TWM593025U - Customer Behavior Prediction System - Google Patents
Customer Behavior Prediction System Download PDFInfo
- Publication number
- TWM593025U TWM593025U TW108216776U TW108216776U TWM593025U TW M593025 U TWM593025 U TW M593025U TW 108216776 U TW108216776 U TW 108216776U TW 108216776 U TW108216776 U TW 108216776U TW M593025 U TWM593025 U TW M593025U
- Authority
- TW
- Taiwan
- Prior art keywords
- training
- previous
- prediction
- customer
- behavior
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一種客戶行為預測系統,包含一儲存模組及一電連接該儲存模組的處理模組;該儲存模組儲存有多筆相關於一待預測客戶於先前做出之多種不同行為且各自對應有一先前時間點的先前行為資料,該處理模組根據該等先前行為資料,獲得一包含多個對應該等先前行為資料之先前參數的先前序列,該等先前參數依照該等先前時間點排序,根據該先前序列,利用一用於預測客戶未來行為的客戶行為預測模型,獲得一包含多個指示出該待預測客戶未來可能各種行為之預測參數的預測序列。A customer behavior prediction system includes a storage module and a processing module electrically connected to the storage module; the storage module stores a plurality of different behaviors related to a customer to be predicted in the past and each corresponds to one According to the previous behavior data of the previous time point, the processing module obtains a previous sequence including a plurality of previous parameters corresponding to the previous behavior data according to the previous behavior data, the previous parameters are sorted according to the previous time points, according to The previous sequence uses a customer behavior prediction model for predicting the customer's future behavior to obtain a prediction sequence that includes a plurality of prediction parameters indicating possible future behaviors of the customer to be predicted.
Description
本新型是有關於一種行為預測系統,特別是指一種利用機器學習的行為預測系統。The present invention relates to a behavior prediction system, especially a behavior prediction system using machine learning.
在銀行業中現有的行銷方式以產品經理人經驗為主,以人工檢索客戶過去消費行為資料並挑選出目標客群,並透過後續的行銷活動對所挑選出目標客群進行驗證,以判定所挑選目標客群的優劣,而產品經理人最後再依據挑選目標客群之優劣的反饋,提升自身的挑選經驗。The existing marketing methods in the banking industry are based on the experience of product managers, manually retrieving customer past consumer behavior data and selecting target customer groups, and verifying the selected target customer groups through subsequent marketing activities to determine Select the pros and cons of the target customer group, and the product manager finally improves his selection experience based on the feedback of the pros and cons of the target customer group.
然而,此種人工挑選目標客群方式不但沒有一個固定的標準,在培訓產品經理人方面也耗費過多時間成本,所挑選出來目標客群精確度也不足以達成金融商品推銷的目的。However, this manual selection of target customer groups not only does not have a fixed standard, but also takes too much time and cost in training product managers, and the accuracy of the selected target customer groups is not sufficient to achieve the purpose of financial commodity marketing.
有鑑於此,勢必須提出一種全新解決方案,以提升挑選出來目標客群的精確度。In view of this, it is imperative to propose a completely new solution to improve the accuracy of selecting target customer groups.
因此,本新型之目的,即在提供一種基於機器學習以提升挑選出來目標客群的精確度的客戶行為預測系統。Therefore, the purpose of the new model is to provide a customer behavior prediction system based on machine learning to improve the accuracy of the selected target customer group.
於是,本新型客戶行為預測系統包含一儲存模組及一電連接該儲存模組的處理模組。Therefore, the new customer behavior prediction system includes a storage module and a processing module electrically connected to the storage module.
該儲存模組儲存有多筆相關於一待預測客戶於先前做出之多種不同行為且各自對應有一先前時間點的先前行為資料。The storage module stores a plurality of pieces of previous behavior data related to a variety of different behaviors of a customer to be predicted in the past and each corresponding to a previous time point.
該處理模組根據該等先前行為資料,獲得一包含多個對應該等先前行為資料之先前參數的先前序列,該等先前參數依照該等先前時間點排序,根據該先前序列,利用一用於預測客戶未來行為的客戶行為預測模型,獲得一包含多個指示出該待預測客戶未來可能各種行為之預測參數的預測序列。The processing module obtains a previous sequence including a plurality of previous parameters corresponding to the previous behavior data according to the previous behavior data, the previous parameters are sorted according to the previous time points, and according to the previous sequence, a The customer behavior prediction model for predicting the future behavior of the customer obtains a prediction sequence containing a plurality of prediction parameters indicating various possible future behaviors of the customer to be predicted.
本新型之功效在於:藉由該待預測客戶之先前行為所對應的該先前序列,利用用於預測客戶未來行為的該客戶行為預測模型,以獲得該未來預測序列,而該未來預測序列所包含的每一預測參數皆指示出該待預測客戶未來可能之行為,而銀行便能根據該待預測客戶未來可能之行為判定該待預測客戶是否為目標客戶,大大地提升了挑選出目標客群精確度。The effect of the present invention lies in that: by using the previous sequence corresponding to the previous behavior of the customer to be predicted, the customer behavior prediction model used to predict the customer's future behavior is used to obtain the future prediction sequence, and the future prediction sequence includes Each forecast parameter indicates the possible future behavior of the customer to be predicted, and the bank can determine whether the customer to be predicted is the target customer according to the future behavior of the customer to be predicted, greatly improving the accuracy of selecting the target customer group degree.
參閱圖1,本新型客戶行為預測系統1之一實施例經由一通訊網路200連接一客戶端2。Referring to FIG. 1, an embodiment of the new customer
該客戶行為預測系統1包含一連接該通訊網路200的系統端通訊模組11、一系統端儲存模組12,以及一電連接該系統端通訊模組11與該系統端儲存模組12的系統端處理模組13。The customer
該系統端儲存模組12儲存有多筆對應多個客戶的訓練資料,每一訓練資料包含所對應之客戶於先前做出該等不同行為的多筆訓練先前行為資料及多筆訓練預測行為資料,以及多個對應各種目標客戶行為之可推薦參數及其對應的一推薦資訊。其中,每一筆訓練先前行為資料皆對應有一訓練先前時間點,每一筆訓練預測行為資料皆對應有一訓練預測時間點,同一筆訓練資料之任一訓練預測時間點皆晚於該等訓練先前時間點。其中,每一推薦資訊係為金融商品資料,但不以此為限。The system-
該客戶端2包含一連接該通訊網路200的客戶端通訊模組21、一客戶端顯示模組22,以及一電連接該客戶端通訊模組21與該客戶端顯示模組22的客戶端處理模組23。The
在該實施例中,該客戶行為預測系統1之實施態樣例如為一個人電腦、一伺服器或一雲端主機,但不以此為限。In this embodiment, the implementation of the customer
在該實施例中,該客戶端2之實施態樣例如為一個人電腦、一智慧型手機或一平板電腦,但不以此為限。In this embodiment, the implementation of the
以下將藉由本新型客戶行為預測系統1執行一客戶行為預測方法來說明該系統端通訊模組11、該系統端儲存模組12、該系統端處理模組13,以及該客戶端2各元件的運作細節。該客戶行為預測方法包含一模型訓練程序,以及一預測推薦程序。The following will describe the system-
參閱圖2,該模型訓練程序包含步驟51~步驟53。Referring to FIG. 2, the model training procedure includes
在步驟51中,對於每一訓練資料,該系統端處理模組13根據該訓練資料中的該等訓練先前行為資料,獲得一包含多個對應該等訓練先前行為資料之訓練先前參數的訓練先前序列。其中,該等訓練先前參數依照該等訓練先前時間點排序。In
在步驟52中,對於每一訓練資料,該系統端處理模組13根據該訓練資料中的該等訓練預測行為資料,獲得一包含多個對應該等訓練預測行為資料之訓練預測參數的訓練預測序列,該等訓練預測參數依照該等訓練預測時間點排序。In
值得特別說明的是,對於每一訓練資料,當該等訓練先前行為資料及該等訓練預測行為資料皆係為客戶信用卡消費資訊時,則該等訓練先前參數(訓練資料之輸入)及該等訓練預測參數(訓練資料之輸出)皆係為商戶類別代碼(MCC CODE,Merchant Category Code,用於標明商家提供的商品或服務的類型)時;而,當該等訓練先前行為資料及該等訓練預測行為資料皆係為客戶網路瀏覽資訊時,則該等訓練先前參數(訓練資料之輸入)及該等訓練預測參數(訓練資料之輸出)皆係為網站代碼,但不以上述舉例為限。其中,每一網路瀏覽資訊中的網址皆可對應於一網站代碼。It is worth noting that for each training data, when the training previous behavior data and the training prediction behavior data are customer credit card consumption information, then the training previous parameters (input of training data) and these The training prediction parameters (the output of training data) are all merchant category codes (MCC CODE, Merchant Category Code, used to indicate the type of goods or services provided by the merchant); and, when such training prior behavior data and such training When the predicted behavior data are all the information browsed by the customer on the Internet, the training previous parameters (input of training data) and the training prediction parameters (output of training data) are all website codes, but not limited to the above examples . Wherein, the web address in each web browsing information can correspond to a web site code.
在步驟53中,該系統端處理模組13根據該等訓練資料,利用循環神經網路,獲得一用於預測客戶未來行為的客戶行為預測模型。其中,循環神經網路係為遞歸神經網路(RNN,Recurrent Neural Networks)或長短期記憶模型(LSTM,Long Short-Term Memory),但不以此為限。In
參閱圖3,該預測推薦程序包含步驟61~步驟65。Referring to FIG. 3, the prediction recommendation procedure includes
在步驟61中,該系統端處理模組13根據多筆相關於一待預測客戶於先前做出之多種不同行為且各自對應有一先前時間點的先前行為資料,獲得一包含多個對應該等先前行為資料之先前參數的先前序列。其中,該等先前參數依照該等先前時間點排序。In
在步驟62中,該系統端處理模組13根據該先前序列,利用所訓練出之該客戶行為預測模型,獲得一包含多個指示出該待預測客戶未來可能各種行為之預測參數的預測序列。In step 62, the system-
值得特別說明的是,當該等先前行為資料係為客戶信用卡消費資訊,且該等先前參數係為商戶類別代碼時,則該等預測參數係為商戶類別代碼,此時該等預測參數即表示未來客戶可能會消費的商店類別;而,當該等先前行為資料係為客戶網路瀏覽資訊,且該等先前參數係為網站代碼時,則該等預測參數係為網站代碼,此時該等預測參數即表示未來客戶可能會點選瀏覽的網站,但不以上述舉例為限。其中,每一網路瀏覽資訊中的網址皆可對應於一網站代碼。It is worth noting that when the previous behavior data is customer credit card consumption information, and the previous parameters are merchant category codes, then the prediction parameters are merchant category codes, and then the prediction parameters represent The type of store that the customer may consume in the future; and when the previous behavior data is the customer's Internet browsing information and the previous parameters are the website code, then the prediction parameters are the website code The prediction parameters mean that in the future, the customer may click on the website to browse, but not limited to the above example. Wherein, the web address in each web browsing information can correspond to a web site code.
在步驟63中,該系統端處理模組13判定該預測序列的該等預測參數中是否存在與該等可推薦參數中之任一者相同的至少一待推薦參數。當該系統端處理模組13判定出不存在任一待推薦參數時,結束該預測推薦程序;當該系統端處理模組13判定出存在該至少一待推薦參數時,進行流程步驟64。In
在步驟64中,該系統端處理模組13透過該系統端通訊模組11將每一待推薦參數所對應之推薦資訊傳送至該客戶端2。In
在步驟65中,該客戶端處理模組23在透過該客戶端通訊模組21接收到每一待推薦參數所對應之推薦資訊後,將每一待推薦參數所對應之推薦資訊顯示於該客戶端顯示模組22。In
綜上所述,本新型客戶行為預測系統1,藉由該客戶端處理模組23對預先獲得的每一訓練資料進行前處理,以獲得對應該訓練資料且包含該等訓練先前參數的該訓練先前序列,及對應該訓練資料且包含該等訓練預測參數的該訓練預測序列,並利用循環神經網路,將該訓練先前序列作為輸入,而將該訓練預測序列作為預期輸出,訓練出該客戶行為預測模型;接著,該客戶端處理模組23根據該待預測客戶之先前行為所對應的該先前序列,利用所訓練出的該客戶行為預測模型,獲得該未來預測序列,而該未來預測序列所包含的每一預測參數皆指示出該待預測客戶未來可能之行為,並根據該待預測客戶未來可能之行為推薦相對應的金融商品,而銀行便能根據該待預測客戶未來可能之行為判定該待預測客戶是否為目標客戶,進而大大地提升了挑選出目標客群精確度,使得所推薦的金融商品更能符合該待預測客戶的需求。因此,確實能達成本新型之目的。In summary, in the new customer
惟以上所述者,僅為本新型之實施例而已,當不能以此限定本新型實施之範圍,凡是依本新型申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。However, the above are only examples of the new model. When the scope of the new model cannot be limited by this, any simple equivalent changes and modifications made according to the patent application scope and patent specification content of the new model are still regarded as Within the scope of this new patent.
200:通訊網路
1:客戶行為預測系統
11:系統端通訊模組
12:系統端儲存模組
13:系統端處理模組
2:客戶端
21:客戶端通訊模組
22:客戶端顯示模組
23:客戶端處理模組
51~53:步驟
61~65:步驟200: communication network
1: Customer behavior prediction system
11: System-side communication module
12: System-side storage module
13: System-side processing module
2: client
21: Client communication module
22: Client display module
23:
本新型之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明本新型客戶行為預測系統的一實施例; 圖2是一流程圖,說明該實施例所執行之一客戶行為預測方法的一模型訓練程序;及 圖3是一流程圖,說明該客戶行為預測方法的一預測推薦程序。 Other features and functions of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: FIG. 1 is a block diagram illustrating an embodiment of the new customer behavior prediction system; FIG. 2 is a flowchart illustrating a model training procedure of a customer behavior prediction method executed by the embodiment; and FIG. 3 is a flowchart illustrating a prediction recommendation procedure of the customer behavior prediction method.
200:通訊網路 200: communication network
1:客戶行為預測系統 1: Customer behavior prediction system
11:系統端通訊模組 11: System-side communication module
12:系統端儲存模組 12: System-side storage module
13:系統端處理模組 13: System-side processing module
2:客戶端 2: client
21:客戶端通訊模組 21: Client communication module
22:客戶端顯示模組 22: Client display module
23:客戶端處理模組 23: Client processing module
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108216776U TWM593025U (en) | 2019-12-17 | 2019-12-17 | Customer Behavior Prediction System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108216776U TWM593025U (en) | 2019-12-17 | 2019-12-17 | Customer Behavior Prediction System |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM593025U true TWM593025U (en) | 2020-04-01 |
Family
ID=71133038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108216776U TWM593025U (en) | 2019-12-17 | 2019-12-17 | Customer Behavior Prediction System |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM593025U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI780471B (en) * | 2020-08-20 | 2022-10-11 | 大陸商信泰光學(深圳)有限公司 | Systems and methods for establishing and predicting of model, and related computer program products |
-
2019
- 2019-12-17 TW TW108216776U patent/TWM593025U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI780471B (en) * | 2020-08-20 | 2022-10-11 | 大陸商信泰光學(深圳)有限公司 | Systems and methods for establishing and predicting of model, and related computer program products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109509054B (en) | Commodity recommendation method under mass data, electronic device and storage medium | |
KR101972285B1 (en) | Image evaluation | |
US20200195737A1 (en) | Clickstream analysis methods and systems related to determining actionable insights relating to a path to purchase | |
CN107730389A (en) | Electronic installation, insurance products recommend method and computer-readable recording medium | |
CN111444334A (en) | Data processing method, text recognition device and computer equipment | |
TW201812689A (en) | System, method, and device for identifying malicious address/malicious purchase order | |
CN109272408A (en) | Vehicle loan financial product intelligent recommendation method, apparatus, equipment and medium | |
CN114663198A (en) | Product recommendation method, device and equipment based on user portrait and storage medium | |
CN106415648A (en) | Method and system to facilitate transactions | |
CN107169806A (en) | For determining method and device of the item property for the disturbance degree of purchase decision | |
CN109962975A (en) | Information-pushing method, device, electronic equipment and system based on object identification | |
CN109801101A (en) | Label determines method, apparatus, computer equipment and storage medium | |
CN112241495A (en) | Page updating method | |
US20160292706A1 (en) | Systems and methods for offer selection and reward distribution learning | |
CN111429214B (en) | Transaction data-based buyer and seller matching method and device | |
CN113781149A (en) | Information recommendation method and device, computer-readable storage medium and electronic equipment | |
CN111680213B (en) | Information recommendation method, data processing method and device | |
US20140244405A1 (en) | Automatic Generation of Digital Advertisements | |
TWM593025U (en) | Customer Behavior Prediction System | |
US10475057B2 (en) | System and method for transaction volume determination | |
TW202125283A (en) | Customer behavior prediction method and system thereof obtain the future prediction sequence to greatly increase the accuracy of selecting target customer groups | |
CN111768218B (en) | Method and device for processing user interaction information | |
JP2013156691A (en) | Purchase prediction device, method, and program | |
WO2020150597A1 (en) | Systems and methods for entity performance and risk scoring | |
CN117114901A (en) | Method, device, equipment and medium for processing insurance data based on artificial intelligence |