TWM607620U - Write driving circuit - Google Patents
Write driving circuit Download PDFInfo
- Publication number
- TWM607620U TWM607620U TW109213554U TW109213554U TWM607620U TW M607620 U TWM607620 U TW M607620U TW 109213554 U TW109213554 U TW 109213554U TW 109213554 U TW109213554 U TW 109213554U TW M607620 U TWM607620 U TW M607620U
- Authority
- TW
- Taiwan
- Prior art keywords
- delay
- drive circuit
- nmos transistor
- drain
- voltage
- Prior art date
Links
Images
Landscapes
- Static Random-Access Memory (AREA)
Abstract
本創作提出一種新穎架構之寫入驅動電路,其係由一第一PMOS電晶體(P71)、一第一NMOS電晶體(M71)、一第二NMOS電晶體(M72)、一第三NMOS電晶體(M73)、一第二PMOS電晶體(Mcap)、一第一反相器(INV71)、一第二反相器(INV72)、一輸入資料(Din)、一行解碼器輸出信號(Y)、一第一延遲電路(Delay 1)、一第二延遲電路(Delay 1)以及一第一高電源供應電壓(VDDH1)所組成,其中,該第二PMOS電晶體(Mcap)之源極與汲極係連接在一起以形成一電容器,且在該寫入驅動電路為非致能狀態時,該第二PMOS電晶體(Mcap)呈導通(ON)狀態,藉此以提高該電容器之電容值。該寫入驅動電路於寫入邏輯0之第一階段係設計成低於接地電壓之電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯0之第二階段則拉回至接地電壓之電壓位準,以減緩半選定晶胞之寫入干擾;再者,該寫入驅動電路於寫入邏輯1時係設計成高於記憶體晶胞之電源供應電壓,以提高記憶體晶胞之儲存節點的寫入初始瞬間電壓,從而提高寫入邏輯1之速度。 This creation proposes a novel architecture write drive circuit, which is composed of a first PMOS transistor (P71), a first NMOS transistor (M71), a second NMOS transistor (M72), and a third NMOS transistor. Crystal (M73), a second PMOS transistor (Mcap), a first inverter (INV71), a second inverter (INV72), an input data (Din), a row of decoder output signals (Y) , A first delay circuit (Delay 1), a second delay circuit (Delay 1), and a first high power supply voltage (VDDH1), wherein the source and drain of the second PMOS transistor (Mcap) The poles are connected together to form a capacitor, and when the write drive circuit is in an inactive state, the second PMOS transistor (Mcap) is in an ON state, thereby increasing the capacitance of the capacitor. The write drive circuit is designed to be lower than the ground voltage in the first stage of writing logic 0 to accelerate the speed of writing logic 0, and in the second stage of writing logic 0, it is pulled back to ground The voltage level of the voltage is used to reduce the write interference of the half-selected cell. Moreover, the write drive circuit is designed to be higher than the power supply voltage of the memory cell when writing logic 1 to increase the memory cell. The initial instantaneous voltage of the storage node of the cell for writing, thereby increasing the speed of writing logic 1.
Description
本創作係有關一種寫入驅動電路(write driving circuit),尤指一種可用於單埠(single port)或雙埠(dual port)靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM)或動態隨機存取記憶體(Dynamic Random Access Memory,簡稱DRAM)且兼具高速寫入邏輯1、高速寫入邏輯0及低寫入干擾之寫入驅動電路。
This creation is related to a write driving circuit, especially a type that can be used for single port or dual port static random access memory (SRAM) or dynamic Random access memory (Dynamic Random Access Memory, referred to as DRAM) and has both high-
單埠或雙埠靜態隨機存取記憶體(SRAM)或動態隨機存取記憶體(DRAM)係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包含有複數個記憶體晶胞,每一記憶體晶胞具有一儲存節點供儲存資料,每一列記憶體晶胞由對應之字元線控制其操作,每一行記憶體晶胞則連接對應之位元線。習知之單埠靜態隨機存取記憶體(SRAM)晶胞如第1圖所示,其中,PMOS電晶體(P1)和(P2)稱為負載電晶體(load transistor),NMOS電晶體(M1)和(M2)稱為驅動電晶體(driving transistor),NMOS電晶體(M3)和(M4)稱為存取電晶體(access transistor),WL為字元線(word line),而BL及BLB分別為位元線(bit line)及互補位元線(complementary bit line),由於該單埠SRAM晶胞需要6個電晶體,且於讀取邏輯0時,為了避免讀取操作初始瞬間(initial instant) 另一驅動電晶體導通,儲存節點A之讀取初始瞬間電壓(VAR)必須滿足方程式(1): Single-port or dual-port static random access memory (SRAM) or dynamic random access memory (DRAM) is composed of multiple rows of memory cell and multiple rows of memory cell, each row of memory cell and each A row of memory cell includes a plurality of memory cells, each memory cell has a storage node for storing data, each row of memory cell is controlled by a corresponding character line, and each row of memory cells The cell is connected to the corresponding bit line. The conventional single-port static random access memory (SRAM) unit cell is shown in Figure 1. Among them, PMOS transistors (P1) and (P2) are called load transistors, and NMOS transistors (M1) And (M2) are called driving transistors, NMOS transistors (M3) and (M4) are called access transistors, WL is a word line, and BL and BLB are respectively It is a bit line and a complementary bit line. Because the single-port SRAM cell requires 6 transistors, and when reading logic 0, in order to avoid the initial instant of the read operation ) Another driving transistor is turned on, and the initial instantaneous voltage (V AR ) of storage node A must satisfy equation (1):
VAR=VDD×(RM1)/(RM1+RM3)<VTM2 (1)以防止讀取時之半選定晶胞干擾(half-selected cell disturbance),其中,VAR表示儲存節點A之讀取初始瞬間電壓,RM1與RM3分別表示該NMOS電晶體(M1)與該NMOS電晶體(M3)之導通電阻,而VDD與VTM2分別表示電源供應電壓與該NMOS電晶體(M2)之臨界電壓,此導致驅動電晶體與存取電晶體之間的電流驅動能力比(即單元比率,cell ratio)通常設定在2.2至3.5之間。 V AR =V DD ×(R M1 )/(R M1 +R M3 )<V TM2 (1) to prevent half-selected cell disturbance during reading, where V AR stands for storage node Read the initial instantaneous voltage of A, R M1 and R M3 respectively represent the on-resistance of the NMOS transistor (M1) and the NMOS transistor (M3), and V DD and V TM2 respectively represent the power supply voltage and the NMOS transistor (M2) The threshold voltage, which results in the current drive capability ratio (ie, cell ratio) between the drive transistor and the access transistor is usually set between 2.2 and 3.5.
接下來討論靜態隨機存取記憶體(SRAM)之單埠及雙埠架構,第1圖之6T靜態隨機存取記憶體(SRAM)晶胞係屬單埠靜態隨機存取記憶體(SRAM)晶胞之一例,其係使用兩條位元線BL及BLB做讀寫的動作,也就是讀與寫均是經由同樣的一對位元線來達成,是以在同一時間內只能進行讀取或寫入的動作,因此,當欲設計具有同時讀取與寫入能力之雙埠靜態隨機存取記憶體晶胞時,便需要多加入兩顆存取電晶體以及另一對位元線(請參考第2圖所示電路,其中WBL及WBLB為寫入用位元線對、RBL及RBLB為讀取用位元線對、WWL為寫入用字元線、RWL為讀取用字元線)。 Next, we discuss the single-port and dual-port architecture of static random access memory (SRAM). The 6T static random access memory (SRAM) cell in Figure 1 is a single-port static random access memory (SRAM) cell. An example of a cell, which uses two bit lines BL and BLB for reading and writing, that is, reading and writing are achieved through the same pair of bit lines, so only reading can be performed at the same time Or write operation. Therefore, when you want to design a dual-port static random access memory cell with simultaneous read and write capabilities, you need to add two more access transistors and another pair of bit lines ( Please refer to the circuit shown in Figure 2, where WBL and WBLB are bit line pairs for writing, RBL and RBLB are bit line pairs for reading, WWL is a word line for writing, and RWL is a character for reading. line).
靜態隨機存取記憶體中,為了有效率地驅動位元線(BL)及互補位元線(BLB),必須設置寫入驅動電路(write driving circuit)。迄今,有許多具高效能之寫入驅動電路的技術被提出,例如專利文獻1所提出之「Low active power write driver with reduced-power boost circuit」(US10199090B2,108年2月5日授予Apple Incorporation),其指定代表
圖如第3圖(相同於US10199090B2第3圖)所示,而對應之操作時序圖第4圖(相同於US10199090B2第5圖)所示;再如專利文獻2所提出之「Capacitive lines and multi-voltage negative bitline write assist driver」(US10332570B1,108年6月25日授予ADVANCED MICRO DEVICES Incorporation),其指定代表圖如第5圖(相同於US10332570B1第2圖)所示,而對應之操作時序圖第6圖(相同於US10332570B1第3圖)所示;由第4圖(相同於US10199090B2第5圖)及第6圖(相同於US10332570B1第3圖)可知,該等專利文獻為了提高寫入邏輯0之速度,將寫入邏輯0期間之後段的位元線電壓位準設計成低於接地電壓,惟寫入邏輯之速度主要決定於寫入期間之前段,且該等專利文獻缺乏提高寫入邏輯1之速度的機制,因此仍有改進空間。
In the static random access memory, in order to efficiently drive the bit line (BL) and the complementary bit line (BLB), a write driving circuit must be provided. So far, many high-performance write driver circuit technologies have been proposed, such as the "Low active power write driver with reduced-power boost circuit" proposed in Patent Document 1 (US10199090B2, granted to Apple Incorporation on February 5, 108) , Its designated representative
The figure is shown in Figure 3 (same as US10199090B2, Figure 3), and the corresponding operation sequence diagram is shown in Figure 4 (same as US10199090B2, Figure 5); and as shown in
有鑑於此,本創作之主要目的係提出一種新穎架構之寫入驅動電路,其於寫入邏輯0之第一階段係設計成低於接地電壓之電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯0之第二階段拉回至接地電壓之電壓位準,以減緩半選定晶胞之寫入干擾。 In view of this, the main purpose of this creation is to propose a write drive circuit with a novel architecture, which is designed to be lower than the ground voltage in the first stage of writing logic 0 to accelerate the speed of writing logic 0 , And pull back to the voltage level of the ground voltage in the second stage of writing logic 0 to alleviate the write disturbance of the half-selected cell.
本創作之次要目的係提出一種新穎架構之寫入驅動電路,其於寫入邏輯1時係設計成高於SRAM晶胞之電源供應電壓,以提高SRAM晶胞之儲存節點的寫入初始瞬間電壓,從而提高寫入邏輯1之速度。
The secondary purpose of this creation is to propose a write drive circuit with a novel architecture, which is designed to be higher than the power supply voltage of the SRAM cell when writing
本創作之又一目的係提出一種新穎架構之寫入驅動電路,該寫入驅動電路於非致能狀態時,將該寫入驅動電路內之用於形成電容器之PMOS電晶體設計成導通(ON)狀態,藉此以提高該電容器之電容值,從而提高電容耦合效應。 Another purpose of this creation is to propose a write drive circuit with a novel architecture. When the write drive circuit is in a non-enabled state, the PMOS transistor used to form a capacitor in the write drive circuit is designed to be turned on (ON). ) State to increase the capacitance value of the capacitor, thereby enhancing the capacitive coupling effect.
本創作提出一種新穎架構之寫入驅動電路,其係由一第一PMOS電晶體(P71)、一第一NMOS電晶體(M71)、一第二NMOS電晶體(M72)、一第三NMOS電晶體(M73)、一第二PMOS電晶體(Mcap)、一第一反相器(INV71)、一第二反相器(INV72)、一輸入資料(Din)、一行解碼器輸出信號(Y)、一第一延遲電路(Delay 1)、一第二延遲電路(Delay 1)以及一第一高電源供應電壓(VDDH1)所組成,其中,該第二PMOS電晶體(Mcap)之源極與汲極係連接在一起以形成一電容器,且在該寫入驅動電路為非致能狀態時,該第二PMOS電晶體(Mcap)呈導通(ON)狀態,藉此以提高該電容器之電容值。該寫入驅動電路於寫入邏輯0之第一階段係設計成低於接地電壓之電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯0之第二階段則拉回至接地電壓之電壓位準,以減緩半選定晶胞之寫入干擾;再者,該寫入驅動電路於寫入邏輯1時係設計成高於記憶體晶胞之電源供應電壓,以提高記憶體晶胞之儲存節點的寫入初始瞬間電壓,從而提高寫入邏輯1之速度。
This creation proposes a novel architecture write drive circuit, which is composed of a first PMOS transistor (P71), a first NMOS transistor (M71), a second NMOS transistor (M72), and a third NMOS transistor. Crystal (M73), a second PMOS transistor (Mcap), a first inverter (INV71), a second inverter (INV72), an input data (Din), a row of decoder output signals (Y) , A first delay circuit (Delay 1), a second delay circuit (Delay 1), and a first high power supply voltage (VDDH1), wherein the source and drain of the second PMOS transistor (Mcap) The poles are connected together to form a capacitor, and when the write drive circuit is in an inactive state, the second PMOS transistor (Mcap) is in an ON state, thereby increasing the capacitance of the capacitor. The write drive circuit is designed to be lower than the ground voltage in the first stage of writing logic 0 to accelerate the speed of writing logic 0, and in the second stage of writing logic 0, it is pulled back to ground The voltage level of the voltage is used to reduce the write interference of the half-selected cell. Moreover, the write drive circuit is designed to be higher than the power supply voltage of the memory cell when writing
P71:第一PMOS電晶體 P71: The first PMOS transistor
M71:第一NMOS電晶體 M71: The first NMOS transistor
M72:第二NMOS電晶體 M72: Second NMOS transistor
M73:第三NMOS電晶體 M73: The third NMOS transistor
Mcap:第二PMOS電晶體 Mcap: second PMOS transistor
INV71:第一反相器 INV71: the first inverter
INV72:第二反相器 INV72: second inverter
Din:輸入資料 Din: input data
Delay 1:第一延遲電路 Delay 1: The first delay circuit
Delay 2:第二延遲電路 Delay 2: The second delay circuit
Y:行解碼器輸出信號 Y: Line decoder output signal
VDDH1:第一高電源供應電壓 VDDH1: The first high power supply voltage
GND:接地電壓 GND: Ground voltage
CBL:寄生電容 C BL : Parasitic capacitance
BL:位元線 BL: bit line
BLB:互補位元線 BLB: Complementary bit line
M1…M4:NMOS電晶體 M1...M4: NMOS transistor
P1…P2:PMOS電晶體 P1...P2: PMOS transistor
WBL、WBLB:寫入用位元線對 WBL, WBLB: bit line pair for writing
RBL、RBLB:讀取用位元線對 RBL, RBLB: bit line pair for reading
WWL:寫入用字元線 WWL: Character line for writing
RWL:讀取用字元線 RWL: Character line for reading
VDD:電源供應電壓 VDD: power supply voltage
第1圖 係顯示習知6T單埠靜態隨機存取記憶體晶胞之電路示意圖; Figure 1 is a schematic diagram showing the circuit of a conventional 6T single-port static random access memory cell;
第2圖 係顯示習知8T雙埠靜態隨機存取記憶體晶胞之電路示意圖; Figure 2 is a schematic diagram showing the circuit of a conventional 8T dual-port static random access memory cell;
第3圖 係顯示US10199090B2第3圖之電路示意圖; Figure 3 is a schematic diagram showing the circuit in Figure 3 of US10199090B2;
第4圖 係顯示US10199090B2第5圖之操作時序圖; Figure 4 shows the operation sequence diagram of Figure 5 of US10199090B2;
第5圖 係顯示US10332570B1第2圖之電路示意圖; Figure 5 is a schematic diagram showing the circuit in Figure 2 of US10332570B1;
第6圖 係顯示US10332570B1第3圖之操作時序圖; Figure 6 shows the operation sequence diagram of Figure 3 of US10332570B1;
第7圖 係顯示本創作較佳實施例之寫入驅動電路; Figure 7 shows the write drive circuit of the preferred embodiment of the present invention;
第8圖 係顯示本創作寫入驅動電路於寫入邏輯0之第一階段之電路示意圖; Figure 8 is a schematic diagram showing the circuit diagram of the writing drive circuit in the first stage of writing logic 0;
第9圖 係顯示本創作寫入驅動電路於寫入邏輯0之第二階段之電路示意圖; Figure 9 is a schematic circuit diagram showing the second stage of writing logic 0 in the writing drive circuit of this authoring;
第10圖 係顯示本創作寫入驅動電路於寫入邏輯1之電路示意圖。
Figure 10 is a schematic diagram showing the circuit of the
根據上述之目的,本創作提出一種新穎架構之寫入驅動電路,如第7圖所示,其係由一第一PMOS電晶體(P71)、一第一NMOS電晶體(M71)、一第二NMOS電晶體(M72)、一第三NMOS電晶體(M73)、一第二PMOS電晶體(Mcap)、一第一反相器(INV71)、一第二反相器(INV72)、一輸入資料(Din)、一行解碼器輸出信號(Y)、一第一延遲電路(Delay 1)、一第二延遲電路(Delay 2)以及一第一高電源供應電壓(VDDH1)所組成,其中,該第二PMOS電晶體(Mcap)之源極與汲極係連接在一起以形成一電容器,且在該寫入驅動電路為非致能狀態時,該第二PMOS電晶體(Mcap)呈導通(ON)狀態,藉此以提高該電容器之電容值,從而提高電容耦合效應。 According to the above-mentioned purpose, this author proposes a novel architecture write drive circuit, as shown in Figure 7, which is composed of a first PMOS transistor (P71), a first NMOS transistor (M71), and a second NMOS transistor (M72), a third NMOS transistor (M73), a second PMOS transistor (Mcap), a first inverter (INV71), a second inverter (INV72), an input data (Din), a row of decoder output signal (Y), a first delay circuit (Delay 1), a second delay circuit (Delay 2), and a first high power supply voltage (VDDH1), wherein the first delay circuit The source and drain of the two PMOS transistors (Mcap) are connected together to form a capacitor, and the second PMOS transistor (Mcap) is turned on (ON) when the write drive circuit is in a non-enabled state State, thereby increasing the capacitance value of the capacitor, thereby enhancing the capacitive coupling effect.
該第一PMOS電晶體(P71)之源極、閘極與汲極係分別連接至該第一高電源供應電壓(VDDH1)、該第一反相器(INV71)之輸出與該第一NMOS電晶體(M71)之汲極,該第一NMOS電晶體(M71)之源極、閘極與汲極係分別連接至該第三NMOS電晶體(M73)之汲極、該第一反相器(INV71)之輸出與該第一PMOS電晶體(P71)之汲極,該第
二NMOS電晶體(M72)之源極、閘極與汲極係分別連接至接地電壓、該第一延遲電路(Delay 1)之輸出與該第一PMOS電晶體(P71)之汲極,該第三NMOS電晶體(M73)之源極、閘極與汲極係分別連接至該接地電壓、該第二反相器(INV72)之輸出與該第一NMOS電晶體(M71)之源極,該第一反相器(INV71)之輸入係供接收該輸入資料(Din),而輸出則連接至該第一PMOS電晶體(P71)之閘極、該第一NMOS電晶體(M71)之閘極以及該第一延遲電路(Delay 1)之輸入,該第二反相器(INV72)之輸入係供接收該行解碼器輸出信號(Y),而輸出則連接至該第二延遲電路(Delay 2)之輸入以及該第三NMOS電晶體(M73)之閘極,該第二PMOS電晶體(Mcap)之源極與汲極係連接在一起以形成一電容器(Cap),且在該寫入驅動電路為非致能狀態時,該第二PMOS電晶體(Mcap)呈導通(ON)狀態,藉此以提高該電容器之電容值,該電容器(Cap)之一端(即該第二PMOS電晶體(Mcap)連接在一起之源極與汲極)係連接至該第二延遲電路(Delay 2)之輸出,而該電容器(Cap)之另一端(即該第二PMOS電晶體(Mcap)之閘極)則連接至該第一NMOS電晶體(M71)之源極以及該第三NMOS電晶體(M73)之汲極,其中,該第一PMOS電晶體(P71)之汲極、該第一NMOS電晶體(M71)之汲極與該第二NMOS電晶體(M72)之汲極係共同連接至對應之位元線(BL),該對應之位元線(BL)於寫入邏輯0之第一階段係設計成低於於該接地電壓之電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯1時則設計成高於記憶體晶胞之電源供應電壓(VDD)之該第一高電源供應電壓(VDDH1)的電壓位準,以加速寫入邏輯1之速度。
The source, gate, and drain of the first PMOS transistor (P71) are respectively connected to the first high power supply voltage (VDDH1), the output of the first inverter (INV71), and the first NMOS transistor. The drain of the crystal (M71), the source, gate and drain of the first NMOS transistor (M71) are respectively connected to the drain of the third NMOS transistor (M73) and the first inverter ( INV71) output and the drain of the first PMOS transistor (P71), the first
The source, gate and drain of the two NMOS transistors (M72) are respectively connected to the ground voltage, the output of the first delay circuit (Delay 1) and the drain of the first PMOS transistor (P71), the second The source, gate and drain of the three NMOS transistors (M73) are respectively connected to the ground voltage, the output of the second inverter (INV72) and the source of the first NMOS transistor (M71), the The input of the first inverter (INV71) is for receiving the input data (Din), and the output is connected to the gate of the first PMOS transistor (P71) and the gate of the first NMOS transistor (M71) And the input of the first delay circuit (Delay 1), the input of the second inverter (INV72) is for receiving the row decoder output signal (Y), and the output is connected to the second delay circuit (
該寫入驅動電路致能與否係由該行解碼器輸出信號(Y)之邏輯位準決定,當該行解碼器輸出信號(Y)為邏輯低位準時,該寫入驅動 電路為非致能狀態,而當該行解碼器輸出信號(Y)為邏輯高位準時,該寫入驅動電路處於致能狀態。當該行解碼器輸出信號(Y)為非致能狀態之邏輯低位準時,該第二反相器(INV72)之輸出為邏輯高位準,一方面導通該第三NMOS電晶體(M73),另一方面經過該第二延遲電路(Delay 2)所提供之延遲時間後對該電容器(Cap)之一端(即該第二PMOS電晶體(Mcap)連接在一起之源極與汲極)充電,由於導通的該第三NMOS電晶體(M73),使得該電容器(Cap)之另一端(即該第二PMOS電晶體(Mcap)之閘極)為該接地電壓,而該電容器(Cap)之一端(即該第二PMOS電晶體(Mcap)連接在一起之源極與汲極)則會因電容器(Cap)的充電而保持該電源供應電壓(VDD)之電壓位準。 Whether the write drive circuit is enabled or not is determined by the logic level of the row decoder output signal (Y). When the row decoder output signal (Y) is at a logic low level, the write drive The circuit is in an inactive state, and when the row decoder output signal (Y) is at a logic high level, the write drive circuit is in an enabled state. When the output signal (Y) of the row decoder is at the low logic level of the inactive state, the output of the second inverter (INV72) is at the high logic level. On the one hand, the third NMOS transistor (M73) is turned on, and the other On the one hand, after the delay time provided by the second delay circuit (Delay 2), one end of the capacitor (Cap) (that is, the source and drain of the second PMOS transistor (Mcap) connected together) is charged, because The turned-on third NMOS transistor (M73) makes the other end of the capacitor (Cap) (that is, the gate of the second PMOS transistor (Mcap)) the ground voltage, and one end of the capacitor (Cap) ( That is, the source and drain of the second PMOS transistor (Mcap) connected together will maintain the voltage level of the power supply voltage (VDD) due to the charging of the capacitor (Cap).
該寫入驅動電路於寫入邏輯0之致能狀態時係採用二階段操作,於該寫入驅動電路致能的第一階段,邏輯高位準之該行解碼器輸出信號(Y),使得該第二反相器(INV72)之輸出為邏輯低位準,一方面使該第三NMOS電晶體(M73)為截止(OFF)狀態,另一方面經過該第二延遲電路(Delay 2)所提供之該延遲時間後對該電容器(Cap)之一端快速放電至該接地電壓,由於此時該輸入資料(Din)為邏輯低位準,使得該第一延遲電路(Delay 1)之輸出為邏輯高位準,於是導通該第一NMOS電晶體(M71),並使該第一PMOS電晶體(P71)為截止(OFF)狀態,因此該對應之位元線(BL)之電壓位準於該寫入驅動電路寫入邏輯0之第一階段係滿足方程式(2): The write drive circuit adopts a two-stage operation when writing logic 0 in the enabled state. In the first stage of the write drive circuit being enabled, the row decoder output signal (Y) at the logic high level makes the The output of the second inverter (INV72) is at a logic low level. On the one hand, the third NMOS transistor (M73) is turned off (OFF), and on the other hand, it is provided by the second delay circuit (Delay 2). After the delay time, one end of the capacitor (Cap) is quickly discharged to the ground voltage. At this time, the input data (Din) is at a logic low level, so that the output of the first delay circuit (Delay 1) is at a logic high level. Then the first NMOS transistor (M71) is turned on, and the first PMOS transistor (P71) is turned off (OFF), so the voltage level of the corresponding bit line (BL) is at the level of the write drive circuit The first stage of writing logic 0 satisfies equation (2):
VBL1=-VDD×Cap/(Cap+CBL) (2) V BL1 = -VDD×Cap/(Cap+C BL ) (2)
其中,VBL1表示該對應之位元線(BL)於寫入邏輯0之第一階段的電壓位準,VBL1的絕對值設計為小於記憶體晶胞之存取電晶體的臨界電壓,例 如可設計為-100mV、-150mV或-200mV,VDD為該記憶體晶胞之該電源供應電壓(VDD)之電壓位準,而Cap與CBL分別表示該電容器(Cap)之電容值與該對應之位元線(BL)之寄生電容值。 Wherein, V BL1 represents the voltage level of the corresponding bit line (BL) in the first stage of writing logic 0. The absolute value of V BL1 is designed to be smaller than the threshold voltage of the access transistor of the memory cell, for example Can be designed to be -100mV, -150mV or -200mV, VDD is the voltage level of the power supply voltage (VDD) of the memory cell, and Cap and C BL respectively represent the capacitance value of the capacitor (Cap) and the corresponding The parasitic capacitance value of the bit line (BL).
在此值得注意的是,該寫入驅動電路致能的第一階段,該第二NMOS電晶體(M71)為截止(OFF)狀態,第8圖所示為該寫入驅動電路致能的第一階段之電路示意圖;其中,該第一延遲電路(Delay 1)所提供之該延遲時間係設計成大於該第二延遲電路(Delay 2)所提供之該延遲時間,該第二延遲電路(Delay 2)係用以確保該對應之位元線(BL)於寫入邏輯0之第一階段的電壓位準(VBL1)可有效提供至該對應之位元線(BL),且亦可視需求,省略該第二延遲電路(Delay 2)。 It is worth noting here that in the first stage of enabling the write drive circuit, the second NMOS transistor (M71) is in the OFF state. Figure 8 shows the first stage of the write drive circuit being enabled. A schematic diagram of the circuit of the first stage; wherein the delay time provided by the first delay circuit (Delay 1) is designed to be greater than the delay time provided by the second delay circuit (Delay 2), and the second delay circuit (Delay 2) 2) It is used to ensure that the voltage level (V BL1 ) of the corresponding bit line (BL) in the first stage of writing logic 0 can be effectively provided to the corresponding bit line (BL), and it can also be required , The second delay circuit (Delay 2) is omitted.
當邏輯低位準之該輸入資料(Din)經過該第一反相器(INV71)以及該第一延遲電路(Delay 1)所提供之該延遲時間後,該寫入驅動電路進入致能的第二階段,此時由於該第二NMOS電晶體(M72)為導通狀態,使得該對應之位元線(BL)之電壓位準於該寫入驅動電路寫入邏輯0之第二階段時滿足方程式(3): When the input data (Din) at the logic low level has passed the delay time provided by the first inverter (INV71) and the first delay circuit (Delay 1), the write drive circuit enters the enabled second At this time, since the second NMOS transistor (M72) is in the on state, the voltage level of the corresponding bit line (BL) satisfies the equation ( 3):
VBL2=0 (3) V BL2 =0 (3)
其中,VBL2表示該對應之位元線(BL)於寫入邏輯0之第二階段的電壓位準;第9圖所示為該寫入驅動電路於寫入邏輯0之第二階段之電路示意圖。寫入邏輯0之第一階段與第二階段之時間總合為對應之字元線為致能狀態之時間。在此值得注意的是,該第二NMOS電晶體(M72)係用以確保該對應之位元線(BL)於寫入邏輯0之第二階段的電壓位準(VBL2)可有效充電至該接地電壓。 Wherein, V BL2 represents the voltage level of the corresponding bit line (BL) in the second stage of writing logic 0; Figure 9 shows the circuit of the write drive circuit in the second stage of writing logic 0 Schematic. The sum of the time of the first phase and the second phase of writing logic 0 is the time when the corresponding character line is in the enabled state. It is worth noting here that the second NMOS transistor (M72) is used to ensure that the corresponding bit line (BL) can be effectively charged to the voltage level (V BL2) in the second stage of writing logic 0 The ground voltage.
該寫入驅動電路於寫入邏輯1時係設計成高於記憶體晶胞
之該電源供應電壓(VDD),以提高記憶體晶胞之儲存節點的寫入初始瞬間電壓,從而提高寫入邏輯1之速度。當該寫入驅動電路於寫入邏輯1時,邏輯高位準之該輸入資料(Din)使得該第一反相器(INV71)之輸出為邏輯低位準,於是一方面導通該第一PMOS電晶體(P71)以及另一方面使該第一NMOS電晶體(M71)為截止(OFF)狀態,因此該對應之位元線(BL)之電壓位準於該寫入驅動電路寫入邏輯1時滿足方程式(4):
The write drive circuit is designed to be higher than the memory cell when writing
VBL=VDDH1 (4) V BL =VDDH1 (4)
其中,VBL表示該對應之位元線(BL)於寫入邏輯1之電壓位準,VDDH1為該第一高電源供應電壓(VDDH1)之電壓位準,其中,該第一高電源供應電壓(VDDH1)之電壓位準係設計成高於記憶體晶胞之該電源供應電壓(VDD)之電壓位準,例如可設計為高於記憶體晶胞之該電源供應電壓(VDD)100mV、150mV或200mV;第10圖所示為該寫入驅動電路於寫入邏輯1之電路示意圖。寫入邏輯1之時間為該對應之字元線為致能狀態之時間。在此值得注意的是,該第一PMOS電晶體(P71)係用以確保在該對應之位元線(BL)於寫入邏輯1之電壓位準(VBL)期間可提供高於該記憶體晶胞之該電源供應電壓(VDD)之電壓位準的該第一高電源供應電壓(VDDH1)至該對應之位元線(BL)。
Wherein, V BL represents the voltage level of the corresponding bit line (BL) in
【創作功效】 【Creative Effect】
本創作所提出之寫入驅動電路,具有如下功效: The write drive circuit proposed in this creation has the following functions:
(1)提高寫入邏輯0之速度:該寫入驅動電路於寫入邏輯0之第一階段係設計成低於接地電壓之電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯0 之第二階段則拉回至接地電壓之電壓位準,以減緩半選定晶胞之寫入干擾; (1) Increase the speed of writing logic 0: The writing drive circuit is designed to be lower than the ground voltage in the first stage of writing logic 0 to accelerate the speed of writing logic 0. Logic 0 The second stage is to pull back to the voltage level of the ground voltage to reduce the write interference of the half-selected cell;
(2)提高寫入邏輯1之速度:該寫入驅動電路於寫入邏輯1時係設計成高於記憶體晶胞之電源供應電壓,以提高記憶體晶胞之儲存節點的寫入初始瞬間電壓,從而提高寫入邏輯1之速度。
(2) Increase the speed of writing logic 1: The writing drive circuit is designed to be higher than the power supply voltage of the memory cell when writing
P71:第一PMOS電晶體 P71: The first PMOS transistor
M71:第一NMOS電晶體 M71: The first NMOS transistor
M72:第二NMOS電晶體 M72: Second NMOS transistor
M73:第三NMOS電晶體 M73: The third NMOS transistor
Mcap:第二PMOS電晶體 Mcap: second PMOS transistor
INV71:第一反相器 INV71: the first inverter
INV72:第二反相器 INV72: second inverter
Din:輸入資料 Din: input data
Delay 1:第一延遲電路 Delay 1: The first delay circuit
Delay 2:第二延遲電路 Delay 2: The second delay circuit
Y:行解碼器輸出信號 Y: Line decoder output signal
VDDH1:第一高電源供應電壓 VDDH1: The first high power supply voltage
GND:接地電壓 GND: Ground voltage
BL:位元線 BL: bit line
CBL:寄生電容 C BL : Parasitic capacitance
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109213554U TWM607620U (en) | 2020-10-15 | 2020-10-15 | Write driving circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109213554U TWM607620U (en) | 2020-10-15 | 2020-10-15 | Write driving circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM607620U true TWM607620U (en) | 2021-02-11 |
Family
ID=75782819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109213554U TWM607620U (en) | 2020-10-15 | 2020-10-15 | Write driving circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM607620U (en) |
-
2020
- 2020-10-15 TW TW109213554U patent/TWM607620U/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2987193B2 (en) | Semiconductor storage device | |
US8830774B2 (en) | Semiconductor memory device | |
US10593395B2 (en) | Multiple data rate memory | |
TW201901681A (en) | Double-click static random access memory | |
US7889576B2 (en) | Semiconductor storage device | |
TWI556238B (en) | 7t dual port static random access memory (2) | |
TW201640506A (en) | 7T dual port static random access memory | |
TWI697008B (en) | Bitline write driver | |
TWM607620U (en) | Write driving circuit | |
TWM645477U (en) | Negative bit-line driving circuit | |
TWI633561B (en) | Seven-transistor dual port static random access memory with fast write speed | |
TWM647361U (en) | Write driving circuit | |
TWM593052U (en) | Write driver circuit | |
TWM645519U (en) | Negative bit line write driving circuit | |
TWI556410B (en) | 7t dual port static random access memory (8) | |
US20090021997A1 (en) | Methods and apparatus for improved write characteristics in a low voltage sram | |
TWI541802B (en) | 7t dual port static random access memory (1) | |
TW202103168A (en) | Static random access memory with fast write speed | |
TWI716214B (en) | Five-transistor single port static random access memory | |
TWI694444B (en) | Five-transistor static random access memory with fast write speed | |
TWI399748B (en) | Dual port sram having a lower power voltage in writing operation | |
TWI441179B (en) | Dual port sram having a discharging path | |
TWI694458B (en) | Single port static random access memory with fast write speed | |
TWI689924B (en) | Five-transistor static random access memory | |
TWI556240B (en) | 7t dual port static random access memory (4) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |