M434398 2012年1月3日修正替換頁 五、新型說明: • 【新型所屬之技術領域】 本創作係關於一種運用在發光二極體技術的發光二極體燈具,尤其是 指一種同時具有主燈燈串與殘光燈串,當主燈熄滅時、提供殘光輔助的發 光二極體燈具。 【先前技術】 一般做為主照明的燈具在熄滅之後,黑暗將使人眼頓時無法辨別方 Φ 向,此時只能等待眼睛適應環境,為了解決此問題,請參考圖1,為習知的 斷電後漸暗式照明燈具架構方塊圖。此習知的斷電後漸暗式照明燈具,係 在燈體90内設置充電控制單元92、内建蓄電單元93、光量漸暗驅動控制 單元94、切換控制單元96及發光源95。市電91未斷電時,切換控制單元 96切換至使用市電模式,而直接驅動發光源95穩定發光,且市電%同時 經充電控制單元92對内建蓄電單元93進行充電❶當市電91斷電時,切換 控制單元96切換至使用内建蓄電單元93之電力模式,以透過光量漸暗驅 動控制單元94進行發光源95之發光亮度的調控,使發光源95之發光亮度 | 由亮逐漸慢慢轉變為暗。 此斷電後漸暗式照明燈具,採用同一發光源95作為主光源和殘光源, 但一般殘光源的亮度只要讓人眼可以在黑暗中概略辨識方位為原則,並不 需要如主光源的亮度,故,採用發光源95同時做為殘光源,在設計上將會 遭遇下列問題: 1.因為LED燈採用高工作電壓時,工作電流較小,驅動器效率較高, 所以發光源95的工作電壓普遍高於DC 15V,一般内建蓄電單元93採用超 電谷或電池等儲能元件,其單體電壓都只有幾伏特,以採用發光源95來做 殘光源的話’就必須使用多顆串聯的超電容或電池,不然就需要升壓電路, 如此不僅會增加成本,又會占用電路板配置空間,造成設計上的困難。 3 M434398 2012年1月3日修正替換頁 2.有時會希望殘光源顏色不同於主光源的顏色,僅有一組發光源%的 情況下,也只能採用同一組顏色,一旦主光源與殘光源有不同顏色的需求 時’將無法滿足需求’進而失去產品的競爭力。 有鑑於此,如何針對上述習知的缺點進行研發改良,當主燈熄滅時提 供殘光辅助、對於殘光驅動電路的體積、儲能元件類型的多重選擇性、多 元化利用儲能元件能量等,實為相關業界所需努力研發之目標。 夕 【新型内容】 為了解決上述先前技術不盡理想之處’本創作提供了—種發光二極體 燈具,其包含有主燈電路模組及殘光電路模組。其中,主燈電路模組包含 主燈驅動裝置及發光二極體主燈串,該主燈驅動裝置用於驅動該發光二極 體主燈串發光。絲電路模組包含直流穩壓電職置電性連接該主燈電路 核組、且接綠主燈電路模組提供的直流分壓、雛元件電性連接該直流 麵電路裝置、電紐制裝置祕連接·能元件及發光二極 ^ 被電流控制裝置驅動發光。 "串 因此’本創作之主要目的係提供一種發光二極體燈具,其發光二極體 主燈串與發光二極體殘光燈串分別受主燈電路模組與殘光電路模組驅動發 光,當主燈德滅時、提供殘光輔助,發光二極體主燈串與發光二極體殘光 燈串也能因應主燈和殘燈的顏色需求各自替換。 本創作之次要目的係提供—種發光二極體燈具,其發光二極體殘光燈 ^工作電麵立於發光二爾主燈㈣工作電壓,可依據雛元件的^ 絲设定發光二極體殘光燈㈣工作輕,進而提高儲能元件的選擇性。 本創作之另-目的係提供一種發光二極體燈具,其透過電流控 定電流提供殘光電路模組做動。 衣直 本幻作之X目的係提供一種發光二極體燈具,其主燈電路模組盘殘 先電路模組透職路控概㈣賴時作動。 〃 太名丨丨从―a 2012^1^3 ί穩壓電路 i作之再-目的係提供一種發光二極體燈具其透過直澎 裝置乂供殘光電路模組穩定直流運作。 【實施方式】 由於本創作_露-種發光二極龜具,其巾所彻之發光二極體之 原理’已為相關技術領域具有通常知識者所能明瞭,故以下文中之說明, 不再作完整描述。同時,町文巾所賴之圖式,絲達與本創作特徵有 關之結構示意,並未亦不需要依據實際尺寸完整繪製,合先敎明。 • 一請參考圖2為本創作所提出的發光二極體燈具架構方塊圖。本創作發 光-極體燈具包含有主燈電路模組1〇〇、以及與主燈電路模組i⑻電性連接 的殘光電路模組200。 則述主燈電路模組1〇〇構成的元件包含有主燈驅動裝置ιι〇與發光二 極體主燈串120,發光二極體主燈串12〇透過與主燈驅動裝置ιι〇電性連 接’而欠此主燈驅動裝置110驅動。前述殘光電路模組2〇〇構成的元件包 含有直流穩壓電路裝置210、儲能元件220、斷路控制裝置23〇、電流控制 裝置240及發光二極體殘光燈串25〇。 發光二極體燈具做動方式如下:直流穩壓電路裝置21〇從主燈電路模 組100得到直流分麼,再轉化提供殘光電路模组2〇〇做動所需的直流電壓, 此直流電壓對儲能元件220充電,另儲能元件220固定電壓的方式是透過 並聯直流穩壓電路裝置210,如此才能固定儲能元件22〇每一次放電的時 間,並保濩儲能元件220不因過電壓而被損壞。當主燈電路模組丨⑻的主 燈驅動裝置110電源P被切斷時,發光二極體主燈串12〇也將媳滅,此時 儲能元件220經電流控制裝置240對發光二極體殘光燈串250放電。 主燈電路模組100與殘光電路模組2〇〇的元件配置與連接關係詳細說 明如下: 5 M434398 2012年1月3日修正替換頁 首先請參考圖3A’為本創作所提出的第一較佳實施例發光二極體燈具 架構方塊圖。前述主燈電路模組1〇〇的主燈驅動裝置11〇為切換式功率轉 換器(Switching Power Supply)或線性直流電源供應器(Linear DC Power Supply)。此主燈驅動裝置no連接電源p,此電源p可為交流、亦可為直 流,如採用交流經過主燈驅動裝置11〇整流之後即可變成直流,前述直流 電壓再經主燈驅動裝置110即可提供直流分壓。 前述殘光電路模組200中的電流控制裝置240採用定電流電路,此定 電流電路種類很多,有的用積體電路或零組件,而有的則用積體電路及零 組件,以下逐一說明了採用: PNP-雙極性電晶體(Bipolar juncti〇n Transistor,丑汀)、NPN-雙極性電晶 體(Bipolar Junction Transistor ’ BJT)、P Channel 場效應電晶體(Field Effect Transistor ’ FET)或 N Channel 場效應電晶體(Field Effect Transistor,FET)作 為定電流電路的電流控制裝置240。 首先請再參考圖3A,為本創作所提出的第一較佳實施例發光二極體燈 具架構方塊圖。此為採用PNP-雙極性電晶體作為定電流電路的殘光電路模 組200,此殘光電路模組2〇〇構成的元件包含有直流穩壓電路裝置21〇、儲 能元件220、斷路控制裝置23〇、電流控制裝置24〇及發光二極體殘光燈串 250,其中: 前述發光二極體殘光燈串250是由一個或多個發光二極體,多個發光 二極體可採用串接或並接的方式。 刚述電流控制裝置240組成元件包含有第一 pNp電晶體241與電壓設 定το件242。其中,第一 PNp電晶體241的集極連接發光二極體殘光燈串 250的正極’且發光二極體殘光燈串250的負極接地,第一 pNp電晶體241 的基極經第一電阻器243接地,另第一 PNP電晶體241的射極與電壓設定 兀件242之間接設第二電阻器244,此第二電阻器244能感測電流,前述電 壓設定元件242可為第—二極體(如圖3C所示)或—個第二pNp電晶體(如 M434398 2012年1月3日修正替換頁 圖3D所示)或第一齊納二極體(如圖3E所示)。 前述斷路控制裝置230 .組成元件包含有第二二極體231、第三電阻器 232及第一電容器233。其中,第二二極體231正極可與任一可偵測發光二 極體主燈串120壳滅的接點相接,並僅做單向導通避免逆流。當發光二極 體主燈串120亮時,第二電容器233將進行濾波穩壓,且透過第三電阻器 232切斷第一 pnp電晶體24卜當發光二極體主燈串12〇滅時,第二電容器 233對第二電阻器232、經第一電阻器243對地放電’第一 PNP電晶體241 將被開啟,使發光二極體殘光燈串25〇動作。 前述儲能元件220為電容器、超電容器或電池,此儲能元件22〇連接 至電流控制裝置240。 前述直流穩壓電路裝置210為串聯型穩壓電路,其組成元件包含有第 一 NPN電晶體211、第五電阻器212及第三齊納二極體215。其中,第一 NPN電晶體211的集極分別與主燈電路模組1〇〇的提供的直流分壓、以及 與第五電阻器212連接’另第三齊納二極體215負極分別與第一 電晶 體211的基極、以及與第五電阻器212連接,且第三齊納二極體215的正 極是接地的。 另外’從圖3F來看’前述直流穩壓電路裝置21_組成元件可以選用 三端子集成穩塵器216 ’此三端子集成穩壓器216具有輸入端2161、輸出 端2162及公共端2163。使主燈電路模組1〇〇提供的直流分雜至輸入端 216卜另使輸出端2162接至儲存元件220,而公共端2163直接接地。 採用PNP_姐㈣晶體作於電流電路_光電賴組如何達成 定電流’請參考以下說明:當主燈電路模組1〇〇的主燈驅動裝置n〇電源p 被切斷時,發光二極體主燈串120也將熄滅,此時儲能元件22〇對發光二 極體殘光燈串25G放電’點亮發光二極體殘光燈串25〇,第二電阻器244與 第-PNP電晶體241射極串接’電麼設定元件242、第一電阻器2犯及第 一 PNP電晶體241基極並接,使第一 PNP電晶體241射極與基極的電壓與 7 M434398 2012年1月3日修正替換頁 第二電阻244的電壓之和為固定,因此流經第二電阻244的電流也為固定, 使知第一 PNP電晶體241的集極電流同為固定,一旦發光二極體殘光燈串 250的電流固定,發光強度也隨之固定,此時亮度為發光二極體殘光燈串 250產生的殘光亮度,儲能元件220持續放電,直到流經第二電阻244的電 流低於设定電流而不再處於定電流狀態,最後到發光二極體殘光燈串25〇 熄滅為止。另外,主燈電路模組1〇〇與殘光電路模組2〇〇透過斷路控制裝 置230避免同時作動。也就是說,主燈電路模組1〇〇的發光二極體主燈串 120亮時,斷路控制裝置230將限制該殘光電路模組2〇〇的發光二極體殘光 燈串250亮。 請參考圖4A、4B ’為本創作所提出的第二較佳實施例發光二極體燈具 架構方塊圖。此為NPN-雙極性電晶體型的殘光電路模組2〇〇,第二較佳實 施例與第一較佳實施例的主燈電路模組100相同,在此不再詳加贅述。此 殘光電路模組200構成的元件包含有直流穩壓電路裝置21〇、儲能元件 220、斷路控制裝置230、電流控制裝置240及發光二極體殘光燈串250, 其中: 刖述發光二極體殘光燈串250是由一個或多個發光二極體串接或並接 而成。 前述電流控制裝置240組成元件包含有電壓設定元件242、第一電阻器 243、第二電阻器244及第一 NPN電晶體245。其中,第一 NPN電晶體245 的集極連接發光二極體殘光燈串250的負極,射極連接第二電阻器244接 地,電壓設定元件242分別連接第一 NPN電晶體245的基極與第二電阻器 244 ’且第一 NPN電晶體245的基極經第一電阻器243連接儲能元件220, 前述電壓設定元件242可為第二NPN電晶體(如圖4C所示)或第一二極體 (如圖4D所示)或齊納二極體(如圖4E所示)或第一二極體串接齊納二極體 (如圖4F所示)。 前述斷路控制裝置230組成元件包含有第三電阻器232、第三:NPN電 M434398 2012年1月3日修正替換頁 晶體234、第四電阻器235及第二齊納二極體236。其中,第三ΝρΝ電晶 體234的集極與第- νρν電晶體245的基極連接,第三ΝρΝ電晶體234 的射極接地,另第四電阻器235 —端可與任一可偵測發光二極體主燈串12〇 亮滅的接點相接,第四電阻器235與第三電阻器232用於設定分壓,且用 以開關第一 ΝΡΝ電晶體245 ’透過第二齊納二極體236可加快發光二極體 殘光燈串250點壳的速度、並讓發光二極體殘光燈串25〇即使在溫度變化 之下還能穩定的被點亮。 刖述儲能元件220為電容器、超電容器或電池,此儲能元件22()連接 至發光二極體殘光燈串250的正極。 前述直流穩壓電路裝置210為並聯型穩壓電路,其組成元件包含有第 五電阻器212與第三齊納二極體215。其中,第五電阻器212 一端連接到主 燈電路模組1〇〇提供的直流分壓,另一端連接到第三齊納二極體215的負 極,且與儲能元件220並接,而第三齊納二極體215的正極接地。 採用ΝΡΝ-雙極性電晶體作為定電流電路的殘光電路模組2⑻如何達成 疋電流,请參考以下說明:當主燈電路模組1〇〇的主燈驅動裝置丨丨〇電源ρ 被切斷時,發光二極體主燈串12〇也將熄滅,此時儲能元件22〇對發光二 極體殘光燈串250放電,點亮發光二極體殘光燈串250,第一 npn電晶體 245的射極串接第二電阻器244,且因第一 NPN電晶體245的基極與第一 電阻器243並接於電壓設定元件242,使基極與射極的電壓與第二電阻器 244的電壓之和為固定,因此流經第二電阻244的電流也為固定,使得第一 NPN電晶體245的集極電流同為固定,一旦發光二極體殘光燈串25〇的電 流固定,發光強度也隨之固定。 以上提到的NPN-雙極性電晶體型與PNP_雙極性電晶體型殘光電路模 組200 ’其斷路控制裝置23〇、電流控制裝置24〇及發光二極體殘光燈串25〇 是可以替換的,也就是說圖3A與4A中的電流控制裝置240、發光二極體 殘光燈串250及斷路控制裝置230彼此可以替換。 9 M434398 2012年1月3曰修正替換頁 本創作所採用的發光二極體殘光燈串25〇的工作電壓與發光二極體主 燈串120的工作雜二者是獨立的,所以工作電壓可以依據容易取得的儲 能元件220來設計,對於儲能元件22〇的選擇性也將提高。 另外,畲儲能το件220採用電容ϋ或超電容器時,直流顧電路裝置 210可為串卿穩壓電路、並频穩壓電路、關式麵器或三端子集成穩 麼器216。但當儲能元件220採用電池時,直流穩壓電路裝置21〇可為電池 充電電路。 請參考圖5,為本創作所提出的第三較佳實施例發光二極體燈具架構方 塊圖。此為PChannel場效應電晶體型的殘光電路模組2〇〇,此殘光電路模 組2〇〇構成的兀件同樣包含有直流麵電路裝置21〇、健能元件22〇、斷路 控制裝置230、電流控制裝置24G及發光二極體殘光燈串25(),但與pNp_ 雙極性電Ba體型不同處在於:第三較佳實_電流控讎置24()採用第一 p Channel電曰曰體246’而非採用第一較佳實施例的第-pNp電晶體241,第 - P Channel電晶體246的源極對應第一 PNp電晶體241的射極,第一 p Channel電晶體246的没極對應第一 pNp電晶體241的集極,第一 p ch繼! 電晶體246的閘姆應第一 PNp電晶體241的基極,使發光二極體殘光燈 申250的正極連接在第一 p Channd電晶體246的沒極。其餘電路連接與做 動方式與第-較佳實施例相同,在此不再詳加賛述。 清參考圖6’為本創作所提出的第四較佳實施例發光二極體燈具架構方 塊圖。此為N Channel場效應電晶體型的殘光電路模组2〇〇,此殘光電路模 組200構成的兀件同樣包含有直流穩壓電路裝置21〇、储能元件、斷路 控制褒置230、電流控制|置24〇及發光二極體殘光燈串25〇,但與师n_ 雙極性電晶體型不同處在於:第四較佳實施例電流控制裝置240採用第… Channd電晶體247’而非採用第二較佳實施例的第一腦電晶體245,第 - N Channd電晶體247 _極對應第一麵電晶體245的射極,第一 ^M434398 January 3, 2012 Revision Replacement Page 5, New Description: • [New Technology Area] This creation is about a light-emitting diode lamp used in LED technology, especially one with a main lamp. Light string and residual light string, when the main light is off, provide residual light-assisted light-emitting diode lamps. [Prior Art] After the luminaire, which is generally used as the main illumination, is extinguished, the darkness will make the human eye unable to distinguish the Φ direction. At this time, it can only wait for the eyes to adapt to the environment. In order to solve this problem, please refer to FIG. Block diagram of the dimming lighting fixture after power failure. In the conventional power-dissipating and dimming lighting fixture, a charging control unit 92, a built-in power storage unit 93, a light amount dimming driving control unit 94, a switching control unit 96, and a light source 95 are disposed in the lamp body 90. When the commercial power 91 is not powered off, the switching control unit 96 switches to use the commercial power mode, and directly drives the light source 95 to stably emit light, and the commercial power % simultaneously charges the built-in power storage unit 93 via the charging control unit 92. When the commercial power supply 91 is powered off The switching control unit 96 switches to the power mode using the built-in power storage unit 93, and controls the light-emitting brightness of the light-emitting source 95 by the light-emission driving control unit 94, so that the light-emitting brightness of the light source 95 is gradually changed from bright to bright. It is dark. After the power-off, the dimming lighting fixture uses the same illumination source 95 as the main light source and the residual light source, but the brightness of the residual light source is generally as long as the eye can be roughly recognized in the dark, and does not need the brightness of the main light source. Therefore, the use of the light source 95 as a residual light source, the design will encounter the following problems: 1. Because the LED lamp uses a high working voltage, the operating current is small, the driver efficiency is higher, so the operating voltage of the light source 95 Generally, it is higher than DC 15V. Generally, the built-in power storage unit 93 uses energy storage components such as ultra-electric valleys or batteries. The single-cell voltage is only a few volts. To use the light source 95 as the residual light source, it is necessary to use multiple series connected devices. Ultra-capacitor or battery, or need a boost circuit, which will not only increase the cost, but also occupy the board configuration space, resulting in design difficulties. 3 M434398 Revised replacement page on January 3, 2012 2. Sometimes it is hoped that the color of the residual light source is different from the color of the primary light source. In the case of only one set of light source, only the same set of colors can be used, once the primary light source and the residual light When the light source has different color requirements, it will not be able to meet the demand and thus lose the competitiveness of the product. In view of this, how to develop and improve the above-mentioned shortcomings, provide residual light assistance when the main lamp is extinguished, multiple options for the volume of the afterglow drive circuit, multiple types of energy storage components, and diversified utilization of energy of the energy storage device. It is the goal of the relevant industry to develop and research.夕 [New content] In order to solve the above-mentioned prior art, the present invention provides a light-emitting diode lamp including a main lamp circuit module and a residual light circuit module. The main lamp circuit module includes a main lamp driving device and a main LED lamp string, and the main lamp driving device is configured to drive the main LED string of the LED to emit light. The wire circuit module comprises a DC voltage regulator electric device electrically connected to the main lamp circuit core group, and the DC partial voltage circuit provided by the green main lamp circuit module, the young component is electrically connected to the DC surface circuit device, and the electric button device The secret connection and the energy element and the light-emitting diode are driven by the current control device to emit light. The main purpose of this creation is to provide a light-emitting diode lamp, in which the LED main light string and the light-emitting diode residual light string are driven by the main lamp circuit module and the residual light circuit module, respectively. Illumination, when the main light is off, providing residual light assistance, the LED main light string and the LED dipole residual light string can also be replaced according to the color requirements of the main lamp and the residual lamp. The secondary purpose of this creation is to provide a kind of light-emitting diode lamp, the light-emitting diode residual light ^ working electric surface stands on the working voltage of the light main light (4), and can be set according to the wire of the young component. The polar residual lamp (4) works lightly, thereby improving the selectivity of the energy storage component. Another object of the present invention is to provide a light-emitting diode lamp that is provided with a residual light circuit module through a current controlled current. The direct purpose of this illusion is to provide a kind of illuminating diode lamp, and the main circuit circuit module disc residual circuit module is over-the-counter (4). 〃 丨丨 丨丨 ― ― ― a a a a a a a a a a a a a a a a a a a a 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的 目的[Embodiment] Since the creation of the _---------------------------------------------------------------------------------------------------------------------------------------------------- Make a full description. At the same time, the pattern of the Miao Wen towel, the structure of the wire and the characteristics of this creation, does not need to be completely drawn according to the actual size. • Please refer to Figure 2 for the block diagram of the LED illuminator architecture proposed in this paper. The present illuminating-polar illuminator comprises a main lamp circuit module 1 残 and a residual optical circuit module 200 electrically connected to the main lamp circuit module i (8). The components of the main lamp circuit module 1 包含 include a main lamp driving device ιι 〇 and a light emitting diode main lamp string 120, and the illuminating diode main lamp string 12 〇 is transmitted through the main lamp driving device. The connection is driven by the main lamp driving device 110. The components of the residual optical circuit module 2 include a DC voltage stabilizing circuit device 210, an energy storage device 220, a disconnection control device 23, a current control device 240, and a light-emitting diode residual light string 25A. The driving method of the LED lamp is as follows: the DC voltage regulator circuit device 21 receives the DC voltage from the main lamp circuit module 100, and then converts and supplies the DC voltage required for the residual light circuit module 2 to operate. The voltage is charged to the energy storage component 220, and the voltage of the energy storage component 220 is fixed by the parallel DC voltage regulator circuit device 210, so that the time of each discharge of the energy storage component 22 can be fixed, and the energy storage component 220 is not damaged. Damaged by overvoltage. When the power supply P of the main lamp driving device 110 of the main lamp circuit module 丨(8) is cut off, the LED main lamp string 12〇 will also be quenched, and the energy storage device 220 passes through the current control device 240 to the light emitting diode. The body light lamp string 250 is discharged. The component arrangement and connection relationship between the main lamp circuit module 100 and the afterglow circuit module 2〇〇 are described in detail as follows: 5 M434398 Revised replacement page on January 3, 2012 First, please refer to FIG. 3A' A block diagram of a preferred embodiment of a light-emitting diode luminaire. The main lamp driving device 11 of the main lamp circuit module 1 is a switching power supply or a linear DC power supply. The main lamp driving device no is connected to the power source p. The power source p can be either AC or DC. If the AC is rectified by the main lamp driving device 11 , the DC voltage can be converted into DC. The DC voltage is then passed through the main lamp driving device 110. DC partial pressure is available. The current control device 240 in the residual optical circuit module 200 uses a constant current circuit. The constant current circuit has many types, some use integrated circuits or components, and some use integrated circuits and components. Adopted: PNP-Bipolar juncti〇n Transistor, NPN-Bipolar Junction Transistor 'BJT, P Channel Field Effect Transistor 'FET or N Channel A Field Effect Transistor (FET) is used as the current control device 240 of the constant current circuit. Referring first to FIG. 3A, a block diagram of a light-emitting diode lamp according to a first preferred embodiment of the present invention is provided. This is a residual optical circuit module 200 using a PNP-bipolar transistor as a constant current circuit. The components of the residual optical circuit module 2〇〇 include a DC voltage regulator circuit device 21, an energy storage device 220, and an open circuit control. The device 23 〇, the current control device 24 〇 and the LED illuminator string 250, wherein: the illuminating diode streak string 250 is composed of one or more illuminating diodes, and the plurality of illuminating diodes are Use serial or parallel connection. The components of the current control device 240 include a first pNp transistor 241 and a voltage setting τ. The collector of the first PNp transistor 241 is connected to the anode of the LED backlight lamp string 250 and the cathode of the LED array remains 250 is grounded. The base of the first pNp transistor 241 is first. The resistor 243 is grounded, and a second resistor 244 is connected between the emitter of the first PNP transistor 241 and the voltage setting component 242. The second resistor 244 can sense the current, and the voltage setting component 242 can be the first a diode (as shown in Figure 3C) or a second pNp transistor (as shown in Figure 3D of the M434398 revised replacement page on January 3, 2012) or a first Zener diode (as shown in Figure 3E) . The breaking control device 230 has a second diode 231, a third resistor 232, and a first capacitor 233. The positive pole of the second diode 231 can be connected to the contact of any of the detectable LED main lamp strings 120, and only one-way conduction can be avoided to avoid backflow. When the LED main lamp string 120 is lit, the second capacitor 233 is filtered and regulated, and the first pnp transistor 24 is cut through the third resistor 232. When the LED main lamp string 12 is extinguished. The second capacitor 233 discharges the second resistor 232 to the ground via the first resistor 243. The first PNP transistor 241 will be turned on to operate the LED array. The aforementioned energy storage component 220 is a capacitor, an ultracapacitor or a battery, and the energy storage component 22 is connected to the current control device 240. The DC voltage stabilizing circuit device 210 is a series type voltage stabilizing circuit, and its constituent elements include a first NPN transistor 211, a fifth resistor 212, and a third Zener diode 215. Wherein, the collectors of the first NPN transistor 211 are respectively connected to the DC voltage division provided by the main lamp circuit module 1〇〇, and the fifth resistor 212 is connected to the other third Zener diode 215 anode and the The base of a transistor 211 is connected to the fifth resistor 212, and the anode of the third Zener diode 215 is grounded. Further, 'from Fig. 3F', the aforementioned DC voltage stabilizing circuit device 21_ component can be selected as a three-terminal integrated filter 216'. The three-terminal integrated voltage regulator 216 has an input terminal 2161, an output terminal 2162 and a common terminal 2163. The DC provided by the main lamp circuit module 1 is shredded to the input terminal 216, and the output terminal 2162 is connected to the storage element 220, and the common terminal 2163 is directly grounded. Using PNP_Sister (4) crystal for current circuit _ How to achieve constant current in photoelectric group? Please refer to the following description: When the main lamp driving device of the main lamp circuit module 1〇 is turned off, the light emitting diode The body main light string 120 will also be extinguished, at which time the energy storage element 22 放电 discharges the light emitting diode residual light string 25G 'lights up the light emitting diode residual light string 25 〇, the second resistor 244 and the first-PNP The transistor 241 is in series connected to the 'electricity setting element 242, and the first resistor 2 is connected to the base of the first PNP transistor 241 to make the first PNP transistor 241 emitter and base voltage and 7 M434398 2012 On January 3, the sum of the voltages of the second resistor 244 of the replacement page is fixed, so that the current flowing through the second resistor 244 is also fixed, so that the collector current of the first PNP transistor 241 is fixed, once illuminated. The current of the LED residual light string 250 is fixed, and the luminous intensity is also fixed. At this time, the brightness is the residual light brightness generated by the LED backlight lamp string 250, and the energy storage element 220 continues to discharge until it flows through the second. The current of the resistor 244 is lower than the set current and is no longer in the constant current state. Diode string 25〇 afterglow lamp is extinguished. In addition, the main lamp circuit module 1 and the afterglow circuit module 2 〇〇 pass through the disconnection control device 230 to avoid simultaneous operation. That is to say, when the LED main lamp string 120 of the main lamp circuit module 1 is illuminated, the disconnection control device 230 limits the LED diurnal lamp string 250 of the residual optical circuit module 2〇〇. . Please refer to FIG. 4A, FIG. 4B' for the second preferred embodiment of the present invention. The remaining light circuit module of the NPN-bipolar transistor type is the same as that of the main lamp circuit module 100 of the first preferred embodiment, and will not be described in detail herein. The components of the afterglow circuit module 200 include a DC voltage regulator circuit device 21, an energy storage device 220, a circuit breaker control device 230, a current control device 240, and a light emitting diode residual light string 250, wherein: The diode afterglow string 250 is formed by connecting one or more light emitting diodes in series or in parallel. The components of the current control device 240 include a voltage setting component 242, a first resistor 243, a second resistor 244, and a first NPN transistor 245. The collector of the first NPN transistor 245 is connected to the cathode of the LED array, and the emitter is connected to the second resistor 244. The voltage setting component 242 is connected to the base of the first NPN transistor 245. The second resistor 244 ′′ and the base of the first NPN transistor 245 is connected to the energy storage component 220 via the first resistor 243 . The voltage setting component 242 can be a second NPN transistor (as shown in FIG. 4C ) or the first The diode (as shown in Figure 4D) or the Zener diode (as shown in Figure 4E) or the first diode is connected in series with the Zener diode (as shown in Figure 4F). The components of the disconnection control device 230 include a third resistor 232, a third: NPN electric M434398, January 3, 2012, a modified replacement page crystal 234, a fourth resistor 235, and a second Zener diode 236. The collector of the third ΝρΝ transistor 234 is connected to the base of the first νρν transistor 245, the emitter of the third ΝρΝ transistor 234 is grounded, and the other end of the fourth resistor 235 can be connected to any detectable illuminator. The diodes of the diode main lamp string 12 are connected to each other, and the fourth resistor 235 and the third resistor 232 are used for setting the voltage division, and are used for switching the first silicon transistor 245' through the second Zener two. The polar body 236 can accelerate the speed of the light-emitting diode residual light string 250 point shell, and allows the light-emitting diode residual light string 25 稳定 to be stably illuminated even under temperature changes. The energy storage component 220 is a capacitor, an ultracapacitor or a battery, and the energy storage component 22() is connected to the anode of the LED array. The DC voltage stabilizing circuit device 210 is a shunt type voltage stabilizing circuit, and its constituent elements include a fifth resistor 212 and a third Zener diode 215. The fifth resistor 212 is connected to the DC voltage divider provided by the main lamp circuit module 1 , and the other end is connected to the negative electrode of the third Zener diode 215 and is connected to the energy storage component 220. The anode of the three Zener diode 215 is grounded. How to achieve the 疋 current using the ΝΡΝ-bipolar transistor as the residual light circuit module 2 (8) of the constant current circuit, please refer to the following description: When the main lamp circuit module 1 〇〇 main lamp driving device 丨丨〇 power ρ is cut off At the same time, the light-emitting diode main light string 12〇 will also be extinguished, at this time, the energy storage element 22 放电 discharges the light-emitting diode residual light string 250, and illuminates the light-emitting diode residual light string 250, the first npn electric The emitter of the crystal 245 is connected in series with the second resistor 244, and the base of the first NPN transistor 245 and the first resistor 243 are connected to the voltage setting element 242, so that the voltage of the base and the emitter and the second resistor The sum of the voltages of the 244 is fixed, so the current flowing through the second resistor 244 is also fixed, so that the collector current of the first NPN transistor 245 is fixed, once the current of the LED backlight lamp string 25 〇 Fixed, the luminous intensity is also fixed. The above-mentioned NPN-bipolar transistor type and PNP_bipolar transistor type afterglow circuit module 200', its open circuit control device 23, current control device 24, and LED backlight lamp string 25 Alternatively, the current control device 240, the LED array of residual light 250, and the open circuit control device 230 of FIGS. 3A and 4A can be replaced with each other. 9 M434398 January 3, 2012 Revision Correction Page The operating voltage of the LED dipole afterburner 25〇 used in this creation is independent of the operation of the LED main lamp string 120, so the operating voltage is independent. It can be designed in accordance with the readily available energy storage element 220, and the selectivity to the energy storage element 22 will also increase. In addition, when the capacitor storage device 220 uses a capacitor or a supercapacitor, the DC circuit device 210 can be a string regulator circuit, a parallel frequency regulator circuit, a closed face device or a three-terminal integrated controller 216. However, when the energy storage component 220 is a battery, the DC voltage stabilizing circuit device 21 can be a battery charging circuit. Please refer to FIG. 5 , which is a block diagram of a structure of a light-emitting diode lamp according to a third preferred embodiment of the present invention. The P422 field effect transistor type residual optical circuit module 2〇〇, the residual optical circuit module 2〇〇 also includes a DC surface circuit device 21〇, a fitness component 22〇, and a disconnection control device. 230, the current control device 24G and the light-emitting diode residual light string 25 (), but different from the pNp_ bipolar electric Ba body type: the third preferred real-current control device 24 () uses the first p-channel power Instead of using the first-pNp transistor 241 of the first preferred embodiment, the source of the -P Channel transistor 246 corresponds to the emitter of the first PNp transistor 241, and the first p-channel transistor 246 The immersion corresponds to the collector of the first pNp transistor 241, the first p ch relay! The thyristor of the transistor 246 should be the base of the first PNp transistor 241, so that the positive connection of the LED backlight lamp 250 In the first p Channd transistor 246, the pole. The remaining circuit connections and actuations are the same as in the first preferred embodiment and will not be described in detail herein. FIG. 6 is a block diagram of the structure of the light-emitting diode lamp of the fourth preferred embodiment proposed by the present invention. The N-channel field effect transistor type residual optical circuit module 2〇〇, the residual optical circuit module 200 includes the DC voltage stabilizing circuit device 21〇, the energy storage component, and the open circuit control device 230. , current control | 24 〇 and LED dipole afterburner 25 〇, but different from the teacher n_ bipolar transistor type: the fourth preferred embodiment of the current control device 240 uses the ... Channd transistor 247' Instead of using the first electroencephalography 245 of the second preferred embodiment, the -N Channd transistor 247_pole corresponds to the emitter of the first surface transistor 245, the first ^
N M4343-98 2012年1月3日修正替換頁N M4343-98 Revised replacement page on January 3, 2012
Channel電晶體247的汲極對應第一 NPN電晶體245的集極,第_ N channd 電晶體247的間極對應第一 npN電晶體245的基極,發光二極體殘光燈串 250的負極連接在第一 NCh麵! f晶體247的沒極。其餘電路連接與做動 方式與第一較佳實施例相同,在此不再詳加贅述。 以上所述僅為本創作較佳實施例,並非用以限定本創作申請專利權 利;同相上_述對於相關技術躺具有通常知識者射明瞭與實施, 因此其他未脫離本創作所揭示之精神下所完成的等效改變或軸,均應包 含於下述之申請專利範圍。The drain of the Channel transistor 247 corresponds to the collector of the first NPN transistor 245, the interpole of the _N channd transistor 247 corresponds to the base of the first npN transistor 245, and the cathode of the LED array of residual light 250 Connected to the first NCh face! f crystal 247 is infinite. The remaining circuit connections and actuation modes are the same as those of the first preferred embodiment, and will not be described in detail herein. The above description is only a preferred embodiment of the present invention, and is not intended to limit the patent right of the present invention; the same as the related art, the general knowledge is revealed and implemented, and thus the other is not deviated from the spirit disclosed by the present creation. The equivalent changes or axes completed should be included in the scope of the following patent application.
【圖式簡單說明】 圖1為習知所提出崎電後漸暗式照醫具架構方塊圖。 圖2為本創作所提出的發光二極體燈具架構方塊圖。 圖3A為本創作所提出的第一較佳實施例發光二極 圖3B為本創作圖3A所提出的局部放大圖。 構方塊圖 圖3C至圖3E為第一較佳實施例所提出的殘光電路模組中的電流控制 罝 :^一香F :第較佳實施例所提出的殘光電路模組中的直流穩壓電路裝 另一貫施狀態。 =仏為本創作所提出的第二較佳實施例發光二 圖犯為本創作圖Μ所提出的局部放大圖。 冓方塊圆。 裝置 圖4<:至圖4F為第二較佳實施例所提出的殘光電路模組中的電流控制 圖 圖 11 M434398 2012年1月3日修正替換頁 【主要元件符號說明】 燈體 市電 充電控制單元 内建蓄電單元 光量漸暗驅動控制單元 發光源 切換控制單元 電源 主燈電路模組 主燈驅動裝置 發光二極體主燈串 殘光電路模組 直流穩壓電路裝置 第一 NPN電晶體 第五電阻器 第三齊納二極體 三端子集成穩壓器 輸入端 輸出端 公共端 儲能元件 斷路控制裝置 第二二極體 第三電阻器 第一電容器 12 M434398 2012年1月3日修正替換頁 第三NPN電晶體 234 第四電阻器 235 第二齊納二極體 236 電流控制裝置 240 第一 PNP電晶體 241 電壓設定元件 242 第一電阻器 243 第二電阻器 244 第一 NPN電晶體 245 第一 PChannel電晶體 246 第一 NChannel電晶體 247 發光二極體殘光燈串 250[Simplified illustration of the drawings] Fig. 1 is a block diagram of the structure of the gradual illuminating medical device after the saga. FIG. 2 is a block diagram of a light-emitting diode lamp structure proposed by the present invention. FIG. 3A is a partial enlarged view of the first preferred embodiment of the present invention. FIG. 3B is a partial enlarged view of the creation of FIG. 3A. FIG. 3C to FIG. 3E are current control in the afterglow circuit module of the first preferred embodiment: a fragrant F: DC in the afterglow circuit module proposed in the preferred embodiment The voltage regulator circuit is installed in another state. The second preferred embodiment of the present invention is a partial enlarged view of the creation of the present invention.冓 Square circle. Figure 4 <: to Figure 4F is the current control diagram of the residual optical circuit module proposed in the second preferred embodiment. Figure 11 M434398 Modified replacement page on January 3, 2012 [Main component symbol description] Lamp body charging Control unit built-in power storage unit light quantity dimming drive control unit light source switching control unit power supply main lamp circuit module main light driving device light emitting diode main light string residual light circuit module DC voltage regulator circuit device first NPN transistor Five resistors third Zener diode three-terminal integrated voltage regulator input terminal output common end energy storage component disconnection control device second diode third resistor first capacitor 12 M434398 January 3, 2012 correction replacement Page third NPN transistor 234 fourth resistor 235 second Zener diode 236 current control device 240 first PNP transistor 241 voltage setting element 242 first resistor 243 second resistor 244 first NPN transistor 245 First PChannel transistor 246 first NChannel transistor 247 LED array of residual light 250
1313