TWM640806U - Flat-plate heat pipe and heat exchanger - Google Patents
Flat-plate heat pipe and heat exchanger Download PDFInfo
- Publication number
- TWM640806U TWM640806U TW111211773U TW111211773U TWM640806U TW M640806 U TWM640806 U TW M640806U TW 111211773 U TW111211773 U TW 111211773U TW 111211773 U TW111211773 U TW 111211773U TW M640806 U TWM640806 U TW M640806U
- Authority
- TW
- Taiwan
- Prior art keywords
- flat
- shell
- capillary
- heat pipe
- chip layer
- Prior art date
Links
Images
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本創作公開了一種平板熱管和換熱器,該平板熱管包括上殼體和下殼體,上殼體和下殼體蓋合連接形成具有密封腔體的平板殼體,密封腔體內填充有相變工質;平板殼體內設有毛細芯,毛細芯的表面具有微奈結構。通過以上表面具有微奈結構的毛細芯的設置,本創作平板熱管具有優異的導熱性能,且抗重力能力強,使用布置方式靈活。The invention discloses a flat heat pipe and a heat exchanger. The flat heat pipe includes an upper shell and a lower shell. The upper shell and the lower shell are closed and connected to form a flat shell with a sealed cavity filled with a Variable working quality; there is a capillary core in the flat shell, and the surface of the capillary core has a micro-nano structure. Through the arrangement of capillary cores with micronano structures on the surface, the flat heat pipe of this invention has excellent thermal conductivity, strong anti-gravity ability, and flexible use and arrangement.
Description
本創作係關於二維快速導熱器件技術領域,尤其是關於一種平板熱管和換熱器。 This creation is related to the technical field of two-dimensional fast heat conduction devices, in particular to a flat heat pipe and heat exchanger.
隨著科技日益發展,許多前沿領域的技術得以普及和提升,如5G通訊、大數據、雲計算、AI等新一代信息與通信(ICT)技術性能高速提升;新能源汽車快速普及,其動力、續航性能增強;雷達、雷射儀器等高能前沿設備得以廣泛應用。隨著這些技術的進步而來的,是其中的器件呈高集成化、高能量密度等特點。因此,必然會存在器件散熱空間小而複雜,散熱面積小,熱流密度高的問題。傳統風冷和液冷的散熱方式難以滿足高熱流密度器件的散熱要求。這些元器件的性能和可靠性一般隨著溫度上升而急劇下降,散熱問題成了制約一系列科技領域進一步發展的重要因素。 With the increasing development of science and technology, technologies in many cutting-edge fields have been popularized and improved, such as 5G communication, big data, cloud computing, AI and other new generation information and communication (ICT) technology performance has been rapidly improved; the rapid popularization of new energy vehicles, its power, Endurance performance is enhanced; high-energy cutting-edge equipment such as radar and laser instruments can be widely used. With the progress of these technologies, the devices are characterized by high integration and high energy density. Therefore, there must be problems of small and complicated heat dissipation space of the device, small heat dissipation area, and high heat flux density. Traditional air-cooled and liquid-cooled heat dissipation methods are difficult to meet the heat dissipation requirements of high heat flux density devices. The performance and reliability of these components generally decline sharply as the temperature rises, and the heat dissipation problem has become an important factor restricting the further development of a series of scientific and technological fields.
熱管的工作原理是:在真空狀態下,當熱管蒸發段受熱後,蒸發段內的液體迅速蒸發,蒸氣在壓差作用下流向冷凝段,並釋放出熱量後,重新凝結成液體,液體借助吸液芯的毛細抽吸力作用回到蒸發段。蒸氣在蒸發段逐漸增多至蒸發段邊緣達到最大,隨後逐漸減小,到達冷凝段端部最小。而液體剛好相反,在冷凝段最多到達蒸發段最少。蒸發導致蒸發段表面張力形成的彎液面半徑最小,吸液芯毛細抽吸力最大,而冷凝導致冷凝段表面張力形成的彎液面半徑最大,吸液芯毛細抽吸力最小。 The working principle of the heat pipe is: in a vacuum state, when the evaporating section of the heat pipe is heated, the liquid in the evaporating section evaporates rapidly, and the steam flows to the condensing section under the action of the pressure difference, and after releasing heat, it condenses into a liquid again, and the liquid is absorbed by the suction. The capillary suction force of the liquid wick acts back to the evaporation section. The vapor gradually increases in the evaporating section and reaches the maximum at the edge of the evaporating section, then gradually decreases, and reaches the minimum at the end of the condensing section. The liquid is just the opposite, the most in the condensation section reaches the least in the evaporation section. Evaporation leads to the smallest radius of the meniscus formed by the surface tension of the evaporating section, and the largest capillary suction of the wick, while condensation causes the largest radius of the meniscus formed by the surface tension of the condensing section, and the smallest capillary suction of the wick.
傳統熱管技術基於流體工質的相變傳熱,其應用解決了一維高熱流密度並散熱的問題,而均熱板工作原理與熱管相似,但區別於傳統熱管,平板熱管(或稱均熱板)為二維導熱,可以將集中的點熱源傳遞到更大的面積,具有更好的傳熱效果。然而,目前的均熱板中毛細芯多單一結構,或簡單將幾種多孔介質組合作為毛細芯,其吸液性能較弱,限制了相變工質回流速度,傳熱性能受限,甚至基於以上毛細芯結構的熱管抗重力能力很差,它們在逆重力時失效,無法高效傳熱。為了解決單一毛細芯吸液性能差的問題,專利申請CN101848629A公開了一種具有泡沫金屬與銅粉複合毛細結構的均熱板,這種毛細芯雖然能增大對工質的毛細力,但是由於填充了銅粉,毛細芯的孔隙率大大降低,工質流動滲透阻力急劇增大,其整體毛細吸液性能提升有限,因此限制了其傳熱效率。 The traditional heat pipe technology is based on the phase change heat transfer of the fluid working medium. Its application solves the problem of one-dimensional high heat flux and heat dissipation. The working principle of the vapor chamber is similar to that of the heat pipe, but it is different from the traditional heat pipe. The flat heat pipe (or vapor chamber ) is a two-dimensional heat conduction, which can transfer a concentrated point heat source to a larger area, and has a better heat transfer effect. However, the capillary core in the current vapor chamber is mostly a single structure, or simply combines several porous media as the capillary core, which has weak liquid absorption performance, which limits the return velocity of the phase change working fluid, and the heat transfer performance is limited. The above heat pipes with capillary core structure have poor anti-gravity ability, they fail when reverse gravity, and cannot transfer heat efficiently. In order to solve the problem of poor liquid absorption performance of a single capillary wick, patent application CN101848629A discloses a vapor chamber with a composite capillary structure of metal foam and copper powder. With the addition of copper powder, the porosity of the capillary core is greatly reduced, the flow and penetration resistance of the working fluid increases sharply, and the improvement of the overall capillary liquid absorption performance is limited, thus limiting its heat transfer efficiency.
本創作旨在至少解決現有技術中存在的技術問題之一。為此,本創作提出一種平板熱管和換熱器。 This creation aims to solve at least one of the technical problems existing in the prior art. For this reason, this creation proposes a kind of flat heat pipe and heat exchanger.
本創作所採取的技術方案是: The technical solutions adopted in this creation are:
本創作的第一方面,提供一種平板熱管,所述平板熱管包括上殼體和下殼體,所述上殼體和所述下殼體蓋合連接形成具有密封腔體的平板殼體,所述密封腔體內填充有相變工質;所述平板殼體內設有毛細芯,所述毛細芯的表面具有第一微奈結構。 The first aspect of the present invention provides a flat heat pipe, the flat heat pipe includes an upper shell and a lower shell, the upper shell and the lower shell are closed and connected to form a flat shell with a sealed cavity, so The sealed cavity is filled with a phase-change working medium; the flat shell is provided with a capillary core, and the surface of the capillary core has a first micronano structure.
本創作實施例的平板熱管至少具有如下有益效果:該平板熱管中毛細芯的表面具有第一微奈結構,可增強對相變工質的毛細驅動作用,提高毛細芯的吸液能力,提升氣液循環效率;另外,通過毛細芯表面的第一微奈結構設置,在平板熱管的換熱段,可在一定程度上強化相變,提高 相變效率,從而提高平板熱管的導熱性和均溫性;且在以上毛細芯的作用下,平板熱管使用時受重力影響小,抗重力能力強,使用布置方式靈活。 The flat heat pipe of the embodiment of the invention has at least the following beneficial effects: the surface of the capillary core in the flat heat pipe has a first micronano structure, which can enhance the capillary driving effect on the phase change working fluid, improve the liquid absorption capacity of the capillary core, and improve the gas liquid circulation efficiency; in addition, through the first nanostructure setting on the surface of the capillary core, the phase transition can be strengthened to a certain extent in the heat exchange section of the flat heat pipe, improving Phase change efficiency, thereby improving the thermal conductivity and temperature uniformity of the flat heat pipe; and under the action of the above capillary core, the flat heat pipe is less affected by gravity when in use, has strong anti-gravity ability, and is flexible in use and arrangement.
根據本創作的一些實施例,所述毛細芯包括毛細芯結構層和/或毛細芯片層;所述毛細芯結構層設於所述平板殼體的內壁上,所述毛細芯片層夾設於所述上殼體和所述下殼體之間;所述毛細芯結構層的表面和所述毛細芯片層的表面具有所述第一微奈結構。 According to some embodiments of the present invention, the capillary core includes a capillary core structure layer and/or a capillary chip layer; the capillary core structure layer is arranged on the inner wall of the flat shell, and the capillary chip layer is sandwiched between Between the upper casing and the lower casing; the surface of the capillary core structure layer and the surface of the capillary chip layer have the first micronano structure.
根據本創作的一些實施例,所述毛細芯包括所述毛細芯片層,所述平板殼體的內壁面具有第二微奈結構。 According to some embodiments of the present invention, the capillary core includes the capillary chip layer, and the inner wall of the flat shell has a second micronano structure.
根據本創作的一些實施例,所述平板殼體包括換熱段,所述換熱段包括蒸發段和冷凝段,所述蒸發段和所述冷凝段沿所述平板熱管的傳熱方向依次分布。根據本創作的一些實施例,所述毛細芯包括所述毛細芯片層,所述毛細芯片層上沿所述平板熱管的傳熱方向設有長條間隙;所述長條間隙的寬度從所述平板殼體的蒸發段至冷凝段遞增,和/或,所述毛細芯的厚度從所述平板殼體的蒸發段至冷凝段遞增。 According to some embodiments of the present invention, the flat shell includes a heat exchange section, the heat exchange section includes an evaporation section and a condensation section, and the evaporation section and the condensation section are sequentially distributed along the heat transfer direction of the flat heat pipe . According to some embodiments of the present invention, the capillary core includes the capillary chip layer, and the capillary chip layer is provided with a strip gap along the heat transfer direction of the flat heat pipe; the width of the strip gap is from the The thickness of the capillary core increases from the evaporation section to the condensation section of the flat shell, and/or the thickness of the capillary core increases from the evaporation section to the condensation section of the flat shell.
根據本創作的一些實施例,所述平板殼體為柔性平板殼體;所述毛細芯片層貼合夾設於所述上殼體和所述下殼體之間。 According to some embodiments of the present invention, the flat shell is a flexible flat shell; the capillary chip layer is sandwiched between the upper shell and the lower shell.
根據本創作的一些實施例,所述平板殼體為剛性平板殼體,所述上殼體和所述下殼體之間設有殼體支撐件。 According to some embodiments of the present invention, the flat shell is a rigid flat shell, and a shell support is provided between the upper shell and the lower shell.
根據本創作的一些實施例,所述毛細芯包括所述毛細芯片層,所述平板殼體內還設有毛細芯支撐件,所述毛細芯支撐件用於將所述毛細芯片層抵壓固定於所述平板殼體的內壁面。 According to some embodiments of the present invention, the capillary core includes the capillary chip layer, and a capillary core support is also provided in the flat housing, and the capillary core support is used to press and fix the capillary chip layer on the inner wall surface of the flat shell.
本創作的第二方面,提供一種平板熱管,包括上殼體和下殼體,所述上殼體和所述下殼體蓋合連接形成具有密封腔體的平板殼體,所 述密封腔體內填充有相變工質;所述平板殼體內設有毛細芯,所述平板殼體的內表面具有第二微奈結構。 The second aspect of the present invention provides a flat heat pipe, including an upper shell and a lower shell, the upper shell and the lower shell are closed and connected to form a flat shell with a sealed cavity, so The sealed cavity is filled with a phase-change working fluid; the flat shell is provided with a capillary core, and the inner surface of the flat shell has a second micronano structure.
本創作實施例的平板熱管至少具有如下有益效果:該平板熱管中平板殼體的內表面具有第二微奈結構,可形成氣液相界面超薄化,形成相變強化表面,提高相變效率,進而提高平板熱管的導熱性和均勻性。 The flat heat pipe of the embodiment of the invention has at least the following beneficial effects: the inner surface of the flat shell in the flat heat pipe has a second micronano structure, which can form an ultra-thin gas-liquid phase interface, form a phase change enhanced surface, and improve the phase change efficiency , and then improve the thermal conductivity and uniformity of the flat heat pipe.
根據本創作的一些實施例,所述毛細芯包括毛細芯結構層和/或毛細芯片層;所述毛細芯結構層設於所述平板殼體的內壁面上,所述毛細芯結構層的表面具有所述第二微奈結構;所述毛細芯片層夾設於所述上殼體和所述下殼體之間。 According to some embodiments of the present creation, the capillary core includes a capillary core structure layer and/or a capillary chip layer; the capillary core structure layer is arranged on the inner wall surface of the flat shell, and the surface of the capillary core structure layer It has the second micronano structure; the capillary chip layer is sandwiched between the upper shell and the lower shell.
根據本創作的一些實施例,所述毛細芯包括毛細芯片層,所述毛細芯片層的表面具有第一微奈結構。 According to some embodiments of the present invention, the capillary core includes a capillary chip layer, and the surface of the capillary chip layer has a first micronano structure.
本創作的第三方面,提供本創作第一方面所提供的任一種平板熱管的製備方法,包括以下步驟:S1、準備上殼體和下殼體,以配合形成平板殼體;S2、在所述平板殼體內設置毛細芯,並對所述毛細芯進行表面微奈處理,以使表面形成第一微奈結構;S3、將所述上殼體和所述下殼體的邊緣密封連接,形成具有密封腔體的平板殼體,而後對所述密封腔體進行抽真空與灌注相變工質。 The third aspect of this creation provides any one of the flat heat pipe preparation methods provided by the first aspect of this creation, including the following steps: S1, preparing the upper shell and the lower shell to cooperate to form a flat shell; S2, in the A capillary core is arranged in the flat shell, and the surface of the capillary core is micronized so that the surface forms a first micronite structure; S3. The edges of the upper shell and the lower shell are sealed and connected to form There is a flat shell with a sealed cavity, and then the sealed cavity is evacuated and filled with phase change working fluid.
本創作實施例平板熱管的製備方法至少具有如下有益效果:該製備方法通過在平板殼體內設置毛細芯,並對毛細芯進行表面微奈處理,以使毛細芯的表面形成第一微奈結構,其可增強對工質的毛細驅動作用,提高毛細芯的吸液能力,提升氣液循環效率;另外,通過毛細芯表面的第一微奈結構設置,在平板熱管的換熱段,可強化相變,提高相變效率,從 而提高平板熱管的導熱性和均溫性,且所製得平板熱管的抗重力能力強,使用布置方式靈活。 The preparation method of the flat heat pipe in the embodiment of the present invention has at least the following beneficial effects: in the preparation method, a capillary core is arranged in the flat shell, and the surface of the capillary core is treated with micronite, so that the surface of the capillary core forms a first micronite structure, It can enhance the capillary driving effect on the working medium, improve the liquid absorption capacity of the capillary wick, and improve the gas-liquid circulation efficiency; in addition, through the first micronose structure on the surface of the capillary wick, in the heat exchange section of the flat heat pipe, the phase can be strengthened. Change, improve the phase change efficiency, from The thermal conductivity and temperature uniformity of the flat heat pipe are improved, and the prepared flat heat pipe has strong anti-gravity ability and flexible use arrangement.
步驟S2中,表面微奈處理包括熱氧化處理、電化學沉積、氣相物理沉積、飛秒雷射加工、操控濺射中的至少一種。 In step S2, the surface micro-nano treatment includes at least one of thermal oxidation treatment, electrochemical deposition, vapor phase physical deposition, femtosecond laser processing, and controlled sputtering.
本創作的第四方面,提供本創作第二方面所提供的任一種平板熱管的製備方法,包括以下步驟:S1、準備上殼體和下殼體,以配合形成平板殼體;S2、在所述平板殼體內設置毛細芯,並對所述平板殼體的內壁面進行表面微奈處理,以使表面形成第二微奈結構;S3、將所述上殼體和所述下殼體的邊緣密封連接,形成具有密封腔體的平板殼體,而後對所述密封腔體進行抽真空與灌注相變工質。 The fourth aspect of this creation provides any one of the flat heat pipe preparation methods provided by the second aspect of this creation, including the following steps: S1, preparing the upper shell and the lower shell to cooperate to form a flat shell; S2, in the A capillary core is arranged in the flat shell, and the inner wall surface of the flat shell is subjected to surface micro-nano treatment, so that the surface forms a second micro-nano structure; S3, the edge of the upper shell and the lower shell Sealed connection is formed to form a flat shell with a sealed cavity, and then the sealed cavity is vacuumed and filled with phase change working fluid.
本創作實施例平板熱管的製備方法至少具有如下有益效果:該製備方法通過對平板殼體的內壁面進行表面微奈處理,以使其表面形成第二微奈結構,可形成氣液相界面超薄化,形成相變強化表面,提高相變效率,進而提高平板熱管的導熱性和均勻性。 The preparation method of the flat heat pipe in the embodiment of the invention has at least the following beneficial effects: the preparation method conducts surface micronite treatment on the inner wall of the flat shell to form a second micronite structure on the surface, and can form a gas-liquid phase interface superstructure. Thinning, forming a phase change strengthened surface, improving the phase change efficiency, and then improving the thermal conductivity and uniformity of the flat heat pipe.
根據本創作第五方面,提供一種換熱器,包括本創作第一方面或第二方面所提供的任一種平板熱管。 According to the fifth aspect of the present invention, there is provided a heat exchanger including any flat heat pipe provided in the first aspect or the second aspect of the present invention.
本創作實施例的換熱器至少具有如下有益效果:該換熱器由於包含本創作第一方面或第二方面所提供的任一種平板熱管,基於以上平板熱管的有益效果,該換熱器具有高傳熱性能。 The heat exchanger of the embodiment of the invention has at least the following beneficial effects: the heat exchanger includes any flat heat pipe provided by the first aspect or the second aspect of the invention, based on the above beneficial effects of the flat heat pipe, the heat exchanger has High heat transfer performance.
10:平板殼體 10: flat shell
11:上殼體 11: Upper shell
12:下殼體 12: Lower shell
13:殼體支撐件 13: Shell support
14:毛細芯支撐件 14: capillary core support
15:第一微奈結構 15: The first nanostructure
16:微槽道毛細結構 16: Micro-channel capillary structure
17:毛細芯片層 17: capillary chip layer
18:蒸發段 18: Evaporation section
19:冷凝段 19: Condensation section
20:毛細芯 20: capillary core
21:安裝通孔 21: Mounting through holes
30:充液管 30: Filling tube
圖1是本創作一實施例平板熱管的結構示意圖; 圖2是圖1所示平板熱管中毛細芯片層的SEM圖;圖3是本創作另一實施例平板熱管中上殼體沿垂直於平板熱管長軸方向的截面剖視局部示意圖;圖4是本創作另一實施例平板熱管上平板殼體內壁面具有的微奈結構示意圖;圖5是本創作另一實施例平板熱管上毛細芯片層的結構示意圖;圖6是本創作另一實施例平板熱管上毛細芯片層的結構示意圖;圖7是本創作另一實施例平板熱管上毛細芯片層的結構示意圖;圖8是沿圖7中A-A線的截面示意圖;圖9是不同毛細芯的吸液性能測試結果。 Fig. 1 is a schematic structural view of a flat heat pipe of an embodiment of the invention; Fig. 2 is the SEM picture of the capillary chip layer in the flat heat pipe shown in Fig. 1; Fig. 3 is the partial schematic diagram of the cross section of the upper shell in the flat heat pipe of another embodiment of the invention along the direction perpendicular to the long axis of the flat heat pipe; Fig. 4 is Another embodiment of the invention is a schematic diagram of the nanostructure on the inner wall of the flat shell on the flat heat pipe; Figure 5 is a schematic diagram of the structure of the capillary chip layer on the flat heat pipe of another embodiment of the invention; Figure 6 is another embodiment of the invention flat heat pipe The structural representation of the upper capillary chip layer; Fig. 7 is the structural representation of the upper capillary chip layer of another embodiment of the flat heat pipe; Fig. 8 is a schematic cross-sectional view along the A-A line in Fig. 7; Fig. 9 is the liquid absorption performance of different capillary cores Test Results.
以下將結合實施例對本創作的構思及產生的技術效果進行清楚、完整地描述,以充分地理解本創作的目的、特徵和效果。顯然,所描述的實施例只是本創作的一部分實施例,而不是全部實施例,基於本創作的實施例,本領域的技術人員在不付出創造性勞動的前提下所獲得的其他實施例,均屬於本創作保護的範圍。 The following will clearly and completely describe the conception and technical effects of this creation in conjunction with the embodiments, so as to fully understand the purpose, characteristics and effects of this creation. Apparently, the described embodiments are only some of the embodiments of this creation, not all of them. Based on the embodiments of this creation, other embodiments obtained by those skilled in the art without any creative work belong to The scope of protection of this creation.
在本創作實施例的描述中,如果涉及到方位描述,例如“上”、“下”、“前”、“後”、“左”、“右”等指示的方位或位置關係為基於附圖所示的方位或位置關係,僅是為了便於描述本創作和簡化描述,而不是指示或暗示所指的裝置或元件必須具有特定的方位、以特定的方位構造和操作,因此不能理解為對本創作的限制。 In the description of the embodiment of this invention, if it involves orientation descriptions, such as "upper", "lower", "front", "back", "left", "right" and other indicated orientations or positional relationships are based on the attached drawings The orientation or positional relationship shown is only for the convenience of describing the invention and simplifies the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a reference to the invention. limits.
在本創作實施例的描述中,如果某一特徵被稱為“設置”、“固定”、“連接”、“安裝”在另一個特徵,它可以直接設置、固定、 連接在另一個特徵上,也可以間接地設置、固定、連接、安裝在另一個特徵上。在本創作實施例的描述中,如果涉及到“若干”,其含義是一個以上,如果涉及到“多個”,其含義是兩個以上,如果涉及到“大於”、“小於”、“超過”,均應理解為不包括本數,如果涉及到“以上”、“以下”、“以內”,均應理解為包括本數。如果涉及到“第一”、“第二”,應當理解為用於區分技術特徵,而不能理解為指示或暗示相對重要性或者隱含指明所指示的技術特徵的數量或者隱含指明所指示的技術特徵的先後關係。 In the description of the embodiment of this invention, if a feature is referred to as "setting", "fixing", "connecting", "installing" in another feature, it can directly set, fix, Connected to another feature can also be indirectly set, fixed, connected, mounted on another feature. In the description of the embodiment of this invention, if it involves "several", it means more than one; if it involves "multiple", it means more than two; if it involves "greater than", "less than", "more than ", should be understood as not including the original number, if it involves "above", "below", and "within", it should be understood as including the original number. If "first" and "second" are involved, it should be understood as used to distinguish technical features, and should not be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features or implicitly indicating the indicated The sequence of technical features.
請參閱圖1,圖1示出了本創作一實施例平板熱管的結構示意圖。如圖1所示,該平板熱管包括上殼體11和下殼體12,上殼體11和下殼體12蓋合連接形成具有密封腔體的平板殼體10,密封腔體內填充有相變工質(圖中未示出),平板殼體10內設有毛細芯20,毛細芯20的表面具有第一微奈結構15。毛細芯20覆設於整個平面熱管。在本實施例中,平板熱管還包括充液管30,充液管30與平板殼體10相連,且連通密封腔體。
Please refer to FIG. 1 . FIG. 1 shows a schematic structural diagram of a flat heat pipe according to an embodiment of the invention. As shown in Figure 1, the flat heat pipe includes an
平板殼體10可根據應用場景的需要,採用不同的材料,設計為剛性平板殼體和柔性平板殼體。具體地,上殼體11和下殼體12的材料可為金屬,包括但不限於銅、鋁、鋁合金、鋼材及不銹鋼等;也可為非金屬,包括但不限於聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚乙烯(PE)、聚對苯二甲酸乙二醇酯(PET)、玻璃等;或者為複合材料,包括但不限於層疊類的複合材料(如鋁塑膜、塑料與金屬箔的複合薄膜等)、摻雜類複合材料(如陶瓷基複合材料、樹脂基複合材料等)。上殼體11和下殼體12的材料選用根據使用需求決定,如對於高功率、高溫傳熱場景,需要導熱性能良好的材料(如銅、鋁、不銹鋼等);或者,根據使用需求採用對應的超薄柔性材料,以使平板熱管可彎折變形,從而使其不僅可在平面上高性能傳熱,其
傳熱路徑也更為靈活,可在彎折路徑傳熱。平板殼體10可根據實際應用需要設計成不同形狀,如長方形、正方形、梯形、圓形、圓柱殼、錐殼等,或者,根據需要設計成異形構型。平板殼體10的厚度可為0.05~100mm。在本實施例中,平板殼體10為長方形剛性平板殼體,上殼體11和下殼體12的材質為鋁合金,且平板熱管的傳熱方向為平板殼體10的長軸方向。
The
平板熱管的傳熱方向可根據實際需求進行設計。例如,平板熱管可設計為圓形平板熱管,平板殼體呈圓形,熱源可設置在圓形平板熱管的圓心處,平板熱管的傳熱方向為由圓心向四周方向傳熱;或者,平板熱管可設計梯形平板熱管,其平板殼體對應為梯形,熱源可設置於梯形平板熱管上靠近上底邊側,平板熱管的傳熱方向由上底邊向下底邊方向傳熱;又或者,平板熱管可設計為正方形平板熱管,其平板殼體對應呈正方形,熱源可設置在正方形平板熱管的中心處,平板熱管的傳熱方向由中心向四周方向傳熱。 The heat transfer direction of the flat heat pipe can be designed according to actual needs. For example, the flat heat pipe can be designed as a circular flat heat pipe, the flat shell is circular, the heat source can be arranged at the center of the circular flat heat pipe, and the heat transfer direction of the flat heat pipe is heat transfer from the center of the circle to the surrounding direction; or, the flat heat pipe A trapezoidal flat heat pipe can be designed, and its flat shell corresponds to a trapezoidal shape. The heat source can be set on the trapezoidal flat heat pipe close to the upper bottom side, and the heat transfer direction of the flat heat pipe is from the upper bottom to the lower bottom; or, the flat plate The heat pipe can be designed as a square flat heat pipe, and its flat shell is correspondingly square. The heat source can be arranged at the center of the square flat heat pipe, and the heat transfer direction of the flat heat pipe is from the center to the surrounding direction.
如圖1所示,在本實施例中,平板殼體10作為保護外殼,平板殼體10內設有毛細芯20,毛細芯20具體為夾設於上殼體11和下殼體12之間的毛細芯片層17,毛細芯片層17完整填充於整個平板殼體10內平面。在本實施例中,毛細芯片層17採用泡沫金屬材質,具體為泡沫銅,且毛細芯片層17的表面經熱氧化微奈處理,以使表面具有第一微奈結構15,該第一微奈結構15具有超親水特性。採用電子掃描顯微鏡對該毛細芯片層17進行觀察,所得結果圖2所示,其中,(a)為本實施例平板熱管中毛細芯片層17的SEM圖,(b)為(a)中框出區域的3000倍放大圖。
As shown in FIG. 1 , in this embodiment, the
在其他實施例中,毛細芯可採用其他多孔介質材料,例如,低溫、常溫應用時可使用金屬絲網、燒結粉末、3D列印材料中的任一種,製備高溫熱管時可採用泡沫陶瓷、多孔陶瓷等,且通過進行表面微奈處理
以在表面形成第一微奈結構15;表面微奈處理具體可為熱氧化處理、電化學沉積、氣相物理沉積、飛秒雷射加工、操控濺射等。通過對以上毛細芯片層17進行表面微奈處理,使其表面形成第一微奈結構15,可使其具有超親水特性,增強對相變工質的毛細驅動作用,提升氣液循環效率。
In other embodiments, other porous media materials can be used for the capillary core. For example, any one of wire mesh, sintered powder, and 3D printing materials can be used for low-temperature and normal-temperature applications. Ceramics, etc., and by surface micro-nano treatment
The
為了提高熱管的穩固性,在本實施例中,上殼體11和下殼體12之間設有殼體支撐件13,殼體支撐件13具體固定於下殼體12的內表面,通過設置殼體支撐件13用於支撐平板殼體10,以防止平板熱管內腔體坍塌。另外,為了固定毛細芯片層17,平板殼體10內還可設置毛細芯支撐件14,用於將毛細芯片層17抵壓固定於平板殼體10的內壁面。本實施例中,毛細芯支撐件14也設於下殼體12的內表面,具體通過毛細芯支撐件14將毛細芯片層17壓緊於上殼體11的內表面。另外,為了保證殼體支撐件13的支撐效果,以及進一步確保毛細芯片層17的安裝穩固性,毛細芯片層17上可設置用於安裝殼體支撐件13的安裝通孔21,殼體支撐件13通過毛細芯片層17的安裝通孔21與上殼體11抵接以進行支撐。殼體支撐件13和毛細芯支撐件14可設計為圓柱形、方柱形、棱柱形、橢圓柱形等。如若平板殼體10為柔性平板殼體,可不加設以上殼體支撐件13和毛細芯支撐件14。
In order to improve the stability of the heat pipe, in this embodiment, a
在其他實施例中,也可直接對平板殼體10的內壁面設置毛細芯結構層,且毛細芯結構層的表面經表面微奈處理(如熱氧化處理、電化學沉積、氣相物理沉積、飛秒雷射加工、操控濺射等),以在平板殼體10的內壁面形成表面具有第一微奈結構15的毛細芯結構層,以作為毛細芯20,該毛細芯20可貫穿整個平面熱板。或者,可採用設於平板殼體10的內壁面且表面具有第一微奈結構15的毛細芯結構層,與夾設於上殼體11和下殼體12之間且表面具有第一微奈結構15的毛細芯片層17結合作為毛細芯20,以上毛細芯結構層和毛細芯片層17一般配合連接覆設於整個平面熱管。
In other embodiments, the capillary core structure layer can also be directly arranged on the inner wall of the
平板殼體10內壁面上毛細芯結構層的基礎結構可採用以上毛細芯片層17相似的基礎結構,也可設計為微槽道毛細結構16。若平板殼體10內壁面上毛細結構層的基礎結構採用微槽道毛細結構16,微槽道毛細結構16一般沿對應平板熱管的傳熱方向延伸設置,平板殼體10內壁面上的微槽道毛細結構16可設計為不同形狀。例如,如圖3所示,圖3中示出了本創作另一實施例平板熱管中上殼體沿垂直於平板殼體長軸方向的截面剖視局部示意圖,圖3中具體示出具有不同形狀微槽的微槽道毛細結構16,如圖3中(a)所示為方槽,(b)所示為三角槽,(c)所示為圓槽,(d)所示為梯形槽。另外,平板殼體10內壁面上的微槽道毛細結構16可沿對應平板熱管的傳熱方向平行均勻布置;或者,微槽道毛細結構16的寬度沿對應平板熱管的傳熱方向不均勻布置。
The basic structure of the capillary core structure layer on the inner wall of the
在以上毛細芯結構層的基礎結構的基礎上,進一步對其表面進行表面微奈處理,以使其表面具有第一微奈結構15。對平板殼體10的內壁面進行表面微奈處理的方式與製備毛細芯片層17的表面微奈處理方式可相同也可不同。如圖4所示,在一些實施例中,可通過平板殼體10的內壁面進行表面微奈處理,以在表面形成不同形狀的第一微奈結構15,例如,如圖4中(a)所示的圓柱陣列微奈結構,(b)中所示的橢圓柱陣列微奈結構,(c)中所示的圓台陣列微奈結構,(d)中所示的橢圓台陣列微奈結構,(e)中所示的圓錐陣列微奈結構和(f)中所示的方錐陣列微奈結構。通過以上對平板殼體10的內壁面設置毛細結構層且進行表面微奈處理,形成氣液相變界面超薄化,形成相變強化表面,可提高相變效率。
On the basis of the above basic structure of the capillary core structure layer, the surface is further subjected to surface micro-nano treatment, so that the surface has a first
另外,在一些實施例中,毛細芯20可包括夾設於上殼體11和下殼體12之間且表面具有第一微奈結構15的毛細芯片層17,平板殼體10的內壁面上毛細芯片層17對應的區域也可進行表面微奈處理,以形成第二微
奈結構。例如,毛細芯20為覆設於整個平面熱管內且表面具有第一微奈結構15的毛細芯片層17,可在平板殼體10的內壁面通過表面微奈處理,以形成第二微奈結構。通過以上毛細芯片層17上的第一微奈結構15設置,可提高毛細芯的吸液能力,提升氣液循環效率;通過平板殼體10內壁上的第二微奈結構的設置,可提高強化相變,提高相變效率,以提高平板熱管的導熱性和均溫性,提高平板熱管的抗重力能力。
In addition, in some embodiments, the
在一些實施例中,平板殼體10內的毛細芯20也可採用常規或特製的毛細芯,而對平板殼體10(具體可為上殼體11和/或下殼體12)的內表面進行表面微奈處理,以使其表面形成第二微奈結構,即平板殼體10的內表面具有第二微奈結構,從而可使平板殼體10的內表面形成氣液相界面超薄化,形成相變強化表面,提高相變效率,進而提高平板熱管的導熱性和均勻性。一般至少對平板殼體換熱段的內表面進行表面微奈處理,以強化相變。毛細芯20具體可為毛細芯結構層、毛細芯片層17或兩者的組合,毛細芯結構層設於平板殼體10的內壁面上,且毛細芯結構層的表面具有第二微奈結構;毛細芯片層17夾設於上殼體11和下殼體12之間。採用具有第二微奈結構的毛細芯結構層,可同時起到強化相變和提高毛細芯的吸液能力,提升氣液循環效率的作用。而在一些實施例中,毛細芯包括毛細芯片層17,為了提高毛細芯吸液能力,也可對毛細芯片層17的表面進行表面微奈處理,以形成第一微奈結構15,即毛細芯片層17的表面具有第一微奈結構15。
In some embodiments, the
在一些實施例中,毛細芯20包括夾設於上殼體11和下殼體12之間的毛細芯片層17,可在毛細芯片層17上沿平板熱管的傳熱方向設計長條間隙(如圖5所示,其傳熱方向為平板殼體的長軸方向),毛細芯片層17可與平板殼體10貼合設置,以使毛細芯片層17上的長條間隙與平板殼體10配合形成的空間作為密封腔體或密封腔體的一部分。根據多相流體力學理論
計算,毛細芯片層17上的間隙比一般設計為1~100。通過以上結構的設計,可將毛細芯片層17作為上殼體11和下殼體12之間的支撐件,取消額外的支撐件或加強筋的布置,可滿足對器件的輕薄設計需求。
In some embodiments, the
尤其對於許多應用情景需要在受限空間和複雜異型空間中將高熱流密度器件的熱量導出的問題,熱管希望具有超薄和柔性可變形的特點。而傳統的均熱板或熱管內部需要額外的蒸氣腔空間,需要具有一定的機械強度以維持空腔形狀。因此,現有均溫板或熱管內部需要布置加強筋,並且衝壓外殼厚度較大,剛性大,難以在受限空間和複雜異型空間靈活的應用,這制約了平板熱管在高集成、複雜異型器件散熱領域的應用。 Especially for the problem that many application scenarios need to export the heat of high heat flux devices in confined spaces and complex special-shaped spaces, the heat pipe is expected to have the characteristics of ultra-thin, flexible and deformable. However, the inside of the traditional vapor chamber or heat pipe requires additional space for the vapor cavity, and requires certain mechanical strength to maintain the shape of the cavity. Therefore, reinforcing ribs need to be arranged inside the existing vapor chamber or heat pipe, and the stamped shell has a large thickness and high rigidity, which makes it difficult to flexibly apply in confined spaces and complex special-shaped spaces, which restricts the heat dissipation of flat heat pipes in highly integrated and complex special-shaped devices. field applications.
對於以上受限空間和複雜空間的特殊應用場合,在本申請的一些實施例中,可將平板熱管設計為超薄柔性平板熱管,具體可採用柔性平板殼體作為外殼,毛細芯20包括貼合夾設於上殼體11和下殼體12之間的柔性毛細芯片層17,並且可結合圖形化設計加工方法,在毛細芯片層17上沿平板殼體10的長軸方向設置長條間隙,上殼體11與下殼體12之間的空間間隙(包括毛細芯片層17上長條間隙與殼體配合形成的空間)作為密閉腔體,從而不需要厚度方向增加額外的空腔高度,利用毛細芯片層17的支持,不需要額設置殼體支撐件或加強筋;並且可減少蒸氣流動阻力,以及避免氣液卷攜干涉;同時毛細芯片層17具有優良的柔性,從而可實現超薄柔性平板熱管的製備,其可與器件接觸緊密,使用靈活,提高其適用範圍,適合應用於高集成、高功率的複雜系統中器件的散熱。
For the special application occasions of the above limited space and complex space, in some embodiments of the present application, the flat heat pipe can be designed as an ultra-thin flexible flat heat pipe, specifically, a flexible flat shell can be used as the shell, and the
在一些實施例中,平板殼體10可包括換熱段,換熱段包括蒸發段18和冷凝段19,且蒸發段18和冷凝段19沿平板熱管的傳熱方向依次分布。另外,在一些實施例中,平板殼體10也可設計為包括換熱段和絕熱段,換熱段包括蒸發段18和冷凝段19,且蒸發段18、絕熱段和冷凝段19沿平板
熱管的傳熱方向依次分布。可在平板殼體10的換熱段的內壁面設置表面具有微奈結構的毛細芯結構層,在平板殼體的絕熱段內設置表面具有微奈結構的毛細芯片層17,毛細芯結構層和毛細芯片層17連接,以配合作為平板熱管的毛細芯20,形成一個氣液循環系統。通過在換熱段的內壁面設置表面具有微奈結構的毛細芯結構層,可形成氣液相變界面超薄化,形成相變強化表面,提高相變效率,同時具有強吸液能力;且通過在絕熱段內設置表面具有微奈結構的毛細芯片層17,由於表面微奈結構的存在,使其具有超親水特性,使得毛細芯片層17在滲透阻力改變不大的情況下,極大地增強對相變工質的毛細驅動作用,氣液循環效率得到顯著提升,進而使得平板熱管的導熱性能和均溫性也隨之得到顯著增強,且在以上毛細芯20的作用下,該平板熱管使用時受重力影響極小。
In some embodiments, the
毛細芯20的形狀可根據應用場景的不同進行不同設計,具體可設計為等厚,或者,設計為毛細芯20的厚度不均等(如圖7和圖8)。毛細芯20的形狀具體可根據應用需要設計為從平板殼體10的蒸發段18到冷凝段19逐漸增厚,即毛細芯的厚度自平板殼體10的蒸發段18至冷凝段19遞增,毛細芯20沿垂直於平板殼體10的長軸方向的橫截面不斷增大,毛細芯20的外表面與平板殼體10的上殼體11內壁面形成一定夾角,如0.5~5°,在極端條件下可超過該範圍。在熱管工作時,一般蒸發段18蒸氣量最大,液體最少,而冷凝段19蒸氣量最小,液體最多;而由於表面張力和氣液界面間相互作用的影響,使得蒸發段18氣液界面凹陷在毛細芯20表面,形成很小的接觸角,導致毛細芯20毛細抽吸力最大,而在冷凝段19氣液平攤在毛細芯20表面,形成較大的接觸角,導致毛細芯20毛細抽吸力最小;通過以上毛細芯20的結構設計,在蒸發段18少液體、高毛細力區域採用薄的毛細
芯結構,而在冷凝段19多液體、低毛細力區域採用厚的毛細芯結構,即可保證液體的回流,又順暢了蒸氣流道,從而可提高熱管的毛細極限功率。
The shape of the
除此之外,如圖5所示,在一些實施例中,也可將毛細芯片層17上長條間隙的寬度設置為沿氣液循環方向(或平板殼體10的長軸方向)等寬;或者,如圖6所示,根據使用情況,設計為長條間隙的寬度不均等,具體可設計為長條間隙自平板殼體10的蒸發段18至冷凝段19遞增,以進一步提高熱管的傳熱效率。例如,對於傳熱方向為由中心向四周方向傳遞的圓形平行熱管,若其毛細芯片層17對應呈圓形,其毛細芯片層17上的長條間隙可設計為自毛細芯片層17的中心到四周逐漸增大。或者,對於傳熱方向為由上底邊向下底邊方向傳遞的梯形平板熱管,若其毛細芯片層17對應呈梯形,其毛細芯片層17上的長條間隙可設計為自毛細芯片層17上底邊向下底邊方向逐漸增大。
In addition, as shown in FIG. 5, in some embodiments, the width of the strip gap on the
平板殼體10密封腔體內的相變工質可根據平板熱管應用場景的不同進行選擇。例如,可選擇低溫相變工質,包括但不限於氦、氨、氮、戊烷、氟裡昂-21(CHCI2F)、氟裡昂-11(CCI3F)和氟利昂-113(CCI2F.CCIF2)等;或者,可選擇常溫相變工質,包括但不限於除氣處理後的去離子水、丙酮、甲醇、庚烷、乙醇或甲醇等;或者,可選擇高溫相變工質,包括但不限於、鉀、鉀鹽、鋰、汞、銫、鏗等。平板殼體10的密封腔體內注入相變工質的體積與密封腔體體積的比例可根據實際設計需求設定,一般為5%~80%。
The phase-change working medium in the sealed cavity of the flat-
以上平板熱管中毛細芯20的表面具有微奈結構,可將增相變工質的毛細驅動作用,提高毛細芯20的吸液能力,提升氣液循環效率;通過毛細芯20表面的微奈結構設置,在平板熱管的換熱段可增強相變,提高相變效率,從而提高平板熱管的導熱性能和均溫性;且在以上表面具有微
奈結構的毛細芯20的作用下,平板熱管在使用時受重力影響小,抗重力能力強。經紅外測量,本實施例平板熱管在加熱功率為100W時,最大溫差小於1℃,均溫性優良,其有效導熱係數為6.67×105W/(m.K),是銅的1755倍,其導熱性能優異。並且該平板熱管水平放置時和豎直順重力方向放置時有效導熱係數傳熱性能差異很小,而逆重力放置時,該平板熱管傳熱能力稍稍弱於順重力方向放置,但其導熱性能仍十分優良,說明該平板熱管可抗重力運行,從而使得其使用布置方式十分靈活;且其加工簡便,成本低。
The surface of the
本創作還提供了一種以上平板熱管的製備方法,可包括以下步驟: The invention also provides a method for preparing more than one flat heat pipe, which may include the following steps:
S1、準備上殼體11和下殼體12,以配合作為平板殼體10。對於剛性平板殼體,可在下殼體12上布置殼體支撐件13和/或毛細芯支撐件14,而後可使用有機清洗液(如異丙醇或丙酮等)清洗去酯,再用稀鹽酸清洗表面去除氧化層。而對於柔性平板殼體,可取消以上支撐件的設置。
S1. Prepare the
S2、在平板殼體10內設置毛細芯,並對毛細芯進行表面微奈處理,以使其表面形成第一微奈結構15。具體可對上殼體11和/或下殼體12的內壁面設置毛細芯結構基層,並對其表面進行表面微奈處理,形成表面具有第一微奈結構15的毛細芯結構層;和/或,採用多孔介質材料製備毛細芯基層,可使用異丙醇或丙酮等有機清洗液清洗去酯,而後用稀鹽酸清洗表面去除氧化層,而後對毛細芯基層進行表面微奈處理,形成表面具有第一微奈結構15的毛細芯片層17,並將毛細芯片層17夾設於上殼體11和下殼體12之間。另外,對於毛細芯20包括毛細芯片層17的情況,可平板殼體的內壁面上在毛細芯片層17對應的區域進行表面微奈處理,以形成第二微奈結構,以強化相變。
S2 , setting capillary cores in the
或者,在平板殼體10內設置毛細芯,並對平板殼體10的內表面進行表面微奈處理,以使表面形成第二微奈結構;毛細芯20可為以上毛細芯或常規毛細芯,且一般至少對平板殼體10的換熱段的內表面進行表面微奈處理。
Or, a capillary core is set in the
S3、將上殼體11和下殼體12的邊緣密封連接,形成具有密封腔體的平板殼體,向密封腔體進行抽真空與灌注相變工質。其中,密封連接具體可採用焊接方式,抽真空的真空範圍一般為10-5~104Pa,灌注相變工質的體積與密封腔體的體積比例一般為5%~80%。
S3. The edges of the
以上製備方法在平板殼體內設置毛細芯,若對毛細芯進行表面微奈處理,以使毛細芯20的表面具有第一微奈結構15,其可增強對工質的毛細驅動作用,提高毛細芯的吸液能力,提升氣液循環效率;另外,通過毛細芯表面的第一微奈結構15設置,在平板熱管的換熱段,可強化相變,提高相變效率,從而提高平板熱管的導熱性和均溫性性,其製得的平板熱管抗重力能力強,使用布置方式靈活。若對平板殼體的內表面進行表面微奈處理,以上其內表面具有第二微奈結構,也可強化相變,提高相變效率。
In the above preparation method, a capillary core is set in the flat shell. If the capillary core is subjected to surface micro-nano treatment, the surface of the
發明人對本創作中圖1所示平板熱管所採用毛細芯和現有平板熱管所採用不同毛細芯分別進行毛細芯吸液性能實驗,其中,本創作圖1所示平板熱管所採用毛細芯作為實驗例,其為以表面氧化工藝修飾了超親水微奈結構的泡沫銅作為毛細芯片層17;對比例1的毛細芯為泡沫鎳毛細芯片層17;對比例2和對比例4中毛細芯為具有平行均勻設置的方形微槽道毛細結構16、且微槽中燒結多孔顆粒的毛細芯片層17;對比例3的毛細芯為銅顆粒燒結成泡沫形狀的毛細芯片層17。分別對以上毛細芯的吸液性能進行測試,所得結果如圖9所示。由圖9可知,本創作以上平板熱管所採用的毛
細芯片層17經表面微奈處理以使表面具有第一微奈結構15,其吸液高度得到明顯提高,是現有對比例毛細芯的2~3倍。
The inventor carried out capillary wick liquid absorption performance experiments on the capillary wicks used in the flat heat pipe shown in Figure 1 in this creation and the different capillary wicks used in existing flat heat pipes, wherein the capillary wick used in the flat heat pipe shown in Figure 1 in this creation is used as an experimental example , which is the surface oxidation process modified copper foam super-hydrophilic micro-nano structure as the
以上平板熱管進一步可應用於換熱器的製備,因而,本創作還提高了一種換熱器,包括以上任一種平板熱管。另外,為了增強換熱效率,可根據應用需求,在平板熱管的平板殼體上部分區域或整體表面耦合連接換熱強化部件(如翅片、水冷塊、輻射增強塗層等),以形成高效換熱器,進而可用於各種散熱或加熱的情景,包括但不限於基站芯片、電腦CPU、汽車動力電池及快充、汽車動力電池及動力模塊快速預熱、發電裝置高效換熱,以及雷射、雷達等高熱流密度散熱等。 The above flat heat pipes can be further applied to the preparation of heat exchangers, therefore, this invention also improves a heat exchanger, including any of the above flat heat pipes. In addition, in order to enhance the heat exchange efficiency, according to the application requirements, heat exchange strengthening components (such as fins, water cooling blocks, radiation-enhancing coatings, etc.) Heat exchangers can be used in various heat dissipation or heating scenarios, including but not limited to base station chips, computer CPUs, automotive power batteries and fast charging, rapid preheating of automotive power batteries and power modules, efficient heat exchange for power generation devices, and laser , radar and other high heat flux heat dissipation.
10:平板殼體 10: flat shell
11:上殼體 11: Upper shell
12:下殼體 12: Lower shell
13:殼體支撐件 13: Shell support
14:毛細芯支撐件 14: capillary core support
20:毛細芯 20: capillary core
21:安裝通孔 21: Mounting through holes
30:充液管 30: Filling tube
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111211773U TWM640806U (en) | 2021-12-24 | 2021-12-24 | Flat-plate heat pipe and heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111211773U TWM640806U (en) | 2021-12-24 | 2021-12-24 | Flat-plate heat pipe and heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM640806U true TWM640806U (en) | 2023-05-11 |
Family
ID=87382772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111211773U TWM640806U (en) | 2021-12-24 | 2021-12-24 | Flat-plate heat pipe and heat exchanger |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM640806U (en) |
-
2021
- 2021-12-24 TW TW111211773U patent/TWM640806U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022033289A1 (en) | Flat plate heat pipe and manufacturing method therefor, and heat exchanger | |
Zeng et al. | Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array | |
CN101453859B (en) | Loop type heat pipe radiator and manufacturing method thereof | |
CN114025562B (en) | Soaking plate with gradient liquid suction core structure and preparation method thereof | |
TWI801696B (en) | Phase change cooling device | |
JP2012507680A (en) | MICRO HEAT PIPE ARRAY HAVING FINE TUBE ARRAY, ITS MANUFACTURING METHOD, AND HEAT EXCHANGE SYSTEM | |
US20110088873A1 (en) | Support structure for flat-plate heat pipe | |
CN110966882B (en) | Temperature-uniforming plate, preparation method of temperature-uniforming plate and electronic equipment | |
CN107167008A (en) | A kind of ultra-thin panel heat pipe and its manufacture method | |
WO2021203825A1 (en) | Heat dissipation device, preparation method for heat dissipation device, and electronic apparatus | |
EP3907457B1 (en) | Boiling enhancement apparatus | |
CN210464154U (en) | Pulsating heat pipe based on liquid metal mixed working medium | |
EP1708261A1 (en) | Heat pipe radiator of heat-generating electronic component | |
TWI819157B (en) | Ultra-thin vapor chamber and manufacturing method thereof | |
CN211630673U (en) | Ultra-thin type temperature equalizing plate | |
CN211090390U (en) | Soaking plate radiator with composite backflow structure | |
CN211012603U (en) | Ultrathin flexible flat heat pipe | |
CN213878214U (en) | Capillary pumping type plate evaporator for battery heat dissipation | |
TWM640806U (en) | Flat-plate heat pipe and heat exchanger | |
EP4429422A1 (en) | Vapor chamber comprising microstructure layer | |
TWM259945U (en) | Heat sink with fluid medium | |
CN211527184U (en) | Heat conduction and heat dissipation integrated flat heat pipe | |
CN209877719U (en) | Intensified boiling device | |
CN113008057A (en) | Preparation method of double-sided micro-channel flat pulsating heat pipe and application of double-sided micro-channel flat pulsating heat pipe in high-power chip heat dissipation device | |
CN112996338A (en) | Ultra-thin type temperature equalizing plate and manufacturing method thereof |