08 2019-04-10 Fisher & Paykel Healthcare Ltd Headgear for patient interface
EP2892596B1 (en) 2012-09-04 2023-07-26 Fisher&Paykel Healthcare Limited Valsalva mask
US10183137B2 (en) 2012-12-14 2019-01-22 Koninklijke Philips N.V. Respiratory interface device customization utilizing a generic cushion template
US10004867B2 (en) 2013-02-04 2018-06-26 Resmed Limited Respiratory apparatus
US10987477B2 (en) 2013-02-04 2021-04-27 ResMed Pty Ltd Respiratory apparatus
CN107583160B (en) * 2013-02-04 2021-06-29 瑞思迈私人有限公司 Breathing apparatus
US10413692B2 (en) 2013-02-04 2019-09-17 ResMed Pty Ltd Cushion assembly
USD809131S1 (en) 2014-08-04 2018-01-30 Resmed Limited Respiratory mask assembly
GB201314886D0 (en) * 2013-08-20 2013-10-02 3M Innovative Properties Co Personal respiratory protection device
US20160250434A1 (en) * 2013-11-01 2016-09-01 Koninklijke Philips N.V. Sealing cushion for a patient interface
JP6657095B2 (en) * 2013-12-20 2020-03-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Customizable facial sealing segment for respiratory device and customization method
GB2521644B (en) 2013-12-24 2020-03-11 Intersurgical Ag Improvements relating to respiratory masks
AU2015232049B2 (en) * 2014-03-18 2020-01-02 Fisher & Paykel Healthcare Limited Gel resuscitation mask
JP2015192864A (en) * 2014-03-19 2015-11-05 公立大学法人名古屋市立大学 Medical mask, extension sheet and frame used for the same
WO2015193408A1 (en) * 2014-06-17 2015-12-23 Resmed Limited A seal forming structure for a patient interface and a tool and method of manufacturing the seal forming structure
GB2587307B (en) 2014-08-25 2021-10-27 Fisher & Paykel Healthcare Ltd Respiratory mask and related portions, components or sub-assemblies
WO2016030381A1 (en) * 2014-08-28 2016-03-03 Koninklijke Philips N.V. Cpap pressurized gas permeable mask cushion
CN204217969U (en) * 2014-09-18 2015-03-25 宋搏 Mouth mask
CN112354059B (en) * 2014-10-10 2024-09-13 瑞思迈私人有限公司 Foam cushion breathing apparatus
NZ770257A (en) 2014-11-26 2023-06-30 ResMed Pty Ltd Textile patient interface
DK3359357T3 (en) * 2015-10-08 2020-02-17 Precision Foam Tech Pty Ltd CUTTING MACHINE
US20170168303A1 (en) * 2015-12-09 2017-06-15 Facebook, Inc. Head-Mounted Display Systems with Nose Piece
JP7044707B2 (en) 2016-01-14 2022-03-30 レスメド・プロプライエタリー・リミテッド Oral and nose patient interface
CN105768280A (en) * 2016-04-29 2016-07-20 宋搏 Sealing part and gauze mask
USD895105S1 (en) 2016-10-24 2020-09-01 ResMed Pty Ltd Combined cushion and frame module for patient interface
CN110352079B (en) * 2016-12-30 2022-05-13 菲舍尔和佩克尔保健有限公司 Thermal forming mask
USD823455S1 (en) 2017-02-23 2018-07-17 Fisher & Paykel Healthcare Limited Cushion assembly for breathing mask assembly
USD824020S1 (en) 2017-02-23 2018-07-24 Fisher & Paykel Healthcare Limited Cushion assembly for breathing mask assembly
USD823454S1 (en) 2017-02-23 2018-07-17 Fisher & Paykel Healthcare Limited Cushion assembly for breathing mask assembly
SG11202008100UA (en) * 2018-03-07 2020-09-29 Fisher & Paykel Healthcare Ltd Patient interface
WO2020073840A1 (en) * 2018-10-12 2020-04-16 深圳瑞之谷医疗科技有限公司 Flexible pad, breathing cover structure, and breathing interface
US10974007B2 (en) * 2019-03-07 2021-04-13 Sleepnet Corporation Facemask seal
US11571537B2 (en) 2019-03-28 2023-02-07 Koninklijke Philips N.V. Adhesive alignment system for patient interfaces
CN110448778B (en) * 2019-09-02 2022-04-01 博义医疗器材(上海)有限公司 Anesthetic mask using air bag made by unique method as air cushion and its making method
US11135459B1 (en) * 2021-04-21 2021-10-05 Robert Caldwell Dual filtration COVID-19 mask

Citations (427)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE185017C (en)
DE146688C (en)
US443191A (en) 1890-12-23 Karl illing
US781516A (en) 1904-02-03 1905-01-31 George N Guthrie Jr Respirator and inhaler.
US1081745A (en) 1912-05-03 1913-12-16 White S Dental Mfg Co Nasal inhaler.
US1125542A (en) 1914-03-11 1915-01-19 Aubrey Humphries Apparatus for use in administering anesthetics.
US1192186A (en) 1910-09-20 1916-07-25 Samuel Ward Greene Respirator.
US1229050A (en) 1917-03-29 1917-06-05 Robert Donald Respirator.
US1282527A (en) 1918-04-13 1918-10-22 Gratien Bidonde Life-preserver.
US1362766A (en) 1919-11-07 1920-12-21 Mcgargill James Martin Gas-mask
US1445010A (en) 1920-11-15 1923-02-13 William S Feinberg Breathing apparatus for swimmers
US1610793A (en) 1926-04-30 1926-12-14 Kaufman Leo Respirator
US1873160A (en) 1929-02-08 1932-08-23 Harold V Sturtevant Breathing apparatus
GB532214A (en) 1939-08-22 1941-01-20 Hayden Thomas Cattanach Improvements in and relating to nasal douches
US2353643A (en) 1942-07-29 1944-07-18 Arthur H Bulbulian Head harness for masks
US2415846A (en) 1944-10-23 1947-02-18 Randall Francis Eugene Oronasal mask
US2433565A (en) 1946-06-21 1947-12-30 Korman Alexander Nose filter
US2625155A (en) 1950-12-11 1953-01-13 Arthur E Engelder Face mask
US2706983A (en) 1951-09-15 1955-04-26 Willson Products Inc Flexible construction in respirator mask facepiece
US2931356A (en) 1958-08-25 1960-04-05 Puritan Compressed Gas Corp Oxygen mask having detachable face seal cushion
US3013556A (en) 1959-08-07 1961-12-19 Jr Ellis A Galleher Head strap for respiratory masks
US3670726A (en) 1969-09-23 1972-06-20 Becton Dickinson Co Breathing circuit
US3682171A (en) 1971-03-31 1972-08-08 Baxter Laboratories Inc Nasal cannula
US3739774A (en) 1970-05-21 1973-06-19 Ml Aviation Co Ltd Respirators
US3754552A (en) 1971-06-08 1973-08-28 Sandoz Ag Flexible nasal cannula
US3787895A (en) 1972-07-21 1974-01-29 P Belvedere Protective face mask and padding material therefor
US3861385A (en) 1972-08-25 1975-01-21 Edward Carden Anaesthetist{3 s ventilation
US3902486A (en) 1972-08-29 1975-09-02 Jacquet Felicien Portable respiratory apparatus
US3905361A (en) 1974-04-24 1975-09-16 Brunswick Mfg Co Inc Apparatus for sealing the esophagus and providing artificial respiration and evacuating the stomach
US3938614A (en) 1972-06-20 1976-02-17 Aktiebolaget Lennartsfors Mekaniska Verkstad Cushion member for sound-proof sealing
US3972321A (en) 1975-02-20 1976-08-03 Proctor John S Upper lip mounted retaining means for medical-surgical tubes
US3974829A (en) * 1974-07-08 1976-08-17 Giles C. Clegg, Jr. Means for preventing fogging of optical aids used by the wearer of a surgical mask
US4006744A (en) 1974-06-24 1977-02-08 Abbott Laboratories Locking cannula mount
US4142527A (en) 1977-02-07 1979-03-06 Garcia Nelson C Endotracheal tube holder
US4153051A (en) 1977-07-08 1979-05-08 Shippert Ronald D Compound splint and kit
US4156426A (en) 1977-08-11 1979-05-29 Gold Lawrence W Head-mounted oxygen-administration device
DE3011900A1 (en) 1979-04-03 1980-10-23 Warne Surgical Products Ltd UPHOLSTERY FOR A FACE MASK AND METHOD FOR THE PRODUCTION THEREOF
US4248218A (en) 1978-09-22 1981-02-03 Fischer Charles M Gas administration scavenging mask
US4264743A (en) 1979-04-23 1981-04-28 Nhk Spring Co., Ltd. Polyurethane foam sealing material and process for producing the same
US4263908A (en) 1979-07-25 1981-04-28 Mizerak Vladimir S Nasal cannula mask
US4267845A (en) 1978-10-05 1981-05-19 Robertson Jr Charles H Method and apparatus for measuring pulmonary ventilation
US4273124A (en) 1979-06-01 1981-06-16 Zimmerman J Earl Nasal cannula
US4312359A (en) 1980-02-19 1982-01-26 Life Care Systems, Inc. Noninvasive blood pressure measuring system
WO1982003548A1 (en) 1981-04-24 1982-10-28 Sullivan Colin Edward Device for treating snoring sickness
US4367735A (en) 1979-12-31 1983-01-11 Novametrix Medical Systems, Inc. Nasal cannula
US4367816A (en) 1981-06-10 1983-01-11 Wilkes Kenneth R Tear strip for gas sterilizable package and package
US4405212A (en) 1979-12-26 1983-09-20 Cooper Leonard B Spectacle frame and conversion accessories therefor
US4406283A (en) 1982-02-04 1983-09-27 Phillip Bir Oxygen cannulae for continuous administration of oxygen, and its associated mounting structure and method for mounting same onto the head of a patient
US4414973A (en) 1981-03-10 1983-11-15 U.S.D. Corp. Respirator face mask
US4422456A (en) 1981-09-08 1983-12-27 City Of Hope National Medical Center Nasal cannula structure
US4449526A (en) 1981-11-27 1984-05-22 Elam James O Mask breathing system
US4455675A (en) 1982-04-28 1984-06-19 Bose Corporation Headphoning
US4493614A (en) 1982-10-08 1985-01-15 Lifecare Services, Inc. Pump for a portable ventilator
US4548200A (en) 1983-04-18 1985-10-22 Baka Manufacturing Company, Inc. Endotracheal tube holder
US4549542A (en) 1983-07-25 1985-10-29 Chien Chao Huei Multiple-effect respirator
US4572323A (en) 1983-03-28 1986-02-25 Racal Safety Limited Hearing protectors
US4587967A (en) 1985-07-09 1986-05-13 Lifecare Services, Inc. Oxygen enriched reciprocating piston respirator
US4601465A (en) 1984-03-22 1986-07-22 Roy Jean Yves Device for stimulating the human respiratory system
US4617637A (en) 1985-07-09 1986-10-14 Lifecare Services, Inc. Servo control system for a reciprocating piston respirator
US4630604A (en) 1985-04-09 1986-12-23 Siebe North, Inc. Valve assembly for a replaceable filter respirator
GB2176404A (en) 1985-06-13 1986-12-31 Od G Univ Im I I Mechnikova Respirator
US4641647A (en) 1985-02-08 1987-02-10 Sheryl L. Taylor Device for securing respiratory appliance during respiratory therapy
US4653124A (en) 1985-07-16 1987-03-31 Scott Usa Face mask having an air duct connectable to a goggle
WO1987001950A1 (en) 1985-09-26 1987-04-09 Protector Safety Limited Respirator
US4660555A (en) 1984-09-21 1987-04-28 Payton Hugh W Oxygen delivery and administration system
US4671271A (en) 1985-11-27 1987-06-09 Dolores Bishop Protective facial mask
US4676241A (en) 1984-01-16 1987-06-30 W.L.G. Technology Ventilation tube swivel
US4699139A (en) 1985-09-30 1987-10-13 Marshall Marie F Nasal cannula assembly with patient comfort pad
US4706664A (en) 1986-04-11 1987-11-17 Puritan-Bennett Corporation Inspiration oxygen saver
US4711636A (en) 1985-11-08 1987-12-08 Bierman Steven F Catheterization system
US4713844A (en) 1986-07-16 1987-12-22 Gentex Corporation Protective helmet with face mask sealing means
USD293613S (en) 1985-11-18 1988-01-05 Anesthesia Respiratory Technology, Inc. Anesthesia and respiratory face mask
US4753233A (en) 1987-02-10 1988-06-28 Advantage Medical Nasal cannula
US4767411A (en) 1987-07-14 1988-08-30 Edmunds L Henry Protective catheter sleeve
US4774946A (en) 1983-11-28 1988-10-04 Ackrad Laboratories, Inc. Nasal and endotracheal tube apparatus
EP0288937A2 (en) 1987-04-30 1988-11-02 Cavan Corporation Disposable breathing mask
US4782832A (en) 1987-07-30 1988-11-08 Puritan-Bennett Corporation Nasal puff with adjustable sealing means
US4790829A (en) 1983-08-24 1988-12-13 Russell Bowden Reusable injection catheter
DE3719009A1 (en) 1987-06-06 1988-12-22 Ernst Dipl Ing Hoermann Ventilation mask with adjustable mouthpiece and nose moulding
US4802857A (en) 1987-11-23 1989-02-07 Laughlin Patrick E CPR mask
US4803981A (en) 1981-09-22 1989-02-14 Vickery Ian M Anaesthesia mask
US4811730A (en) 1988-07-18 1989-03-14 Seitz Corporation CPR face mask and method of using same
US4830138A (en) 1986-10-06 1989-05-16 Finnveden Holding Ab Pressure ring for ear cover
US4838878A (en) 1985-05-03 1989-06-13 Glenda G. Kalt Universal clamp
US4899740A (en) 1989-01-17 1990-02-13 E. D. Bullard Company Respirator system for use with a hood or face mask
US4907584A (en) 1988-03-03 1990-03-13 Mcginnis Gerald E Respiratory mask
US4915105A (en) 1988-10-28 1990-04-10 Lee Tien Chu Miniature respiratory apparatus
US4919128A (en) 1988-08-26 1990-04-24 University Technologies International Inc. Nasal adaptor device and seal
US4919654A (en) 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US4945907A (en) 1987-04-13 1990-08-07 New England Thermoplastics, Inc. Face mask
US4960121A (en) 1987-03-18 1990-10-02 Figgie International, Inc. Half-face mask assembly
US4966590A (en) 1988-12-13 1990-10-30 Kalt Medical Corporation IV Clamp with membrane dressing
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US4971051A (en) 1987-07-13 1990-11-20 Toffolon Norman R Pneumatic cushion and seal
US4976698A (en) 1987-10-23 1990-12-11 Stokley Manuel H Intravenous catheter and tubing stabilization device
US4989599A (en) 1989-01-26 1991-02-05 Puritan-Bennett Corporation Dual lumen cannula
DE3927038A1 (en) 1989-08-16 1991-02-21 Juergen Hoefer Oxygen mask measuring blood oxygen level - has sensor on lever arm for placing on forehead of wearer
US4996983A (en) 1989-01-31 1991-03-05 Amrhein Floyd E Inhaler filtration device with housing supportable by spectacle temple
US5000173A (en) 1987-11-19 1991-03-19 Daniel Zalkin Respiratory aid device
US5005571A (en) 1988-11-25 1991-04-09 Dietz Henry G Mouth nose mask for use with an inhalation therapy and/or breathing monitoring apparatus
EP0427474A2 (en) 1989-11-09 1991-05-15 Smiths Industries Medical Systems Inc. Face masks and face masks components
US5020163A (en) 1989-06-29 1991-06-04 Gentex Corporation Earseal for sound-attenuating earcup assembly
US5022900A (en) 1988-07-20 1991-06-11 Eagle, Military Gear Overseas Ltd. Forced ventilation filtration device
US5023955A (en) 1989-04-13 1991-06-18 Gentex Corporation Impact-absorbing sound-attenuating earcup
US5025805A (en) 1990-07-11 1991-06-25 Betty Nutter Nasal cannula assembly
US5038772A (en) 1988-07-09 1991-08-13 Dragerwerk Aktiengessellschaft Closed-cycle breathing equipment
US5042478A (en) 1988-08-26 1991-08-27 University Technologies International, Inc. Method of ventilation using nares seal
US5046491A (en) 1990-03-27 1991-09-10 Derrick Steven J Apparatus and method for respired gas collection and analysis
US5074297A (en) 1989-12-19 1991-12-24 The General Hospital Corporation Self-sealing mask for delivering intermittent positive pressure ventilation
EP0466960A1 (en) 1987-03-10 1992-01-22 Ignatius E. Theodorou Portable breathing device
EP0303090B1 (en) 1987-08-04 1992-04-22 SGE SOCIETA' GENERALE ELASTOMERI S.p.A. Seal for protective masks
US5113857A (en) 1990-08-27 1992-05-19 Stair Dickerman Breathing gas delivery system and holding clip member therefor
US5117818A (en) 1988-03-23 1992-06-02 Palfy Christa Ursula Nasal tube holder
US5121745A (en) 1990-07-23 1992-06-16 Israel Michael B Self-inflatable rescue mask
US5127397A (en) 1989-09-04 1992-07-07 Ambu International A/S Protective device kit for use in pulmonary ventilation treatment by the mouth-to-mouth or mouth-to-nose methods
US5137017A (en) 1989-04-13 1992-08-11 Salter Labs Demand oxygen system
US5138722A (en) 1991-07-02 1992-08-18 David Clark Company Inc. Headset ear seal
WO1992020395A1 (en) 1991-05-22 1992-11-26 Anne Le Mitouard Facial breathing mask
WO1992020392A1 (en) 1991-05-24 1992-11-26 Calor Air Separation Limited Nasal cannula
USD333015S (en) 1991-12-02 1993-02-02 Lifecare International, Inc. Nasal mask
US5188101A (en) 1991-11-15 1993-02-23 Tumolo Jean S Premature baby headband for supporting nasal cannulas and oxygen feed tubes
US5191824A (en) 1991-12-04 1993-03-09 Luxaire Cushion Co. Method and apparatus for forming a contoured surface
US5207665A (en) 1990-07-06 1993-05-04 Mcneil-Ppc, Inc. Absorbent product having mechanical attachment mechanism
US5220699A (en) 1992-07-27 1993-06-22 Farris R David Surgical face mask support apparatus and method
US5243971A (en) 1990-05-21 1993-09-14 The University Of Sydney Nasal mask for CPAP having ballooning/moulding seal with wearer's nose and facial contours
US5243709A (en) 1991-09-04 1993-09-14 Natus Medical, Inc. Acoustically sealing earmuff for an infant
US5245995A (en) 1987-06-26 1993-09-21 Rescare Limited Device and method for monitoring breathing during sleep, control of CPAP treatment, and preventing of apnea
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
US5263939A (en) 1992-10-09 1993-11-23 Surgin Surgical Instrumentation, Inc. Retainer for laparoscopic cannula
US5265592A (en) 1991-02-28 1993-11-30 Intertechnique Individual protective breathing equipment
US5265595A (en) 1989-06-19 1993-11-30 Hans Rudolph, Inc. Mask for breath analysis
US5267557A (en) 1992-08-17 1993-12-07 Her Mou Lin Nose mask with a filtering device
US5269296A (en) 1991-10-29 1993-12-14 Landis Robert M Nasal continuous positive airway pressure apparatus and method
US5271391A (en) 1991-12-20 1993-12-21 Linda Graves Apparatus for delivering a continuous positive airway pressure to an infant
US5299599A (en) 1992-09-17 1994-04-05 Lifecare International, Inc. Valving arrangement for a negative pressure ventilator
US5304146A (en) 1992-10-23 1994-04-19 Johnson Melissa C Medical appliance securing device
US5335656A (en) 1988-04-15 1994-08-09 Salter Laboratories Method and apparatus for inhalation of treating gas and sampling of exhaled gas for quantitative analysis
US5349949A (en) 1991-10-03 1994-09-27 Intertechnique Face mask with lip, fold, and resilient spring means to improve seal
US5355893A (en) 1992-04-06 1994-10-18 Mick Peter R Vital signs monitor
US5355878A (en) 1990-06-26 1994-10-18 Cam Lock (Uk) Ltd. Breathing equipment for aircrew
US5364367A (en) 1993-04-30 1994-11-15 Minnesota Mining And Manufacturing Company Cannula anchor
US5372391A (en) 1993-02-22 1994-12-13 The United States Of America As Represented By The United States Department Of Energy Internal pipe attachment mechanism
US5372130A (en) 1992-02-26 1994-12-13 Djs&T Limited Partnership Face mask assembly and method having a fan and replaceable filter
US5372388A (en) 1993-04-30 1994-12-13 American Pipe & Plastics, Inc. Integral multi-duct conduit section
US5372390A (en) 1993-02-24 1994-12-13 Senior Engineering Investments, B.V. Coupling system for relatively thick-walled tubes
US5372389A (en) 1993-06-22 1994-12-13 Graco Inc. Nozzle swivel joint
US5375593A (en) 1994-02-10 1994-12-27 Press; John R. Oxygenating pacifier
US5385141A (en) 1992-04-16 1995-01-31 Siebe North, Inc. Speech diaphragm and exhalation valve
US5394568A (en) 1993-01-28 1995-03-07 Minnesota Mining And Manufacturing Company Molded head harness
US5396885A (en) 1992-07-31 1995-03-14 Nelson; Joseph M. Mobile air supply cart having dual tanks and connections allowing simultaneous filling of tank and delivery of air to a user
US5398676A (en) 1993-09-30 1995-03-21 Press; Roman J. Portable emergency respirator
US5400776A (en) 1993-07-09 1995-03-28 Proprietary Technology, Inc. Apparatus for maintaining a bend in a medical insufflation tube
US5419318A (en) 1991-05-21 1995-05-30 Better Breathing, Inc. Breathing mask
US5425359A (en) 1994-08-29 1995-06-20 Liou; Nan-Tien Nose plug structure with filter
EP0658356A2 (en) 1993-11-19 1995-06-21 Airways Ltd., Inc. Nasal ventilation cannula
US5437267A (en) 1993-08-03 1995-08-01 Weinstein; Allan Device for delivering aerosol to the nasal membranes and method of use
US5441046A (en) 1993-09-29 1995-08-15 Respironics, Inc. Quick release mechanism for nasal and/or oral gas delivery mask
US5462528A (en) 1988-07-01 1995-10-31 Roewer; Norbert Stomach tube
FR2720280A1 (en) 1994-05-27 1995-12-01 Mitouard Anne Le Respiratory mask for assisted ventilation
US5488948A (en) 1993-09-23 1996-02-06 Intertechnique Fast donning respiratory protection equipment
US5509409A (en) 1994-09-12 1996-04-23 The Living Trust Of Marjorie F. Weatherholt Nasal cannula assembly
US5513634A (en) 1994-05-06 1996-05-07 Chek-Med Systems, Inc. Combination integral bite block airway and nasal cannula
US5513635A (en) 1995-02-02 1996-05-07 Bedi; Shan Nasal cannula anchoring apparatus
US5526806A (en) 1995-04-04 1996-06-18 Sansoni; Jean Non-invasive nasal cannula
US5533506A (en) 1995-01-13 1996-07-09 Medlife, Inc. Nasal tube assembly
US5538000A (en) 1995-02-06 1996-07-23 Hans Rudolph, Inc. Airflow delivery system
US5538001A (en) 1992-06-12 1996-07-23 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Northern Ireland And Great Britain Oxygen masks
US5540223A (en) 1994-02-17 1996-07-30 Respironics, Inc. Respiratory mask facial seal
WO1996028207A1 (en) 1995-03-16 1996-09-19 Assistance Publique - Hopitaux De Paris Facial respirator mask, part and method for the manufacture thereof
US5560354A (en) 1993-06-18 1996-10-01 Rescare Limited Facial masks for assisted respiration or CPAP
US5570684A (en) 1995-12-29 1996-11-05 Behr; R. Douglas Heating and humidifying respiratory mask
US5592938A (en) 1992-06-08 1997-01-14 Respironics Inc. Mask apparatus
US5623923A (en) 1993-06-09 1997-04-29 Intertechnique Respiratory equipment with comfort adjustment
US5626814A (en) 1995-11-20 1997-05-06 Vicino; Robert K. Method of making a self-inflating structure
EP0776679A1 (en) 1995-12-01 1997-06-04 Cleantec Co., Ltd. Mask maintaining warmth in nasal area
US5647357A (en) 1995-09-08 1997-07-15 Respironics, Inc. Respiratory mask facial seal
US5653228A (en) 1994-10-25 1997-08-05 Byrd; Timothy N. Medical tube holding device and associated securing strap
US5655527A (en) 1994-06-03 1997-08-12 Respironics Inc. Respiratory mask with floating seal responsive to pressurized gas
US5662101A (en) 1995-12-07 1997-09-02 Respironics, Inc. Respiratory facial mask
US5682881A (en) 1996-10-21 1997-11-04 Winthrop; Neil Nasal CPAP/Cannula and securement apparatus
US5704345A (en) 1993-11-05 1998-01-06 Resmed Limited Detection of apnea and obstruction of the airway in the respiratory system
US5707342A (en) 1995-11-24 1998-01-13 Fuji Photo Optical Co., Ltd. Protector girdle for endoscopic insertion instrument
WO1998004310A1 (en) 1996-07-26 1998-02-05 Resmed Limited A nasal mask and mask cushion therefor
US5724965A (en) 1995-06-06 1998-03-10 Respironics Inc. Nasal mask
WO1998012965A1 (en) 1996-09-23 1998-04-02 Resmed Limited Assisted ventilation to match patient respiratory need
US5735272A (en) 1997-01-22 1998-04-07 Dillon; Michael M. Nasal tube holder having a nasal dilator attached thereto
US5740799A (en) 1993-12-21 1998-04-21 Maersk Medical A/S Device for the supply of oxygen and/or other gases to a patient
US5752511A (en) 1996-11-22 1998-05-19 Simmons; Carl J. Universal medical tube retainer and nasal wall tissue dilator
DE29723101U1 (en) 1997-04-05 1998-05-28 Gottlieb Weinmann Geräte für Medizin und Arbeitsschutz GmbH + Co. KG, 22525 Hamburg Device for coupling to ventilation masks
WO1998023305A1 (en) 1996-11-25 1998-06-04 Kimberly-Clark Worldwide, Inc. Adhesive composition comprising a polysiloxane
DE19703526A1 (en) 1997-01-31 1998-08-06 Rainer Berger Appliance for delivery of a substance into inhaled air
US5794619A (en) 1997-02-18 1998-08-18 Edelman; Robert Nasal cannula mounted solely by frictional engagement with the columella
US5807341A (en) 1996-12-11 1998-09-15 Team Medical Llc Medical catheter dressing device
US5842469A (en) 1997-07-03 1998-12-01 Rapp; John D. Method for extending the useful life of a nasal dilator
WO1999016327A1 (en) 1997-09-29 1999-04-08 Alpine Partners Skin mounted device holder
US5906203A (en) 1994-08-01 1999-05-25 Safety Equipment Sweden Ab Breathing apparatus
WO1999025410A1 (en) 1997-11-14 1999-05-27 Medisolve Limited A seal for a respiratory mask, and a respiratory mask
US5918598A (en) 1998-04-10 1999-07-06 Belfer; William A. Strapless respiratory facial mask for customizing to the wearer's face
US5921239A (en) 1997-01-07 1999-07-13 Sunrise Medical Hhg Inc. Face mask for patient breathing
WO1999043375A1 (en) 1998-02-25 1999-09-02 MAP Medizintechnik für Arzt und Patient GmbH & Co. KG Respirator mask
US5954049A (en) 1991-10-15 1999-09-21 Trudell Medical Limited Equine mask with MDI adapter
US5975079A (en) 1994-07-25 1999-11-02 Hellings; Deborah Anesthesia and respiratory face mask
WO1999061088A1 (en) 1998-05-22 1999-12-02 Resmed Limited Ventilatory assistance for treatment of cardiac failure and cheyne-stokes breathing
US6019101A (en) 1996-10-31 2000-02-01 Sleepnet Corporation Nasal air mask
US6026811A (en) 1998-03-12 2000-02-22 Settle; Romaine A. Protective cover for nasal air supply hose
US6044844A (en) 1996-12-02 2000-04-04 Resmed Limited Mask and harness assembly
WO2000020072A1 (en) 1998-10-05 2000-04-13 Respironics, Inc. Customizable seal, mask with customizable seal and method of using such a seal
US6082360A (en) 1995-05-04 2000-07-04 Hans Rudolph, Inc. Mask with gel seal
WO2000038772A1 (en) 1998-12-24 2000-07-06 Resmed Limited An anti-asphyxia valve
US6086118A (en) 1991-09-10 2000-07-11 Bundy Corporation Quick connect tubing connector
US6095996A (en) 1997-05-30 2000-08-01 Bristol-Myers Squibb Company Adhesive composition or structure
US6098205A (en) 1995-01-23 2000-08-08 Schwartz; Alan N. Goggles with pliable and resilient sealing pad
US6109263A (en) 1995-08-09 2000-08-29 Feuchtgruber; Gottfried Packaged respiratory mask
WO2000050121A1 (en) 1999-02-25 2000-08-31 Respironics, Inc. Adhesive nasal mask assembly, system and method of using same
US6119693A (en) 1998-01-16 2000-09-19 Resmed Limited Forehead support for facial mask
US6119694A (en) 1997-07-24 2000-09-19 Respironics Georgia, Inc. Nasal mask and headgear
US6123082A (en) 1996-12-18 2000-09-26 Resmed Limited Device for preventing or reducing the passage of air through the mouth
US6139787A (en) 1996-10-24 2000-10-31 Ubertech Texas, Inc. Method for applying molded silicone design elements onto substrates
WO2000069521A1 (en) 1999-05-12 2000-11-23 Respironics, Inc. Low contact nasal mask and system using same
US6152137A (en) 1995-01-23 2000-11-28 Schwartz; Alan N. Pliable and resilient sealing pad
WO2000072905A1 (en) 1999-05-28 2000-12-07 Euromedico Ltd. Gas-supplying device
WO2000074758A1 (en) 1999-06-08 2000-12-14 Sleepnet Corporation Nose mask
WO2000076568A1 (en) 1999-06-16 2000-12-21 Mallinckrodt Inc. Pliable respiratory mask
WO2000078384A1 (en) 1999-06-18 2000-12-28 Resmed Limited Forehead support for facial mask
US6176164B1 (en) 1999-08-16 2001-01-23 Robert B. Nylander Compression cutting process for flexible form and template for use therewith
US6193914B1 (en) 1995-11-30 2001-02-27 Ubertech Texas, Inc. Molding thermosetting polymers onto substrates
US6196223B1 (en) 1998-04-10 2001-03-06 William A. Belfer Strapless respiratory facial mask for customizing to the wearer's face
DE19944242A1 (en) 1999-09-15 2001-03-22 Dentallabor Negurescu Gmbh Medical breathing mask with nose and mouth pieces joins these via orifice and flexible connector tube to breathing apparatus.
US6211263B1 (en) 1996-12-23 2001-04-03 The Procter & Gamble Company Adhesive for secure topical attachment to the skin and comfortable removal
US6231548B1 (en) 1999-08-26 2001-05-15 Alfred Ernest Bassett Securing device for intravenous cannula or catheter
EP1099452A2 (en) 1999-11-12 2001-05-16 MAP Medizintechnik für Arzt und Patient GmbH & Co. KG Respiratory mask and method for making the same
US6241930B1 (en) 1995-11-30 2001-06-05 Ubertech Texas, Inc. Method of constructing a garment with a graphical design thereon
US6258066B1 (en) 1999-03-08 2001-07-10 Rex W. Urich Intravenous catheter stabilizing device
DE10002571A1 (en) 2000-01-21 2001-07-26 Mpv Truma Ges Fuer Medizintech Breathing mask is of a flexible material with a spaced sealing lip at the inner support wall to give a comfortable and sealed fit at the face when in place around the nose
WO2001062326A1 (en) 2000-02-25 2001-08-30 MAP Medizintechnik für Arzt und Patient GmbH & Co. KG Sealing lip device for a respiratory mask, respiratory mask and a method and a mould for producing the same
US20010020474A1 (en) 2000-01-21 2001-09-13 Hecker Karl Heinz Nasal breathing mask and mask cushion for a nasal breathing mask
US6295366B1 (en) 1999-03-24 2001-09-25 Flightcom Corporation Aircraft headset
US6328038B1 (en) 1998-07-14 2001-12-11 Fred Bruce Kessler Nasal cannula retainer
WO2001095965A1 (en) 2000-06-14 2001-12-20 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
WO2001097893A1 (en) 2000-06-22 2001-12-27 Resmed Ltd. Mask with gusset
WO2001097892A1 (en) 2000-06-19 2001-12-27 Australian Centre For Advanced Medical Technology Ltd Mask
US20020005198A1 (en) 1996-07-26 2002-01-17 Philip Rodney Kwok Full-face mask and mask cushion therefor
US6341606B1 (en) 1999-05-19 2002-01-29 Mallinckrodt, Inc. Disposable respiratory mask with adhesive skin interface
JP2002028240A (en) 2000-06-14 2002-01-29 Fisher & Paykel Ltd Nose mask
US6347631B1 (en) 1999-11-09 2002-02-19 Mallinckrodt, Inc. Cantilever device and method for breathing devices and the like
US6358279B1 (en) 1999-02-22 2002-03-19 University Of Miami Minicapsulorhexis valve
US6374826B1 (en) 1999-03-18 2002-04-23 Resmed Limited Mask and headgear connector
GB2368533A (en) 2000-08-12 2002-05-08 Smiths Group Plc Nose ventilation device
US20020053347A1 (en) 1999-06-18 2002-05-09 Saeed Ziaee Nasal Mask
WO2002038221A1 (en) 2000-11-10 2002-05-16 Lee Keun Woo Anti-fogging mask
WO2002045784A1 (en) 2000-12-07 2002-06-13 Resmed Ltd Mask brace and mask assembly
US20020069872A1 (en) 2000-09-22 2002-06-13 Gradon Lewis George Mouthpiece
US6412487B1 (en) 1997-01-31 2002-07-02 Resmed Limited Mask cushion and frame assembly
US6412593B1 (en) 1998-03-18 2002-07-02 Nct Group, Inc. Cushioned earphones
US6419660B1 (en) 1998-05-29 2002-07-16 Ronald D. Russo Medical tube holder
US6422238B1 (en) 1999-01-12 2002-07-23 Resmed Limited Headgear
US6423036B1 (en) 1999-06-07 2002-07-23 Gibbons Surgical Corporation Cannula anchoring port
US20020096178A1 (en) 1999-06-18 2002-07-25 Saeed Ziaee Nasal mask with balloon exhalation valve
US6431172B1 (en) 2000-10-20 2002-08-13 Mallinckrodt Inc. Nasal cannula with inflatable plenum chamber
US6434796B1 (en) 1999-10-20 2002-08-20 Kathryn M. Speirs Oxygen delivery cannula retainer, cannula with retainers assembly, and method for retaining cannulas
US6439234B1 (en) 1998-04-03 2002-08-27 Salter Labs Nasal cannula
US6448303B1 (en) 2000-12-29 2002-09-10 National Starch And Chemical Investment Holding Corporation Hot melt adhesives for dermal application
US20020124849A1 (en) 2000-05-26 2002-09-12 Taema Nasal breathing mask with adjustable thermistor for treating respiratory disorders of sleep
US20020143296A1 (en) 2001-03-29 2002-10-03 Russo Ronald D. Medical tube holder
DE10213905A1 (en) 2001-03-30 2002-10-10 Fred G Goebel Breathing air flow control in a breathing apparatus for a patient, comprises determining the air pressure in a cuff, and then controlling the air flow accordingly
FR2823122A1 (en) 2001-04-06 2002-10-11 Robert Schegerin Respirator mask for use e.g. in aircraft has additional thin and very supple seal lip adjacent to semi-supple rim of mask
US6467483B1 (en) 1999-07-28 2002-10-22 Respironics, Inc. Respiratory mask
US6467482B1 (en) 2000-02-01 2002-10-22 Georges Boussignac Respiratory assistance apparatus
US6470887B1 (en) 1998-05-12 2002-10-29 Intertechnique Protective breathing equipment with fast positioning
US20020157673A1 (en) 1998-07-14 2002-10-31 Kessler Fred B. Nasal cannula retainer
US6478026B1 (en) 1999-03-13 2002-11-12 Thomas J. Wood Nasal ventilation interface
US6482178B1 (en) 1999-05-21 2002-11-19 Cook Urological Incorporated Localization device with anchoring barbs
EP1258266A1 (en) 2001-05-18 2002-11-20 Tiara Medical Systems, Inc. Mask cushion and method of using same
US6491034B1 (en) 1999-02-09 2002-12-10 Resmed Limited Gas delivery connection assembly
US20020185134A1 (en) 2001-06-07 2002-12-12 Bishop Giles Andrew Face masks
GB2376896A (en) 2001-05-18 2002-12-31 Ti-Li Chang Medical facemask
US6530373B1 (en) 2000-08-04 2003-03-11 Mallinckrodt Inc. Respirator mask
US6536435B1 (en) 1999-02-22 2003-03-25 Cabot Safety Intermediate Corporation Respirator headpiece and release mechanism
US20030079749A1 (en) 2001-10-25 2003-05-01 Roger Strickland Nasal cannula
US6561192B2 (en) 2000-03-03 2003-05-13 The Penn State Research Foundation Nasal oral respiratory interface
US6561193B1 (en) 1998-10-30 2003-05-13 Linda J. Noble Nasal gas delivery apparatus and a nasal vestibular airway
US6561188B1 (en) 2000-08-21 2003-05-13 Ellis Alan D Nasal breathing apparatus and methods
US6561190B1 (en) 1997-02-10 2003-05-13 Resmed Limited Mask and a vent assembly therefor
US20030089373A1 (en) 2001-06-14 2003-05-15 Gradon Lewis George Breathing assistance apparatus
US6571798B1 (en) 2000-04-05 2003-06-03 W. Keith Thornton Device for improving breathing and method of constructing same
US6579267B2 (en) 2001-01-05 2003-06-17 Applied Diabetes Research, Inc. Pivoting joint infusion assembly
US20030111080A1 (en) 2000-06-14 2003-06-19 Olsen Gregory James Breathing assistance apparatus
US6584975B1 (en) 2000-08-28 2003-07-01 Eldridge Taylor Respirator mask for filtering breathed air
US6595214B1 (en) 2000-11-22 2003-07-22 Mpv-Truma Gesellschaft Fur Nasal respiration mask
US6595215B2 (en) 2000-03-13 2003-07-22 Innomed Technologies, Inc. Ventilation interface for sleep apnea therapy
US6607516B2 (en) 1999-02-02 2003-08-19 The Procter & Gamble Company Disposable human waste management devices with improved adhesive flange to facilitate adhesion in oily conditions
US20030154980A1 (en) 1991-12-20 2003-08-21 Michael Berthon-Jones Patient interface for respiratory apparatus
GB2385533A (en) 2002-02-22 2003-08-27 Smiths Group Plc Face mask with seal around nose
US20030168063A1 (en) 2002-03-08 2003-09-11 Gambone Anthony Joseph Pressure face mask and nasal mask
US6627289B1 (en) 1988-12-20 2003-09-30 Kimberly-Clark Worldwide, Inc. Mechanical fastening tapes and method for their construction
US6631718B1 (en) 1999-06-08 2003-10-14 Sleepnet Corporation Air mask with seal
US20030196658A1 (en) 2002-04-23 2003-10-23 Ging Anthony M. Ergonomic and adjustable respiratory mask assembly with frame
US20030196656A1 (en) 2002-04-23 2003-10-23 Moore Rachael E. Ergonomic and adjustable respiratory mask assembly with cushion
US6637434B2 (en) 1998-10-30 2003-10-28 Linda J. Noble Nasal gas delivery system and method for use thereof
WO2003090827A1 (en) 2002-04-23 2003-11-06 Resmed Limited Ergonomic and adjustable respiratory mask assembly
US6663600B2 (en) 2000-08-03 2003-12-16 Venetech International, Inc. Dialysis catheter anchoring system
WO2003105921A2 (en) 2002-06-14 2003-12-24 Map Medizin-Technologie Gmbh Mask cushioning and forehead pad for a respiratory mask, respiratory mask in addition to a mould and method for their production
US6669712B1 (en) 2000-06-30 2003-12-30 Norman Cardoso Nasal oxygen cannula with supply tube management
US6679257B1 (en) 1998-08-13 2004-01-20 Fisher & Paykel Limited Breathing assistance apparatus
USD485905S1 (en) 2002-08-09 2004-01-27 Resmed Limited Nasal mask
US20040025885A1 (en) 2002-08-09 2004-02-12 Payne, Charles E. Headwear for use by a sleep apnea patient
US20040025882A1 (en) 2000-07-21 2004-02-12 Stefan Madaus Holding device for a respiratory mask
US20040045551A1 (en) 2002-09-06 2004-03-11 Ric Investments, Inc. Patient interface with forehead support system
WO2004022146A1 (en) 2002-09-06 2004-03-18 Resmed Limited Cushion for a respiratory mask assembly
US6710099B2 (en) 1999-02-02 2004-03-23 The Procter & Gamble Company Disposable absorbent articles with improved adhesive for attachment to the skin to facilitate water adhesion stability with low pain level removal
WO2004041342A1 (en) 2002-11-06 2004-05-21 Resmed Limited Mask and components thereof
US20040106891A1 (en) 2002-08-30 2004-06-03 Inrad, Inc. Localizing needle with fluid delivery
US20040107968A1 (en) 2002-08-12 2004-06-10 Griffiths Joseph Anthony Oxygen mask with flexible face seal
US20040111104A1 (en) 2002-08-23 2004-06-10 Organ Recovery Systems Cannulas, cannula mount assemblies, and clamping methods using such cannulas and cannula mount assemblies
US20040112384A1 (en) 2001-09-07 2004-06-17 Resmed Limited Headgear connection assembly for a respiratory mask assembly
US20040127856A1 (en) 2002-12-27 2004-07-01 Carolyn Johnson Catheter and delivery end
US20040133958A1 (en) * 2003-01-10 2004-07-15 Sport Helmets, Inc. Protective eyewear device for sports
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US6766800B2 (en) 2002-08-30 2004-07-27 Sensormedics Corporation Pressure regulating valve for use in continuous positive airway pressure devices
US6776163B2 (en) 2002-03-06 2004-08-17 The Boc Group, Plc Nasal cannulae
US6776162B2 (en) 2000-03-13 2004-08-17 Innomed Technologies, Inc. Ventilation interface for sleep apnea therapy
WO2004073778A1 (en) 2003-02-21 2004-09-02 Resmed Limited Nasal assembly
US6789543B2 (en) 2002-07-02 2004-09-14 James L. Cannon Assisted breathing device and method of wearing same
WO2004078230A2 (en) 2003-02-28 2004-09-16 Sunrise Medical Hhg Inc. Method for securing a nasal mask
US6805117B1 (en) 2001-11-07 2004-10-19 Ric Investments, Llc Universal fitting headgear
US20040211428A1 (en) 2003-02-28 2004-10-28 Sunrise Medical Hhg Inc. Nasal mask cushion
US6817362B2 (en) 2001-08-10 2004-11-16 North Safety Products Inc. Respirator
US20040226564A1 (en) 2003-05-14 2004-11-18 Jan-Ove Persson Device for holding a tracheal cannula
US6820617B2 (en) 1998-08-13 2004-11-23 Fisher & Paykel Limited Breathing assistance apparatus
US6823865B2 (en) 2000-05-15 2004-11-30 Resmed Limited Respiratory mask having gas washout vent and gas washout vent assembly for respiratory mask
US6823869B2 (en) 2001-09-07 2004-11-30 Resmed Limited Mask assembly
EP1481702A2 (en) 2003-05-30 2004-12-01 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
CN1553820A (en) 2001-09-13 2004-12-08 Breathing assistance apparatus
US6834650B1 (en) 1999-03-12 2004-12-28 Mallinckrodt, Inc. Face or nose mask for non-invasive ventilation of patients in general
US20050011523A1 (en) 2003-07-18 2005-01-20 Acoba, Llc Method and system of Individually controlling airway pressure of a patient's nares
US20050033247A1 (en) 2003-08-06 2005-02-10 Thompson Paul S. Nasal cannula assembly
US20050028822A1 (en) 2003-08-08 2005-02-10 Tiara Medical Systems, Inc. Sealing nasal cannula
US6860270B2 (en) 2001-08-02 2005-03-01 Joseph A. Sniadach Double barrel ventilation mask for a patient
US20050051171A1 (en) 2003-09-10 2005-03-10 Booth Jamie Lee Nose breathing mask for a medical patient; and method
US20050051176A1 (en) 2001-06-18 2005-03-10 Riggins Michael Allen Nasal and oral cannula apnea detection device
US20050056286A1 (en) 2003-09-17 2005-03-17 Huddart Brett John Breathable respiratory mask
US20050061326A1 (en) 2002-08-09 2005-03-24 Payne Charles E. Headwear for use by a sleep apnea patient
US20050101933A1 (en) 2003-11-10 2005-05-12 James Marrs Subcutaneous infusion device and method
WO2005053781A1 (en) 2003-12-08 2005-06-16 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
WO2005063328A1 (en) 2003-12-31 2005-07-14 Resmed Ltd Compact oronasal patient interface
US20050150495A1 (en) 2004-01-10 2005-07-14 Wolfgang Rittner Passenger oxygen mask
WO2005063326A1 (en) 2003-12-31 2005-07-14 Resmed Limited Mask system
US20050155604A1 (en) 2002-04-23 2005-07-21 Resmed Limited Respiratory mask assembly with magnetic coupling to headgear assembly
US6926004B2 (en) 2003-08-20 2005-08-09 Weinmann Geräte für Medizin GmbH & Co. KG Breathing mask with a head fastening device
WO2005086943A2 (en) 2004-03-11 2005-09-22 Ric Investments, Llc Patient interface device
US20050211252A1 (en) 2002-01-17 2005-09-29 Map Medizin-Technologie Gmbh Breathing mask arrangement and a forehead support device for same
WO2005099801A1 (en) 2004-04-15 2005-10-27 Resmed Limited Positive-air-pressure machine conduit
US20050241644A1 (en) 2004-04-09 2005-11-03 Resmed Limited Nasal assembly
DE102004055433B3 (en) 2004-11-17 2005-11-17 Drägerwerk AG Breathing mask with integrated suction area
WO2005110220A1 (en) 2004-05-17 2005-11-24 Resmed Limited Position sensitive illumination system
US20050257792A1 (en) * 2002-07-12 2005-11-24 Wixey David F Breathing assistance apparatus
AU2005100738A4 (en) 2005-09-08 2005-11-24 Respironics, Inc. Patient interface device
US6968844B2 (en) 2002-06-10 2005-11-29 Laerdal Medical As Mask cover
US6972003B2 (en) 2000-03-10 2005-12-06 Venetec International, Inc. Medical anchoring system
WO2005118040A1 (en) 2004-06-03 2005-12-15 Resmed Limited Cushion for a patient interface
US20050284481A1 (en) 2004-06-23 2005-12-29 Dragerwerk Aktiengesellschaft Breathing mask with breathing gas supply through the strap
US7011090B2 (en) 2001-09-07 2006-03-14 Resmed Limited Elbow for mask assembly
US20060060200A1 (en) 2004-09-21 2006-03-23 Ric Investments, Llc Cheek-mounted patient interface
US20060081250A1 (en) 2004-10-15 2006-04-20 Bordewick Steven S Nares seal
US20060095009A1 (en) 2004-10-29 2006-05-04 Lampropoulos Fred P Self-suturing anchor device for a catheter
US20060095008A1 (en) 2004-10-29 2006-05-04 Lampropoulos Fred P Self-suturing anchor device for a catheter
US20060096598A1 (en) 2004-11-05 2006-05-11 Ho Peter C F Respiratory mask seal and mask using same
US7052127B2 (en) 2002-01-23 2006-05-30 Warnaco Swimwear Products Inc. One-piece integrally-formed goggle
US20060124131A1 (en) 2004-12-10 2006-06-15 Respcare, Inc. Hybrid ventilation mask with nasal interface and method for configuring such a mask
WO2006069415A1 (en) 2004-12-30 2006-07-06 Resmed Limited Respiratory mask having gas washout vent and gas washout vent assembly for respiratory mask
US7076282B2 (en) 1998-07-31 2006-07-11 First Water Limited Bioadhesive compositions and biomedical electrodes containing them
WO2006074513A1 (en) 2005-01-12 2006-07-20 Resmed Limited Cushion for patient interface
WO2006074516A1 (en) 2005-01-12 2006-07-20 Resmed Limited Respiratory mask having gas washout vent and method for making the mask
US7080645B2 (en) 2001-02-06 2006-07-25 Seleon Gmbh Anti-snoring device, method for reducing snoring, and a nasal air cannula
US20060174887A1 (en) 2004-12-10 2006-08-10 Sanjay Chandran Ventilation interface
US7101359B2 (en) 1997-09-04 2006-09-05 The Procter & Gamble Company Absorbent article fastening device
US20060207597A1 (en) 2005-03-15 2006-09-21 Wright Clifford A Adjustable bite block for respirator
WO2006099658A1 (en) 2005-03-22 2006-09-28 Resmed Limited Nasal dilator
US20060237018A1 (en) 2000-06-14 2006-10-26 Mcauley Alastair E Breathing assistance apparatus
WO2006113321A2 (en) 2005-04-13 2006-10-26 Ric Investments, Llc Cushion inside a cushion patient interface
JP2006326129A (en) 2005-05-30 2006-12-07 Shin Etsu Polymer Co Ltd Elastic adhesive member for inhalation mask and inhalation mask
US7146976B2 (en) 2002-08-06 2006-12-12 Mckown Joseph R Nasal cannula retainer
WO2006130903A1 (en) 2005-06-06 2006-12-14 Resmed Limited Mask system
US7152601B2 (en) 2000-12-18 2006-12-26 Mohamed Ali Barakat Strapless respiratory face mask
US7152599B2 (en) 2005-05-20 2006-12-26 Thomas Wendell A Nasal mask for delivering gas
CN1901962A (en) 2003-12-31 2007-01-24 雷斯梅德有限公司 Mask system
WO2007009182A1 (en) 2005-07-19 2007-01-25 Map Medizin-Technologie Gmbh Respiratory mask and method for manufacturing a respiratory mask
US20070023044A1 (en) 2005-07-29 2007-02-01 Resmed Limited Life style flow generator and mask system
US20070044804A1 (en) 2005-08-15 2007-03-01 Ric Investments, Llc. Patient interface with adjustable cushion
US7191781B2 (en) 2003-08-05 2007-03-20 Innomed Technologies, Inc. Nasal ventilation interface and system
WO2007041786A1 (en) 2005-10-14 2007-04-19 Resmed Ltd Nasal assembly
WO2007041751A1 (en) 2005-10-14 2007-04-19 Resmed Limited Cushion to frame assembly mechanism
US7207328B1 (en) 2003-07-29 2007-04-24 Armin Altemus Emergency air delivery system for patients
WO2007048174A1 (en) 2005-10-25 2007-05-03 Resmed Ltd Interchangeable mask assembly
WO2007053878A1 (en) 2005-11-08 2007-05-18 Resmed Ltd Nasal assembly
US20070125387A1 (en) 2005-12-02 2007-06-07 Chris Zollinger Infant nasal interface prong device
WO2007068044A1 (en) 2005-12-16 2007-06-21 Resmed Ltd Bladder cushion, forehead cushion, headgear straps, headgear cap and/or chinstrap
US7237551B2 (en) 2004-12-22 2007-07-03 Ric Investments, Llc. Cushion for a patient interface
US7243723B2 (en) 2004-06-18 2007-07-17 Halliburton Energy Services, Inc. System and method for fracturing and gravel packing a borehole
USD550836S1 (en) 2005-07-06 2007-09-11 Respcare, Inc. Ventilation interface
USD552733S1 (en) 2003-10-06 2007-10-09 Tyco Healthcare Group Lp Balloon anchored cannula
US7285255B2 (en) 2002-12-10 2007-10-23 Ecolab Inc. Deodorizing and sanitizing employing a wicking device
WO2007120355A2 (en) 2005-12-20 2007-10-25 Ric Investments, Llc Patient interface device with dampening cushion
US20070272249A1 (en) 2006-05-10 2007-11-29 Sanjay Chandran Ventilation interface
US20070282272A1 (en) 2006-05-30 2007-12-06 Bannon Chad D Device for guiding medical tubing
WO2007143772A2 (en) 2006-06-16 2007-12-21 Johann Stadler Holder for an indwelling venous cannula
WO2007145534A1 (en) 2006-06-16 2007-12-21 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US20080004573A1 (en) 2006-05-19 2008-01-03 Heiner Kaufmann Adapter for Affixing a Medical Appliance
WO2008011683A1 (en) 2006-07-28 2008-01-31 Resmed Ltd Delivery of respiratory therapy
WO2008011682A1 (en) 2006-07-28 2008-01-31 Resmed Ltd Delivery of respiratory therapy
US20080065022A1 (en) 2006-09-08 2008-03-13 Kurt Kyvik Catheter anchor
WO2008040050A1 (en) 2006-10-02 2008-04-10 Resmed Ltd Cushion for mask system
US20080110469A1 (en) 2006-11-13 2008-05-15 Stanley Weinberg Strapless flexible tribo-charged respiratory facial mask and method
WO2008070929A1 (en) 2006-12-15 2008-06-19 Resmed Ltd Delivery of respiratory therapy
US20080149104A1 (en) 2006-12-06 2008-06-26 Weinmann Gerate Fur Medizin Gmbh & Co. Kg Ventilator mask with a filler and method of production
JP2008526393A (en) 2005-01-12 2008-07-24 レスメド リミテッド Respirator with gusseted cushion
US20080200880A1 (en) 2007-02-15 2008-08-21 Kurt Kyvik Catheter anchor
EP1982740A2 (en) 2007-04-19 2008-10-22 Resmed Limited Cushion and cushion to frame assembly mechanism for patient interface
US20090014007A1 (en) 2007-07-13 2009-01-15 Resmed Limited Patient interface and non-invasive positive pressure ventilating method
US20090044808A1 (en) 2007-07-30 2009-02-19 Resmed Limited Patient interface
CN101389369A (en) 2004-06-16 2009-03-18 雷斯梅德有限公司 Cushion for a respiratory mask assembly
WO2009108994A1 (en) 2008-03-04 2009-09-11 Resmed Ltd A foam respiratory mask
WO2009109004A1 (en) 2008-03-04 2009-09-11 Resmed Ltd An interface including a foam cushioning element
US20100000534A1 (en) 2008-06-04 2010-01-07 Resmed Limited Patient interface systems
WO2010028425A1 (en) 2008-09-12 2010-03-18 Resmed Ltd A foam-based interfacing structure method and apparatus
WO2010148453A1 (en) 2009-06-24 2010-12-29 Resmed Ltd Adjustable mask system and related methods
US8701667B1 (en) 2006-05-05 2014-04-22 Ric Investments, Llc Patient interface device with limited support area on the face

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2749910A (en) * 1956-06-12 Faulconer
US3815596A (en) * 1973-01-26 1974-06-11 Automation Ind Inc Disposable face mask
US4755040A (en) 1986-07-28 1988-07-05 Sharp Plastics Mfg. Ltd. Swim goggles
US6796308B2 (en) 1998-12-09 2004-09-28 Resmed Limited Mask cushion and frame assembly
US6615832B1 (en) 1999-06-22 2003-09-09 Bragel International, Inc. Wear article with detachable interface assembly
DE10019358C2 (en) 2000-04-18 2002-09-05 Map Gmbh The breathing mask arrangement
GB0205447D0 (en) 2002-03-08 2002-04-24 Smiths Group Plc Mask apparatus
NZ533321A (en) 2002-03-22 2007-05-31 Invacare Corp Nasal mask
AU2003902098A0 (en) 2003-05-02 2003-05-22 Resmed Limited A mask system
EP2514471B1 (en) 2003-05-02 2016-01-13 ResMed Ltd. A mask system
US7353827B2 (en) * 2004-09-01 2008-04-08 Vitol Signs, Inc. Mask, mask shell and seal with improved mounting, mask seal, method of mask manufacture and mask with reduced exhalation noise
EP1695729A1 (en) 2005-02-25 2006-08-30 Omron Healthcare Co., Ltd. Medicament delivery device comprising a flexible bag
US7546837B2 (en) * 2005-03-16 2009-06-16 Ric Investments, Llc Interface with rolling diaphragm
US20080053446A1 (en) 2006-03-31 2008-03-06 Tiara Medical Systems, Inc. Adjustable cpap mask assembly
US8490624B2 (en) 2006-11-13 2013-07-23 Ric Investments, Llc Patient interface with variable footprint
US9707367B2 (en) * 2007-06-21 2017-07-18 Resmed Limited Auto-adjusting mask stabilizer

Patent Citations (498)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE185017C (en)
DE146688C (en)
US443191A (en) 1890-12-23 Karl illing
US781516A (en) 1904-02-03 1905-01-31 George N Guthrie Jr Respirator and inhaler.
US1192186A (en) 1910-09-20 1916-07-25 Samuel Ward Greene Respirator.
US1081745A (en) 1912-05-03 1913-12-16 White S Dental Mfg Co Nasal inhaler.
US1125542A (en) 1914-03-11 1915-01-19 Aubrey Humphries Apparatus for use in administering anesthetics.
US1229050A (en) 1917-03-29 1917-06-05 Robert Donald Respirator.
US1282527A (en) 1918-04-13 1918-10-22 Gratien Bidonde Life-preserver.
US1362766A (en) 1919-11-07 1920-12-21 Mcgargill James Martin Gas-mask
US1445010A (en) 1920-11-15 1923-02-13 William S Feinberg Breathing apparatus for swimmers
US1610793A (en) 1926-04-30 1926-12-14 Kaufman Leo Respirator
US1873160A (en) 1929-02-08 1932-08-23 Harold V Sturtevant Breathing apparatus
GB532214A (en) 1939-08-22 1941-01-20 Hayden Thomas Cattanach Improvements in and relating to nasal douches
US2353643A (en) 1942-07-29 1944-07-18 Arthur H Bulbulian Head harness for masks
US2415846A (en) 1944-10-23 1947-02-18 Randall Francis Eugene Oronasal mask
US2433565A (en) 1946-06-21 1947-12-30 Korman Alexander Nose filter
US2625155A (en) 1950-12-11 1953-01-13 Arthur E Engelder Face mask
US2706983A (en) 1951-09-15 1955-04-26 Willson Products Inc Flexible construction in respirator mask facepiece
US2931356A (en) 1958-08-25 1960-04-05 Puritan Compressed Gas Corp Oxygen mask having detachable face seal cushion
US3013556A (en) 1959-08-07 1961-12-19 Jr Ellis A Galleher Head strap for respiratory masks
US3670726A (en) 1969-09-23 1972-06-20 Becton Dickinson Co Breathing circuit
US3739774A (en) 1970-05-21 1973-06-19 Ml Aviation Co Ltd Respirators
US3682171A (en) 1971-03-31 1972-08-08 Baxter Laboratories Inc Nasal cannula
US3754552A (en) 1971-06-08 1973-08-28 Sandoz Ag Flexible nasal cannula
US3938614A (en) 1972-06-20 1976-02-17 Aktiebolaget Lennartsfors Mekaniska Verkstad Cushion member for sound-proof sealing
US3787895A (en) 1972-07-21 1974-01-29 P Belvedere Protective face mask and padding material therefor
US3861385A (en) 1972-08-25 1975-01-21 Edward Carden Anaesthetist{3 s ventilation
US3902486A (en) 1972-08-29 1975-09-02 Jacquet Felicien Portable respiratory apparatus
US3905361A (en) 1974-04-24 1975-09-16 Brunswick Mfg Co Inc Apparatus for sealing the esophagus and providing artificial respiration and evacuating the stomach
US4006744A (en) 1974-06-24 1977-02-08 Abbott Laboratories Locking cannula mount
US3974829A (en) * 1974-07-08 1976-08-17 Giles C. Clegg, Jr. Means for preventing fogging of optical aids used by the wearer of a surgical mask
US3972321A (en) 1975-02-20 1976-08-03 Proctor John S Upper lip mounted retaining means for medical-surgical tubes
US4142527A (en) 1977-02-07 1979-03-06 Garcia Nelson C Endotracheal tube holder
US4153051A (en) 1977-07-08 1979-05-08 Shippert Ronald D Compound splint and kit
US4156426A (en) 1977-08-11 1979-05-29 Gold Lawrence W Head-mounted oxygen-administration device
US4248218A (en) 1978-09-22 1981-02-03 Fischer Charles M Gas administration scavenging mask
US4267845A (en) 1978-10-05 1981-05-19 Robertson Jr Charles H Method and apparatus for measuring pulmonary ventilation
DE3011900A1 (en) 1979-04-03 1980-10-23 Warne Surgical Products Ltd UPHOLSTERY FOR A FACE MASK AND METHOD FOR THE PRODUCTION THEREOF
US4264743A (en) 1979-04-23 1981-04-28 Nhk Spring Co., Ltd. Polyurethane foam sealing material and process for producing the same
US4273124A (en) 1979-06-01 1981-06-16 Zimmerman J Earl Nasal cannula
US4263908A (en) 1979-07-25 1981-04-28 Mizerak Vladimir S Nasal cannula mask
US4405212A (en) 1979-12-26 1983-09-20 Cooper Leonard B Spectacle frame and conversion accessories therefor
US4367735A (en) 1979-12-31 1983-01-11 Novametrix Medical Systems, Inc. Nasal cannula
US4312359A (en) 1980-02-19 1982-01-26 Life Care Systems, Inc. Noninvasive blood pressure measuring system
US4414973A (en) 1981-03-10 1983-11-15 U.S.D. Corp. Respirator face mask
US4944310A (en) 1981-04-24 1990-07-31 Somed Pty. Ltd. Device for treating snoring sickness
WO1982003548A1 (en) 1981-04-24 1982-10-28 Sullivan Colin Edward Device for treating snoring sickness
US4367816A (en) 1981-06-10 1983-01-11 Wilkes Kenneth R Tear strip for gas sterilizable package and package
US4422456A (en) 1981-09-08 1983-12-27 City Of Hope National Medical Center Nasal cannula structure
US4803981A (en) 1981-09-22 1989-02-14 Vickery Ian M Anaesthesia mask
US4449526A (en) 1981-11-27 1984-05-22 Elam James O Mask breathing system
US4406283A (en) 1982-02-04 1983-09-27 Phillip Bir Oxygen cannulae for continuous administration of oxygen, and its associated mounting structure and method for mounting same onto the head of a patient
US4455675A (en) 1982-04-28 1984-06-19 Bose Corporation Headphoning
US4493614A (en) 1982-10-08 1985-01-15 Lifecare Services, Inc. Pump for a portable ventilator
US4572323A (en) 1983-03-28 1986-02-25 Racal Safety Limited Hearing protectors
US4548200A (en) 1983-04-18 1985-10-22 Baka Manufacturing Company, Inc. Endotracheal tube holder
US4549542A (en) 1983-07-25 1985-10-29 Chien Chao Huei Multiple-effect respirator
US4790829A (en) 1983-08-24 1988-12-13 Russell Bowden Reusable injection catheter
US4774946A (en) 1983-11-28 1988-10-04 Ackrad Laboratories, Inc. Nasal and endotracheal tube apparatus
US4676241A (en) 1984-01-16 1987-06-30 W.L.G. Technology Ventilation tube swivel
US4601465A (en) 1984-03-22 1986-07-22 Roy Jean Yves Device for stimulating the human respiratory system
US4660555A (en) 1984-09-21 1987-04-28 Payton Hugh W Oxygen delivery and administration system
US4641647A (en) 1985-02-08 1987-02-10 Sheryl L. Taylor Device for securing respiratory appliance during respiratory therapy
US4630604A (en) 1985-04-09 1986-12-23 Siebe North, Inc. Valve assembly for a replaceable filter respirator
US4838878A (en) 1985-05-03 1989-06-13 Glenda G. Kalt Universal clamp
GB2176404A (en) 1985-06-13 1986-12-31 Od G Univ Im I I Mechnikova Respirator
US4587967A (en) 1985-07-09 1986-05-13 Lifecare Services, Inc. Oxygen enriched reciprocating piston respirator
US4617637A (en) 1985-07-09 1986-10-14 Lifecare Services, Inc. Servo control system for a reciprocating piston respirator
US4653124A (en) 1985-07-16 1987-03-31 Scott Usa Face mask having an air duct connectable to a goggle
WO1987001950A1 (en) 1985-09-26 1987-04-09 Protector Safety Limited Respirator
US4699139A (en) 1985-09-30 1987-10-13 Marshall Marie F Nasal cannula assembly with patient comfort pad
US4711636A (en) 1985-11-08 1987-12-08 Bierman Steven F Catheterization system
USD293613S (en) 1985-11-18 1988-01-05 Anesthesia Respiratory Technology, Inc. Anesthesia and respiratory face mask
US4671271A (en) 1985-11-27 1987-06-09 Dolores Bishop Protective facial mask
US4706664A (en) 1986-04-11 1987-11-17 Puritan-Bennett Corporation Inspiration oxygen saver
US4713844A (en) 1986-07-16 1987-12-22 Gentex Corporation Protective helmet with face mask sealing means
US4830138A (en) 1986-10-06 1989-05-16 Finnveden Holding Ab Pressure ring for ear cover
US4753233A (en) 1987-02-10 1988-06-28 Advantage Medical Nasal cannula
EP0466960A1 (en) 1987-03-10 1992-01-22 Ignatius E. Theodorou Portable breathing device
US4960121A (en) 1987-03-18 1990-10-02 Figgie International, Inc. Half-face mask assembly
US4945907A (en) 1987-04-13 1990-08-07 New England Thermoplastics, Inc. Face mask
EP0288937A2 (en) 1987-04-30 1988-11-02 Cavan Corporation Disposable breathing mask
DE3719009A1 (en) 1987-06-06 1988-12-22 Ernst Dipl Ing Hoermann Ventilation mask with adjustable mouthpiece and nose moulding
US5245995A (en) 1987-06-26 1993-09-21 Rescare Limited Device and method for monitoring breathing during sleep, control of CPAP treatment, and preventing of apnea
US4971051A (en) 1987-07-13 1990-11-20 Toffolon Norman R Pneumatic cushion and seal
US4767411A (en) 1987-07-14 1988-08-30 Edmunds L Henry Protective catheter sleeve
US4782832A (en) 1987-07-30 1988-11-08 Puritan-Bennett Corporation Nasal puff with adjustable sealing means
EP0303090B1 (en) 1987-08-04 1992-04-22 SGE SOCIETA' GENERALE ELASTOMERI S.p.A. Seal for protective masks
US4976698A (en) 1987-10-23 1990-12-11 Stokley Manuel H Intravenous catheter and tubing stabilization device
US5000173A (en) 1987-11-19 1991-03-19 Daniel Zalkin Respiratory aid device
US4802857A (en) 1987-11-23 1989-02-07 Laughlin Patrick E CPR mask
US4907584A (en) 1988-03-03 1990-03-13 Mcginnis Gerald E Respiratory mask
US5117818A (en) 1988-03-23 1992-06-02 Palfy Christa Ursula Nasal tube holder
US5335656A (en) 1988-04-15 1994-08-09 Salter Laboratories Method and apparatus for inhalation of treating gas and sampling of exhaled gas for quantitative analysis
US5462528A (en) 1988-07-01 1995-10-31 Roewer; Norbert Stomach tube
US5038772A (en) 1988-07-09 1991-08-13 Dragerwerk Aktiengessellschaft Closed-cycle breathing equipment
US4811730A (en) 1988-07-18 1989-03-14 Seitz Corporation CPR face mask and method of using same
US5022900A (en) 1988-07-20 1991-06-11 Eagle, Military Gear Overseas Ltd. Forced ventilation filtration device
US4919654A (en) 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US4919128A (en) 1988-08-26 1990-04-24 University Technologies International Inc. Nasal adaptor device and seal
US5042478A (en) 1988-08-26 1991-08-27 University Technologies International, Inc. Method of ventilation using nares seal
US4915105A (en) 1988-10-28 1990-04-10 Lee Tien Chu Miniature respiratory apparatus
US5005571A (en) 1988-11-25 1991-04-09 Dietz Henry G Mouth nose mask for use with an inhalation therapy and/or breathing monitoring apparatus
US4966590A (en) 1988-12-13 1990-10-30 Kalt Medical Corporation IV Clamp with membrane dressing
US6627289B1 (en) 1988-12-20 2003-09-30 Kimberly-Clark Worldwide, Inc. Mechanical fastening tapes and method for their construction
US4899740A (en) 1989-01-17 1990-02-13 E. D. Bullard Company Respirator system for use with a hood or face mask
US4989599A (en) 1989-01-26 1991-02-05 Puritan-Bennett Corporation Dual lumen cannula
US4996983A (en) 1989-01-31 1991-03-05 Amrhein Floyd E Inhaler filtration device with housing supportable by spectacle temple
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
US5137017A (en) 1989-04-13 1992-08-11 Salter Labs Demand oxygen system
US5023955A (en) 1989-04-13 1991-06-18 Gentex Corporation Impact-absorbing sound-attenuating earcup
US5265595A (en) 1989-06-19 1993-11-30 Hans Rudolph, Inc. Mask for breath analysis
US5020163A (en) 1989-06-29 1991-06-04 Gentex Corporation Earseal for sound-attenuating earcup assembly
DE3927038A1 (en) 1989-08-16 1991-02-21 Juergen Hoefer Oxygen mask measuring blood oxygen level - has sensor on lever arm for placing on forehead of wearer
US5127397A (en) 1989-09-04 1992-07-07 Ambu International A/S Protective device kit for use in pulmonary ventilation treatment by the mouth-to-mouth or mouth-to-nose methods
EP0427474A2 (en) 1989-11-09 1991-05-15 Smiths Industries Medical Systems Inc. Face masks and face masks components
US5074297A (en) 1989-12-19 1991-12-24 The General Hospital Corporation Self-sealing mask for delivering intermittent positive pressure ventilation
US5046491A (en) 1990-03-27 1991-09-10 Derrick Steven J Apparatus and method for respired gas collection and analysis
US5243971A (en) 1990-05-21 1993-09-14 The University Of Sydney Nasal mask for CPAP having ballooning/moulding seal with wearer's nose and facial contours
US5355878A (en) 1990-06-26 1994-10-18 Cam Lock (Uk) Ltd. Breathing equipment for aircrew
US5207665A (en) 1990-07-06 1993-05-04 Mcneil-Ppc, Inc. Absorbent product having mechanical attachment mechanism
US5025805A (en) 1990-07-11 1991-06-25 Betty Nutter Nasal cannula assembly
US5121745A (en) 1990-07-23 1992-06-16 Israel Michael B Self-inflatable rescue mask
US5113857A (en) 1990-08-27 1992-05-19 Stair Dickerman Breathing gas delivery system and holding clip member therefor
US5265592A (en) 1991-02-28 1993-11-30 Intertechnique Individual protective breathing equipment
US5419318A (en) 1991-05-21 1995-05-30 Better Breathing, Inc. Breathing mask
WO1992020395A1 (en) 1991-05-22 1992-11-26 Anne Le Mitouard Facial breathing mask
US5429683A (en) 1991-05-22 1995-07-04 Le Mitouard; Anne Face mask for breathing
WO1992020392A1 (en) 1991-05-24 1992-11-26 Calor Air Separation Limited Nasal cannula
US5138722A (en) 1991-07-02 1992-08-18 David Clark Company Inc. Headset ear seal
US5243709A (en) 1991-09-04 1993-09-14 Natus Medical, Inc. Acoustically sealing earmuff for an infant
US6086118A (en) 1991-09-10 2000-07-11 Bundy Corporation Quick connect tubing connector
US5349949A (en) 1991-10-03 1994-09-27 Intertechnique Face mask with lip, fold, and resilient spring means to improve seal
US5954049A (en) 1991-10-15 1999-09-21 Trudell Medical Limited Equine mask with MDI adapter
US5269296A (en) 1991-10-29 1993-12-14 Landis Robert M Nasal continuous positive airway pressure apparatus and method
US5477852A (en) 1991-10-29 1995-12-26 Airways Ltd., Inc. Nasal positive airway pressure apparatus and method
US5188101A (en) 1991-11-15 1993-02-23 Tumolo Jean S Premature baby headband for supporting nasal cannulas and oxygen feed tubes
USD333015S (en) 1991-12-02 1993-02-02 Lifecare International, Inc. Nasal mask
US5191824A (en) 1991-12-04 1993-03-09 Luxaire Cushion Co. Method and apparatus for forming a contoured surface
US5271391A (en) 1991-12-20 1993-12-21 Linda Graves Apparatus for delivering a continuous positive airway pressure to an infant
US7302950B2 (en) 1991-12-20 2007-12-04 Resmed Limited Patient interface for respiratory apparatus
US20030154980A1 (en) 1991-12-20 2003-08-21 Michael Berthon-Jones Patient interface for respiratory apparatus
US5372130A (en) 1992-02-26 1994-12-13 Djs&T Limited Partnership Face mask assembly and method having a fan and replaceable filter
US5355893A (en) 1992-04-06 1994-10-18 Mick Peter R Vital signs monitor
US5385141A (en) 1992-04-16 1995-01-31 Siebe North, Inc. Speech diaphragm and exhalation valve
US5592938A (en) 1992-06-08 1997-01-14 Respironics Inc. Mask apparatus
US5538001A (en) 1992-06-12 1996-07-23 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Northern Ireland And Great Britain Oxygen masks
US5220699A (en) 1992-07-27 1993-06-22 Farris R David Surgical face mask support apparatus and method
US5396885A (en) 1992-07-31 1995-03-14 Nelson; Joseph M. Mobile air supply cart having dual tanks and connections allowing simultaneous filling of tank and delivery of air to a user
US5267557A (en) 1992-08-17 1993-12-07 Her Mou Lin Nose mask with a filtering device
US5299599A (en) 1992-09-17 1994-04-05 Lifecare International, Inc. Valving arrangement for a negative pressure ventilator
US5263939A (en) 1992-10-09 1993-11-23 Surgin Surgical Instrumentation, Inc. Retainer for laparoscopic cannula
US5304146A (en) 1992-10-23 1994-04-19 Johnson Melissa C Medical appliance securing device
US5394568A (en) 1993-01-28 1995-03-07 Minnesota Mining And Manufacturing Company Molded head harness
US5372391A (en) 1993-02-22 1994-12-13 The United States Of America As Represented By The United States Department Of Energy Internal pipe attachment mechanism
US5372390A (en) 1993-02-24 1994-12-13 Senior Engineering Investments, B.V. Coupling system for relatively thick-walled tubes
US5364367A (en) 1993-04-30 1994-11-15 Minnesota Mining And Manufacturing Company Cannula anchor
US5372388A (en) 1993-04-30 1994-12-13 American Pipe & Plastics, Inc. Integral multi-duct conduit section
US5623923A (en) 1993-06-09 1997-04-29 Intertechnique Respiratory equipment with comfort adjustment
US6123071A (en) 1993-06-18 2000-09-26 Resmed Limited Facial masks for assisted respiration or CPAP
US5560354A (en) 1993-06-18 1996-10-01 Rescare Limited Facial masks for assisted respiration or CPAP
US5372389A (en) 1993-06-22 1994-12-13 Graco Inc. Nozzle swivel joint
US5400776A (en) 1993-07-09 1995-03-28 Proprietary Technology, Inc. Apparatus for maintaining a bend in a medical insufflation tube
US5437267A (en) 1993-08-03 1995-08-01 Weinstein; Allan Device for delivering aerosol to the nasal membranes and method of use
US5488948A (en) 1993-09-23 1996-02-06 Intertechnique Fast donning respiratory protection equipment
US5441046A (en) 1993-09-29 1995-08-15 Respironics, Inc. Quick release mechanism for nasal and/or oral gas delivery mask
US5398676A (en) 1993-09-30 1995-03-21 Press; Roman J. Portable emergency respirator
US5704345A (en) 1993-11-05 1998-01-06 Resmed Limited Detection of apnea and obstruction of the airway in the respiratory system
EP0658356A2 (en) 1993-11-19 1995-06-21 Airways Ltd., Inc. Nasal ventilation cannula
US5740799A (en) 1993-12-21 1998-04-21 Maersk Medical A/S Device for the supply of oxygen and/or other gases to a patient
US5375593A (en) 1994-02-10 1994-12-27 Press; John R. Oxygenating pacifier
US5540223A (en) 1994-02-17 1996-07-30 Respironics, Inc. Respiratory mask facial seal
US5513634A (en) 1994-05-06 1996-05-07 Chek-Med Systems, Inc. Combination integral bite block airway and nasal cannula
FR2720280A1 (en) 1994-05-27 1995-12-01 Mitouard Anne Le Respiratory mask for assisted ventilation
US5655527A (en) 1994-06-03 1997-08-12 Respironics Inc. Respiratory mask with floating seal responsive to pressurized gas
US5975079A (en) 1994-07-25 1999-11-02 Hellings; Deborah Anesthesia and respiratory face mask
US5906203A (en) 1994-08-01 1999-05-25 Safety Equipment Sweden Ab Breathing apparatus
US5425359A (en) 1994-08-29 1995-06-20 Liou; Nan-Tien Nose plug structure with filter
US5509409A (en) 1994-09-12 1996-04-23 The Living Trust Of Marjorie F. Weatherholt Nasal cannula assembly
US5653228A (en) 1994-10-25 1997-08-05 Byrd; Timothy N. Medical tube holding device and associated securing strap
US5533506A (en) 1995-01-13 1996-07-09 Medlife, Inc. Nasal tube assembly
US6098205A (en) 1995-01-23 2000-08-08 Schwartz; Alan N. Goggles with pliable and resilient sealing pad
US6152137A (en) 1995-01-23 2000-11-28 Schwartz; Alan N. Pliable and resilient sealing pad
US5513635A (en) 1995-02-02 1996-05-07 Bedi; Shan Nasal cannula anchoring apparatus
US5538000A (en) 1995-02-06 1996-07-23 Hans Rudolph, Inc. Airflow delivery system
AU5113096A (en) 1995-03-16 1996-10-02 Assistance Publique - Hopitaux De Paris Facial ventilation mask, and a piece and a method for its manufacture
WO1996028207A1 (en) 1995-03-16 1996-09-19 Assistance Publique - Hopitaux De Paris Facial respirator mask, part and method for the manufacture thereof
US5526806A (en) 1995-04-04 1996-06-18 Sansoni; Jean Non-invasive nasal cannula
US6082360A (en) 1995-05-04 2000-07-04 Hans Rudolph, Inc. Mask with gel seal
US5724965A (en) 1995-06-06 1998-03-10 Respironics Inc. Nasal mask
US6109263A (en) 1995-08-09 2000-08-29 Feuchtgruber; Gottfried Packaged respiratory mask
US6895965B2 (en) 1995-09-08 2005-05-24 Respironics, Inc. Customizable seal, mask with customizable seal and method of using such a seal
US5647357A (en) 1995-09-08 1997-07-15 Respironics, Inc. Respiratory mask facial seal
US6397847B1 (en) 1995-09-08 2002-06-04 Respironics, Inc. Customizable seal, mask with customizable seal and method of using such a seal
US5626814A (en) 1995-11-20 1997-05-06 Vicino; Robert K. Method of making a self-inflating structure
US5707342A (en) 1995-11-24 1998-01-13 Fuji Photo Optical Co., Ltd. Protector girdle for endoscopic insertion instrument
US6241930B1 (en) 1995-11-30 2001-06-05 Ubertech Texas, Inc. Method of constructing a garment with a graphical design thereon
US6193914B1 (en) 1995-11-30 2001-02-27 Ubertech Texas, Inc. Molding thermosetting polymers onto substrates
EP0776679A1 (en) 1995-12-01 1997-06-04 Cleantec Co., Ltd. Mask maintaining warmth in nasal area
US5662101A (en) 1995-12-07 1997-09-02 Respironics, Inc. Respiratory facial mask
US5570684A (en) 1995-12-29 1996-11-05 Behr; R. Douglas Heating and humidifying respiratory mask
US6112746A (en) 1996-07-26 2000-09-05 Resmed Limited Nasal mask and mask cushion therefor
US6634358B2 (en) 1996-07-26 2003-10-21 Resmed Limited Nasal mask cushion assembly
US6701927B2 (en) 1996-07-26 2004-03-09 Resmed Limited Full-face mask and mask cushion therefor
US6581602B2 (en) 1996-07-26 2003-06-24 Resmed Limited Nasal mask and mask cushion therefor
US20020005198A1 (en) 1996-07-26 2002-01-17 Philip Rodney Kwok Full-face mask and mask cushion therefor
US6357441B1 (en) 1996-07-26 2002-03-19 Resmed Limited Nasal mask and mask cushion therefor
US20020174868A1 (en) 1996-07-26 2002-11-28 Kwok Philip Rodney Full-face mask and mask cushion therefor
WO1998004310A1 (en) 1996-07-26 1998-02-05 Resmed Limited A nasal mask and mask cushion therefor
JP2000515784A (en) 1996-07-26 2000-11-28 レスメッド・リミテッド Nasal mask and its cushion
US6513526B2 (en) 1996-07-26 2003-02-04 Resmed Limited Full-face mask and mask cushion therefor
WO1998012965A1 (en) 1996-09-23 1998-04-02 Resmed Limited Assisted ventilation to match patient respiratory need
US5682881A (en) 1996-10-21 1997-11-04 Winthrop; Neil Nasal CPAP/Cannula and securement apparatus
US6139787A (en) 1996-10-24 2000-10-31 Ubertech Texas, Inc. Method for applying molded silicone design elements onto substrates
US6019101A (en) 1996-10-31 2000-02-01 Sleepnet Corporation Nasal air mask
US5752511A (en) 1996-11-22 1998-05-19 Simmons; Carl J. Universal medical tube retainer and nasal wall tissue dilator
WO1998023305A1 (en) 1996-11-25 1998-06-04 Kimberly-Clark Worldwide, Inc. Adhesive composition comprising a polysiloxane
US6044844A (en) 1996-12-02 2000-04-04 Resmed Limited Mask and harness assembly
US5807341A (en) 1996-12-11 1998-09-15 Team Medical Llc Medical catheter dressing device
US6123082A (en) 1996-12-18 2000-09-26 Resmed Limited Device for preventing or reducing the passage of air through the mouth
US6211263B1 (en) 1996-12-23 2001-04-03 The Procter & Gamble Company Adhesive for secure topical attachment to the skin and comfortable removal
US5921239A (en) 1997-01-07 1999-07-13 Sunrise Medical Hhg Inc. Face mask for patient breathing
US5735272A (en) 1997-01-22 1998-04-07 Dillon; Michael M. Nasal tube holder having a nasal dilator attached thereto
US6412487B1 (en) 1997-01-31 2002-07-02 Resmed Limited Mask cushion and frame assembly
DE19703526A1 (en) 1997-01-31 1998-08-06 Rainer Berger Appliance for delivery of a substance into inhaled air
US6561190B1 (en) 1997-02-10 2003-05-13 Resmed Limited Mask and a vent assembly therefor
US5794619A (en) 1997-02-18 1998-08-18 Edelman; Robert Nasal cannula mounted solely by frictional engagement with the columella
DE29723101U1 (en) 1997-04-05 1998-05-28 Gottlieb Weinmann Geräte für Medizin und Arbeitsschutz GmbH + Co. KG, 22525 Hamburg Device for coupling to ventilation masks
US6095996A (en) 1997-05-30 2000-08-01 Bristol-Myers Squibb Company Adhesive composition or structure
US5842469A (en) 1997-07-03 1998-12-01 Rapp; John D. Method for extending the useful life of a nasal dilator
US6119694A (en) 1997-07-24 2000-09-19 Respironics Georgia, Inc. Nasal mask and headgear
US7101359B2 (en) 1997-09-04 2006-09-05 The Procter & Gamble Company Absorbent article fastening device
WO1999016327A1 (en) 1997-09-29 1999-04-08 Alpine Partners Skin mounted device holder
WO1999025410A1 (en) 1997-11-14 1999-05-27 Medisolve Limited A seal for a respiratory mask, and a respiratory mask
US6119693A (en) 1998-01-16 2000-09-19 Resmed Limited Forehead support for facial mask
WO1999043375A1 (en) 1998-02-25 1999-09-02 MAP Medizintechnik für Arzt und Patient GmbH & Co. KG Respirator mask
US6026811A (en) 1998-03-12 2000-02-22 Settle; Romaine A. Protective cover for nasal air supply hose
US6412593B1 (en) 1998-03-18 2002-07-02 Nct Group, Inc. Cushioned earphones
US6439234B1 (en) 1998-04-03 2002-08-27 Salter Labs Nasal cannula
US6655385B1 (en) 1998-04-03 2003-12-02 Salter Labs Nasal cannula
US6196223B1 (en) 1998-04-10 2001-03-06 William A. Belfer Strapless respiratory facial mask for customizing to the wearer's face
US5918598A (en) 1998-04-10 1999-07-06 Belfer; William A. Strapless respiratory facial mask for customizing to the wearer's face
US6470887B1 (en) 1998-05-12 2002-10-29 Intertechnique Protective breathing equipment with fast positioning
WO1999061088A1 (en) 1998-05-22 1999-12-02 Resmed Limited Ventilatory assistance for treatment of cardiac failure and cheyne-stokes breathing
US6419660B1 (en) 1998-05-29 2002-07-16 Ronald D. Russo Medical tube holder
US20020066452A1 (en) 1998-07-14 2002-06-06 Kessler Fred Bruce Nasal cannula retainer
US6328038B1 (en) 1998-07-14 2001-12-11 Fred Bruce Kessler Nasal cannula retainer
US20020157673A1 (en) 1998-07-14 2002-10-31 Kessler Fred B. Nasal cannula retainer
US7076282B2 (en) 1998-07-31 2006-07-11 First Water Limited Bioadhesive compositions and biomedical electrodes containing them
US6679257B1 (en) 1998-08-13 2004-01-20 Fisher & Paykel Limited Breathing assistance apparatus
US6820617B2 (en) 1998-08-13 2004-11-23 Fisher & Paykel Limited Breathing assistance apparatus
WO2000020072A1 (en) 1998-10-05 2000-04-13 Respironics, Inc. Customizable seal, mask with customizable seal and method of using such a seal
US6637434B2 (en) 1998-10-30 2003-10-28 Linda J. Noble Nasal gas delivery system and method for use thereof
US6561193B1 (en) 1998-10-30 2003-05-13 Linda J. Noble Nasal gas delivery apparatus and a nasal vestibular airway
WO2000038772A1 (en) 1998-12-24 2000-07-06 Resmed Limited An anti-asphyxia valve
US6422238B1 (en) 1999-01-12 2002-07-23 Resmed Limited Headgear
US6607516B2 (en) 1999-02-02 2003-08-19 The Procter & Gamble Company Disposable human waste management devices with improved adhesive flange to facilitate adhesion in oily conditions
US6710099B2 (en) 1999-02-02 2004-03-23 The Procter & Gamble Company Disposable absorbent articles with improved adhesive for attachment to the skin to facilitate water adhesion stability with low pain level removal
US20060107960A1 (en) 1999-02-09 2006-05-25 Resmed Limited Respiratory mask assembly
US6491034B1 (en) 1999-02-09 2002-12-10 Resmed Limited Gas delivery connection assembly
US6358279B1 (en) 1999-02-22 2002-03-19 University Of Miami Minicapsulorhexis valve
US6536435B1 (en) 1999-02-22 2003-03-25 Cabot Safety Intermediate Corporation Respirator headpiece and release mechanism
WO2000050121A1 (en) 1999-02-25 2000-08-31 Respironics, Inc. Adhesive nasal mask assembly, system and method of using same
US6258066B1 (en) 1999-03-08 2001-07-10 Rex W. Urich Intravenous catheter stabilizing device
US6834650B1 (en) 1999-03-12 2004-12-28 Mallinckrodt, Inc. Face or nose mask for non-invasive ventilation of patients in general
US20050039757A1 (en) 1999-03-13 2005-02-24 Wood Thomas J. Ventilation interface for sleep apnea therapy
US6997177B2 (en) 1999-03-13 2006-02-14 Inno Med Technologies, Inc. Ventilation interface for sleep apnea therapy
US6478026B1 (en) 1999-03-13 2002-11-12 Thomas J. Wood Nasal ventilation interface
US6374826B1 (en) 1999-03-18 2002-04-23 Resmed Limited Mask and headgear connector
US6295366B1 (en) 1999-03-24 2001-09-25 Flightcom Corporation Aircraft headset
US6412488B1 (en) 1999-05-12 2002-07-02 Respironics, Inc. Low contact nasal mask and system using same
WO2000069521A1 (en) 1999-05-12 2000-11-23 Respironics, Inc. Low contact nasal mask and system using same
US6341606B1 (en) 1999-05-19 2002-01-29 Mallinckrodt, Inc. Disposable respiratory mask with adhesive skin interface
US6482178B1 (en) 1999-05-21 2002-11-19 Cook Urological Incorporated Localization device with anchoring barbs
WO2000072905A1 (en) 1999-05-28 2000-12-07 Euromedico Ltd. Gas-supplying device
US20020046755A1 (en) 1999-05-28 2002-04-25 Torsten De Voss Gas-supplying device
US6423036B1 (en) 1999-06-07 2002-07-23 Gibbons Surgical Corporation Cannula anchoring port
WO2000074758A1 (en) 1999-06-08 2000-12-14 Sleepnet Corporation Nose mask
US6631718B1 (en) 1999-06-08 2003-10-14 Sleepnet Corporation Air mask with seal
US7210481B1 (en) 1999-06-08 2007-05-01 Sleepnet Corporation Nose mask
WO2000076568A1 (en) 1999-06-16 2000-12-21 Mallinckrodt Inc. Pliable respiratory mask
US20060289010A1 (en) 1999-06-18 2006-12-28 Resmed Limited Forehead support for facial mask
US6644315B2 (en) 1999-06-18 2003-11-11 Saeed Ziaee Nasal mask
US20020096178A1 (en) 1999-06-18 2002-07-25 Saeed Ziaee Nasal mask with balloon exhalation valve
US6581601B2 (en) 1999-06-18 2003-06-24 Saeed Ziaee Nasal mask with balloon exhalation valve
WO2000078384A1 (en) 1999-06-18 2000-12-28 Resmed Limited Forehead support for facial mask
US20020053347A1 (en) 1999-06-18 2002-05-09 Saeed Ziaee Nasal Mask
US6532961B1 (en) 1999-06-18 2003-03-18 Resmed Limited Forehead support for facial mask
US6467483B1 (en) 1999-07-28 2002-10-22 Respironics, Inc. Respiratory mask
US20030019496A1 (en) 1999-07-28 2003-01-30 Respironics, Inc. Respiratory mask
US6176164B1 (en) 1999-08-16 2001-01-23 Robert B. Nylander Compression cutting process for flexible form and template for use therewith
US6231548B1 (en) 1999-08-26 2001-05-15 Alfred Ernest Bassett Securing device for intravenous cannula or catheter
DE19944242A1 (en) 1999-09-15 2001-03-22 Dentallabor Negurescu Gmbh Medical breathing mask with nose and mouth pieces joins these via orifice and flexible connector tube to breathing apparatus.
US6434796B1 (en) 1999-10-20 2002-08-20 Kathryn M. Speirs Oxygen delivery cannula retainer, cannula with retainers assembly, and method for retaining cannulas
US6347631B1 (en) 1999-11-09 2002-02-19 Mallinckrodt, Inc. Cantilever device and method for breathing devices and the like
EP1099452A2 (en) 1999-11-12 2001-05-16 MAP Medizintechnik für Arzt und Patient GmbH & Co. KG Respiratory mask and method for making the same
US20010020474A1 (en) 2000-01-21 2001-09-13 Hecker Karl Heinz Nasal breathing mask and mask cushion for a nasal breathing mask
DE10002571A1 (en) 2000-01-21 2001-07-26 Mpv Truma Ges Fuer Medizintech Breathing mask is of a flexible material with a spaced sealing lip at the inner support wall to give a comfortable and sealed fit at the face when in place around the nose
US6467482B1 (en) 2000-02-01 2002-10-22 Georges Boussignac Respiratory assistance apparatus
WO2001062326A1 (en) 2000-02-25 2001-08-30 MAP Medizintechnik für Arzt und Patient GmbH & Co. KG Sealing lip device for a respiratory mask, respiratory mask and a method and a mould for producing the same
US6561192B2 (en) 2000-03-03 2003-05-13 The Penn State Research Foundation Nasal oral respiratory interface
US6972003B2 (en) 2000-03-10 2005-12-06 Venetec International, Inc. Medical anchoring system
US6807967B2 (en) 2000-03-13 2004-10-26 Innomed Technologies, Inc. Ventilation interface for sleep apnea therapy
US6595215B2 (en) 2000-03-13 2003-07-22 Innomed Technologies, Inc. Ventilation interface for sleep apnea therapy
US6776162B2 (en) 2000-03-13 2004-08-17 Innomed Technologies, Inc. Ventilation interface for sleep apnea therapy
US6571798B1 (en) 2000-04-05 2003-06-03 W. Keith Thornton Device for improving breathing and method of constructing same
US6823865B2 (en) 2000-05-15 2004-11-30 Resmed Limited Respiratory mask having gas washout vent and gas washout vent assembly for respiratory mask
US20020124849A1 (en) 2000-05-26 2002-09-12 Taema Nasal breathing mask with adjustable thermistor for treating respiratory disorders of sleep
US20060237018A1 (en) 2000-06-14 2006-10-26 Mcauley Alastair E Breathing assistance apparatus
WO2001095965A1 (en) 2000-06-14 2001-12-20 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US20030111080A1 (en) 2000-06-14 2003-06-19 Olsen Gregory James Breathing assistance apparatus
JP2002028240A (en) 2000-06-14 2002-01-29 Fisher & Paykel Ltd Nose mask
WO2001097892A1 (en) 2000-06-19 2001-12-27 Australian Centre For Advanced Medical Technology Ltd Mask
WO2001097893A1 (en) 2000-06-22 2001-12-27 Resmed Ltd. Mask with gusset
US20020029780A1 (en) 2000-06-22 2002-03-14 Frater Robert H. Mask with gusset
US7107989B2 (en) 2000-06-22 2006-09-19 Resmed Limited Mask with gusset
US6986352B2 (en) 2000-06-22 2006-01-17 Resmed Limited Mask with gusset
US6669712B1 (en) 2000-06-30 2003-12-30 Norman Cardoso Nasal oxygen cannula with supply tube management
US20040025882A1 (en) 2000-07-21 2004-02-12 Stefan Madaus Holding device for a respiratory mask
US6663600B2 (en) 2000-08-03 2003-12-16 Venetech International, Inc. Dialysis catheter anchoring system
US7018362B2 (en) 2000-08-03 2006-03-28 Venetec International, Inc. Dialysis catheter anchoring system
US6530373B1 (en) 2000-08-04 2003-03-11 Mallinckrodt Inc. Respirator mask
GB2368533A (en) 2000-08-12 2002-05-08 Smiths Group Plc Nose ventilation device
US6561188B1 (en) 2000-08-21 2003-05-13 Ellis Alan D Nasal breathing apparatus and methods
US6584975B1 (en) 2000-08-28 2003-07-01 Eldridge Taylor Respirator mask for filtering breathed air
US20020069872A1 (en) 2000-09-22 2002-06-13 Gradon Lewis George Mouthpiece
US6431172B1 (en) 2000-10-20 2002-08-13 Mallinckrodt Inc. Nasal cannula with inflatable plenum chamber
WO2002038221A1 (en) 2000-11-10 2002-05-16 Lee Keun Woo Anti-fogging mask
US6595214B1 (en) 2000-11-22 2003-07-22 Mpv-Truma Gesellschaft Fur Nasal respiration mask
US20040065328A1 (en) 2000-12-07 2004-04-08 Amarasinghe Amal Shirley Mask brace and mask assembly
WO2002045784A1 (en) 2000-12-07 2002-06-13 Resmed Ltd Mask brace and mask assembly
US7152601B2 (en) 2000-12-18 2006-12-26 Mohamed Ali Barakat Strapless respiratory face mask
US6448303B1 (en) 2000-12-29 2002-09-10 National Starch And Chemical Investment Holding Corporation Hot melt adhesives for dermal application
US6579267B2 (en) 2001-01-05 2003-06-17 Applied Diabetes Research, Inc. Pivoting joint infusion assembly
US7080645B2 (en) 2001-02-06 2006-07-25 Seleon Gmbh Anti-snoring device, method for reducing snoring, and a nasal air cannula
US20020143296A1 (en) 2001-03-29 2002-10-03 Russo Ronald D. Medical tube holder
DE10213905A1 (en) 2001-03-30 2002-10-10 Fred G Goebel Breathing air flow control in a breathing apparatus for a patient, comprises determining the air pressure in a cuff, and then controlling the air flow accordingly
US20030000526A1 (en) 2001-03-30 2003-01-02 Fred Gobel Method for controlling a ventilator, and system therefor
FR2823122A1 (en) 2001-04-06 2002-10-11 Robert Schegerin Respirator mask for use e.g. in aircraft has additional thin and very supple seal lip adjacent to semi-supple rim of mask
US20030019495A1 (en) 2001-05-18 2003-01-30 Palkon David J. Mask cushion and method of using same
EP1258266A1 (en) 2001-05-18 2002-11-20 Tiara Medical Systems, Inc. Mask cushion and method of using same
GB2376896A (en) 2001-05-18 2002-12-31 Ti-Li Chang Medical facemask
US20020185134A1 (en) 2001-06-07 2002-12-12 Bishop Giles Andrew Face masks
US20030089373A1 (en) 2001-06-14 2003-05-15 Gradon Lewis George Breathing assistance apparatus
US20050051176A1 (en) 2001-06-18 2005-03-10 Riggins Michael Allen Nasal and oral cannula apnea detection device
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US7066586B2 (en) 2001-07-25 2006-06-27 Tubarc Technologies, Llc Ink refill and recharging system
US6918404B2 (en) 2001-07-25 2005-07-19 Tubarc Technologies, Llc Irrigation and drainage based on hydrodynamic unsaturated fluid flow
US6860270B2 (en) 2001-08-02 2005-03-01 Joseph A. Sniadach Double barrel ventilation mask for a patient
US6817362B2 (en) 2001-08-10 2004-11-16 North Safety Products Inc. Respirator
US7011090B2 (en) 2001-09-07 2006-03-14 Resmed Limited Elbow for mask assembly
US6823869B2 (en) 2001-09-07 2004-11-30 Resmed Limited Mask assembly
US20040112384A1 (en) 2001-09-07 2004-06-17 Resmed Limited Headgear connection assembly for a respiratory mask assembly
US7523754B2 (en) 2001-09-07 2009-04-28 Resmed Limited Cushion for a respiratory mask assembly
US20040118406A1 (en) 2001-09-07 2004-06-24 Lithgow Perry David Cushion for a respiratory mask assembly
US7318439B2 (en) 2001-09-07 2008-01-15 Resmed Limited Mask assembly
CN1553820A (en) 2001-09-13 2004-12-08 Breathing assistance apparatus
US6679265B2 (en) 2001-10-25 2004-01-20 Worldwide Medical Technologies Nasal cannula
US20030079749A1 (en) 2001-10-25 2003-05-01 Roger Strickland Nasal cannula
US6805117B1 (en) 2001-11-07 2004-10-19 Ric Investments, Llc Universal fitting headgear
US20050211252A1 (en) 2002-01-17 2005-09-29 Map Medizin-Technologie Gmbh Breathing mask arrangement and a forehead support device for same
US7052127B2 (en) 2002-01-23 2006-05-30 Warnaco Swimwear Products Inc. One-piece integrally-formed goggle
GB2385533A (en) 2002-02-22 2003-08-27 Smiths Group Plc Face mask with seal around nose
US6776163B2 (en) 2002-03-06 2004-08-17 The Boc Group, Plc Nasal cannulae
US20030168063A1 (en) 2002-03-08 2003-09-11 Gambone Anthony Joseph Pressure face mask and nasal mask
US6907882B2 (en) 2002-04-23 2005-06-21 Resmed Limited Ergonomic and adjustable respiratory mask assembly with headgear assembly
US20050155604A1 (en) 2002-04-23 2005-07-21 Resmed Limited Respiratory mask assembly with magnetic coupling to headgear assembly
US20030196658A1 (en) 2002-04-23 2003-10-23 Ging Anthony M. Ergonomic and adjustable respiratory mask assembly with frame
US20030196656A1 (en) 2002-04-23 2003-10-23 Moore Rachael E. Ergonomic and adjustable respiratory mask assembly with cushion
CN1628870A (en) 2002-04-23 2005-06-22 雷斯梅德有限公司 Ergonomic and adjustable respiratory mask assembly
WO2003090827A1 (en) 2002-04-23 2003-11-06 Resmed Limited Ergonomic and adjustable respiratory mask assembly
US6968844B2 (en) 2002-06-10 2005-11-29 Laerdal Medical As Mask cover
WO2003105921A2 (en) 2002-06-14 2003-12-24 Map Medizin-Technologie Gmbh Mask cushioning and forehead pad for a respiratory mask, respiratory mask in addition to a mould and method for their production
US6789543B2 (en) 2002-07-02 2004-09-14 James L. Cannon Assisted breathing device and method of wearing same
US20050257792A1 (en) * 2002-07-12 2005-11-24 Wixey David F Breathing assistance apparatus
US7146976B2 (en) 2002-08-06 2006-12-12 Mckown Joseph R Nasal cannula retainer
USD485905S1 (en) 2002-08-09 2004-01-27 Resmed Limited Nasal mask
US20040025885A1 (en) 2002-08-09 2004-02-12 Payne, Charles E. Headwear for use by a sleep apnea patient
US20050061326A1 (en) 2002-08-09 2005-03-24 Payne Charles E. Headwear for use by a sleep apnea patient
US6938620B2 (en) 2002-08-09 2005-09-06 Charles E. Payne, Jr. Headwear for use by a sleep apnea patient
US20040107968A1 (en) 2002-08-12 2004-06-10 Griffiths Joseph Anthony Oxygen mask with flexible face seal
US20040111104A1 (en) 2002-08-23 2004-06-10 Organ Recovery Systems Cannulas, cannula mount assemblies, and clamping methods using such cannulas and cannula mount assemblies
US20040106891A1 (en) 2002-08-30 2004-06-03 Inrad, Inc. Localizing needle with fluid delivery
US6766800B2 (en) 2002-08-30 2004-07-27 Sensormedics Corporation Pressure regulating valve for use in continuous positive airway pressure devices
WO2004022146A1 (en) 2002-09-06 2004-03-18 Resmed Limited Cushion for a respiratory mask assembly
US20040045551A1 (en) 2002-09-06 2004-03-11 Ric Investments, Inc. Patient interface with forehead support system
CN1681553A (en) 2002-09-06 2005-10-12 雷斯梅德有限公司 Cushion for a respiratory mask assembly
JP2006505373A (en) 2002-11-06 2006-02-16 レスメド リミテッド Mask and its components
WO2004041342A1 (en) 2002-11-06 2004-05-21 Resmed Limited Mask and components thereof
US20060118117A1 (en) 2002-11-06 2006-06-08 Michael Berthon-Jones Mask and components thereof
US7285255B2 (en) 2002-12-10 2007-10-23 Ecolab Inc. Deodorizing and sanitizing employing a wicking device
US20040127856A1 (en) 2002-12-27 2004-07-01 Carolyn Johnson Catheter and delivery end
US20040133958A1 (en) * 2003-01-10 2004-07-15 Sport Helmets, Inc. Protective eyewear device for sports
US7318437B2 (en) 2003-02-21 2008-01-15 Resmed Limited Nasal assembly
US20040226566A1 (en) 2003-02-21 2004-11-18 Resmed Limited Nasal assembly
US20060137690A1 (en) 2003-02-21 2006-06-29 Gunaratnam Michael K Nasal assembly
WO2004073778A1 (en) 2003-02-21 2004-09-02 Resmed Limited Nasal assembly
WO2004078230A2 (en) 2003-02-28 2004-09-16 Sunrise Medical Hhg Inc. Method for securing a nasal mask
US20040211428A1 (en) 2003-02-28 2004-10-28 Sunrise Medical Hhg Inc. Nasal mask cushion
US20040226564A1 (en) 2003-05-14 2004-11-18 Jan-Ove Persson Device for holding a tracheal cannula
EP1481702A2 (en) 2003-05-30 2004-12-01 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US20050011523A1 (en) 2003-07-18 2005-01-20 Acoba, Llc Method and system of Individually controlling airway pressure of a patient's nares
US7207328B1 (en) 2003-07-29 2007-04-24 Armin Altemus Emergency air delivery system for patients
US7191781B2 (en) 2003-08-05 2007-03-20 Innomed Technologies, Inc. Nasal ventilation interface and system
US20050033247A1 (en) 2003-08-06 2005-02-10 Thompson Paul S. Nasal cannula assembly
US20050028822A1 (en) 2003-08-08 2005-02-10 Tiara Medical Systems, Inc. Sealing nasal cannula
US6926004B2 (en) 2003-08-20 2005-08-09 Weinmann Geräte für Medizin GmbH & Co. KG Breathing mask with a head fastening device
US20050051171A1 (en) 2003-09-10 2005-03-10 Booth Jamie Lee Nose breathing mask for a medical patient; and method
US20050056286A1 (en) 2003-09-17 2005-03-17 Huddart Brett John Breathable respiratory mask
USD552733S1 (en) 2003-10-06 2007-10-09 Tyco Healthcare Group Lp Balloon anchored cannula
US20050101933A1 (en) 2003-11-10 2005-05-12 James Marrs Subcutaneous infusion device and method
WO2005053781A1 (en) 2003-12-08 2005-06-16 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US20050172969A1 (en) * 2003-12-31 2005-08-11 Ging Anthony M. Disposable mask system
US20060237017A1 (en) 2003-12-31 2006-10-26 Resmed Limited Compact oronasal patient interface
US20070144525A1 (en) 2003-12-31 2007-06-28 Resmed Limited Compact oronasal patient interface
WO2005063326A1 (en) 2003-12-31 2005-07-14 Resmed Limited Mask system
CN1901962A (en) 2003-12-31 2007-01-24 雷斯梅德有限公司 Mask system
WO2005063328A1 (en) 2003-12-31 2005-07-14 Resmed Ltd Compact oronasal patient interface
US7658189B2 (en) 2003-12-31 2010-02-09 Resmed Limited Compact oronasal patient interface
US20070186930A1 (en) 2003-12-31 2007-08-16 Resmed Limited Compact oronasal patient interface
US20050150495A1 (en) 2004-01-10 2005-07-14 Wolfgang Rittner Passenger oxygen mask
WO2005086943A2 (en) 2004-03-11 2005-09-22 Ric Investments, Llc Patient interface device
US20050241644A1 (en) 2004-04-09 2005-11-03 Resmed Limited Nasal assembly
WO2005099801A1 (en) 2004-04-15 2005-10-27 Resmed Limited Positive-air-pressure machine conduit
WO2005110220A1 (en) 2004-05-17 2005-11-24 Resmed Limited Position sensitive illumination system
US20080006277A1 (en) 2004-06-03 2008-01-10 Resmed Limited Cushion for a Patient Interface
WO2005118040A1 (en) 2004-06-03 2005-12-15 Resmed Limited Cushion for a patient interface
CN101389369A (en) 2004-06-16 2009-03-18 雷斯梅德有限公司 Cushion for a respiratory mask assembly
US7243723B2 (en) 2004-06-18 2007-07-17 Halliburton Energy Services, Inc. System and method for fracturing and gravel packing a borehole
US20050284481A1 (en) 2004-06-23 2005-12-29 Dragerwerk Aktiengesellschaft Breathing mask with breathing gas supply through the strap
US20060060200A1 (en) 2004-09-21 2006-03-23 Ric Investments, Llc Cheek-mounted patient interface
US20060081250A1 (en) 2004-10-15 2006-04-20 Bordewick Steven S Nares seal
US20060095008A1 (en) 2004-10-29 2006-05-04 Lampropoulos Fred P Self-suturing anchor device for a catheter
US20060095009A1 (en) 2004-10-29 2006-05-04 Lampropoulos Fred P Self-suturing anchor device for a catheter
US20060096598A1 (en) 2004-11-05 2006-05-11 Ho Peter C F Respiratory mask seal and mask using same
DE102004055433B3 (en) 2004-11-17 2005-11-17 Drägerwerk AG Breathing mask with integrated suction area
US20060174887A1 (en) 2004-12-10 2006-08-10 Sanjay Chandran Ventilation interface
US20060124131A1 (en) 2004-12-10 2006-06-15 Respcare, Inc. Hybrid ventilation mask with nasal interface and method for configuring such a mask
US7237551B2 (en) 2004-12-22 2007-07-03 Ric Investments, Llc. Cushion for a patient interface
US20060283461A1 (en) 2004-12-24 2006-12-21 Resmed Limited Mask system
WO2006069415A1 (en) 2004-12-30 2006-07-06 Resmed Limited Respiratory mask having gas washout vent and gas washout vent assembly for respiratory mask
CN101155610A (en) 2005-01-12 2008-04-02 雷斯梅德有限公司 Cushion for patient interface
JP2008526393A (en) 2005-01-12 2008-07-24 レスメド リミテッド Respirator with gusseted cushion
WO2006074516A1 (en) 2005-01-12 2006-07-20 Resmed Limited Respiratory mask having gas washout vent and method for making the mask
WO2006074513A1 (en) 2005-01-12 2006-07-20 Resmed Limited Cushion for patient interface
US20060207597A1 (en) 2005-03-15 2006-09-21 Wright Clifford A Adjustable bite block for respirator
WO2006099658A1 (en) 2005-03-22 2006-09-28 Resmed Limited Nasal dilator
US7287528B2 (en) 2005-04-13 2007-10-30 Ric Investments, Llc Cushion inside a cushion patient interface
WO2006113321A2 (en) 2005-04-13 2006-10-26 Ric Investments, Llc Cushion inside a cushion patient interface
CN101155618A (en) 2005-04-13 2008-04-02 Ric投资有限公司 Cushion inside a cushion patient interface
US7152599B2 (en) 2005-05-20 2006-12-26 Thomas Wendell A Nasal mask for delivering gas
JP2006326129A (en) 2005-05-30 2006-12-07 Shin Etsu Polymer Co Ltd Elastic adhesive member for inhalation mask and inhalation mask
WO2006130903A1 (en) 2005-06-06 2006-12-14 Resmed Limited Mask system
USD550836S1 (en) 2005-07-06 2007-09-11 Respcare, Inc. Ventilation interface
WO2007009182A1 (en) 2005-07-19 2007-01-25 Map Medizin-Technologie Gmbh Respiratory mask and method for manufacturing a respiratory mask
US20070023044A1 (en) 2005-07-29 2007-02-01 Resmed Limited Life style flow generator and mask system
US20070044804A1 (en) 2005-08-15 2007-03-01 Ric Investments, Llc. Patient interface with adjustable cushion
US8245711B2 (en) 2005-08-15 2012-08-21 Ric Investments, Llc Patient interface with adjustable cushion
AU2005100738A4 (en) 2005-09-08 2005-11-24 Respironics, Inc. Patient interface device
WO2007041751A1 (en) 2005-10-14 2007-04-19 Resmed Limited Cushion to frame assembly mechanism
WO2007041786A1 (en) 2005-10-14 2007-04-19 Resmed Ltd Nasal assembly
WO2007048174A1 (en) 2005-10-25 2007-05-03 Resmed Ltd Interchangeable mask assembly
WO2007053878A1 (en) 2005-11-08 2007-05-18 Resmed Ltd Nasal assembly
US20070125387A1 (en) 2005-12-02 2007-06-07 Chris Zollinger Infant nasal interface prong device
WO2007068044A1 (en) 2005-12-16 2007-06-21 Resmed Ltd Bladder cushion, forehead cushion, headgear straps, headgear cap and/or chinstrap
JP2009520579A (en) 2005-12-20 2009-05-28 アールアイシー・インベストメンツ・エルエルシー Patient interface device with damping buffer
WO2007120355A2 (en) 2005-12-20 2007-10-25 Ric Investments, Llc Patient interface device with dampening cushion
US8701667B1 (en) 2006-05-05 2014-04-22 Ric Investments, Llc Patient interface device with limited support area on the face
US20070272249A1 (en) 2006-05-10 2007-11-29 Sanjay Chandran Ventilation interface
US20080004573A1 (en) 2006-05-19 2008-01-03 Heiner Kaufmann Adapter for Affixing a Medical Appliance
US20070282272A1 (en) 2006-05-30 2007-12-06 Bannon Chad D Device for guiding medical tubing
WO2007143772A2 (en) 2006-06-16 2007-12-21 Johann Stadler Holder for an indwelling venous cannula
WO2007145534A1 (en) 2006-06-16 2007-12-21 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US20080047560A1 (en) 2006-07-28 2008-02-28 Resmed Limited Delivery of respiratory therapy
US20080060649A1 (en) 2006-07-28 2008-03-13 Resmed Limited Delivery of respiratory therapy
WO2008011682A1 (en) 2006-07-28 2008-01-31 Resmed Ltd Delivery of respiratory therapy
WO2008011683A1 (en) 2006-07-28 2008-01-31 Resmed Ltd Delivery of respiratory therapy
US20080065022A1 (en) 2006-09-08 2008-03-13 Kurt Kyvik Catheter anchor
WO2008040050A1 (en) 2006-10-02 2008-04-10 Resmed Ltd Cushion for mask system
US20080110469A1 (en) 2006-11-13 2008-05-15 Stanley Weinberg Strapless flexible tribo-charged respiratory facial mask and method
US20080149104A1 (en) 2006-12-06 2008-06-26 Weinmann Gerate Fur Medizin Gmbh & Co. Kg Ventilator mask with a filler and method of production
WO2008070929A1 (en) 2006-12-15 2008-06-19 Resmed Ltd Delivery of respiratory therapy
US20100018534A1 (en) 2006-12-15 2010-01-28 Veliss Lee James Delivery of respiratory therapy
US20080200880A1 (en) 2007-02-15 2008-08-21 Kurt Kyvik Catheter anchor
US20080257354A1 (en) 2007-04-19 2008-10-23 Resmed Limited Cushion and cushion to frame assembly mechanism for patient interface
EP1982740A2 (en) 2007-04-19 2008-10-22 Resmed Limited Cushion and cushion to frame assembly mechanism for patient interface
US20090014007A1 (en) 2007-07-13 2009-01-15 Resmed Limited Patient interface and non-invasive positive pressure ventilating method
US20090044808A1 (en) 2007-07-30 2009-02-19 Resmed Limited Patient interface
WO2009108994A1 (en) 2008-03-04 2009-09-11 Resmed Ltd A foam respiratory mask
EP2259828A1 (en) 2008-03-04 2010-12-15 ResMed Ltd. An interface including a foam cushioning element
JP2011512968A (en) 2008-03-04 2011-04-28 レスメド・リミテッド Interface including foam cushion element
WO2009109004A1 (en) 2008-03-04 2009-09-11 Resmed Ltd An interface including a foam cushioning element
US20100000534A1 (en) 2008-06-04 2010-01-07 Resmed Limited Patient interface systems
WO2010028425A1 (en) 2008-09-12 2010-03-18 Resmed Ltd A foam-based interfacing structure method and apparatus
US20110146684A1 (en) 2008-09-12 2011-06-23 Resmed Limited Foam-based interfacing structure method and apparatus
WO2010148453A1 (en) 2009-06-24 2010-12-29 Resmed Ltd Adjustable mask system and related methods

Non-Patent Citations (146)

* Cited by examiner, † Cited by third party
Title
"Ear Loop Face Mask" , USPTO to assume before Applicant's filing date.
"If You Hate CPAP! You Need CPAP Pro®," www.cpappro.com, USPTO to assume before Applicant's filing date.
A Communication Pursuant to Article 94(3) EPC dated Jun. 20, 2017, in a related European Application No. 09 716 805.8 (8 pages).
A Decision of Rejection dated Aug. 8, 2017, in a related Chinese Application No. 201510114255.5 (18 pages), and an English translation therof (21 pages).
A Decision of Rejection dated Jan. 25, 2018, in a corresponding Japanese Patent Application No. 2016-216279 (2 pages), and an English translation thereof (3 pages).
A Final Office Action dated Sep. 21, 2017, in a related U.S. Appl. No. 12/736,030 (13 pages).
A First Examination Report dated Jan. 9, 2018, in a corresponding New Zealand Patent Application No. 738034 (3 page).
A First Examination Report dated Jul. 12, 2016, in a corresponding New Zealand Patent Application No. 719072 (3 pages).
A First Examination Report dated Sep. 22, 2017, in a related New Zealand Patent Application No. 733524 (2 pages).
A Further Examination Report dated Dec. 4, 2017, in a corresponding New Zealand Patent Application No. 719072 (1 page).
A Further Examination Report dated Jun. 19, 2017 in a related New Zealand Application No. 717325 (2 pages).
A Further Examination Report issued in corresponding New Zealand Application No. 738034 dated Nov. 27, 2018, (2 pages).
A Further Examination Report issued in corresponding New Zealand Application No. 738034, dated Aug. 6, 2018 (2 pages).
A Further Examination Report issued in related New Zealand Application No. 735524 dated Dec. 6, 2018, (3 pages).
A Further Examination Report issued in related New Zealand Application No. 735524 dated Feb. 12, 2019, (2 pages).
A Requisition by the Examiner issued Dec. 14, 2017, in a corresponding Canadian Patent Application No. 2,941,584 (3 pages).
A Second Examination Report dated Sep. 22, 2017 in corresponding Australian Patent Application No. 2015238868 (4 pages).
A Second Office Action dated Feb. 13, 2017 in a related Chinese Application No. 2015101142555 (16 pages), and an English translation thereof (19 pages).
A Second Office Action dated Jul. 19, 2016, in a corresponding Chinese Patent Application No. 201510141153.2 (9 pages), and an English translation thereof (12 pages).
A Third Examination Report dated Jan. 16, 2018, in corresponding Australian Patent Application No. 2015238868 (4 pages).
A Third Office Action dated Feb. 8, 2018, in a corresponding Chinese Patent Application No. 2015101411532 (3 pages), and an English translation thereof (5 pages).
Adam J. Singer MD et al. "The Cyanoacrylate Topical Skin Adhesives," American Journal of Emergency Medicine, vol. 26, 2008, pp. 490-496.
An Office Action dated Jun. 13, 2017, in a corresponding Canadian Application No. 2,941,584 (3 pages).
An Office Action dated Oct. 23, 2017, in a corresponding Japanese Patent Application No. 2016-216279 (2 pages), and an English translation thereof (3 pages).
Chinese Office Action issued in corresponding Chinese Application No. 200980136031.7 dated Feb. 27, 2013.
CN Office Action dated Jan. 29, 2019 in related CN Application No. 201611072310X, (10 pages).
ComfortLite™ 2, Respironics, http://comfortlite2.respironics.com, USPTO to assume before Applicant's filing date.
ComfortLite™, Respironics, http://comfortlite.respironics.com, USPTO to assume before Applicant's filing date.
Communication including extended European Search Report dated Aug. 26, 2015, in a corresponding European Application No. 09 81 258.0 (11 pages).
Deadline for Counterstatement issued Jan. 5, 2016 in a corresponding New Zealand Applicalion No. 615630 (1 page), Amended Notice of Opposition filed Nov. 27, 2015 (both markup and clean copies) (6 pages), and Statement of the Case filed Nov. 27, 2015 (9 pages).
EP Supplementary Search Report issued in EP Application 03793493, dated Dec. 2, 2009.
European Search Report filed on Jul. 27, 2009 in EP Application No. 07784697.0.
European Search Report issued in EP 07845378.4, dated Dec. 1, 2009.
Examination Decision of the Patent Examination Board dated Aug. 30, 2016, in a related Chinese Application No. 200980107829.9 (11 pages) and an English translation thereof (12 pages).
Examination Report filed in New Zealand Application 539836, dated Aug. 25, 2005.
Examination Report for corresponding New Zealand Application No. 591308, dated Jun. 21, 2012, 2 pages.
Examination Report No. 1 dated Jan. 20, 2017, in a corresponding Australian Application No. 2015238868 (8 pages).
Examiner's Report No. 3 dated Nov. 18, 2009 in New Zealand Application No. 2003275762
Extended European Search Report dated Mar. 19, 2009 in European Application No. EP 08161249.
Extended European Search Report dated Sep. 3, 2009 in corresponding EP Application No. 09161984.1.
Extended European Search Report. Application No. EP 08154854, dated Nov. 27, 2008.
Final Office Action dated Feb. 3, 2016, in a related U.S. Appl. No. 12/736,060 (23 pages).
First Examination Report dated Apr. 5, 2016, in a related New Zealand Application No. 717325 (2 pages).
First Examination Report dated Mar. 30, 2015 issued in corresponding New Zealand Application No. 706053 (2 pages).
First Office Action dated Jul. 28, 2016 in a related Chinese Application No. 201510114255.5 (10 pages), and an English translation thereof (10 pages).
First Office Action dated Sep. 5, 2016, in a corresponding Chinese application No. 201510141153.2 (11 pages), and an English translation thereof (13 pages).
Fisher and Paykel Col.-Product Family-http://www.fphcare.com/osa/products.asp/, USPTO to assume before Applicant's filing date.
Fisher and Paykel Col.—Product Family—http://www.fphcare.com/osa/products.asp/, USPTO to assume before Applicant's filing date.
Further Examination Report dated Jan. 14, 2016 in a corresponding New Zealand Application No. 705201 (2 pages).
Further Examination Report dated Nov. 11, 2015 in a corresponding New Zealand Application No. 705201 (2 pages).
Further Examination Report issued in corresponding New Zealand Patent Appln. No. 615630, dated Apr. 10, 2015 (2 pages).
Further Examination Report issued in corresponding New Zealand Patent Appln. No. 615630, dated Mar. 20, 2015 (2 pages).
Hans Rudolph, Inc.-Mask Products-http://www.rudolphkc.com/products.php?category=MASKS, USPTO to assume before Applicant's filing date.
Hans Rudolph, Inc.—Mask Products—http://www.rudolphkc.com/products.php?category=MASKS, USPTO to assume before Applicant's filing date.
International Preliminary Report on Patentability for PCT/AU2004/001832, dated Jul. 3, 2006.
International Search Report filed in PCT/AU2005/000803, dated Jun. 30, 2005.
International Search Report filed in PCT/AU2006/000770, dated Aug. 3, 2006.
International Search Report for PCT/AU2004/001832, dated Mar. 24, 2005.
International Search Report for PCT/AU2007/001051, dated Nov. 5, 2007.
International Search Report for PCT/AU2007/001052, dated Oct. 9, 2007.
International Search Report for PCT/AU2007/001936, dated Mar. 4, 2008.
International Search Report issued in PCT/AU2009/001144 (dated Dec. 18, 2009).
International Search Report PCT/AU2003/001163, dated Nov. 4, 2003.
International Search Report PCT/AU2003/001471, dated Feb. 12, 2004.
International Search Report PCT/AU2009/000240, dated May 21, 2009.
International Search Report PCT/AU2009/000262, dated Jun. 9, 2009.
Joel W. Beam, "Tissue Adhesives for Simple Traumatic Lacerations," Journal of Athletic Training, 2008, vol. 43, No. 2, pp. 222-224.
Merriam-Webster Online Dictionary definition of moveable from the 14th century.
Notice of Allowance dated Apr. 28, 2014 in corresponding Japanese Application No. 2011-526353.
Notice of Allowance dated Oct. 7, 2016, in a corresponding Japanese Application No. 2015-109892 (3 pages).
Notice of Opposition to Grant of Patent filed Sep. 29, 2015 in a corresponding New Zealand Application No. 615630 (5 pages).
Notice of Reasons for Rejection issued in corresponding Japanese Application No. 2011-526353 dated Oct. 8, 2013 with English-language translation.
Notification of Reexamination dated Feb. 23, 2016 in a related Chinese Application No. 200980107829.9 (7 pages) and English translation thereof (8 pages).
Office Action dated Dec. 22, 2009 in European Appln. No. 04802133.1.
Office Action dated Jun. 30, 2015 in a related U.S. Appl. No. 12/736,030 (13 pages).
Office Action dated Jun. 8, 2015 in a corresponding Japanese Patent Application No. 2014-109892 (3 pages) and English translation thereof (4 pages).
Office Action dated Mar. 10, 2017 in a related U.S. Appl. No. 12/736,030 (23 pages).
Office Action issued in European Appln. No. 05746824.1 (dated Mar. 22, 2011).
Office Action issued in Japanese Application No. 2007-513621 (dated Aug. 24, 2010) with English translation.
Patent Examination Report No. 1 dated Mar. 11, 2016 in a related Australian Application No. 2015200781 (5 pages).
Patent Examination Report No. 1 issued in corresponding Australian Patent Application No. 2009291491 dated Oct. 8, 2013.
Patent Examination Report No. 2 dated Nov. 24, 2016 in a related Australian Application No. 2015200781 (3 pages).
Patent Examination Report No. 2 dated Nov. 26, 2014 in corresponding Australian Patent Application No. 2009291491.
Patent Examination Report No. 3 dated Jun. 3, 2015 in a corresponding Australian Patent Application No. 2009291491 (3 pages).
Requisition by the Examiner issued May 29, 2015, in a corresponding Canadian Application No. 2,735,986 (4 pages).
ResMed Co.-Mask Products-http://resmed.com/portal/site/ResMedUS/index.jsp? . . . , USPTO to assume before Applicant's filing date.
ResMed Co.—Mask Products—http://resmed.com/portal/site/ResMedUS/index.jsp? . . . , USPTO to assume before Applicant's filing date.
Respironics Co.-Mask Family-http://masksfamily.respironics.com/, USPTO to assume before Applicant's filing date.
Respironics Co.—Mask Family—http://masksfamily.respironics.com/, USPTO to assume before Applicant's filing date.
Second Office Action issued in corresponding Chinese Application No. 200980136031.7 dated Nov. 19, 2013 with English-language translation thereof.
Snapp Nasal Interface, Tiara Medical Systems, Inc.-http://www.tiaramed.com/asp_shops/shopdisplayproducts.asp?id=109&cat=SNAPP%2A+Nasal+Interface, USPTO to assume before Applicant's filing date.
Snapp Nasal Interface, Tiara Medical Systems, Inc.—http://www.tiaramed.com/asp_shops/shopdisplayproducts.asp?id=109&cat=SNAPP%2A+Nasal+Interface, USPTO to assume before Applicant's filing date.
Subbu Venkatraman et al., "Review Skin Adhesives and Skin Adhesion 1. Transdermal Drug Delivery Systems," Biomaterials, vol. 19, 1998, pp. 1119-1136.
Supplementary European Search Report dated Dec. 18, 2009 in European Application No. 03810331.3.
Supplementary European Search Report dated Sep. 8, 2009 in European Appln. No. 04802133.1.
Third Office Action issued in corresponding Chinese Application No. 200980136031.7 dated Jun. 20, 2014 with English-language translation thereof (8 pages).
U.S. Appl. No. 10/385,701, filed Aug. 2003, Berthon-Jones et al.
U.S. Appl. No. 10/533,928, filed Jul. 2005, Berthon-Jones.
U.S. Appl. No. 10/584,711, filed Dec. 2004, Davidson.
U.S. Appl. No. 10/655,622, filed Sep. 2003, Lithgow.
U.S. Appl. No. 10/781,929, filed Jan. 2008, Gunaratnam et al.
U.S. Appl. No. 10/871,929, filed Feb. 2004, Surjaatmadja.
U.S. Appl. No. 11/080,446, filed Jul. 2005, Ging et al.
U.S. Appl. No. 11/447,295, filed Jun. 2006, Lubke et al.
U.S. Appl. No. 11/474,415, filed Jun. 2006, Davidson et al.
U.S. Appl. No. 11/491,016, filed Feb. 2007, Kwok et al.
U.S. Appl. No. 11/703,082, filed Feb. 2007, Davidson.
U.S. Appl. No. 11/878,932, filed Jul. 2007, Veliss et al.
U.S. Appl. No. 11/878,933, filed Jul. 2007, Veliss et al.
U.S. Appl. No. 12/081,696, filed Apr. 2008, Davidson et al.
U.S. Appl. No. 12/085,191, filed May 2008, Kwok et al.
U.S. Appl. No. 12/219,852, filed Jul. 2008, Guney et al.
U.S. Appl. No. 12/309,696, filed Jan. 2009, Kwok et al.
U.S. Appl. No. 12/382,517, filed Mar. 2009, Lithgow.
U.S. Appl. No. 12/448,250, filed Jun. 2009, Veliss et al.
U.S. Appl. No. 12/461,448, filed Aug. 2009, Berthon-Jones.
U.S. Appl. No. 12/478,537, filed Jun. 2009, Kooij et al.
U.S. Appl. No. 12/656,466, filed Jan. 2010, Biener et al.
U.S. Appl. No. 12/700,878, filed Feb. 2010, Davidson et al.
U.S. Appl. No. 60/424,686, filed Nov. 2002, Lithgow.
U.S. Appl. No. 60/483,622, filed Jul. 2003, Kwok et al.
U.S. Appl. No. 60/533,214, filed Dec. 2003, Drew.
U.S. Appl. No. 60/634,802, filed Dec. 2004, Chandran.
U.S. Appl. No. 60/645,672, filed Jan. 2005, Chandran.
U.S. Appl. No. 60/795,615, filed Apr. 2006, Judson et al.
U.S. Appl. No. 60/833,841, filed Jul. 2006, Veliss.
U.S. Appl. No. 60/835,442, filed Aug. 2006, Selvarajan et al.
U.S. Appl. No. 60/852,649, filed Oct. 2006, Selvarajan et al.
U.S. Appl. No. 60/874,968, filed Dec. 2006, Kwok et al.
U.S. Appl. No. 60/907,856, filed Apr. 2007, Davidson et al.
U.S. Appl. No. 60/924,241, filed May 2007, Kwok et al.
U.S. Appl. No. 60/929,393, filed Jun. 2007, Kwok et al.
U.S. Appl. No. 60/935,179, filed Jul. 2007, Guney et al.
U.S. Appl. No. 60/935,336, filed Aug. 2007, Davidson et al.
U.S. Appl. No. 60/996,160, filed Nov. 2007, Guney et al.
U.S. Appl. No. 61/006,409, filed Jan. 2008, Guney et al.
U.S. Appl. No. 61/064,818, filed Mar. 2008, Guney et al.
U.S. Appl. No. 61/071,512, filed May 2008, Guney et al.
U.S. Appl. No. 61/213,326, filed May 2008, Dravitzki et al.
U.S. Appl. No. 61/222,711, filed Jul. 2008, Dravitzki et al.
U.S. Appl. No. 61/263,175, filed Nov. 2009, Dravitzki et al.
U.S. Appl. No. 61/272,162, filed Aug. 2009, Dravitzki et al.
U.S. Appl. No. 61/272,250, filed Sep. 2009, Dravitzki et al.
Unsolicited email from Elson Silva, PhD, dated Mar. 28, 2008, "Requesting IDS of U.S. Pat. No. 6,766,817 for patents on fluids moving on porosity by Unsaturated Hydraulic Flow," (email provided in both HTML and plain text format).
Webster's New World Dictionary, Third College Edition 1988, definition for engaged and flexible.
Webster's Third New International Dictionary, 1993, Dictionary definition for adjustable, bendable, and mild steel.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11077277B2 (en) * 2008-03-04 2021-08-03 ResMed Pty Ltd Interface including a foam cushioning element
US12070552B2 (en) * 2008-09-12 2024-08-27 ResMed Pty Ltd Foam-based interfacing structure

Also Published As

Publication number Publication date
US8869798B2 (en) 2014-10-28
NZ770159A (en) 2022-07-01
NZ719072A (en) 2018-01-26
EP4039307A1 (en) 2022-08-10
CN104771821A (en) 2015-07-15
US20150040912A1 (en) 2015-02-12
NZ738034A (en) 2019-06-28
CA2941584A1 (en) 2010-03-18
NZ705201A (en) 2016-09-30
EP2344225A4 (en) 2015-09-23
WO2010028425A1 (en) 2010-03-18
EP2344225B1 (en) 2021-12-29
AU2009291491A1 (en) 2010-03-18
NZ754381A (en) 2020-12-18
EP2344225A1 (en) 2011-07-20
JP2014147848A (en) 2014-08-21
NZ788268A (en) 2023-12-22
AU2015238868A1 (en) 2015-10-29
JP5554334B2 (en) 2014-07-23
JP2017018820A (en) 2017-01-26
CN102149422A (en) 2011-08-10
CA2941584C (en) 2019-03-05
JP6377111B2 (en) 2018-08-22
JP2012501763A (en) 2012-01-26
CA2735986C (en) 2016-10-25
JP6040198B2 (en) 2016-12-07
AU2009291491B2 (en) 2015-07-09
US20190192800A1 (en) 2019-06-27
US12070552B2 (en) 2024-08-27
CA2735986A1 (en) 2010-03-18
CN104771821B (en) 2018-10-16
AU2009291491C1 (en) 2016-04-21
US20110146684A1 (en) 2011-06-23
CN102149422B (en) 2015-04-29
AU2015238868B2 (en) 2018-02-08
NZ591308A (en) 2013-09-27
AU2015238868C1 (en) 2018-10-04
NZ615630A (en) 2015-05-29

Similar Documents

Publication Publication Date Title
US12070552B2 (en) Foam-based interfacing structure
US11931510B2 (en) Cushion assembly with frame, cushion, and cushion-to-frame component
US11077277B2 (en) Interface including a foam cushioning element
US11707873B2 (en) Cushion, method of and apparatus for molding a cushion for a respiratory mask
NZ754381B2 (en) A foam-based interfacing structure method and apparatus
AU2015200781B2 (en) An Interface Including a Foam Cushioning Element

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRECISION FOAM MANUFACTURING PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GILLIVER, DAVID MARK;REEL/FRAME:034037/0763

Effective date: 20130729

Owner name: RESMED LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VELISS, LEE JAMES;WELLS, ALICIA KRISTIANNE;CARIOLA, MELANIE LUCIA;AND OTHERS;SIGNING DATES FROM 20090929 TO 20091020;REEL/FRAME:034037/0611

Owner name: RESMED LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOWARD, SCOTT ALEXANDER;REEL/FRAME:034037/0653

Effective date: 20091021

Owner name: RESMED LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PRECISION FOAM MANUFACTURING PTY LTD;REEL/FRAME:034037/0871

Effective date: 20130729

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: RESMED PTY LTD, AUSTRALIA

Free format text: CHANGE OF NAME;ASSIGNOR:RESMED LIMITED;REEL/FRAME:050005/0461

Effective date: 20190301

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4