[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWM568113U - Airway model generation system and intubation assist system - Google Patents

Airway model generation system and intubation assist system Download PDF

Info

Publication number
TWM568113U
TWM568113U TW107207967U TW107207967U TWM568113U TW M568113 U TWM568113 U TW M568113U TW 107207967 U TW107207967 U TW 107207967U TW 107207967 U TW107207967 U TW 107207967U TW M568113 U TWM568113 U TW M568113U
Authority
TW
Taiwan
Prior art keywords
airway
module
model
patient
flexible tube
Prior art date
Application number
TW107207967U
Other languages
Chinese (zh)
Inventor
蔡弘亞
王友光
許斐凱
Original Assignee
凱勛國際股份有限公司
光禾感知科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凱勛國際股份有限公司, 光禾感知科技股份有限公司 filed Critical 凱勛國際股份有限公司
Priority to TW107207967U priority Critical patent/TWM568113U/en
Publication of TWM568113U publication Critical patent/TWM568113U/en

Links

Landscapes

  • Endoscopes (AREA)

Abstract

The disclosure provides an airway model generation system, including an endoscope device and a computing device, to establish a 3D model of a patient's airway by simultaneous localization and mapping (SLAM) technology. The disclosure also provides an intubation assist system to assist the medical staff in the intubation treatment by using the 3D models of the patients and machine learning techniques.

Description

氣道模型生成系統及插管輔助系統Airway model generation system and intubation assist system

本案是有關於一種內視鏡系統,特別是指一種氣道模型生成系統及插管輔助系統。This case relates to an endoscope system, in particular to an airway model generating system and an intubation assisting system.

當患者需要進行全身麻醉或急救等患者無法自行呼吸的情形下,通常會對患者進行插管治療。然而,醫護人員往往依靠經驗來進行插管操作,若有不慎可能刺傷患者。When a patient needs general anesthesia or first aid, and the patient is unable to breathe on his or her own, the patient is usually intubated. However, medical staff often rely on experience to perform intubation operations and may injure patients if inadvertently.

有鑑於此,本案提供一種氣道模型生成系統來建立患者氣道三維模型,並且利用眾多患者的三維模型與機器學習技術,提供一種插管輔助系統,在醫護人員進行插管治療過程中提供輔助。In view of this, the present invention provides an airway model generation system to establish a three-dimensional model of a patient's airway, and utilizes a three-dimensional model of a plurality of patients and machine learning techniques to provide an intubation assist system that assists the medical staff in intubating treatment.

所述氣道模型生成系統包含一內視鏡裝置及一計算機裝置。內視鏡裝置包含一可撓管、一攝影模組及一通訊模組。攝影模組位於可撓管的前端,以擷取可撓管進入氣道的過程中的多張氣道影像。通訊模組耦接攝影模組,以發送攝影模組擷取到的該些氣道影像。計算機裝置,通訊連接內視鏡裝置的通訊模組,以取得通訊模組發送的該些氣道影像,並根據該些氣道影像,利用即時定位與地圖構建(SLAM)技術建立氣道的三維模型。The airway model generation system includes an endoscope device and a computer device. The endoscope device comprises a flexible tube, a camera module and a communication module. The photographic module is located at the front end of the flexible tube to capture multiple airway images of the flexible tube into the airway. The communication module is coupled to the camera module to send the airway images captured by the camera module. The computer device communicates with the communication module of the endoscope device to obtain the airway images transmitted by the communication module, and according to the airway images, uses a real-time positioning and map construction (SLAM) technology to establish a three-dimensional model of the airway.

所述插管輔助系統包含一內視鏡裝置及一計算機裝置。內視鏡裝置包含一可撓管、一攝影模組及一通訊模組。攝影模組位於可撓管的前端,以擷取可撓管進入目標患者的目標氣道的過程中的多張目標氣道影像。通訊模組耦接攝影模組,以發送攝影模組擷取到的該些目標氣道影像。計算機裝置包含一輸入模組、一儲存模組、一處理模組及一輸出模組。輸入模組供接收目標患者的一目標患者資料。儲存模組儲存一患者資料庫,患者資料庫包含對應各個患者的一氣道資料及一病理資料,各氣道資料包含對應患者一氣道的複數氣道影像及氣道之三維模型。處理模組將該些患者之病理資料及三維模型輸入至一第一學習模型。第一學習模型提供一第一邏輯以供評估該些病理資料中的一個或多個特徵值與對應的氣道的三維模型的相關性,並且將目標患者資料輸入至第一學習模型,以依據第一邏輯找出該些三維模型中的一相近者。處理模組還依據目標氣道影像判斷可撓管之前端位於該相近的三維模型中的一位置,以根據位置產生一導引資訊,而由輸出模組輸出該導引資訊。The cannula assist system includes an endoscope device and a computer device. The endoscope device comprises a flexible tube, a camera module and a communication module. The photographic module is located at the front end of the flexible tube to capture a plurality of target airway images during the process of the flexible tube entering the target patient's target airway. The communication module is coupled to the camera module to send the target airway images captured by the camera module. The computer device comprises an input module, a storage module, a processing module and an output module. The input module is configured to receive a target patient data of the target patient. The storage module stores a patient database, the patient database includes an airway data and a pathological data corresponding to each patient, and each airway data includes a plurality of airway images and a three-dimensional model of the airway corresponding to the patient's one airway. The processing module inputs the pathological data and the three-dimensional model of the patients to a first learning model. The first learning model provides a first logic for evaluating a correlation of one or more feature values of the pathological data with a corresponding three-dimensional model of the airway, and inputting the target patient data to the first learning model to A logic finds a similar one of the three-dimensional models. The processing module further determines, according to the target airway image, a position of the front end of the flexible tube in the similar three-dimensional model to generate a guiding information according to the position, and the guiding information is output by the output module.

綜上所述,本案實施例提供一種氣道模型生成系統,可在插管過程中建立患者的氣道三維模型。此外,本案實施例亦提供一種插管輔助系統,將各個患者的氣道三維模型與對應氣道影像進行建檔,並輸入學習模型中。透過機器學習找出病理資料與氣道三維模型的關聯,以及找出氣道影像與病理資料的關聯,能夠輔助醫護人員的插管操作,並提醒可能罹患的疾病。In summary, the embodiment of the present invention provides an airway model generating system, which can establish a three-dimensional model of a patient's airway during the intubation process. In addition, the embodiment of the present invention also provides an intubation assisting system, which constructs a three-dimensional airway model of each patient and a corresponding airway image, and inputs the learning model. Through machine learning to find out the correlation between pathological data and the three-dimensional model of the airway, and to find out the association between airway imaging and pathological data, it can assist the intubation operation of medical staff and remind them of possible diseases.

參照圖1,係為本案一實施例之氣道模型生成系統與插管輔助系統之架構示意圖。所述氣道模型生成系統與插管輔助系統包含內視鏡裝置100及計算機裝置200。以下將先就氣道模型生成系統進行說明。1 is a schematic structural diagram of an airway model generating system and an intubation assisting system according to an embodiment of the present invention. The airway model generation system and the intubation assistance system include an endoscope device 100 and a computer device 200. The airway model generation system will be described first below.

合併參照圖1及圖2,圖2為本案一實施例之氣道模型生成系統之方塊示意圖。內視鏡裝置100包含可撓管110、握持部120、攝影模組130及通訊模組140。可撓管110與握持部120相連接,以供醫護人員手持握持部120,將可撓管110插入患者的氣道中。可撓管110的前端設置攝影模組130,以擷取可撓管110前方影像。因此,在可撓管110進入患者口中之後而深入氣道的過程中,可連續地、間歇地、或經觸發地擷取氣道影像。攝影模組130可包含一個或多個攝影鏡頭,所述攝影鏡頭可為感光耦合元件(CCD)或互補性氧化金屬半導體(CMOS)影像感應器。通訊模組140可支援有線通訊技術或無線通訊技術,有線通訊技術可例如為低電壓差動訊號傳輸(LVDS)、複合視頻廣播訊號(CVBS)等,無線通訊可例如為無線保真(WiFi)、無線顯示(WiDi)、無線家庭數位介面(WHDI)等。通訊模組140耦接於攝影模組130,以將擷取到的氣道影像傳送至計算機裝置200。Referring to FIG. 1 and FIG. 2 together, FIG. 2 is a block diagram of an airway model generating system according to an embodiment of the present invention. The endoscope device 100 includes a flexible tube 110, a grip portion 120, a photographing module 130, and a communication module 140. The flexible tube 110 is coupled to the grip portion 120 for the medical personnel to hold the grip portion 120 to insert the flexible tube 110 into the airway of the patient. The front end of the flexible tube 110 is provided with a photographic module 130 for capturing an image in front of the flexible tube 110. Thus, during the process of the flexible tube 110 entering the patient's mouth and deep into the airway, the airway image can be captured continuously, intermittently, or triggered. The photography module 130 can include one or more photographic lenses, which can be photosensitive coupling elements (CCDs) or complementary metal oxide semiconductor (CMOS) image sensors. The communication module 140 can support wired communication technology or wireless communication technology. The wired communication technology can be, for example, low voltage differential signal transmission (LVDS), composite video broadcast signal (CVBS), etc., and the wireless communication can be, for example, wireless fidelity (WiFi). , wireless display (WiDi), wireless home digital interface (WHDI). The communication module 140 is coupled to the camera module 130 to transmit the captured airway image to the computer device 200.

計算機裝置200包含處理模組210及通訊模組220。通訊模組220支援與內視鏡裝置100的通訊模組140相同的通訊技術,以通訊連接於內視鏡裝置100的通訊模組140,而取得前述氣道影像。處理模組210耦接通訊模組220,以根據氣道影像利用SLAM技術建立該氣道的三維模型。處理模組210為中央處理器(CPU)、圖形處理器(GPU)、視覺處理器(VPU)等具運算能力之處理器。處理模組210可包含一個或多個上述之一種或多種處理器。The computer device 200 includes a processing module 210 and a communication module 220. The communication module 220 supports the same communication technology as the communication module 140 of the endoscope device 100, and is connected to the communication module 140 of the endoscope device 100 to obtain the airway image. The processing module 210 is coupled to the communication module 220 to establish a three-dimensional model of the air channel according to the airway image using SLAM technology. The processing module 210 is a processor with computing power such as a central processing unit (CPU), a graphics processing unit (GPU), and a visual processing unit (VPU). Processing module 210 can include one or more of the one or more processors described above.

在一些實施例中,計算機裝置200為一台運算設備。In some embodiments, computer device 200 is a computing device.

在一些實施例中,計算機裝置200由多台相同或不同的運算設備構成,例如採用分散式運算架構或電腦集群(cluster)技術。In some embodiments, computer device 200 is comprised of a plurality of identical or different computing devices, such as a distributed computing architecture or a computer clustering technique.

計算機裝置200還包含儲存模組230、輸入模組240及輸出模組250,分別耦接於處理模組210。儲存模組230為非暫態儲存媒體,可供儲存前述氣道影像。輸出模組250可為影像輸出裝置,例如一台或多台顯示器,係可供顯示氣道影像。輸入模組240可為人機操作介面,包含如滑鼠、鍵盤、觸控螢幕等,以供醫護人員操作計算機裝置200。The computer device 200 further includes a storage module 230, an input module 240, and an output module 250, which are respectively coupled to the processing module 210. The storage module 230 is a non-transitory storage medium for storing the airway image. The output module 250 can be an image output device, such as one or more displays, for displaying airway images. The input module 240 can be a human-machine interface, including a mouse, a keyboard, a touch screen, etc., for the medical staff to operate the computer device 200.

在一些實施例中,內視鏡裝置100亦可配備顯示器(圖未示),以顯示攝影模組130擷取之氣道影像。In some embodiments, the endoscope device 100 can also be equipped with a display (not shown) to display the airway image captured by the camera module 130.

在一些實施例中,若內視鏡裝置100配備顯示器,計算機裝置200可不配備顯示器。In some embodiments, if the endoscope device 100 is equipped with a display, the computer device 200 may not be equipped with a display.

在一些實施例中,有別於前述內視鏡裝置100與計算機裝置200是兩個可分離的個體,內視鏡裝置100與計算機裝置200整合在同一電子設備中。In some embodiments, different from the aforementioned endoscope device 100 and computer device 200 are two detachable individuals, the endoscope device 100 and the computer device 200 are integrated in the same electronic device.

參照圖3,係為本案一實施例之生成氣道模型之方法流程圖,所述方法係經由前述處理模組210執行,以實現前述之SLAM技術。首先,讀取儲存在儲存模組230的氣道影像,並載入之(步驟S310)。接著,對氣道影像進行預處理,以去除氣道影像中的雜訊區域(步驟S320)。所述雜訊區域可例如為粘膜、氣泡等影響影像判讀之區域。在步驟S330中,透過特徵區域檢測算法擷取氣道影像的複數特徵點。所述特徵區域檢測算法可例如為加速強健特徵(SURF)、尺度不變特徵變換(SIFT)或定向BRIEF(ORB)等算法。於是,可依據每張氣道影像上對應的特徵點的位置與大小變化,換算可撓管110的移動方向與位移,以重建出三維模型(步驟S340)。Referring to FIG. 3, it is a flowchart of a method for generating an airway model according to an embodiment of the present invention, which is performed by the foregoing processing module 210 to implement the foregoing SLAM technology. First, the airway image stored in the storage module 230 is read and loaded (step S310). Next, the airway image is preprocessed to remove the noise region in the airway image (step S320). The noise area may be, for example, a mucosa, a bubble, or the like that affects image interpretation. In step S330, the complex feature points of the airway image are captured by the feature region detection algorithm. The feature region detection algorithm may be, for example, an algorithm such as an accelerated robust feature (SURF), a scale invariant feature transform (SIFT), or a directed BRIEF (ORB). Therefore, the moving direction and displacement of the flexible tube 110 can be converted according to the position and size change of the corresponding feature points on each airway image to reconstruct the three-dimensional model (step S340).

在一些實施例中,具有兩個鏡頭的攝影模組130所拍攝的影像可供處理模組210執行雙目視覺SLAM演算來重建三維模型。In some embodiments, the image captured by the camera module 130 having two lenses is available to the processing module 210 to perform a binocular vision SLAM calculus to reconstruct the three-dimensional model.

參照圖4,係為本案另一實施例之氣道模型生成系統之方塊示意圖,與圖2之差異在於,本實施例之內視鏡裝置100更包含慣性測量模組150。慣性測量模組150包含至少一慣性測量單元151,設置在可撓管110上(如圖1所示)。慣性測量單元用以取得慣性訊號,例如加速度計,藉此能夠得知可撓管110的移動方向與加速度變化。慣性訊號透過通訊模組140傳送至計算機裝置200。於是,計算機裝置200根據慣性訊號及氣道影像,利用前述SLAM技術的其中一個分支,即視覺慣性里程計(VIO)技術來建立氣道的三維模型。FIG. 4 is a block diagram of an airway model generating system according to another embodiment of the present invention. The difference from FIG. 2 is that the endoscope device 100 of the present embodiment further includes an inertial measurement module 150. The inertial measurement module 150 includes at least one inertial measurement unit 151 disposed on the flexible tube 110 (as shown in FIG. 1). The inertial measurement unit is used to obtain an inertial signal, such as an accelerometer, whereby the direction of movement and acceleration of the flexible tube 110 can be known. The inertial signal is transmitted to the computer device 200 through the communication module 140. Thus, the computer device 200 establishes a three-dimensional model of the airway using one of the aforementioned SLAM techniques, namely, a visual inertial odometer (VIO) technique, based on the inertial signal and the airway image.

在一些實施例中,慣性測量單元151是沿著可撓管110的長軸方向上均勻分布。換言之,在可撓管110上,每間隔一段距離即設置有慣性測量單元151。藉此,可透過此些慣性測量單元151的慣性訊號得知可撓管110每個位置的彎折形變、位移方向與位移量。In some embodiments, the inertial measurement unit 151 is evenly distributed along the long axis direction of the flexible tube 110. In other words, on the flexible tube 110, the inertial measurement unit 151 is disposed at a distance. Thereby, the bending deformation, the displacement direction and the displacement amount of each position of the flexible tube 110 can be known through the inertia signals of the inertial measurement units 151.

參照圖5,係為本案另一實施例之生成氣道模型之方法流程圖,與圖3之差異在於,由於本實施例之內視鏡裝置100(如圖4所示)還包含慣性測量模組150,因此計算機裝置200根據前述步驟S310至步驟S330取得特徵點之後,是依據每張氣道影像上特徵的位置與大小變化及慣性訊號,來換算可撓管110的移動方向與位移,據以重建出三維模型(步驟S360)。此外,在步驟S360之前,還可對慣性訊號進行欲處理,而濾除慣性訊號的雜訊(步驟S350)。在此,步驟S250不限於在步驟S330與步驟S360之間執行,只要在步驟S360之前執行即可。所述濾除慣性訊號雜訊的方式可採用如卡爾曼(Kalman)濾波器、高斯(Gaussian)濾波器或粒子濾波器等。5 is a flow chart of a method for generating an airway model according to another embodiment of the present invention. The difference from FIG. 3 is that the endoscope device 100 (shown in FIG. 4) of the present embodiment further includes an inertial measurement module. 150. Therefore, after the computer device 200 obtains the feature points according to the foregoing steps S310 to S330, the moving direction and the displacement of the flexible tube 110 are converted according to the position and size change of the features on each airway image and the inertia signal, thereby reconstructing The three-dimensional model is derived (step S360). In addition, before the step S360, the inertia signal may be processed to filter out the noise of the inertial signal (step S350). Here, step S250 is not limited to being performed between step S330 and step S360, as long as it is performed before step S360. The manner of filtering out inertial signal noise may be, for example, a Kalman filter, a Gaussian filter, or a particle filter.

在一些實施例中,前述步驟S320,即對氣道影像進行預處理,以去除氣道影像中的雜訊區域是利用機器學習方式來辨識該雜訊區域而將之去除。換言之,每個患者的氣道影像可被輸入至一學習模型中,所述學習模型可選自監督式學習、非監督式學習、半監督式學習及增強學習等類型,例如為神經網路、隨機森林、支援向量機(SVM)、決策樹或集群等。透過學習模型來評估氣道影像中的特定特徵點與雜訊區域的關聯性,據以指出氣道影像中的雜訊區域。In some embodiments, the foregoing step S320, that is, pre-processing the airway image to remove the noise region in the airway image is to use a machine learning method to identify the noise region and remove it. In other words, the airway image of each patient can be input into a learning model, which can be selected from the categories of supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning, such as neural networks, random Forests, support vector machines (SVMs), decision trees, or clusters. The learning model is used to estimate the correlation between specific feature points in the airway image and the noise area, and to indicate the noise area in the airway image.

接下來,說明插管輔助系統,插管輔助系統供對於當前目標患者執行插管時輔助醫療人員正確操作,避免操作錯誤而傷及患者。插管輔助系統的硬體組成請參照圖1、圖2、圖4與前述說明,於此不重複贅述。Next, the intubation assist system is described. The intubation assist system is used to assist the medical professional in correct operation when the intubation is performed on the current target patient, thereby avoiding an operation error and injuring the patient. Please refer to FIG. 1, FIG. 2, FIG. 4 and the foregoing description for the hardware composition of the intubation assisting system, and the detailed description thereof will not be repeated here.

參照圖6,係為本案一實施例之插管輔助系統的運作示意圖。於此,特別要說明的是,計算機裝置200的儲存模組230會儲存患者資料庫。患者資料庫包含對應各個患者的氣道資料310與病理資料320。氣道資料310包含氣道影像311與經前述方法重建的氣道三維模型312。病理資料320是指患者的罹病資料、健康檢查數據等。在每次執行插管之前,醫護人員會透過前述輸入模組240來輸入當前目標患者的目標患者資料(如性別、身高、體重等基本資料或/及病歷資料),此目標患者資料將被加入至患者資料庫中。此資料之輸入可為人工輸入或透過其他方式(如讀取檔案、讀取晶片、調閱電子病歷等方式)進行。Referring to Fig. 6, a schematic diagram of the operation of the intubation assisting system of an embodiment of the present invention is shown. Here, it is particularly noted that the storage module 230 of the computer device 200 stores the patient database. The patient database contains airway data 310 and pathology data 320 for each patient. The airway data 310 includes an airway image 311 and an airway three-dimensional model 312 that has been reconstructed by the foregoing methods. The pathological data 320 refers to the patient's rickets data, health check data, and the like. Before each intubation, the medical staff will input the target patient data (such as gender, height, weight, etc.) and/or medical record data of the current target patient through the input module 240, and the target patient data will be added. To the patient database. The input of this information can be done manually or by other means (such as reading files, reading wafers, accessing electronic medical records, etc.).

處理模組210會將此些患者之病理資料320及三維模型312輸入至第一學習模型330。第一學習模型330可選自監督式學習、非監督式學習、半監督式學習及增強學習等類型,例如為神經網路、隨機森林、支援向量機(SVM)、決策樹或集群等。第一學習模型330提供一第一邏輯以供評估此些病理資料320中的一個或多個特徵值與對應的氣道的三維模型312的相關性。所述第一邏輯係指根據一個或多個特徵值的數值、權重等關係來計算對應至各個患者或部分患者的氣道三維模型312的機率。在一些實施例中,亦可根據該些患者的三維模型312產生數個具代表性的氣道模型範本,而前述第一邏輯則根據一個或多個特徵值的數值、權重等關係來計算對應至各個氣道模型範本的機率。例如,某幾種特徵值的表現代表容易發生困難插管(difficult airway)的氣道類型。The processing module 210 inputs the pathological data 320 and the three-dimensional model 312 of the patient to the first learning model 330. The first learning model 330 can be selected from the group consisting of supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning, such as neural networks, random forests, support vector machines (SVMs), decision trees, or clusters. The first learning model 330 provides a first logic for evaluating the correlation of one or more of the feature values of the pathology data 320 with the corresponding three-dimensional model 312 of the airway. The first logic refers to calculating the probability of the airway three-dimensional model 312 corresponding to each patient or part of the patient based on the values, weights, and the like of the one or more feature values. In some embodiments, a plurality of representative airway model templates may also be generated according to the three-dimensional model 312 of the patients, and the first logic calculates a correspondence according to the values, weights, and the like of one or more feature values. The probability of each airway model template. For example, the performance of certain eigenvalues represents an airway type that is prone to difficult airway.

透過前述訓練之後,處理模組210將目標患者資料輸入至第一學習模型330,以依據第一邏輯找出該些三維模型312中的一相近者(亦即機率最高者)。於是,在醫護人員執行插管作業時,處理模組210依據目標患者的氣道影像(後稱目標氣道影像)或配合前述慣性訊號,透過前述的SLAM技術或VIO技術來判斷可撓管110之前端位於該相近的三維模型312中的位置,以根據該位置產生一導引資訊。所述導引資訊例如為方向的指引。輸出模組250可透過前述顯示器透過文字、圖示等方式來顯示導引資訊,或/及配合其他形式的輸出方式,如喇叭,而以語音等其他形式來輸出導引資訊。After the foregoing training, the processing module 210 inputs the target patient data to the first learning model 330 to find a similar one of the three-dimensional models 312 according to the first logic (that is, the highest probability one). Therefore, when the medical staff performs the intubation operation, the processing module 210 determines the front end of the flexible tube 110 through the aforementioned SLAM technology or VIO technology according to the airway image of the target patient (hereinafter referred to as the target airway image) or the inertial signal. A location in the similar three-dimensional model 312 to generate a navigational information based on the location. The navigation information is, for example, a guide to the direction. The output module 250 can display the navigation information through text, graphics, etc. through the display, or/and other forms of output, such as a speaker, and output the navigation information in other forms such as voice.

在一些實施例中,處理模組210還將該些患者之氣道影像311輸入至第二學習模型340。第二學習模型340可選自監督式學習、非監督式學習、半監督式學習及增強學習等類型,例如為神經網路、隨機森林、支援向量機(SVM)、決策樹或集群等。第二學習模型340提供一第二邏輯以供評估此些氣道影像311中的一個或多個特徵值與對應的病理資料320中的至少一疾病的相關性。所述第二邏輯係指根據氣道影像311中的一個或多個特徵值的數值、權重等關係來計算對應罹患各種疾病的機率。在訓練過後,處理模組210將目標患者的目標氣道影像輸入至第二學習模型,以依據第二邏輯評估發生一種或多種疾病的機率。輸出模組250可透過前述顯示器透過文字、圖示等方式來顯示可能罹患之疾病名稱,或/及配合其他形式的輸出方式,如喇叭,而以語音等其他形式來輸出。In some embodiments, the processing module 210 also inputs the airway image 311 of the patients to the second learning model 340. The second learning model 340 can be selected from the group consisting of supervised learning, unsupervised learning, semi-supervised learning, and enhanced learning, such as neural networks, random forests, support vector machines (SVMs), decision trees, or clusters. The second learning model 340 provides a second logic for evaluating the correlation of one or more of the feature values of the airway images 311 with at least one of the corresponding pathology data 320. The second logic refers to calculating the probability of suffering various diseases according to the values, weights, and the like of one or more characteristic values in the airway image 311. After training, the processing module 210 inputs the target airway image of the target patient to the second learning model to assess the probability of occurrence of one or more diseases in accordance with the second logic. The output module 250 can display the name of the disease that may be affected by text, graphic, etc. through the display, or/and other forms of output, such as a speaker, and output in other forms such as voice.

綜上所述,本案實施例提供一種氣道模型生成系統,可在插管過程中建立患者的氣道三維模型。此外,本案實施例亦提供一種插管輔助系統,將各個患者的氣道三維模型與對應氣道影像進行建檔,並輸入學習模型中。透過機器學習找出病理資料與氣道三維模型的關聯,以及找出氣道影像與病理資料的關聯,能夠輔助醫護人員的插管操作,並提醒可能罹患的疾病。In summary, the embodiment of the present invention provides an airway model generating system, which can establish a three-dimensional model of a patient's airway during the intubation process. In addition, the embodiment of the present invention also provides an intubation assisting system, which constructs a three-dimensional airway model of each patient and a corresponding airway image, and inputs the learning model. Through machine learning to find out the correlation between pathological data and the three-dimensional model of the airway, and to find out the association between airway imaging and pathological data, it can assist the intubation operation of medical staff and remind them of possible diseases.

100‧‧‧內視鏡裝置100‧‧‧Endoscope device

110‧‧‧可撓管 110‧‧‧ flexible tube

120‧‧‧握持部 120‧‧‧ grip

130‧‧‧攝影模組 130‧‧‧Photography module

140‧‧‧通訊模組 140‧‧‧Communication Module

150‧‧‧慣性測量模組 150‧‧‧Inertial Measurement Module

151‧‧‧慣性測量單元 151‧‧‧Inertial measurement unit

200‧‧‧計算機裝置 200‧‧‧Computer installation

210‧‧‧處理模組 210‧‧‧Processing module

220‧‧‧通訊模組 220‧‧‧Communication Module

230‧‧‧儲存模組 230‧‧‧ storage module

240‧‧‧輸入模組 240‧‧‧ input module

250‧‧‧輸出模組 250‧‧‧Output module

310‧‧‧氣道資料 310‧‧‧ airway data

311‧‧‧氣道影像 311‧‧‧ airway imaging

312‧‧‧三維模型 312‧‧‧3D model

320‧‧‧病理資料 320‧‧‧Pathological data

330‧‧‧第一學習模型 330‧‧‧First Learning Model

340‧‧‧第二學習模型 340‧‧‧Second learning model

S310‧‧‧步驟 S310‧‧‧Steps

S320‧‧‧步驟 S320‧‧‧Steps

S330‧‧‧步驟 S330‧‧‧Steps

S340‧‧‧步驟 S340‧‧‧Steps

S350‧‧‧步驟 S350‧‧‧ steps

S360‧‧‧步驟 S360‧‧‧Steps

[圖1]為本案一實施例之氣道模型生成系統與插管輔助系統之架構示意圖。 [圖2]為本案一實施例之氣道模型生成系統之方塊示意圖。 [圖3]為本案一實施例之生成氣道模型之方法流程圖。 [圖4]為本案另一實施例之氣道模型生成系統之方塊示意圖。 [圖5]為本案另一實施例之生成氣道模型之方法流程圖。 [圖6]為本案一實施例之插管輔助系統的運作示意圖。1 is a schematic structural view of an airway model generating system and an intubation assisting system according to an embodiment of the present invention. 2 is a block diagram showing an airway model generating system according to an embodiment of the present invention. FIG. 3 is a flow chart of a method for generating an airway model according to an embodiment of the present invention. 4 is a block diagram showing an airway model generating system according to another embodiment of the present invention. FIG. 5 is a flow chart of a method for generating an airway model according to another embodiment of the present invention. FIG. 6 is a schematic view showing the operation of the intubation assisting system according to an embodiment of the present invention.

Claims (8)

一種氣道模型生成系統,包含: 一內視鏡裝置,包含: 一可撓管; 一攝影模組,位於該可撓管的前端,以擷取該可撓管進入一氣道的過程中的多張氣道影像;及 一通訊模組,耦接該攝影模組,以發送該攝影模組擷取到的該些氣道影像;及 一計算機裝置,通訊連接該內視鏡裝置的該通訊模組,以取得該通訊模組發送的該些氣道影像,並根據該些氣道影像,利用即時定位與地圖構建(SLAM)技術建立該氣道的三維模型。An airway model generating system comprises: an endoscope device comprising: a flexible tube; a photographic module located at a front end of the flexible tube to capture a plurality of the flexible tube into an airway And a communication module coupled to the camera module to transmit the airway images captured by the camera module; and a computer device communicatively connecting the communication module of the endoscope device to The airway images transmitted by the communication module are obtained, and a three-dimensional model of the airway is established by using the Instant Location and Map Construction (SLAM) technology according to the airway images. 如請求項1所述之氣道模型生成系統,其中該內視鏡裝置更包含一慣性測量模組,該慣性測量模組包含至少一慣性測量單元,以取得至少一慣性訊號,該計算機裝置根據該至少一慣性訊號及該些氣道影像,利用視覺慣性里程計(VIO)技術建立該氣道的三維模型。The airway model generating system of claim 1, wherein the endoscope device further comprises an inertial measurement module, the inertial measurement module comprising at least one inertial measurement unit to obtain at least one inertial signal, the computer device according to the At least one inertial signal and the airway images are created using a visual inertial odometer (VIO) technique to create a three-dimensional model of the airway. 如請求項2所述之氣道模型生成系統,其中該至少一慣性測量單元沿著該可撓管的長軸方向上均勻分布。The airway model generating system of claim 2, wherein the at least one inertial measurement unit is evenly distributed along a long axis direction of the flexible tube. 如請求項2所述之氣道模型生成系統,其中該計算機裝置還對該至少一慣性訊號濾除雜訊。The airway model generating system of claim 2, wherein the computer device further filters out noise for the at least one inertial signal. 如請求項1所述之氣道模型生成系統,其中該計算機裝置包含一處理模組,該處理模組係配置以執行下列步驟: 載入該些氣道影像; 透過特徵區域檢測算法擷取該些氣道影像的複數特徵點;及 依據每張該氣道影像的該些特徵點的位置與大小變化,換算該可撓管的移動方向與位移,以SLAM技術重建出該三維模型。The airway model generating system of claim 1, wherein the computer device comprises a processing module configured to perform the following steps: loading the airway images; and extracting the airways by using a feature region detecting algorithm The complex feature points of the image; and according to the position and size changes of the feature points of each airway image, the moving direction and displacement of the flexible tube are converted, and the three-dimensional model is reconstructed by SLAM technique. 如請求項5所述之氣道模型生成系統,其中該處理模組還對該些氣道影像進行預處理,以去除該些氣道影像中的雜訊區域。The airway model generating system of claim 5, wherein the processing module further preprocesses the airway images to remove noise regions in the airway images. 一種插管輔助系統,包含: 一內視鏡裝置,包含: 一可撓管; 一攝影模組,位於該可撓管的前端,以擷取該可撓管進入一目標患者的一目標氣道的過程中的多張目標氣道影像;及 一通訊模組,耦接該攝影模組,以發送該攝影模組擷取到的該些目標氣道影像;及 一計算機裝置,包含: 一輸入模組,接收該目標患者的一目標患者資料; 一儲存模組,儲存一患者資料庫,該患者資料庫包含對應各個患者的一氣道資料及一病理資料,各該氣道資料包含對應該患者一氣道的複數氣道影像及該氣道之一三維模型; 一處理模組,將該些患者之該病理資料及該三維模型輸入至一第一學習模型,該第一學習模型提供一第一邏輯以供評估該些病理資料中的一個或多個特徵值與對應的該氣道的該三維模型的相關性,並且將該目標患者資料輸入至該第一學習模型,以依據該第一邏輯找出該些三維模型中的一相近者,該處理模組還依據該目標氣道影像判斷該可撓管之前端位於該相近的該三維模型中的一位置,以根據該位置產生一導引資訊;及 一輸出模組,輸出該導引資訊。An intubation assisting system comprising: an endoscope device comprising: a flexible tube; a camera module located at a front end of the flexible tube for capturing the flexible tube into a target airway of a target patient a plurality of target airway images in the process; and a communication module coupled to the camera module to transmit the target airway images captured by the camera module; and a computer device comprising: an input module, Receiving a target patient data of the target patient; a storage module storing a patient database, the patient database comprising an airway data and a pathological data corresponding to each patient, each of the airway data comprising a plurality of airways corresponding to the patient a three-dimensional model of the airway image and the airway; a processing module, the pathological data of the patient and the three-dimensional model are input to a first learning model, the first learning model providing a first logic for evaluating the Correlation of one or more feature values in the pathological data with the corresponding three-dimensional model of the airway, and inputting the target patient data to the first learning model to And determining, by the first logic, a similar one of the three-dimensional models, the processing module further determining, according to the target airway image, a position of the front end of the flexible tube in the similar three-dimensional model, according to the position Generating a guiding information; and an output module outputting the guiding information. 如請求項7所述之插管輔助系統,其中該處理模組還將該些患者之該些氣道影像輸入至一第二學習模型,該第二學習模型提供一第二邏輯以供評估該些氣道影像中的一個或多個特徵值與對應的該病理資料中的至少一疾病的相關性,並且將該目標患者的該些目標氣道影像輸入至該第二學習模型,以依據該第二邏輯評估發生該至少一疾病的機率。The intubation assistance system of claim 7, wherein the processing module further inputs the airway images of the patients to a second learning model, the second learning model providing a second logic for evaluating the Correlation of one or more characteristic values in the airway image with at least one disease in the corresponding pathological data, and inputting the target airway images of the target patient to the second learning model to be based on the second logic Assess the probability of developing at least one disease.
TW107207967U 2018-06-13 2018-06-13 Airway model generation system and intubation assist system TWM568113U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107207967U TWM568113U (en) 2018-06-13 2018-06-13 Airway model generation system and intubation assist system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107207967U TWM568113U (en) 2018-06-13 2018-06-13 Airway model generation system and intubation assist system

Publications (1)

Publication Number Publication Date
TWM568113U true TWM568113U (en) 2018-10-11

Family

ID=64871275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107207967U TWM568113U (en) 2018-06-13 2018-06-13 Airway model generation system and intubation assist system

Country Status (1)

Country Link
TW (1) TWM568113U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112330686A (en) * 2019-08-05 2021-02-05 罗雄彪 Method for segmenting and calibrating lung bronchus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112330686A (en) * 2019-08-05 2021-02-05 罗雄彪 Method for segmenting and calibrating lung bronchus

Similar Documents

Publication Publication Date Title
CN110584775A (en) Airway model generation system and intubation assistance system
WO2022151755A1 (en) Target detection method and apparatus, and electronic device, storage medium, computer program product and computer program
US20170296032A1 (en) Branching structure determination apparatus, method, and program
JP2018538593A (en) Head mounted display with facial expression detection function
JP2018139693A (en) Image classification device, method and program
Eslami et al. Automatic vocal tract landmark localization from midsagittal MRI data
JP7040630B2 (en) Position estimation device, position estimation method, and program
US10078906B2 (en) Device and method for image registration, and non-transitory recording medium
CN111462100A (en) Detection equipment based on novel coronavirus pneumonia CT detection and use method thereof
KR20220086128A (en) Apparatus and method for determining disease severity based on medical image
JP7037159B2 (en) Systems, programs, and methods for measuring a subject's jaw movements
WO2023179719A1 (en) Medical device, and reconstruction method and apparatus for three-dimensional stomach model
US12075969B2 (en) Information processing apparatus, control method, and non-transitory storage medium
JP4659722B2 (en) Human body specific area extraction / determination device, human body specific area extraction / determination method, human body specific area extraction / determination program
EP3699865B1 (en) Three-dimensional face shape derivation device, three-dimensional face shape deriving method, and non-transitory computer readable medium
TWM568113U (en) Airway model generation system and intubation assist system
JP2021086274A (en) Lip reading device and lip reading method
TW202000119A (en) Airway model generation system and intubation assist system
CN113222946A (en) Method for calculating lung nodule size
US20230284968A1 (en) System and method for automatic personalized assessment of human body surface conditions
CN111227768A (en) Navigation control method and device of endoscope
Krecichwost et al. 4D Multimodal Speaker Model for Remote Speech Diagnosis
CN115620053B (en) Airway type determining system and electronic equipment
WO2023124982A1 (en) Auxiliary navigation method, apparatus and device for bronchoscope
CN113243932A (en) Oral health detection system, related method, device and equipment

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees