[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US10499799B2 - Image pickup unit and endoscope - Google Patents

Image pickup unit and endoscope Download PDF

Info

Publication number
US10499799B2
US10499799B2 US16/037,104 US201816037104A US10499799B2 US 10499799 B2 US10499799 B2 US 10499799B2 US 201816037104 A US201816037104 A US 201816037104A US 10499799 B2 US10499799 B2 US 10499799B2
Authority
US
United States
Prior art keywords
image sensor
connection
board
protection material
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/037,104
Other versions
US20180317756A1 (en
Inventor
Hiroshi Unsai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Assigned to OLYMPUS CORPORATION reassignment OLYMPUS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNSAI, HIROSHI
Publication of US20180317756A1 publication Critical patent/US20180317756A1/en
Application granted granted Critical
Publication of US10499799B2 publication Critical patent/US10499799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00124Connectors, fasteners and adapters, e.g. on the endoscope handle electrical, e.g. electrical plug-and-socket connection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N5/2253
    • H04N5/2254
    • H04N5/369
    • H04N2005/2255
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor

Definitions

  • the present invention relates to an image pickup unit in which a rigid circuit board is connected to an electrode portion of an image sensor.
  • an image pickup unit is configured as a unit in which a circuit board for driving and signal processing is connected to an image sensor for which a solid image pickup device such as a CCD or a CMOS is used.
  • a solid image pickup device such as a CCD or a CMOS
  • an image pickup unit for example, in an endoscope an elongated insertion portion of which is inserted into a subject/object to pick up an image of an observation site, it is often a case that a flexible board is used as a circuit board, and a cable is connected to the flexible board to connect to an external apparatus, as disclosed in Japanese Patent Application Laid-Open Publication No. H10-33474, for example.
  • the image sensor is often formed with a small and lightweight chip size package on which high density implementation is possible.
  • an image pickup surface of an image pickup device is arranged on a front face side of the package, and an electrode portion of the image pickup device is arranged on a back face of the package.
  • a rigid circuit board such as a ceramic board is often used.
  • the board can be directly connected via a solder ball forming a bump on the back face of the package.
  • a glass lid 201 for protection is bonded to a front face side of the package where an image pickup surface 200 a of an image sensor 200 is arranged, with adhesive or the like; furthermore, a cover glass for positioning (not shown) is bonded to the glass lid 201 ; and the cover glass is held by a holding frame (not shown) arranged in the distal end portion of the endoscope.
  • an electrode portion 300 a of a ceramic board 300 is bonded to an electrode portion 200 b on a package back face of the image sensor 200 .
  • a cable 310 is connected to a proximal end side of the ceramic board 300 and extended on an operation portion side of the endoscope.
  • resin material is filled and fixed.
  • An image pickup unit includes: an image sensor including an image pickup device package, an image pickup surface of an image pickup device being arranged on a front face side of the package, and an electrode portion of the image pickup device being arranged on a back face of the package; a connection board including a first land portion and a second land portion, the first land portion being connected to the electrode portion of the image sensor; a rigid circuit board including a first connection portion and a second connection portion, the first connection portion being connected to the second land portion of the connection board; a cable connected to the second connection portion of the circuit board; and protection material arranged around the connection board and the image sensor; wherein the image sensor and the circuit board are arranged such that the electrode portion of the image sensor and the first connection portion face each other; the connection board includes a curved portion between the first land portion and the second land portion, the curved portion being curved in a manner of being displaceable by an external force transmitted from the cable via the circuit board; and the protection material includes first protection material and second protection material softer than
  • FIG. 1 is a configuration diagram of an endoscope apparatus according to a first embodiment of the present invention
  • FIG. 2 is an explanatory diagram showing an image pickup unit provided in a distal end portion of an endoscope according to the first embodiment of the present invention
  • FIG. 3 is an explanatory diagram showing connection between an image sensor and a board according to the first embodiment of the present invention
  • FIG. 4 is an explanatory diagram schematically showing an action of a load applied to the image sensor according to the first embodiment of the present invention
  • FIG. 5 is an explanatory diagram showing a first modification of a connection board according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a second modification of the connection board according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram showing an image pickup device holding frame according to a second embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing a conventional image pickup unit.
  • FIG. 1 shows an example of an endoscope apparatus to which the present invention is applied.
  • an endoscope apparatus 1 is configured being provided with an endoscope 2 including an image pickup unit, a light source device 3 configured to supply illuminating light to the endoscope 2 , a video processor 4 as a signal processing device configured to perform signal processing for the image pickup unit mounted in the endoscope 2 , and a color monitor 5 as a display device configured to display an endoscopic image.
  • the endoscope 2 includes an elongated insertion portion 6 to be inserted into a subject/object, an operation portion 7 provided on a proximal end of the insertion portion 6 , a universal cord 8 extended from the operation portion 7 , and an endoscope connector 9 provided on an end portion of the universal cord 8 .
  • the endoscope connector 9 being detachably connected to the light source device 3 , illuminating light from the light source device 3 is supplied to a light guide not shown in the endoscope 2 .
  • One end of a connection cable 10 is connected to the endoscope connector 9 , and an electrical connector 10 a provided on the other end of the connection cable 10 is detachably connected to the video processor 4 .
  • the video processor 4 is connected to the color monitor 5 via a video cable not shown.
  • the insertion portion 6 of the endoscope 2 is configured being provided with a rigid distal end portion 11 provided on a distal end, a bendable bending portion 12 provided on a rear end of the distal end portion 11 , and a flexible tube portion 13 having flexibility of extending from a rear end of the bending portion 12 to a front end of the operation portion 7 .
  • an observation window 15 On a distal end face of the distal end portion 11 , an observation window 15 , a plurality of illumination windows 16 ( FIG. 1 shows only one), a distal end opening 17 a of a treatment instrument channel (not shown), and a nozzle for cleaning not shown.
  • an image pickup unit 30 On an inner side (a rear face side) of the observation window 15 , an image pickup unit 30 provided in the distal end portion 11 is arranged as shown in FIG. 2 .
  • Illumination lenses are attached to the illumination windows 16 , and a light guide for transmitting illuminating light from the light source device 3 is arranged being connected to the illumination lenses (neither the illumination lenses nor the light guide is shown). Illuminating light transmitted by the light guide is emitted to a front side of the distal end face via the illumination lenses, and thereby an observation target site in a subject/object, which is a visual field range of the image pickup unit 30 , is illuminated.
  • the operation portion 7 is provided with a bend preventing portion 18 a for a part from which the proximal end of the insertion portion 6 is extended, a treatment instrument insertion port 18 b arranged on a side portion on a lower part side, an operation portion body 18 c constituting a grip portion provided on a middle part, a bending operation portion 19 provided on an upper part side and including two bending operation knobs 19 a and 19 b , an air/water feeding control portion 21 , a suction control portion 22 , and a switch portion 23 including a plurality of switches, the switch portion 23 being mainly for operating an image pickup function.
  • the treatment instrument insertion port 18 b of the operation portion 7 communicates with the treatment instrument channel made inside the insertion portion 6 , and is open at the distal end opening 17 a of the distal end portion 11 .
  • the image pickup unit 30 is arranged being inserted through a distal end rigid member forming the distal end portion 11 , and is fixed to the distal end rigid member with screws or the like from a side face direction.
  • the image pickup unit 30 is configured including an observation optical system unit 31 constituting an objective optical system including the observation window 15 , and an image pickup device unit 40 as an image pickup portion arranged being connected to a rear end side of the observation optical system unit 31 .
  • the observation optical system unit 31 is configured including a lens frame 32 holding lenses and a lens group 33 including a plurality of fixed lenses held by the lens frame 32 .
  • the lens frame 32 is formed in a substantially cylindrical shape, and a first lens 33 a forming the observation window 15 is arranged on a distal end side inside the cylindrical shape.
  • the lens group 33 is configured by arranging a second lens 33 b , a third lens 33 c , a fourth lens 33 d and a fifth lens 33 e behind the first lens 33 a along an optical axis O in that order, and each lens is fixed to the lens frame 32 with adhesive or the like.
  • apertures 34 and 35 are arranged behind the first lens 33 a and behind the second lens 33 b , respectively.
  • the third lens 33 c and the fourth lens 33 d are arranged with a spacer 36 between the third lens 33 c and the fourth lens 33 d.
  • the observation optical system unit 31 above is combined with the image pickup device unit 40 , and incident light incident via the lens group 33 is image-formed on a light receiving surface (an image pickup surface) of an image sensor 42 of the image pickup device unit 40 .
  • An optical image of an object is photoelectrically converted by the image sensor 42 , and an image pickup signal obtained by the photoelectrical conversion is transmitted to a subsequent-stage signal processing circuit via a cable 70 .
  • the image pickup device unit 40 includes a substantially cylinder-shaped image pickup device holding frame 41 holding the image sensor 42 , and by inserting and fitting a proximal end side of the lens frame 32 of the observation optical system unit 31 into a distal end side inner diameter portion of the image pickup device holding frame 41 and watertightly bonding the proximal end side and the distal end side inner diameter portion to each other, the observation optical system unit 31 and the image pickup device unit 40 are combined.
  • the image sensor 42 is configured as an image pickup device package obtained by sealing a solid image pickup device composed of a CCD, a CMOS or the like with resin or the like.
  • the image sensor 42 is configured as a small and lightweight chip size package (CSP) on which high density implementation is possible.
  • CSP chip size package
  • an image pickup surface 42 a of the image pickup device is arranged on a front face side of the package.
  • a glass lid 43 for protection is bonded and fixed with adhesive or the like.
  • a cover glass 44 for positioning is fixed to the glass lid 43 with adhesive or the like, and the cover glass 44 is fixed to a proximal end side inner diameter portion of the image pickup device holding frame 41 with adhesive or the like.
  • connection board 50 is connected to the electrode portion 47 of the image sensor 42 , and a rigid circuit board 60 is connected to the connection board 50 .
  • connection board 50 is a board configured to relay electrical connection between the image sensor 42 and the circuit board 60 .
  • a connection portion to the image sensor 42 and a connection portion to the circuit board 60 are mutually electrically connected by a print pattern (not shown) formed in advance.
  • the connection board 50 is composed of a flexible board made of a resin film or the like having flexibility.
  • the circuit board 60 is a circuit board on which various circuit chips of the image sensor 42 for driving and signal processing are implemented, and is formed as a rigid and high-strength board, which is a rigid body, such as a ceramic board.
  • a plurality of lead wires 80 extended from the cable 70 are connected to a proximal end side of the circuit board 60 .
  • the cable 70 is insertedly arranged inside the endoscope 2 and electrically connected to the video processor 4 via the electrical connector 10 a.
  • a tubular reinforcing frame 45 made of metal is arranged being connected to a proximal end outer circumferential portion of the image pickup device holding frame 41 .
  • An outer cover 71 of the cable 70 is bound tight and fixed with a binding thread 86 composed of a metal wire, a nylon thread or the like on a distal end side.
  • a thermal contraction tube 46 as a protection tube covering the cable 70 up to the distal end side is provided on an outer circumference of the tubular reinforcing frame 45 .
  • a space formed by the reinforcing frame 45 and the thermal contraction tube 46 from a proximal end part of the image pickup device holding frame 41 is filled with protection material 90 such as insulating sealing resin for holding, reinforcing and protecting the image sensor 42 .
  • connection portions between the image sensor 42 , the connection board 50 and the circuit board 60 will be described.
  • the image sensor 42 including a CSP package has a configuration in which a plurality of electrode pads 47 a are arranged in an array on the electrode portion 47 formed on the rear face side of the image pickup surface 42 a .
  • a spherical solder ball 47 b made of solder is bonded to each electrode pad 47 a of the electrode portion 47 to form a bump.
  • the connection board 50 includes a first land portion 51 and a second land portion 52 on both sides of a flexible board, and a plurality of lands 51 a and a plurality of lands 52 a to be electrode terminals are formed on the first land portion 51 and the second land portion 52 , respectively.
  • the lands 51 a of the first land portion 51 are associated with the respective lands 52 a of the second land portion 52 in advance, and connected by a print pattern not shown.
  • the circuit board 60 includes a first connection portion 61 to which the connection board 50 is connected, and a second connection portion 62 to which the cable 70 is connected.
  • a plurality of electrode terminals 61 a and a plurality of electrode terminals 62 a are formed on the first connection portion 61 and the second connection portion 62 , respectively.
  • Each electrode terminal 61 a of the first connection portion 61 is connected mainly to a terminal for drive output, image pickup signal input or the like to the image sensor 42 from each circuit part via the print pattern not shown
  • each electrode terminal 62 a of the second connection portion 62 is connected mainly to a terminal of each circuit part for signal input/output or the like to the video processor 4 via the print pattern not shown.
  • the first connection portion 61 is configured as a bump electrode similar to the electrode portion 47 of the image sensor 42 .
  • the image sensor 42 and the connection board 50 are electrically connected by performing heat bonding of each of the solder balls 47 b of the electrode portion 47 and each land 51 a of the first land portion 51 , or the like.
  • the connection board 50 and the circuit board 60 are electrically connected by the plurality of lands 52 a of the second land portion 52 being bonded to the respective electrode terminals 61 a of the first connection portion 61 of the circuit board 60 .
  • a plurality of lead wires 80 extended from the cable 70 are bonded by soldering or with electrically conductive adhesive and electrically connected.
  • connection board 50 includes a curved portion 53 curved in a manner of being displaceable by an external force transmitted from the cable 70 via the circuit board 60 , which is a rigid body, between the first land portion 51 and the second land portion 52 . Due to the curved portion 53 , it is possible to prevent an excessive load from being applied to a bonding surface between the image pickup surface 42 a of the image sensor 42 and the glass lid 43 from the cable 70 side via the circuit board 60 .
  • an electrode arrangement surface of the first connection portion 61 and an electrode arrangement surface of the second connection portion 62 are orthogonal to each other, and the electrode arrangement surface of the first connection portion 61 is arranged facing an electrode arrangement surface of the electrode portion 47 of the image sensor 42 .
  • the connection board 50 interposed between the electrode portion 47 of the image sensor 42 and the first connection portion 61 of the circuit board 60 includes the curved portion 53 curved like a U-shaped groove between the first land portion 51 and the second land portion 52 , and due to the curved portion 53 , it is possible to reduce a load transmitted to the image sensor 42 from the cable 70 via the circuit board 60 , which is a rigid body.
  • the circuit board 60 which is a rigid body, is displaced by the external force applied to the cable 70 , and a load is applied to other parts arranged being connected to the circuit board 60 .
  • the whole circuit board 60 which is a rigid body, is displaced relative to the electrode portion 47 of the image sensor 42 by the external force F.
  • the connection board 50 in response to the displacement of the circuit board 60 , the curved portion 53 is displaced, and the curved shape changes, between the first land portion 51 connected to the image sensor 42 and the second land portion 52 connected to the circuit board 60 .
  • the protection material 90 such as sealing resin filled around the image sensor 42 and the curved portion 53 may be material of one kind
  • the protection material 90 may include first protection material 90 a and second protection material 90 b that is softer than the first protection material 90 a as exemplified in FIG. 2 .
  • the second protection material 90 b is arranged at least in a space formed by the curved portion 53 .
  • first and second protection materials 90 a and 90 b With resin material, resin softer than resin material as the first protection material 90 a is used as resin material as the second protection material 90 b .
  • resin material By arranging the soft resin material in the space formed by the curved portion 53 , it is possible to cause the curved portion 53 to function more effectively.
  • soft material such as sponge can be used instead of resin material. It is also possible to arrange nothing around the curved portion 53 and leave the space as a cavity.
  • connection board 50 composed of a flexible board is folded in a U shape between the first land portion 51 and the second land portion 52 to form the curved portion 53 in the present embodiment
  • the curved portion 53 may be formed by causing the connection board 50 to be curved a plurality of times between the first land portion 51 and the second land portion 52 .
  • FIG. 5 shows a first modification of the connection board 50 .
  • a connection board 50 A of the first modification is a flexible board that is vertically folded twice between the first and second land portions 51 and 52 . That is, a curved portion 53 A of the connection board 50 A is formed by arranging two curved portions 53 u and 53 d formed by performing vertical curving twice between the first land portion 51 and the second land portion 52 , and it is possible to reduce an external force more effectively by the two curved portions 53 u and 53 d.
  • FIG. 6 shows a second modification of the connection board 50 .
  • a connection board 50 B of the second modification is a flexible board that is folded twice in mutually different directions such as vertical and horizontal directions between the first and second land portions 51 and 52 .
  • a curved portion 53 B of the connection board 50 B is formed by arranging two curved portions 53 x and 53 y formed by performing curving twice vertically and horizontally between the first land portion 51 and the second land portion 52 , and it becomes possible to reduce external forces from more directions.
  • connection board 50 may be formed by a rigid flexible board obtained by integrating a flexible board and a rigid board
  • the curved portion 53 ( 53 A, 53 B) can be formed by causing a part having flexibility to be curved. It is also possible to use, for example, a metal board or the like having elasticity as the connection board 50 .
  • the curved portion 53 may be formed by sharply folding the metal board so that not a circular-arc shaped cross section but a ridge-valley shaped cross section is obtained.
  • the circuit board 60 which is a rigid body such as a ceramic board
  • the image sensor 42 configured as a CSP package
  • a load transmitted to the image sensor 42 via the circuit board 60 which is a rigid body, by curving, torsion, tilt and the like of the cable 70 can be reduced by the curved portion 53 of the connection board 50 interposed between the image sensor 42 and the circuit board 60 .
  • the second embodiment is such that the shape of the image pickup device holding frame 41 holding the image sensor 42 is slightly changed, and an extending portion extending to the connection board 50 side is provided.
  • an image pickup device holding frame 100 of the second embodiment extends on a proximal end side on which the cover glass 44 is fixed, and has an extending portion 100 a including the glass lid 43 and the image sensor 42 and extending to a proximal end side relative to the image sensor 42 .
  • the projection length La of the extending portion 100 a is set to be in a relationship of La>Lb relative to a distance Lb from the bonding surface between the cover glass 44 and the glass lid 43 to an electrode surface including the electrode portion 47 of the image sensor 42 .
  • the extending portion 100 a is formed in a tubular shape having such an extension length that covers the electrode portion 47 side of the image sensor 42 or as a part extended to a proximal end side relative to the image sensor 42 to form a nail shape, and protection material 110 is arranged inside the extending portion 100 a .
  • the protection material 110 the first protection material 90 a described in the first embodiment may be used. Otherwise, protection material such as resin material with a higher heat resistance may be used.
  • the image pickup device holding frame 100 of the second embodiment can, if a load larger than the load in the first embodiment is applied, receive the load by the extending portion 100 a via the protection material 110 .
  • the load can be received by the extending portion 100 a via the protection material 110 , and a load applied to the bonding layer between the image pickup surface 42 a of the image sensor 42 and the glass lid 43 can be reduced, in comparison with the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

An image pickup unit of the present invention includes an image sensor, a connection board, a circuit board, a cable, and protection material. If an external force acts in a direction orthogonal to an extension direction of the cable, the whole of the circuit board, which is a rigid body, is displaced relative to an electrode portion of the image sensor by the external force. In response to the displacement of the circuit board, the connection board is displaced so that a curve radius of a curved portion changes, between a first land portion connected to the image sensor and a second land portion connected to the circuit board, and thereby a load by the external force transmitted to the image sensor from the cable through the circuit board is reduced.

Description

CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation application of PCT/JP2017/014959 filed on Apr. 12, 2017 and claims benefit of Japanese Application No. 2016-113778 filed in Japan on Jun. 7, 2016, the entire contents of which are incorporated herein by this reference.
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to an image pickup unit in which a rigid circuit board is connected to an electrode portion of an image sensor.
2. Description of the Related Art
In general, an image pickup unit is configured as a unit in which a circuit board for driving and signal processing is connected to an image sensor for which a solid image pickup device such as a CCD or a CMOS is used. In the case of mounting such an image pickup unit, for example, in an endoscope an elongated insertion portion of which is inserted into a subject/object to pick up an image of an observation site, it is often a case that a flexible board is used as a circuit board, and a cable is connected to the flexible board to connect to an external apparatus, as disclosed in Japanese Patent Application Laid-Open Publication No. H10-33474, for example.
Nowadays, the image sensor is often formed with a small and lightweight chip size package on which high density implementation is possible. On the chip size package, an image pickup surface of an image pickup device is arranged on a front face side of the package, and an electrode portion of the image pickup device is arranged on a back face of the package.
Further, in order to improve heat resistance and mechanical strength of the circuit board, a rigid circuit board such as a ceramic board is often used. In the case of connecting the ceramic board to the electrode portion of the chip size package, the board can be directly connected via a solder ball forming a bump on the back face of the package.
In the case of including such a chip size package image sensor in a distal end portion of an endoscope, for example, as shown in FIG. 8, a glass lid 201 for protection is bonded to a front face side of the package where an image pickup surface 200 a of an image sensor 200 is arranged, with adhesive or the like; furthermore, a cover glass for positioning (not shown) is bonded to the glass lid 201; and the cover glass is held by a holding frame (not shown) arranged in the distal end portion of the endoscope.
Then, an electrode portion 300 a of a ceramic board 300 is bonded to an electrode portion 200 b on a package back face of the image sensor 200. And a cable 310 is connected to a proximal end side of the ceramic board 300 and extended on an operation portion side of the endoscope. In a peripheral part from the electrode portion 200 b of the image sensor 200 to the ceramic board 300, resin material is filled and fixed.
SUMMARY OF THE INVENTION
An image pickup unit according to an aspect of the present invention includes: an image sensor including an image pickup device package, an image pickup surface of an image pickup device being arranged on a front face side of the package, and an electrode portion of the image pickup device being arranged on a back face of the package; a connection board including a first land portion and a second land portion, the first land portion being connected to the electrode portion of the image sensor; a rigid circuit board including a first connection portion and a second connection portion, the first connection portion being connected to the second land portion of the connection board; a cable connected to the second connection portion of the circuit board; and protection material arranged around the connection board and the image sensor; wherein the image sensor and the circuit board are arranged such that the electrode portion of the image sensor and the first connection portion face each other; the connection board includes a curved portion between the first land portion and the second land portion, the curved portion being curved in a manner of being displaceable by an external force transmitted from the cable via the circuit board; and the protection material includes first protection material and second protection material softer than the first protection material, the second protection material being arranged at least inside the curved portion.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a configuration diagram of an endoscope apparatus according to a first embodiment of the present invention;
FIG. 2 is an explanatory diagram showing an image pickup unit provided in a distal end portion of an endoscope according to the first embodiment of the present invention;
FIG. 3 is an explanatory diagram showing connection between an image sensor and a board according to the first embodiment of the present invention;
FIG. 4 is an explanatory diagram schematically showing an action of a load applied to the image sensor according to the first embodiment of the present invention;
FIG. 5 is an explanatory diagram showing a first modification of a connection board according to the first embodiment of the present invention;
FIG. 6 is an explanatory diagram showing a second modification of the connection board according to the first embodiment of the present invention;
FIG. 7 is an explanatory diagram showing an image pickup device holding frame according to a second embodiment of the present invention; and
FIG. 8 is an explanatory diagram showing a conventional image pickup unit.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Embodiments of the present invention will be described below with reference to drawings.
First Embodiment
FIG. 1 shows an example of an endoscope apparatus to which the present invention is applied. In the present embodiment, an endoscope apparatus 1 is configured being provided with an endoscope 2 including an image pickup unit, a light source device 3 configured to supply illuminating light to the endoscope 2, a video processor 4 as a signal processing device configured to perform signal processing for the image pickup unit mounted in the endoscope 2, and a color monitor 5 as a display device configured to display an endoscopic image.
The endoscope 2 includes an elongated insertion portion 6 to be inserted into a subject/object, an operation portion 7 provided on a proximal end of the insertion portion 6, a universal cord 8 extended from the operation portion 7, and an endoscope connector 9 provided on an end portion of the universal cord 8. By the endoscope connector 9 being detachably connected to the light source device 3, illuminating light from the light source device 3 is supplied to a light guide not shown in the endoscope 2. One end of a connection cable 10 is connected to the endoscope connector 9, and an electrical connector 10 a provided on the other end of the connection cable 10 is detachably connected to the video processor 4. The video processor 4 is connected to the color monitor 5 via a video cable not shown.
The insertion portion 6 of the endoscope 2 is configured being provided with a rigid distal end portion 11 provided on a distal end, a bendable bending portion 12 provided on a rear end of the distal end portion 11, and a flexible tube portion 13 having flexibility of extending from a rear end of the bending portion 12 to a front end of the operation portion 7.
On a distal end face of the distal end portion 11, an observation window 15, a plurality of illumination windows 16 (FIG. 1 shows only one), a distal end opening 17 a of a treatment instrument channel (not shown), and a nozzle for cleaning not shown. On an inner side (a rear face side) of the observation window 15, an image pickup unit 30 provided in the distal end portion 11 is arranged as shown in FIG. 2.
Illumination lenses are attached to the illumination windows 16, and a light guide for transmitting illuminating light from the light source device 3 is arranged being connected to the illumination lenses (neither the illumination lenses nor the light guide is shown). Illuminating light transmitted by the light guide is emitted to a front side of the distal end face via the illumination lenses, and thereby an observation target site in a subject/object, which is a visual field range of the image pickup unit 30, is illuminated.
The operation portion 7 is provided with a bend preventing portion 18 a for a part from which the proximal end of the insertion portion 6 is extended, a treatment instrument insertion port 18 b arranged on a side portion on a lower part side, an operation portion body 18 c constituting a grip portion provided on a middle part, a bending operation portion 19 provided on an upper part side and including two bending operation knobs 19 a and 19 b, an air/water feeding control portion 21, a suction control portion 22, and a switch portion 23 including a plurality of switches, the switch portion 23 being mainly for operating an image pickup function.
Note that inside the operation portion 7, the treatment instrument insertion port 18 b of the operation portion 7 communicates with the treatment instrument channel made inside the insertion portion 6, and is open at the distal end opening 17 a of the distal end portion 11.
Next, the image pickup unit 30 arranged inside the distal end portion 11 of the endoscope 2 will be described based on FIG. 2.
The image pickup unit 30 is arranged being inserted through a distal end rigid member forming the distal end portion 11, and is fixed to the distal end rigid member with screws or the like from a side face direction. The image pickup unit 30 is configured including an observation optical system unit 31 constituting an objective optical system including the observation window 15, and an image pickup device unit 40 as an image pickup portion arranged being connected to a rear end side of the observation optical system unit 31.
In the present embodiment, the observation optical system unit 31 is configured including a lens frame 32 holding lenses and a lens group 33 including a plurality of fixed lenses held by the lens frame 32. The lens frame 32 is formed in a substantially cylindrical shape, and a first lens 33 a forming the observation window 15 is arranged on a distal end side inside the cylindrical shape. The lens group 33 is configured by arranging a second lens 33 b, a third lens 33 c, a fourth lens 33 d and a fifth lens 33 e behind the first lens 33 a along an optical axis O in that order, and each lens is fixed to the lens frame 32 with adhesive or the like.
Note that apertures 34 and 35 are arranged behind the first lens 33 a and behind the second lens 33 b, respectively. The third lens 33 c and the fourth lens 33 d are arranged with a spacer 36 between the third lens 33 c and the fourth lens 33 d.
The observation optical system unit 31 above is combined with the image pickup device unit 40, and incident light incident via the lens group 33 is image-formed on a light receiving surface (an image pickup surface) of an image sensor 42 of the image pickup device unit 40. An optical image of an object is photoelectrically converted by the image sensor 42, and an image pickup signal obtained by the photoelectrical conversion is transmitted to a subsequent-stage signal processing circuit via a cable 70.
The image pickup device unit 40 includes a substantially cylinder-shaped image pickup device holding frame 41 holding the image sensor 42, and by inserting and fitting a proximal end side of the lens frame 32 of the observation optical system unit 31 into a distal end side inner diameter portion of the image pickup device holding frame 41 and watertightly bonding the proximal end side and the distal end side inner diameter portion to each other, the observation optical system unit 31 and the image pickup device unit 40 are combined.
The image sensor 42 is configured as an image pickup device package obtained by sealing a solid image pickup device composed of a CCD, a CMOS or the like with resin or the like. In the present embodiment, the image sensor 42 is configured as a small and lightweight chip size package (CSP) on which high density implementation is possible. In the image sensor 42, an image pickup surface 42 a of the image pickup device is arranged on a front face side of the package. On the image pickup surface 42 a side, a glass lid 43 for protection is bonded and fixed with adhesive or the like. Furthermore, a cover glass 44 for positioning is fixed to the glass lid 43 with adhesive or the like, and the cover glass 44 is fixed to a proximal end side inner diameter portion of the image pickup device holding frame 41 with adhesive or the like.
On a back face of the package, which is a rear face side of the image pickup surface 42 a of the image sensor 42, an electrode portion 47 on which a plurality of electrode terminals are arranged is provided. A connection board 50 is connected to the electrode portion 47 of the image sensor 42, and a rigid circuit board 60 is connected to the connection board 50.
The connection board 50 is a board configured to relay electrical connection between the image sensor 42 and the circuit board 60. A connection portion to the image sensor 42 and a connection portion to the circuit board 60 are mutually electrically connected by a print pattern (not shown) formed in advance. In the present embodiment, the connection board 50 is composed of a flexible board made of a resin film or the like having flexibility.
The circuit board 60 is a circuit board on which various circuit chips of the image sensor 42 for driving and signal processing are implemented, and is formed as a rigid and high-strength board, which is a rigid body, such as a ceramic board. A plurality of lead wires 80 extended from the cable 70 are connected to a proximal end side of the circuit board 60. The cable 70 is insertedly arranged inside the endoscope 2 and electrically connected to the video processor 4 via the electrical connector 10 a.
Note that a tubular reinforcing frame 45 made of metal is arranged being connected to a proximal end outer circumferential portion of the image pickup device holding frame 41. An outer cover 71 of the cable 70 is bound tight and fixed with a binding thread 86 composed of a metal wire, a nylon thread or the like on a distal end side.
A thermal contraction tube 46 as a protection tube covering the cable 70 up to the distal end side is provided on an outer circumference of the tubular reinforcing frame 45. A space formed by the reinforcing frame 45 and the thermal contraction tube 46 from a proximal end part of the image pickup device holding frame 41 is filled with protection material 90 such as insulating sealing resin for holding, reinforcing and protecting the image sensor 42.
Next, details of the connection portions between the image sensor 42, the connection board 50 and the circuit board 60 will be described.
As shown in FIG. 3, the image sensor 42 including a CSP package has a configuration in which a plurality of electrode pads 47 a are arranged in an array on the electrode portion 47 formed on the rear face side of the image pickup surface 42 a. A spherical solder ball 47 b made of solder is bonded to each electrode pad 47 a of the electrode portion 47 to form a bump.
The connection board 50 includes a first land portion 51 and a second land portion 52 on both sides of a flexible board, and a plurality of lands 51 a and a plurality of lands 52 a to be electrode terminals are formed on the first land portion 51 and the second land portion 52, respectively. The lands 51 a of the first land portion 51 are associated with the respective lands 52 a of the second land portion 52 in advance, and connected by a print pattern not shown.
The circuit board 60 includes a first connection portion 61 to which the connection board 50 is connected, and a second connection portion 62 to which the cable 70 is connected. A plurality of electrode terminals 61 a and a plurality of electrode terminals 62 a are formed on the first connection portion 61 and the second connection portion 62, respectively. Each electrode terminal 61 a of the first connection portion 61 is connected mainly to a terminal for drive output, image pickup signal input or the like to the image sensor 42 from each circuit part via the print pattern not shown, and each electrode terminal 62 a of the second connection portion 62 is connected mainly to a terminal of each circuit part for signal input/output or the like to the video processor 4 via the print pattern not shown. Note that the first connection portion 61 is configured as a bump electrode similar to the electrode portion 47 of the image sensor 42.
The image sensor 42 and the connection board 50 are electrically connected by performing heat bonding of each of the solder balls 47 b of the electrode portion 47 and each land 51 a of the first land portion 51, or the like. The connection board 50 and the circuit board 60 are electrically connected by the plurality of lands 52 a of the second land portion 52 being bonded to the respective electrode terminals 61 a of the first connection portion 61 of the circuit board 60. To the respective electrode terminals 62 a of the second connection portion 62 of the circuit board 60, a plurality of lead wires 80 extended from the cable 70 are bonded by soldering or with electrically conductive adhesive and electrically connected.
Here, the connection board 50 includes a curved portion 53 curved in a manner of being displaceable by an external force transmitted from the cable 70 via the circuit board 60, which is a rigid body, between the first land portion 51 and the second land portion 52. Due to the curved portion 53, it is possible to prevent an excessive load from being applied to a bonding surface between the image pickup surface 42 a of the image sensor 42 and the glass lid 43 from the cable 70 side via the circuit board 60.
In the present embodiment, on the circuit board 60, an electrode arrangement surface of the first connection portion 61 and an electrode arrangement surface of the second connection portion 62 are orthogonal to each other, and the electrode arrangement surface of the first connection portion 61 is arranged facing an electrode arrangement surface of the electrode portion 47 of the image sensor 42. The connection board 50 interposed between the electrode portion 47 of the image sensor 42 and the first connection portion 61 of the circuit board 60 includes the curved portion 53 curved like a U-shaped groove between the first land portion 51 and the second land portion 52, and due to the curved portion 53, it is possible to reduce a load transmitted to the image sensor 42 from the cable 70 via the circuit board 60, which is a rigid body.
That is, if an external force acts on the second connection portion 62 of the circuit board 60 due to curving, torsion, tilt and the like of the cable 70, especially the image sensor 42 and the circuit board 60 generate heat as the endoscope 2 is used, and the protection material 90 around the image sensor 42 becomes soft. In such a situation, the circuit board 60, which is a rigid body, is displaced by the external force applied to the cable 70, and a load is applied to other parts arranged being connected to the circuit board 60.
For example, if an external force F acts in a direction orthogonal to an extension direction of the cable 70 as shown in FIG. 4, the whole circuit board 60, which is a rigid body, is displaced relative to the electrode portion 47 of the image sensor 42 by the external force F. On the connection board 50, in response to the displacement of the circuit board 60, the curved portion 53 is displaced, and the curved shape changes, between the first land portion 51 connected to the image sensor 42 and the second land portion 52 connected to the circuit board 60.
Therefore, even if the circuit board 60 is displaced by an external force, only a part of the connection board 50 near the curved portion 53 is displaced in response to the displacement, so that the external force can be absorbed and reduced. Thereby, it is possible to reduce a load by an external force transmitted to the image sensor 42 from the cable 70 via the circuit board 60. As a result, it does not happen that such an excessive force that causes detachment of a bonding layer between the image pickup surface 42 a of the image sensor 42 and the glass lid 43 is applied to the bonding layer, and it is possible to effectively prevent occurrence of a trouble such as detachment.
In this case, though the protection material 90 such as sealing resin filled around the image sensor 42 and the curved portion 53 may be material of one kind, the protection material 90 may include first protection material 90 a and second protection material 90 b that is softer than the first protection material 90 a as exemplified in FIG. 2. The second protection material 90 b is arranged at least in a space formed by the curved portion 53.
In the case of forming the first and second protection materials 90 a and 90 b with resin material, resin softer than resin material as the first protection material 90 a is used as resin material as the second protection material 90 b. By arranging the soft resin material in the space formed by the curved portion 53, it is possible to cause the curved portion 53 to function more effectively.
As the second protection material 90 b arranged in the curved portion 53, soft material such as sponge can be used instead of resin material. It is also possible to arrange nothing around the curved portion 53 and leave the space as a cavity.
Though the connection board 50 composed of a flexible board is folded in a U shape between the first land portion 51 and the second land portion 52 to form the curved portion 53 in the present embodiment, the curved portion 53 may be formed by causing the connection board 50 to be curved a plurality of times between the first land portion 51 and the second land portion 52.
FIG. 5 shows a first modification of the connection board 50. A connection board 50A of the first modification is a flexible board that is vertically folded twice between the first and second land portions 51 and 52. That is, a curved portion 53A of the connection board 50A is formed by arranging two curved portions 53 u and 53 d formed by performing vertical curving twice between the first land portion 51 and the second land portion 52, and it is possible to reduce an external force more effectively by the two curved portions 53 u and 53 d.
FIG. 6 shows a second modification of the connection board 50. A connection board 50B of the second modification is a flexible board that is folded twice in mutually different directions such as vertical and horizontal directions between the first and second land portions 51 and 52. A curved portion 53B of the connection board 50B is formed by arranging two curved portions 53 x and 53 y formed by performing curving twice vertically and horizontally between the first land portion 51 and the second land portion 52, and it becomes possible to reduce external forces from more directions.
Note that the connection board 50 (50A, 50B) may be formed by a rigid flexible board obtained by integrating a flexible board and a rigid board, and the curved portion 53 (53A, 53B) can be formed by causing a part having flexibility to be curved. It is also possible to use, for example, a metal board or the like having elasticity as the connection board 50. The curved portion 53 may be formed by sharply folding the metal board so that not a circular-arc shaped cross section but a ridge-valley shaped cross section is obtained.
Thus, in the present embodiment, for the image pickup unit in which the circuit board 60, which is a rigid body such as a ceramic board, is connected to the image sensor 42 configured as a CSP package, a load transmitted to the image sensor 42 via the circuit board 60, which is a rigid body, by curving, torsion, tilt and the like of the cable 70 can be reduced by the curved portion 53 of the connection board 50 interposed between the image sensor 42 and the circuit board 60. As a result, it is possible to reduce a load applied to the bonding layer between the image pickup surface 42 a of the image sensor 42 and the glass lid 43 and to prevent detachment of the bonding layer.
Second Embodiment
Next, a second embodiment of the present invention will be described. The second embodiment is such that the shape of the image pickup device holding frame 41 holding the image sensor 42 is slightly changed, and an extending portion extending to the connection board 50 side is provided.
More specifically, an image pickup device holding frame 100 of the second embodiment extends on a proximal end side on which the cover glass 44 is fixed, and has an extending portion 100 a including the glass lid 43 and the image sensor 42 and extending to a proximal end side relative to the image sensor 42.
More specifically, when a distance (a projection length) from a bonding surface between the cover glass 44 and the glass lid 43 to a distal end of the extending portion 100 a is indicated by La, the projection length La of the extending portion 100 a is set to be in a relationship of La>Lb relative to a distance Lb from the bonding surface between the cover glass 44 and the glass lid 43 to an electrode surface including the electrode portion 47 of the image sensor 42.
The extending portion 100 a is formed in a tubular shape having such an extension length that covers the electrode portion 47 side of the image sensor 42 or as a part extended to a proximal end side relative to the image sensor 42 to form a nail shape, and protection material 110 is arranged inside the extending portion 100 a. As the protection material 110, the first protection material 90 a described in the first embodiment may be used. Otherwise, protection material such as resin material with a higher heat resistance may be used.
Since the projection length La of the extending portion 100 a is set to be in the relationship of La>Lb relative to the electrode portion 47 of the image sensor 42, the image pickup device holding frame 100 of the second embodiment can, if a load larger than the load in the first embodiment is applied, receive the load by the extending portion 100 a via the protection material 110.
Thus, in the second embodiment, even if a large load that cannot be reduced by the curved portion 53 of the connection board 50 is applied, the load can be received by the extending portion 100 a via the protection material 110, and a load applied to the bonding layer between the image pickup surface 42 a of the image sensor 42 and the glass lid 43 can be reduced, in comparison with the first embodiment.

Claims (5)

What is claimed is:
1. An image pickup unit comprising:
an image sensor comprising an image pickup surface being arranged on a front face side and an electrode portion being arranged on a back face side;
a connection board comprising a first land portion and a second land portion, the first land portion being connected to the electrode portion of the image sensor;
a rigid circuit board comprising a first connection portion and a second connection portion, the first connection portion and the second connection portion being arranged so as to be orthogonal to each other, the first connection portion being connected to the second land portion of the connection board;
a cable connected to the second connection portion of the circuit board; and
protection material arranged around the connection board and the image sensor; wherein
the image sensor and the circuit board are arranged such that the electrode portion of the image sensor and the first connection portion face each other;
the connection board comprises a curved portion between the first land portion and the second land portion, the curved portion being curved in a manner of being displaceable relative to the electrode portion of the image sensor by an external force that acts in a direction orthogonal to an extension direction of the cable; and
the protection material includes first protection material and second protection material softer than the first protection material, the second protection material being arranged at least inside the curved portion.
2. The image pickup unit according to claim 1, wherein the connection board comprises a single flexible board having flexibility, and the curved portion is formed by folding the single flexible board a plurality of times in directions different from each other.
3. The image pickup unit according to claim 1, wherein a holding frame holding the image sensor is provided with an extending portion extending to a proximal end side relative to the image sensor, and the protection material is filled inside the extending portion.
4. The image pickup unit according to claim 2, wherein the curved portion of the connection board is formed by causing the single flexible board to be curved in a form of a U-shaped groove at a portion of the single flexible board between the first land portion and the second land portion such that the first land portion and the second land portion are arranged so as to face each other.
5. An endoscope comprising:
an insertion portion configured to be inserted into a subject, and
an image pickup portion provided at a distal end of the insertion portion and configured to pick up an image of an inside of the subject,
the image pickup portion comprising:
an image sensor comprising an image pickup surface being arranged on a front face side and an electrode portion being arranged on a back face side;
a connection board comprising a first land portion and a second land portion, the first land portion being connected to the electrode portion of the image sensor;
a rigid circuit board comprising a first connection portion and a second connection portion, the first connection portion and the second connection portion being arranged so as to be orthogonal to each other, the first connection portion being connected to the second land portion of the connection board;
a cable connected to the second connection portion of the circuit board and extended toward a proximal end side of the insertion portion; and
protection material arranged around the connection board and the image sensor; wherein
the image sensor and the circuit board are arranged such that the electrode portion of the image sensor and the first connection portion face each other;
the connection board comprises a curved portion between the first land portion and the second land portion, the curved portion being curved in a manner of being displaceable relative to the electrode portion of the image sensor by an external force that acts in a direction orthogonal to an extension direction of the cable; and
the protection material includes first protection material and second protection material softer than the first protection material, the second protection material being arranged at least inside the curved portion.
US16/037,104 2016-06-07 2018-07-17 Image pickup unit and endoscope Active US10499799B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-113778 2016-06-07
JP2016113778 2016-06-07
PCT/JP2017/014959 WO2017212779A1 (en) 2016-06-07 2017-04-12 Imaging unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014959 Continuation WO2017212779A1 (en) 2016-06-07 2017-04-12 Imaging unit

Publications (2)

Publication Number Publication Date
US20180317756A1 US20180317756A1 (en) 2018-11-08
US10499799B2 true US10499799B2 (en) 2019-12-10

Family

ID=60577691

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/037,104 Active US10499799B2 (en) 2016-06-07 2018-07-17 Image pickup unit and endoscope

Country Status (4)

Country Link
US (1) US10499799B2 (en)
JP (1) JP6322348B1 (en)
CN (1) CN108463155A (en)
WO (1) WO2017212779A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019105564B4 (en) * 2019-03-05 2023-02-02 Olympus Winter & Ibe Gmbh endoscope
CN113382671B (en) * 2019-03-18 2024-05-14 奥林巴斯株式会社 Front end unit of endoscope and endoscope
US11945144B2 (en) * 2019-09-06 2024-04-02 Ambu A/S Tip part assembly for an endoscope
WO2021117200A1 (en) * 2019-12-12 2021-06-17 オリンパス株式会社 Endoscope
EP3964116A1 (en) 2020-09-02 2022-03-09 Ambu A/S Endoscope tip part
EP4011270A1 (en) 2020-12-08 2022-06-15 Ambu A/S Endoscope tip part with improved optical properties
US11943525B2 (en) * 2022-02-17 2024-03-26 Omnivision Technologies, Inc. Electronic camera module with integral LED and light-pipe illuminator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033474A (en) 1996-07-23 1998-02-10 Olympus Optical Co Ltd Electronic endoscope
JPH11216102A (en) 1998-02-04 1999-08-10 Olympus Optical Co Ltd Image-pickup device for endoscope
JPH11252418A (en) 1998-03-04 1999-09-17 Olympus Optical Co Ltd Image-pickup device
US20110249106A1 (en) * 2010-04-07 2011-10-13 Olympus Corporation Image pickup apparatus, endoscope and manufacturing method for image pickup apparatus
JP2011200398A (en) 2010-03-25 2011-10-13 Fujifilm Corp Endoscope
WO2012032934A1 (en) 2010-09-10 2012-03-15 オリンパス株式会社 Image pickup unit, and endoscope tip section provided with the image pickup unit
US20120197081A1 (en) * 2011-01-31 2012-08-02 Fujifilm Corporation Imaging device and electronic endoscope having imaging device
WO2014109094A1 (en) 2013-01-11 2014-07-17 オリンパス株式会社 Method for manufacturing semiconductor device, semiconductor device, and endoscope
WO2014125070A1 (en) 2013-02-15 2014-08-21 Richard Wolf Gmbh Assembly for a video endoscope
US20170172388A1 (en) * 2015-12-21 2017-06-22 Sony Olympus Medical Solutions Inc. Endoscopic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762627B2 (en) * 2005-07-25 2011-08-31 オリンパス株式会社 Imaging apparatus and manufacturing method of imaging apparatus
JP5814716B2 (en) * 2011-09-27 2015-11-17 株式会社東芝 Harmonic resonance avoidance system for AC transmission system

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033474A (en) 1996-07-23 1998-02-10 Olympus Optical Co Ltd Electronic endoscope
JPH11216102A (en) 1998-02-04 1999-08-10 Olympus Optical Co Ltd Image-pickup device for endoscope
JPH11252418A (en) 1998-03-04 1999-09-17 Olympus Optical Co Ltd Image-pickup device
JP2011200398A (en) 2010-03-25 2011-10-13 Fujifilm Corp Endoscope
US20110249106A1 (en) * 2010-04-07 2011-10-13 Olympus Corporation Image pickup apparatus, endoscope and manufacturing method for image pickup apparatus
EP2614766A1 (en) 2010-09-10 2013-07-17 Olympus Corporation Image pickup unit, and endoscope tip section provided with the image pickup unit
JP2012055570A (en) 2010-09-10 2012-03-22 Olympus Corp Imaging unit and endoscope tip part equipped with the imaging unit
WO2012032934A1 (en) 2010-09-10 2012-03-15 オリンパス株式会社 Image pickup unit, and endoscope tip section provided with the image pickup unit
US20130188030A1 (en) 2010-09-10 2013-07-25 Olympus Corporation Image pickup unit and endoscope distal end portion including the image pickup unit
US20120197081A1 (en) * 2011-01-31 2012-08-02 Fujifilm Corporation Imaging device and electronic endoscope having imaging device
WO2014109094A1 (en) 2013-01-11 2014-07-17 オリンパス株式会社 Method for manufacturing semiconductor device, semiconductor device, and endoscope
JP2014133046A (en) 2013-01-11 2014-07-24 Olympus Corp Manufacturing method of semiconductor device, semiconductor device, and endoscope
US20150312457A1 (en) * 2013-01-11 2015-10-29 Olympus Corporation Manufacturing method of semiconductor apparatus, semiconductor apparatus, and endoscope
EP2944248A1 (en) 2013-01-11 2015-11-18 Olympus Corporation Method for manufacturing semiconductor device, semiconductor device, and endoscope
WO2014125070A1 (en) 2013-02-15 2014-08-21 Richard Wolf Gmbh Assembly for a video endoscope
US20150378144A1 (en) 2013-02-15 2015-12-31 Richard Wolf Gmbh Assembly for a video endoscope
US20170172388A1 (en) * 2015-12-21 2017-06-22 Sony Olympus Medical Solutions Inc. Endoscopic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report dated Jun. 20, 2017 issued in PCT/JP2017/014959.

Also Published As

Publication number Publication date
US20180317756A1 (en) 2018-11-08
JP6322348B1 (en) 2018-05-09
JPWO2017212779A1 (en) 2018-06-14
WO2017212779A1 (en) 2017-12-14
CN108463155A (en) 2018-08-28

Similar Documents

Publication Publication Date Title
US10499799B2 (en) Image pickup unit and endoscope
JP5436470B2 (en) Imaging device and electronic endoscope provided with the same
US9462933B2 (en) Image pickup unit for endoscope
EP2644084B1 (en) Endoscope
US20160367122A1 (en) Solid-state image pickup apparatus and electronic endoscope including solid-state image pickup apparatus
US9261662B2 (en) Photoelectric conversion connector, optical transmission module, imaging apparatus, and endoscope
CN112135557B (en) Imaging unit and strabismus endoscope
JP5063834B2 (en) Electronic endoscope system
US10098522B2 (en) Endoscope
JP5399305B2 (en) Imaging apparatus and endoscope
US11857167B2 (en) Image pickup unit and endoscope
WO2017072862A1 (en) Image pickup unit and endoscope
WO2019193911A1 (en) Imaging unit and endoscope
JP2011200338A (en) Electronic endoscope
JP6266091B2 (en) Endoscopic imaging device
JP2000229065A (en) Solid imaging instrument
US20190110664A1 (en) Endoscopic apparatus
WO2021172002A1 (en) Endoscope imaging device
JPH05220107A (en) Electronic endoscope
US10080480B2 (en) Endoscope
JP2022178902A (en) Endoscope
JP2022166635A (en) endoscope camera head
JP2022142206A (en) Imaging module
JPH04104118A (en) Solid-state image pickup element module for endoscope
WO2019097588A1 (en) Cable connection structure, imaging device, and endoscope

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLYMPUS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNSAI, HIROSHI;REEL/FRAME:046367/0242

Effective date: 20180618

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4