五、 [0001] [0002] 新型說明: 【新型所屬之技術領域】 本創作係有關於—種充電裝置,特別是指一種無線 充電裝置。 【先前技術】 在現今科技發達的年代,人類脫離不了電氣用品之 使用,例如:家電用品、電腦、照明設備等,無一不是須 使用電源來運作’電源係由電力公司透過各種發電方式, 經由輸配線系統來供應,而發電方式依據電力產生方式 的不同可分為火力發電、水力發電、核能發電、風力發 電與太陽能發電等’其中水力發電、風力發電與太陽能 發電利用大自然之水力、風力、太陽能進行發電,不但 來源不虞匱乏’且可以重複使用因此歸類為再生能源, 且不若火力發電與核能發電具破壞環境生態之影響,火 力發電所需的燃煤亦有短缺的疑慮,因此再生能源漸受 注目,現今針對太陽能發電系統之推行,目前許多國家 皆由政府獎勵補助於一般住宅或商用場所設置太陽能發 電系統’使得相對於成本較市電高出許多之太陽能發電 系統的接收度得以提高,太陽能發電系統之市場才能加 速成長,良性循環使得發電成本亦迅速下降。 此外,由於現今攜帶式電子產品風行,例如:行動 電話、PDA、DV等攜帶式3C產品,功能曰新月異相對耗 電也隨之提高,因此料式電子產品的待機及運作時門 將更顯重要,一般經常出差或旅遊的民眾多會攜帶傷用 電源,來延長攜帶式電子產品的待機及使用時間 表單编號A0101 第3頁/共26頁 了不影響攜帶方便性,備用電源的外形也要求小巧玲窥 使用方便,許多使用者也會隨身攜帶相關的充電設備, 以便隨時為備用電源或是電子產品作充電的準備,例如: 座充、旅充等,但無論是座充或旅充皆是利用—連接線 插接市電,並經過變壓器轉換為直流電,來對電子產品 充電,若遇到停電,或是在戶外,則無法取得電力來源 ’此時即使充電設備如何方便使用也派不上用場。 因此’針對攜帶式電子裝置之充電方便性,遂發展 出應用於攜帶式電子裝置之充電裝置,例如:藍芽耳機之 太陽能充電裝置、行動電話之太陽能充電裝置。且,對 於習知充電器皆透過連接器與攜帶式電子裝置電性連接 ,以進行充電,因而造成攜帶式電子装置之外殼需設置 開口供連接器使用,而造成濕氣容易從外殼開口接觸外 露之連接器甚至内部電路,一般電子元件容易受到濕氣 影響而故障,例如:手機設置一電源插孔用於連接充電器 ,對手機充電,因此濕氣將容易從電源插孔接觸手機之 充電連接β ’再者,使用者使用不當亦會造成連接器毀 扣。又,一般攜帶式電子裝置之充電裝置無法針對不同 電源規格之攜帶式電子裝置進行充電,充電裝 置需針對 每種電源規格設置對應之連接器,因此使用者需準傷 不同電源規格之充電連接器,以供充電這將造成使用 上的不便利性。因此現今充電裝置除了需考慮充電連接 β外露電性連接之;^可靠性,也需針對多種電源規格的 情況下,提供更具便利性U電方式。 有鑑於此’本創作提出—種無線充電裝置,其改善 習知充電不便利、不可靠的問題,兼具改善單-電源規 表單编號Α0101 第4頁/共26頁 [0003] 格的問題,以增加充電便利性。 【新型内容】 本創作之主要目的,在於提供一種無線充電裝置, 其利用無線充電方式,用於針對電子裝置進行無線充電 ,增加充電便利性並避免連接器外露所衍生的可靠性問 題。 本創作係提供一種無線充電裝置,其藉由一電源電 路提供一供應電源至充電控制電路,以供充電控制電路 對蓄電單元充電而儲存供應電源,蓄電單元係耦接一轉 換電路,並藉由轉換電路將供應電源轉換為複數輸出電 源,再由無線電力傳送單元經接收該些輸出電源後轉換 為對應之無線訊號,以發送至遠端之電子裝置,以供充 電,由於該些輸出電源具不同電壓準位,因此可供不同 電源規格之電子裝置用於充電,且搭配無線充電功能, 更可供不同電源規格之電子裝置同時藉由接收對應於輸 出電源之無線訊號,以進行充電,如此本創作改善戶外 充電不便及單一充電規格之問題而改善民眾之充電便利 性。 茲為使貴審查委員對本創作之結構特徵及所達成 之功效更有進一步之瞭解與認識,謹佐以較佳之實施例 圖及配合詳細之說明,說明如後: 【實施方式】 請參閱第一A圖與第一B圖,其為本創作之無線充電 裝置之一實施例之方塊圖。如圖所示,本創作之無線充 電裝置10係包含一電源電路12、一第一充電控制電路14 表單編號A0101 第5頁/共26頁 [0004] M417716 、一蓄電單元16、一轉換電路18與一無線電力傳送單元 20。此外,本實施例更包含一電子裝置30,其設置一無 線充電接收單元32與一第二充電控制電路34。 本實施例之電源電路12為連接第一充電控制電路14 ,同時由第一充電控制電路14耦接至蓄電單元16,且轉 換電路18更耦接至蓄電單元16,無線電力傳送單元20係 耦接轉換電路18。此外,無線充電接收單元32係對應於 無線電力傳送單元20,因此無線電力傳送單元20可與無 線充電接收單元32兩者之間具磁感應。第二充電控制單 源34係耦接無線充電接收單元32。 本實施例之電源電路12為一太陽能模組,其藉由太 陽能模組接收太陽光之能量並轉換成一供應電源,並輸 出至第一充電控制電路14,以供第一充電控制電路14依 據該供應電源對蓄電單元16充電,使該蓄電單元16儲存 該供應電源之能量,除此之外,第一充電控制電路14更 提供充電控制、充電保護、電池容量偵測與電池容量顯 示之功能,例如:第一充電控制電路14在蓄電單元14達到 充電飽和時控制該電源電路12停止輸出該供應電源,其 中第一充電控制電路14之充電保護包含有過電壓保護( OVP>、低電壓保護(UVP)、過溫度保護(OTP),電 池容量偵測與電池容量顯示係指第一充電控制電路14針 對蓄電單元16之蓄電容量進行偵測並顯示偵測之結果。 蓄電單元16所儲存之供應電源係經由轉換電路18轉換複 數電源規格之輸出電源,其中本實施例之輸出電源包含 19V電源與5V電源,但本創作並不限於此,更可依據電源 規格之需求改變輸出電壓大小或輸出電源數量。 表單編號A0101 第6頁/共26頁 M417716 無線電力傳送單元2Q係依據該些輸出電源之其令一 電源,本實施例係無線電力傳送單元20將19V電源轉換成 -無線充電訊號教發送至__電子裝置3(),以進行充電, 本實施例中轉換電路18除了提供19V電源給無線電力傳 送單兀20外’更可藉由轉換電路18增加輸出其他電源規 格,以提供其他電源規格所對應t電子裝置之充電需求 。此外,無線電力傳送單元2〇係依據磁感應方式將無線 充電訊號傳送至無線充電接收單元32,且電子裝置3〇之 無線充電接收單元32係將無線充電訊號轉為一充電電源 ’以供第一充電控制電路34對電子裝置3〇充電。 除此之外,無線充電裝置1〇更包含一電源供應器40 與一電源偵測單元42,其中電源供應器4〇耦接該無線充 電傳傳送單元20並輸出—外部電源至該無線電力傳送單 元20,電源偵測單元42耦接於該轉換電路丨8與該電源供 應器40之間,並偵測該電源供應器4〇之該外部電源,以 產生一感測訊號至轉換電路18,轉換電路18係依據感測 訊號傳送至少一該輪出電源至該無線電力傳送單元2〇 ^ 本實施例之無線充電裝置10更可設置一電源連接器 44與一充電連接器46,其中電源連接器44可為USB連接 器或市電插頭,以耦接外部電源經第一充電控制電路14 對蓄電單元16充電,充電連接器46係福接轉換電路18 , 以接收其中-輸出電源’並針對充電連接器46所連接之 電子裝置進行充電,例如:提供符合USB規範之電子裝置 可藉由連接器46進行充電。 以上所述,本實施例之電源電路12為一太陽能模組 ,但本創作不限於此,t可為一直流電源或-交流電源 第7頁/共26頁 表單編號A0101 M417716 ,例如:直流電源供應器'市電,以供第一充電控制電路 14依據直流電源或交流電源對蓄電單元1 6充電。 請參閱第二圖,其為發明之轉換電路之一較佳實施 例之方塊圖與電路圖。本實施例之轉換電路18包含一第 一轉換單元182與一第二轉換單元184,第一轉換單元 182與第二轉換單元184分別耦接於蓄電單元16與無線電 力傳送單元20之間。其中,第一轉換單元182係包含一第 一變壓器1 822、一電壓控制電路1824、一第一電壓輸出 單元1826 ' —第一回授單元1828、一第一控制單元1830 ;第二轉換單元184包含一第二變壓器1842、一第二電壓 輸出單元1844、一第二回授單元1 846、一第二控制單元 1848。 第一變壓器1 822與第二變壓器1824耦接蓄電單元14 ,電壓控制電路1824耦接於第一變壓器1822與第一電壓 輸出單元1 826之間,第一回授單元1828耦接第一電壓輸 出單元1826,第一控制單元耦接至第一回授單元1828與 第一變壓器1822 ;第二電壓輸出單元1844耦接第二變壓 器1842,第二回授單元1846耦接第二電壓輸出單元1846 ,第二控制單元1848耦接第二回授單元1846與第二變壓 器1842 。 第一轉換單元182係經由第一變壓器1822轉換蓄電 單元16之供應電源為第一輸出電源,並傳送至電壓控制 電路1824,以藉由電壓控制電路1824控制第一輸出電源 傳送至第一電壓輸出單元1826,以輸出至無線電力傳送 單元20,其中第一變壓器1822更供應電源Vcc至電壓控 制電路1 824。第一回授單元1828係依據第一輸出電源輸 表單编號A0101 第8頁/共26頁 出一第一回授訊號至第一控制單元1830 ,第一控制單元 1 830依據該第一回授訊號控制第一變壓器1822之切換, 且第一轉換單元182更藉由電壓控制電路丨824箝制第一輸 出電源之電壓準位,以避免第一輸出電源之電壓準位超 出預設之電壓準位,例如:無線電力傳送單元2〇應接收 19V電壓準位之第一輸出電源,但第一變壓器1822輸出 25V電壓準位之第一輸出電源,因此由電壓控制電路1824 將第一輸出電源箝制於19V電壓準位,以避免電壓高於預 設電源規格,而造成元件毀損。第二轉換單元184係以第 一變壓器1842將蓄電單元16所儲存之供應電源轉換為第 二輸出電源並輸出至第二電壓輸出單元1844,第二回授 單元184 6依據第二輸出電源輪出一第二回授訊號至第二 控制單元1848,第二控制單元1848依據第二回授訊號控 制第二變壓器1842之切換。 本實施例之第一輸出電源係由第一電壓輸出單元 1828輸出至無線電力傳送單元2〇,以經由無線電力傳送 單元20將第一輸出電源轉換為對應之無線充電訊號。本 實施例之第二輸出電源係由第二電壓輸出單元1844輸出 至無線電力傳送單元2〇,以驅動無線電力傳送單元2〇〇 4參閱第二圖,其為本創作之轉換電路之另一實施 例的方塊圖與電路圖。丨中第^圖與第三圖差異在於第 二圖為第-轉料元182之第—鍾器1822與第二轉換單 凡184之第二變壓器1842分別將蓄電單元16之供應電源 轉換為第一輸出電源與第二輸出電源,第三圖為一第三 變虔器1862將蓄電單S16之供應電源轉換為第—輪出電 轉換電路18包含第三 源與第二輸出電源。為如圖所示, 表單編號A0101 第9頁/共26頁 M417716 變壓器1862、一電壓控制單元1864、一第一電壓輸出單 元1 866、一第二電壓輸出單元1868、一第三回授單元 1870與一第三控制單元1872。 第二變壓器1862搞接該蓄電單元14與電壓控制單元 1864,第一電壓輸出單元1866耦接該電壓控制電路“μ ,第二電壓輸出單元1868耦接該變壓器1862,第三回授 單元耦接該第一電壓輸出單元1866與該第二電壓輸出單 几1868,第三控制單元1872耦接第三回授單元187〇與第 三變壓器1862。 第二變壓器1862接收蓄電單元16所儲存之供應電源 並輸出該些輸出電源,且第三變壓器1862更供應電源Vcc 至電壓控制電路1864,電壓控制電路1864箝制第一輸出 電源的電壓準位,第一電壓輸出單元1866,其耗接該電 壓控制電路1864 ’接收並輸出該第一輪出電源至該無線 電力傳送單元2G,第二電㈣出單元1868接收第三變壓 器所輸出之第二輸出電源並輸出,第三回授單元187〇依 據第-電塵輸出單元1866所輸出之該第一輸出電源與第 -電壓輸出單iti868所輸出之該第二輸出電源而輸出― 回授訊號至第三控料元1872,控制單元1872依據該回 授訊號控制該變壓器1862 » / 吻參閱第四圖,其為本創作之電壓控制電路之一較 佳實施例之電路圖。如圖所示,本創作之電壓控制電路 50係包含-切換電路52與一電壓箝制電路55。切換電路 52包含一第一開關單元522、第二開關單元“彳、一第三 開關單元526、-第四開關單元528、電阻641_647與電 容652-655。電壓箝制電路55包含一齊納二極體託2、調 第10頁/共26頁 表單編號A0101 變元件554、複數電阻648-651與複數電容656。 電阻64i與電阻642串聯,電阻641之一端輕接至第 -輸入端m ’第一開關單元522之一第一端耗接至電阻 L、私?且642之間’且電容652並聯電阻,此外,電 阻642、電容652與第-開關單元522更輕接至接地,其 中第-輪人端IN1偏叫接電源偵測單元42,以接收電 源镇測單S42所輸出之感測訊號。第二開關單祝4之一 第-端耦接第-開關522之一第二端與電阻“5之一端, 第-開關單兀524之-第二端輕接於電容653與電容654 之-端與電源Vec,電容653之另—端_至接地,電容 654之另一端亦耦接至第二開關單元524之第一端。電阻 645串聯電阻646,且電阻646更耦接至接地,第三開關 單元526之一第一端耦接電阻645與電阻646之間,第二 開關單元524之一第三端耦接電阻643之一端,電阻643 之另一端耦接電阻647、648、Θ49之一端、電容655之一 端、齊納二極體552之一端與第四開關單元528之一第一 端,電阻647之另一端耦接第三開關單元526之一第二端 ,且第三開關單元526、電阻648與電容655更耦接至接 地〇 調變元件554之一第一端耦接電阻649之另一端與電 容655之一端,調變元件554之一第二端耦接電容655之 另一端並耦接於電阻650與電阻651之間,電阻650更與 齊納二極體60之另一端耦接至輸出端OUT,電阻651與調 變元件554更耦接至接地,其中調變元件554係用以調變 第四開關單元528所傳送之輸出電源的電壓準位,以箝制 通過第四開關單元528之輸出電源的電壓準位。第四開關 表單編號A0101 第Π頁/共26頁 M417716 單元528之一第二端耦接至第二輸入端iN2,第四開關單 元528之一第三端耦接至輸出端out,其中第二輪入端 IN2係耦接至變壓器,輸出端out係耦接至轉換電路18的 一輸出單元》 此外,本實施例之第一開關單元522、第三開關單元 526與第四開關單元528為以金屬氧半場效電晶體(M〇s FET) ’以及第二開關單元524以雙載子接面電晶趙( Bipolar Junction Transistor)作為舉例說明,除 此之外,第一間關單元522、第三開關單元526與第四開 關單元528更可依據電路需求替換為雙載子接面電晶體或 其他可作為開關之電晶體,且第二開關單元524亦可依據 電路需求替換為金屬氧半場效電晶體或其他可作為開關 之電晶體。 請參閱第五圖,其為本創作之電源偵測單元之一較 佳實施例之電路圖。如圖所示,本創作之電源偵測單元 70係包含複數電阻72、74、76、一電容78與一調變元件 80。電阻72之一端耦接偵測端DET,電阻72之另一端耦 接電阻74之一端,電阻74之一端更耦接電容78之一端與 調變元件80之一第二端,電阻74與電容78之另—端耦接 至調變元件80之一第三端並耦接至接地,電阻76之一端 祕直流電源5Vdc,調變元件80之第—端耗接電阻^之 另一端與訊號輸出端S0UT。 綜上所述,本創作為一種無線充電裝置其先由第 -充電控制電路依據電源電路所輸出之供應電源對蓄電 單元充電’再由轉換電路將蓄電單元所儲存之供應電源 轉換成複數輸出電源並輸出,且經由無線電力傳送單元 表單编號A0101 第12頁/共26頁 將該些輸出電源中的其中至少一輸出電源轉換成無線充 電訊號,以對電子裝置進行充電,因此不需設置連接器 連接,因此無需考慮濕氣經由連接器接觸至電子裝置之 内部電路,因而避免毀損。 雖然本創作已以較佳實施例揭露如上,然其並非用 以限定本創作,任何熟習此技藝者,在不脫離本創作之 精神和範圍内,當可作些許之更動與潤飾,因此本創作 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 [0005] 第一 A圖為本創作之無線充電裝置之一實施例之方塊圖; 第一 B圖為本創作之無線充電裝置之一實施例之方塊圖; 第二圖為本創作之轉換電路之一實施例的方塊圖與電路 圖; 第三圖為本創作之轉換電路之另一實施例的方塊圖與電 路圖, 第四圖為本創作之電壓控制電路之一較佳實施例之電路 圖;以及 第五圖為本創作之電源偵測單元之一較佳實施例之電路 圖。 【主要元件符號說明】 [0006] 10 無線充電裝置 12 電源電路 14 第一充電控制電路 16 蓄電單元 18 轉換電路 表單編號A0101 第13頁/共26頁 M417716 182 第一轉換單元 184 第二轉換單元 1822 第一變壓器 1824 電壓控制電路 1826 第一電壓輸出單元 1828 第一回授單元 1830 第一控制單元 1842 第二變壓器 1844 第二電壓輸出單元 1846 第二回授單元 1848 第二控制單元 1862 第三變壓器 1864 電壓控制單元 1866 第一電壓輸出單元 1868 第二電壓輸出單元 1870 第三回授單元 1872 第三控制單元 20 無線電力傳送單元 30 電子裝置 32 無線充電接收單元 34 第二充電控制電路 40 電源供應器 42 電源偵測單元 44 電源連接器 46 充電連接器 50 電壓控制電路 表單编號A0101 第14頁/共26頁 M417716V. [0001] [0002] New description: [New technical field] The present invention relates to a charging device, and more particularly to a wireless charging device. [Prior Art] In today's technologically advanced era, human beings cannot escape the use of electrical appliances, such as household appliances, computers, lighting equipment, etc., all of which must be operated by using power supplies. Transmission and distribution systems are available, and power generation methods can be classified into thermal power generation, hydroelectric power generation, nuclear power generation, wind power generation, and solar power generation depending on the way electricity is generated. Among them, hydropower, wind power, and solar power use the power and wind of nature. Solar power generation, not only is the source not lacking, and can be reused, so it is classified as renewable energy, and if thermal power generation and nuclear power generation have the impact of environmental and ecological damage, there is also a shortage of coal for thermal power generation. Renewable energy is gaining attention. Nowadays, for the implementation of solar power generation systems, many countries are now subsidized by the government to provide solar power generation systems in general residential or commercial locations, so that the solar power generation system with a higher cost than the commercial power can be received. improve Market in order to accelerate the growth of solar power generation system, a virtuous cycle so that power generation costs also decline rapidly. In addition, due to the popularity of today's portable electronic products, such as mobile 3C products such as mobile phones, PDAs, and DVs, the relative power consumption of the products is also increasing. Therefore, the standby and operation of the electronic products will be more prominent. Important, people who travel frequently or travel often carry the power supply to extend the standby and use time of portable electronic products. Form No. A0101 Page 3 of 26 does not affect the portability. The shape of the backup power supply is also It is easy to use and small, and many users will carry relevant charging equipment with them to prepare for charging the backup power or electronic products at any time, such as: charger, travel charger, etc., but whether it is a charger or a travel charger They use the connection cable to plug in the mains and convert it to DC power through the transformer to charge the electronic products. If there is a power outage or outdoors, the power source cannot be obtained. At this time, even if the charging device is convenient to use, it is not sent. It comes in handy. Therefore, for the convenience of charging of portable electronic devices, a charging device for portable electronic devices such as a solar charging device for Bluetooth headsets and a solar charging device for mobile phones has been developed. Moreover, the conventional charger is electrically connected to the portable electronic device through the connector for charging, thereby causing the outer casing of the portable electronic device to be provided with an opening for the connector to be used, thereby causing moisture to be easily exposed from the opening of the outer casing. The connector or even the internal circuit, the general electronic components are easily affected by moisture and malfunction. For example, the mobile phone is provided with a power jack for connecting the charger to charge the mobile phone, so moisture will easily contact the charging connection of the mobile phone from the power jack. β 'again, improper use of the user will also cause the connector to be destructed. Moreover, the charging device of the general portable electronic device cannot charge the portable electronic device with different power specifications. The charging device needs to set the corresponding connector for each power supply specification, so the user needs to insure the charging connector of different power supply specifications. For charging this will cause inconvenience in use. Therefore, in today's charging devices, in addition to the charging connection β exposed electrical connection; ^ reliability, it is also necessary to provide more convenient U-electric mode for a variety of power supply specifications. In view of the fact that the present invention proposes a wireless charging device, which improves the problem that the conventional charging is inconvenient and unreliable, and has the problem of improving the single-power supply form number Α0101, page 4/26 pages [0003] To increase the convenience of charging. [New Content] The main purpose of the present invention is to provide a wireless charging device that utilizes a wireless charging method for wirelessly charging an electronic device, increasing charging convenience and avoiding reliability problems derived from connector exposure. The present invention provides a wireless charging device that provides a power supply to a charging control circuit by a power supply circuit for charging control circuit to charge the power storage unit to store the power supply, and the power storage unit is coupled to a conversion circuit by The conversion circuit converts the supply power into a plurality of output power sources, and the wireless power transmission unit receives the output power sources and converts them into corresponding wireless signals for transmission to the remote electronic device for charging, because the output power supplies Different voltage levels, so that electronic devices with different power specifications can be used for charging, and with wireless charging function, electronic devices of different power specifications can also be charged by receiving wireless signals corresponding to the output power. This creation improves the convenience of outdoor charging and the problem of single charging specifications to improve the convenience of charging. In order to give your reviewers a better understanding and understanding of the structural features and the efficacies of the creation, please refer to the preferred embodiment diagrams and the detailed descriptions as follows: [Embodiment] Please refer to the first A and B, which are block diagrams of one embodiment of the wireless charging device of the present invention. As shown in the figure, the wireless charging device 10 of the present invention comprises a power supply circuit 12 and a first charging control circuit 14. Form No. A0101, page 5 / page 26 [0004] M417716, a power storage unit 16, a conversion circuit 18 And a wireless power transfer unit 20. In addition, the embodiment further includes an electronic device 30 that is provided with a wireless charging receiving unit 32 and a second charging control circuit 34. The power supply circuit 12 of the present embodiment is connected to the first charging control circuit 14 and is coupled to the power storage unit 16 by the first charging control circuit 14, and the conversion circuit 18 is further coupled to the power storage unit 16, and the wireless power transmission unit 20 is coupled. Connected to the conversion circuit 18. Further, the wireless charging receiving unit 32 corresponds to the wireless power transmitting unit 20, and thus the wireless power transmitting unit 20 can be magnetically induced with both of the wireless charging receiving units 32. The second charging control unit 34 is coupled to the wireless charging receiving unit 32. The power circuit 12 of the embodiment is a solar module, which receives the energy of sunlight by the solar module and converts it into a power supply, and outputs the power to the first charging control circuit 14 for the first charging control circuit 14 to The power supply unit charges the power storage unit 16 so that the power storage unit 16 stores the energy of the power supply. In addition, the first charging control circuit 14 further provides functions of charging control, charging protection, battery capacity detection, and battery capacity display. For example, the first charging control circuit 14 controls the power supply circuit 12 to stop outputting the power supply when the power storage unit 14 reaches charging saturation, wherein the charging protection of the first charging control circuit 14 includes overvoltage protection (OVP>, low voltage protection ( UVP), over temperature protection (OTP), battery capacity detection and battery capacity display refer to the first charging control circuit 14 detecting the storage capacity of the power storage unit 16 and displaying the result of the detection. The storage stored by the power storage unit 16 The power supply converts the output power of the plurality of power specifications via the conversion circuit 18, wherein the output power of the embodiment includes 19V. Source and 5V power supply, but this creation is not limited to this, and the output voltage or output power can be changed according to the requirements of the power supply specification. Form No. A0101 Page 6 of 26 M417716 Wireless Power Transmission Unit 2Q is based on these outputs In the present embodiment, the wireless power transmission unit 20 converts the 19V power supply into a wireless charging signal and sends it to the electronic device 3 () for charging. In this embodiment, the conversion circuit 18 provides 19V. The power supply to the wireless power transmission unit 20 can further increase the output of other power supply specifications by the conversion circuit 18 to provide the charging requirements of the t-electronic devices corresponding to other power supply specifications. In addition, the wireless power transmission unit 2 is based on the magnetic induction method. The wireless charging signal is transmitted to the wireless charging receiving unit 32, and the wireless charging receiving unit 32 of the electronic device 3 converts the wireless charging signal into a charging power source 'for the first charging control circuit 34 to charge the electronic device 3'. In addition, the wireless charging device 1 further includes a power supply 40 and a power detecting unit 42, wherein the power supply 4 The wireless charging transmission unit 20 is connected to the external power supply to the wireless power transmission unit 20, and the power detection unit 42 is coupled between the conversion circuit 8 and the power supply 40, and detects the power supply. The external power source is configured to generate a sensing signal to the conversion circuit 18. The conversion circuit 18 transmits at least one of the wheel power sources to the wireless power transmission unit 2 according to the sensing signal. The wireless charging device 10 of the embodiment A power connector 44 and a charging connector 46 may be further disposed, wherein the power connector 44 may be a USB connector or a mains plug to couple the external power source to charge the power storage unit 16 via the first charging control circuit 14, the charging connector The 46-series switching circuit 18 receives the mid-output power supply and charges the electronic device to which the charging connector 46 is connected. For example, an electronic device that provides a USB-compliant specification can be charged by the connector 46. As described above, the power supply circuit 12 of the present embodiment is a solar power module, but the present invention is not limited thereto, and t can be a DC power supply or an AC power supply. Page 7 of 26 Form No. A0101 M417716, for example: DC power supply The supplier 'mains powers the first charging control circuit 14 to charge the power storage unit 16 in accordance with a direct current power source or an alternating current power source. Please refer to the second figure, which is a block diagram and a circuit diagram of a preferred embodiment of the inventive conversion circuit. The conversion circuit 18 of the present embodiment includes a first conversion unit 182 and a second conversion unit 184. The first conversion unit 182 and the second conversion unit 184 are respectively coupled between the power storage unit 16 and the radio transmission unit 20. The first conversion unit 182 includes a first transformer 1 822, a voltage control circuit 1824, a first voltage output unit 1826' - a first feedback unit 1828, a first control unit 1830, and a second conversion unit 184. A second transformer 1842, a second voltage output unit 1844, a second feedback unit 1 846, and a second control unit 1848 are included. The first transformer 1 822 and the second transformer 1824 are coupled to the power storage unit 14 . The voltage control circuit 1824 is coupled between the first transformer 1822 and the first voltage output unit 1 826 . The first feedback unit 1828 is coupled to the first voltage output. The first control unit is coupled to the first feedback unit 1828 and the first transformer 1822; the second voltage output unit 1844 is coupled to the second transformer 1842, and the second feedback unit 1846 is coupled to the second voltage output unit 1846. The second control unit 1848 is coupled to the second feedback unit 1846 and the second transformer 1842. The first conversion unit 182 converts the power supply of the power storage unit 16 into a first output power source via the first transformer 1822, and transmits the power to the voltage control circuit 1824 to control the first output power to be transmitted to the first voltage output by the voltage control circuit 1824. The unit 1826 is output to the wireless power transfer unit 20, wherein the first transformer 1822 further supplies the power source Vcc to the voltage control circuit 1824. The first feedback unit 1828 sends a first feedback signal to the first control unit 1830 according to the first output power supply form number A0101, page 8 of 26, and the first control unit 1 830 is based on the first feedback The signal controls the switching of the first transformer 1822, and the first converting unit 182 further clamps the voltage level of the first output power source by the voltage control circuit 丨824 to prevent the voltage level of the first output power source from exceeding the preset voltage level. For example, the wireless power transmission unit 2 should receive the first output power of the 19V voltage level, but the first transformer 1822 outputs the first output power of the 25V voltage level, so the first output power is clamped by the voltage control circuit 1824. 19V voltage level to avoid voltage damage above the preset power supply specifications. The second conversion unit 184 converts the supply power stored by the power storage unit 16 into a second output power source by the first transformer 1842 and outputs it to the second voltage output unit 1844, and the second feedback unit 184 6 rotates according to the second output power supply. A second feedback signal is sent to the second control unit 1848, and the second control unit 1848 controls the switching of the second transformer 1842 according to the second feedback signal. The first output power of the embodiment is outputted by the first voltage output unit 1828 to the wireless power transfer unit 2 to convert the first output power to the corresponding wireless charging signal via the wireless power transfer unit 20. The second output power supply of the embodiment is outputted by the second voltage output unit 1844 to the wireless power transfer unit 2A to drive the wireless power transfer unit 2〇〇4 to refer to the second figure, which is another of the conversion circuits of the present invention. Block diagram and circuit diagram of an embodiment. The difference between the first and third figures is that the second picture is the first clock unit 1822 of the first-transfer element 182 and the second transformer 1842 of the second conversion unit 184 respectively converts the power supply of the power storage unit 16 into the first An output power supply and a second output power supply, the third figure is a third converter 1862 that converts the power supply of the power storage unit S16 into a first-wheel power-off conversion circuit 18 that includes a third source and a second output power source. As shown in the figure, the form number A0101 page 9 / 26 pages M417716 transformer 1862, a voltage control unit 1864, a first voltage output unit 1 866, a second voltage output unit 1868, a third feedback unit 1870 And a third control unit 1872. The second transformer 1862 is connected to the power storage unit 14 and the voltage control unit 1864. The first voltage output unit 1866 is coupled to the voltage control circuit “μ. The second voltage output unit 1868 is coupled to the transformer 1862. The third feedback unit is coupled. The first voltage output unit 1866 is coupled to the second voltage output unit 1868, and the third control unit 1872 is coupled to the third feedback unit 187A and the third transformer 1862. The second transformer 1862 receives the power supply stored by the power storage unit 16. And outputting the output power, and the third transformer 1862 further supplies the power supply Vcc to the voltage control circuit 1864, the voltage control circuit 1864 clamps the voltage level of the first output power, and the first voltage output unit 1866 consumes the voltage control circuit. 1864' receives and outputs the first round of power to the wireless power transfer unit 2G, and the second (four) output unit 1868 receives the second output power output by the third transformer and outputs the third output unit 187. The first output power output by the electric dust output unit 1866 and the second output power output by the first voltage output unit iti 868 output a feedback signal to The third control element 1872, the control unit 1872 controls the transformer according to the feedback signal, and the fourth embodiment is shown in the fourth figure, which is a circuit diagram of a preferred embodiment of the voltage control circuit of the present invention. The created voltage control circuit 50 includes a switching circuit 52 and a voltage clamping circuit 55. The switching circuit 52 includes a first switching unit 522, a second switching unit "彳, a third switching unit 526, and a fourth switching unit 528. , resistor 641_647 and capacitor 652-655. The voltage clamping circuit 55 includes a Zener diode holder 2, a 10th page/26 page form number A0101 variable element 554, a complex resistor 648-651 and a complex capacitor 656. The resistor 64i is connected in series with the resistor 642, and one end of the resistor 641 is lightly connected to the first input terminal m'. The first end of the first switching unit 522 is connected to the resistor L, the private device, and the capacitor 652 is connected in parallel with the resistor 652. The resistor 642, the capacitor 652 and the first-switch unit 522 are lightly connected to the ground, wherein the first-wheel terminal IN1 is biased to the power detecting unit 42 to receive the sensing signal output by the power-sampling unit S42. The second end of the second switch is connected to one end of the first switch 522 and one end of the resistor "5, the second end of the first switch 524 is lightly connected to the capacitor 653 and the capacitor 654 - The other end of the capacitor 654 is coupled to the first end of the second switching unit 524. The resistor 645 is connected in series with the resistor 646, and the resistor 646 is coupled to the ground. The first end of the third switch unit 526 is coupled between the resistor 645 and the resistor 646. The third end of the second switch unit 524 is coupled to one end of the resistor 643, and the other end of the resistor 643 is coupled to the resistors 647, 648 and Θ49. One end, one end of the capacitor 655, one end of the Zener diode 552 and one of the first ends of the fourth switching unit 528, the other end of the resistor 647 is coupled to the second end of the third switching unit 526, and the third switching unit 526, the resistor 648 and the capacitor 655 are further coupled to the ground 〇 modulating component 554, the first end of the first varistor 649 is coupled to the other end of the resistor 649 and one end of the capacitor 655, and the second end of the modulating component 554 is coupled to the capacitor 655. One end is coupled between the resistor 650 and the resistor 651, and the resistor 650 is further connected to the other end of the Zener diode 60. Connected to the output terminal OUT, the resistor 651 and the modulation component 554 are further coupled to the ground, wherein the modulation component 554 is used to modulate the voltage level of the output power source transmitted by the fourth switching unit 528 to clamp the fourth switch. The voltage level of the output power of the unit 528. The fourth switch form number A0101 page/26 pages M417716 One of the second ends of the unit 528 is coupled to the second input terminal iN2, and the third terminal of the fourth switch unit 528 The second switch-in terminal is coupled to the transformer, and the output end is coupled to an output unit of the converter circuit 18. In addition, the first switch unit 522 and the third switch of the embodiment are coupled to the output switch. The unit 526 and the fourth switching unit 528 are exemplified by a metal oxygen half field effect transistor (M〇s FET) ' and a second switching unit 524 with a bipolar junction function. In addition, the first switching unit 522, the third switching unit 526, and the fourth switching unit 528 can be replaced by a dual-carrier junction transistor or other transistor that can function as a switch according to circuit requirements, and the second switching unit 524 is also According to electricity The demand is replaced by a metal oxygen half field effect transistor or other transistor that can be used as a switch. Please refer to the fifth figure, which is a circuit diagram of a preferred embodiment of the power detection unit of the present invention. The power detecting unit 70 includes a plurality of resistors 72, 74, 76, a capacitor 78 and a modulation component 80. One end of the resistor 72 is coupled to the detecting terminal DET, and the other end of the resistor 72 is coupled to one end of the resistor 74. One end is further coupled to one end of the capacitor 78 and one second end of the modulation element 80, and the other end of the resistor 74 and the capacitor 78 is coupled to one third end of the modulation element 80 and coupled to the ground, and the resistor 76 One end of the secret DC power supply 5Vdc, the first end of the modulation component 80 consumes the other end of the resistance ^ and the signal output terminal SOUT. In summary, the present invention is a wireless charging device which first charges a power storage unit by a first charging control circuit according to a power supply output from a power supply circuit. Then, the conversion circuit converts the power supply stored by the power storage unit into a plurality of output power sources. And outputting, and converting at least one of the output power sources into a wireless charging signal via the wireless power transmission unit form number A0101, page 12/26 to charge the electronic device, so no connection is needed. The devices are connected so that there is no need to consider that moisture is contacted to the internal circuitry of the electronic device via the connector, thereby avoiding damage. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and anyone skilled in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The first A is a block diagram of one embodiment of the wireless charging device of the present invention; the first B is a block diagram of an embodiment of the wireless charging device of the present invention; A block diagram and a circuit diagram of an embodiment of the conversion circuit of the present invention; the third diagram is a block diagram and a circuit diagram of another embodiment of the conversion circuit of the present invention, and the fourth diagram is preferably one of the voltage control circuits of the present invention. The circuit diagram of the embodiment; and the fifth diagram is a circuit diagram of a preferred embodiment of the power detection unit of the present invention. [Main component symbol description] [0006] 10 Wireless charging device 12 Power supply circuit 14 First charging control circuit 16 Power storage unit 18 Conversion circuit form number A0101 Page 13 of 26 M417716 182 First conversion unit 184 Second conversion unit 1822 First transformer 1824 voltage control circuit 1826 first voltage output unit 1828 first feedback unit 1830 first control unit 1842 second transformer 1844 second voltage output unit 1846 second feedback unit 1848 second control unit 1862 third transformer 1864 Voltage Control Unit 1866 First Voltage Output Unit 1868 Second Voltage Output Unit 1870 Third Feedback Unit 1872 Third Control Unit 20 Wireless Power Transfer Unit 30 Electronic Device 32 Wireless Charge Receive Unit 34 Second Charge Control Circuit 40 Power Supply 42 Power Detection Unit 44 Power Connector 46 Charging Connector 50 Voltage Control Circuit Form No. A0101 Page 14 of 26 M417716
52 切換電路 522 第一開關單元 524 第二開關單元 526 第三開關單元 528 第四開關單元 55 電壓箝制電路 552 齊納二極體 554 調變元件 641 電阻 642 電阻 643 電阻 645 電阻 646 電阻 647 電阻 648 電阻 649 電阻 650 電阻 651 電阻 652 電容 653 電容 654 電容 655 電容 656 電容 70 電源偵測單元 72 電阻 74 電阻 表單編號A0101 第15頁/共26頁 M417716 76 電阻 78 電容 80 調變元件 5Vdc 直流電源 DET 偵測端 IN 輸入端 INI 第一輸入端 IN2 第二輸入端 OUT 輸出端 SOUT 訊號輸出端 表單编號A0101 第16頁/共26頁52 switching circuit 522 first switching unit 524 second switching unit 526 third switching unit 528 fourth switching unit 55 voltage clamping circuit 552 Zener diode 554 modulation element 641 resistance 642 resistance 643 resistance 645 resistance 646 resistance 647 resistance 648 Resistor 649 Resistor 650 Resistor 651 Resistor 652 Capacitor 653 Capacitor 654 Capacitor 655 Capacitor 656 Capacitor 70 Power Detector 72 Resistor 74 Resistor Form No. A0101 Page 15 of 26 M417716 76 Resistor 78 Capacitor 80 Modulation Element 5Vdc DC Power DET Detect Measuring terminal IN input terminal INI first input terminal IN2 second input terminal OUT output terminal SOUT signal output terminal form number A0101 page 16 / total 26 pages