TWM449407U - Power converting device - Google Patents
Power converting device Download PDFInfo
- Publication number
- TWM449407U TWM449407U TW101220641U TW101220641U TWM449407U TW M449407 U TWM449407 U TW M449407U TW 101220641 U TW101220641 U TW 101220641U TW 101220641 U TW101220641 U TW 101220641U TW M449407 U TWM449407 U TW M449407U
- Authority
- TW
- Taiwan
- Prior art keywords
- unit
- switching
- electrically connected
- inductance
- conversion device
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本創作係有關於一種電源轉換裝置,尤指一種可提高輕載效率之DC-DC電源轉換器。This creation is about a power conversion device, especially a DC-DC power converter that can improve light load efficiency.
直流-直流轉換器(DC/DC Converter),顧名思義是將輸入的直流電源做電壓位準的調節,其調節方式包括升壓及降壓,並使調整過的電壓穩定在所設定的電壓數值。直流-直流轉換器主要使用在分散式的電源系統,如此可將前一級的電源固定於一電壓位準,而第二級可依系統中個別的電源需求連接對應的直流對直流轉換器。
其中,直流-直流轉換器又可分為脈波寬度調變(Pulse Width Modulation,PWM)電力轉換器與諧振式電力轉換器。由於脈波寬度調變電力轉換器之開關切換屬於硬性切換,導致嚴重的切換損失,使得電力轉換效率無法提升,故發展出諧振式電力轉換器,利用諧振電路本身具有柔性切換(soft switching)的特性,降低開關切換損失,提升轉換器整體效率。
其中,LLC諧振電路(LLC Resonant Converter)因具有零電壓(zero-voltage switching,ZVS)與零電流(zero-current switching,ZCS)切換的特性,因此在高效率、高功率的電源電路均會考慮採用LLC諧振電路架構。
配合參閱第一圖,為習知之電源供應裝置之電路圖。該電源供應裝置包含二切換元件Q1、Q2,一第一電容器C1、一第二電容器C2、一第一電感器L1、一第二電感器L2、一第一二極體D1、一第二二極體D2、一變壓器T1及一控制器50。該等切換元件Q1、Q2及該控制器50配合構成一切換電路,用以將一直流電壓源VIN切換成直流脈動信號。直流脈動信號通過該第一電容器C1、該第一電感器L1及該第二電感器L2配合構成一諧振網路以產生諧振,並傳遞至該電壓器T1之二次側經該第一二極體D1、第二二極體D2及該第二電容器C2後轉換成直流電壓供給負載。
配合參閱第二圖,為對應第一圖所示之第二電感器之電感值-電流曲線圖。由第二圖中可視,在非磁飽和的狀態下,該第二電感器L2的電感值大致為固定的,因此當該電源轉換裝置在輕載操作下,該等切換元件Q1、Q2的切換頻率係為了要穩定輸出電壓而提升切換頻率,然而,切換頻率提高將致使該電源轉換裝置於輕載操作下的效率變差,如第三圖所示,其中第三圖虛線所示為該電源轉換裝置於重載操作下的頻率響應曲線,實線為該電源轉換裝置於輕載操作下的頻率響應曲線。The DC-DC converter, as its name suggests, regulates the input DC power supply by adjusting the voltage level, including boosting and stepping down, and stabilizing the adjusted voltage to the set voltage value. The DC-DC converter is mainly used in a distributed power system, so that the power supply of the previous stage can be fixed to a voltage level, and the second stage can be connected to the corresponding DC-to-DC converter according to the individual power requirements of the system.
Among them, the DC-DC converter can be further divided into a Pulse Width Modulation (PWM) power converter and a resonant power converter. Since the switching of the pulse width modulation power converter is a hard switching, resulting in severe switching loss, the power conversion efficiency cannot be improved, so a resonant power converter is developed, and the resonant circuit itself has soft switching. Features, reduce switching loss and improve overall converter efficiency.
Among them, LLC resonant converter (LLC Resonant Converter) has zero-voltage switching (ZVS) and zero-current switching (ZCS) switching characteristics, so it will be considered in high-efficiency, high-power power supply circuits. Adopt LLC resonant circuit architecture.
Referring to the first figure, it is a circuit diagram of a conventional power supply device. The power supply device includes two switching elements Q1, Q2, a first capacitor C1, a second capacitor C2, a first inductor L1, a second inductor L2, a first diode D1, and a second two The body D2, a transformer T1 and a controller 50. The switching elements Q1, Q2 and the controller 50 cooperate to form a switching circuit for switching the DC voltage source VIN into a DC ripple signal. The DC ripple signal passes through the first capacitor C1, the first inductor L1 and the second inductor L2 to form a resonant network to generate resonance, and is transmitted to the secondary side of the voltage device T1 via the first diode The body D1, the second diode D2, and the second capacitor C2 are converted into a DC voltage supply load.
Referring to the second figure, it is an inductance value-current graph corresponding to the second inductor shown in the first figure. As can be seen from the second figure, in the non-magnetic saturation state, the inductance value of the second inductor L2 is substantially fixed, so when the power conversion device is under light load operation, the switching elements Q1, Q2 are switched. The frequency is to increase the switching frequency in order to stabilize the output voltage. However, the increase of the switching frequency will cause the power conversion device to be inferior in light load operation, as shown in the third figure, wherein the third figure shows the power supply. The frequency response curve of the conversion device under heavy load operation, and the solid line is the frequency response curve of the power conversion device under light load operation.
鑒於先前技術所述,本創作之一目的,在於提供一種電源供應裝置,該電源供應裝置可提升輕載效率。
為達上述目的,本創作提供一種電源轉換裝置,包含一切換單元、一諧振單元、一轉換單元、一整流及濾波單元、一電感估測單元及一驅動器;該諧振單元電連接於該切換單元,該諧振單元包含一諧振電容、一諧振電感器及一可變激磁電感器;該轉換單元電連接於該諧振單元,該整流及濾波單元電連接於該轉換單元;該電感估測單元電連接於該整流及濾波單元,用以估測該可變激磁電感器的電感值;該驅動器電連接於該電感估測單元及該切換單元,並依據該電感估測單元估測的電感值以控制該切換單元的切換頻率。
本創作之該電源轉換裝置之可變激磁電感具有至少兩種不同的電感值,並藉由該電感估測單元以即時地估測該可變激磁電感器之電感值,並將該電感值傳送至該驅動器,該驅動器依照對應電感值之切一換頻率值控制該切換單元的切換頻率,如此一來,可以降低切換單元的切換損失,進而提升該電源轉換裝置的輕載效率。In view of the prior art, it is an object of the present invention to provide a power supply device that can improve light load efficiency.
To achieve the above objective, the present invention provides a power conversion device including a switching unit, a resonating unit, a converting unit, a rectifying and filtering unit, an inductance estimating unit and a driver; the resonating unit is electrically connected to the switching unit The resonant unit includes a resonant capacitor, a resonant inductor, and a variable excitation inductor; the conversion unit is electrically connected to the resonant unit, the rectifying and filtering unit is electrically connected to the conversion unit; and the inductance estimating unit is electrically connected The rectifying and filtering unit is configured to estimate an inductance value of the variable excitation inductor; the driver is electrically connected to the inductance estimation unit and the switching unit, and is controlled according to the inductance value estimated by the inductance estimation unit. The switching frequency of the switching unit.
The variable magnetizing inductance of the power conversion device of the present invention has at least two different inductance values, and the inductance estimating unit instantaneously estimates the inductance value of the variable excitation inductor, and transmits the inductance value To the driver, the driver controls the switching frequency of the switching unit according to the cut-off frequency value of the corresponding inductance value, so that the switching loss of the switching unit can be reduced, thereby improving the light load efficiency of the power conversion device.
配合參閱第四圖,為本創作之電源轉換裝置之電路圖。該電源轉換裝置10用以將輸入之一直流電源VIN做電壓準位的調整,其調節方式包含升壓或降壓,並使調整後的電壓穩定在所設定的電壓數值,之後再輸出至一負載R。該電源轉換裝置包含一切換單元110、一諧振單元120、一轉換單元130、一整流及濾波單元140、一電感估測單元150、一控制器160及一驅動器170。
該切換單元110電連接於該直流電源VIN及該驅動器170,該切換單元110包含複數切換元件112及複數二極體D,該等二極體D的使用數量相同於該等切換元件112的使用數量,且該等二極體D分別並聯於該等切換元件112。於本實施例中,該切換單元110為包含二個切換元件112之半橋切換電路,該等切換元件112為串聯電連接。於本實施例中,各該切換元件112可以為金屬氧化物半導體場效應電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET),且該MOSFET之汲極-源極之間連接該二極體D,或者,該二極體D可以為該MOSFET的寄生二極體。於實際實施時,該切換單元110也可以為全橋切換電路,並搭配使用其它具有切換功能的功率開關,如:絕緣閘雙極電晶體(insulated gate bipolar transistor,IGBT)。各該切換元件112電連接於該驅動器170,並藉由該驅動器170提供之一信號以切換於導通狀態或截止狀態,使產生一脈動直流信號。
該諧振單元120電連接於該切換單元110,並位於該二切換元件112之間,以在該二切換元件112交替導通和截止之時接收脈動直流信號。該諧振單元120包含一諧振電容器Cr、一諧振電感器Lr及一可變激磁電感器Lm。該諧振電容器Cr串聯電連接於該諧振電感器Lr,該可變激磁電感器Lm並聯於該轉換單元130之一一次側繞組Np。該諧振電容器Cr除了用以阻隔經由該脈動直流信號之直流分量外,並與該諧振電感器Lr及該可變激磁電感器Lm形成一諧振電路。該可變激磁電感器Lm可如第四圖所示實施成一外在電感器,或者該可變激磁電感器Lm可為該轉換單元130的磁化電感。
該可變激磁電感器Lm具有至少二電感值,如第六圖所示。該可變激磁電感器Lm具有一相對較高的電感值及一相對較低得電感值,其中當該電源轉換裝置10於輕載操作(小電流操作)時,該可變激磁電感器Lm具有一相對較高的電感值,當該電源轉換裝置在重載操作(大電流操作)時,該可變激磁電感Lm具有一相對較低的電感值。
復參閱第四圖,該轉換單元130電連接於該諧振單元120,該轉換單元130包含該一次側線圈Np及一二次側線圈Ns,該一次側線圈Np用以將電能轉換為磁能,並將轉換後的磁能傳遞至該二次側線圈Ns,該二次側線圈Ns將磁能轉換為電能,來達成升壓或降壓的任務。在本實施例中,該轉換單元130為中心抽頭式變壓器。
該整流及濾波單元140電連接於該轉換單元130。該整流及濾波單元140包含一整流電路142及一濾波電路144。整流電路142包含二整流二極體Dr,該等整流二極體Dr電連接於該二次側線圈Ns使形成中心抽頭之全波整流電路,用以將交流電轉換為具高頻脈動成分的直流電。該濾波電路144包含一濾波電容器Cf,用以濾除高頻脈動成分並輸出一平穩的直流電,該濾波電容器Cf電連接於該等整流二極體Dr並橫跨輸出負載。
該電感估測單元150電連接於該整流及濾波單元140,該電感估測單元150用以估測該可變激磁電感器Lm的電感值。
該控制器160電連接於該電感估測單元150,該控制器160係利用電感估測單元150輸出的電感值以計算出對應於之切換頻率值,並將該切換頻率值傳遞至電連接於該控制器160之該驅動器170,以使該驅動器170對應該切換頻率值控制該切換單元110之該等切換元件112進行切換動作。該電感估測單元150、該控制器160及該驅動器170可如第四圖所示實施成不同的單元,或者該電感估測單元150、該控制器160及該驅動器170也可以整合而成為一積體電路。
配合參閱第五圖,為對應第四圖之電源轉換裝置之交流等效電路圖。在第五圖中,交流負載阻抗Rac為該轉換單元130二次側負載等效到該轉換單元130一次側的組抗,輸出電流Io為流經該交流阻抗Rac的電流。
藉由該電源轉換裝置的等效電路圖可推得輸出電壓Vo及輸入電壓Vi之關係:Referring to the fourth figure, the circuit diagram of the power conversion device of the present invention. The power conversion device 10 is configured to adjust the voltage of one of the input DC power sources VIN, and the adjustment mode includes boosting or stepping down, and the adjusted voltage is stabilized at the set voltage value, and then output to a voltage. Load R. The power conversion device includes a switching unit 110, a resonating unit 120, a converting unit 130, a rectifying and filtering unit 140, an inductance estimating unit 150, a controller 160, and a driver 170.
The switching unit 110 is electrically connected to the DC power supply VIN and the driver 170. The switching unit 110 includes a plurality of switching elements 112 and a plurality of diodes D. The number of the diodes D is the same as that of the switching elements 112. The number is used and the diodes D are respectively connected in parallel to the switching elements 112. In this embodiment, the switching unit 110 is a half bridge switching circuit including two switching elements 112, and the switching elements 112 are electrically connected in series. In this embodiment, each of the switching elements 112 may be a metal-oxide-semiconductor field-effect transistor (MOSFET), and the diode is connected between the drain and the source of the MOSFET. Body D, or the diode D may be a parasitic diode of the MOSFET. In actual implementation, the switching unit 110 can also be a full-bridge switching circuit, and can be used in conjunction with other power switches having a switching function, such as an insulated gate bipolar transistor (IGBT). Each of the switching elements 112 is electrically coupled to the driver 170, and a signal is provided by the driver 170 to switch to an on state or an off state to generate a pulsating DC signal.
The resonant unit 120 is electrically connected to the switching unit 110 and located between the two switching elements 112 to receive a pulsating DC signal when the two switching elements 112 are alternately turned on and off. The resonant unit 120 includes a resonant capacitor Cr, a resonant inductor Lr, and a variable excitation inductor Lm. The resonant capacitor Cr is electrically connected in series to the resonant inductor Lr, which is connected in parallel to one of the primary windings Np of the converting unit 130. The resonant capacitor Cr forms a resonant circuit with the resonant inductor Lr and the variable excitation inductor Lm in addition to blocking a DC component passing through the pulsating DC signal. The variable excitation inductor Lm can be implemented as an external inductor as shown in the fourth figure, or the variable excitation inductor Lm can be the magnetization inductance of the conversion unit 130.
The variable excitation inductor Lm has at least two inductance values as shown in the sixth figure. The variable excitation inductor Lm has a relatively high inductance value and a relatively low inductance value, wherein the variable excitation inductor Lm has a light load operation (light current operation) when the power conversion device 10 is operated A relatively high inductance value, the variable magnetizing inductance Lm has a relatively low inductance value when the power conversion device is in a heavy load operation (high current operation).
Referring to the fourth figure, the conversion unit 130 is electrically connected to the resonating unit 120. The conversion unit 130 includes the primary side coil Np and a secondary side coil Ns for converting electrical energy into magnetic energy. The converted magnetic energy is transmitted to the secondary side coil Ns, which converts magnetic energy into electrical energy to achieve a task of boosting or stepping down. In this embodiment, the conversion unit 130 is a center tapped transformer.
The rectifying and filtering unit 140 is electrically connected to the converting unit 130. The rectifying and filtering unit 140 includes a rectifying circuit 142 and a filtering circuit 144. The rectifying circuit 142 includes two rectifying diodes Dr, and the rectifying diodes Dr are electrically connected to the secondary side coils Ns to form a center-tap full-wave rectifying circuit for converting alternating current into direct current having a high frequency pulsating component. . The filter circuit 144 includes a filter capacitor Cf for filtering out the high frequency ripple component and outputting a smooth direct current. The filter capacitor Cf is electrically connected to the rectifier diodes Dr and spans the output load.
The inductance estimation unit 150 is electrically connected to the rectification and filtering unit 140. The inductance estimation unit 150 is configured to estimate the inductance value of the variable excitation inductor Lm.
The controller 160 is electrically connected to the inductance estimating unit 150. The controller 160 uses the inductance value output by the inductance estimating unit 150 to calculate a switching frequency value corresponding to the switching frequency value, and transmits the switching frequency value to the electrical connection. The driver 170 of the controller 160 causes the driver 170 to switch the switching elements 112 of the switching unit 110 corresponding to the switching frequency value. The inductor estimation unit 150, the controller 160, and the driver 170 can be implemented as different units as shown in the fourth figure, or the inductor estimation unit 150, the controller 160, and the driver 170 can be integrated into one. Integrated circuit.
Referring to the fifth figure, it is an AC equivalent circuit diagram of the power conversion device corresponding to the fourth figure. In the fifth figure, the AC load impedance Rac is a group side load equivalent to the primary side of the conversion unit 130, and the output current Io is a current flowing through the AC impedance Rac.
The relationship between the output voltage Vo and the input voltage Vi can be derived by the equivalent circuit diagram of the power conversion device:
在上式中,F為切換頻率fs與諧振頻率fr的比值,即
K為激磁電感器Lm與諧振電感器Lr的比值,即
又,切換頻率變動量
因此,切換頻率變動率
配合參閱第七圖,為本創作之電源供應裝置之頻率響應圖。其中,虛線所示為該電源轉換裝置10於重載操作下的頻率響應曲線,實線為該電源轉換裝置10於輕載操作下的頻率響應曲線。由於該可變激磁電感器Lm具有至少二種不同的電感值,並分別地適用於於輕載操作及重載操作下,如此一來,可以降低該等切換元件112在輕載操作下之切換功率損失,進而提升該電源轉換裝置10的輕載效率。
綜合以上所述,本創作之該電源轉換裝置10之可變激磁電感Lm具有至少兩種不同的電感值,並藉由該電感估測單元150以即時地估測該可變激磁電感器Lm之電感值,並將該電感值傳送至該控制器160,該控制器160係運算出對應該電感值的切換頻率值以使該驅動器170依照該切換頻率值控制該切換單元110的切換頻率,如此一來,可以降低切換單元110的切換損失,進而提升該電源轉換裝置的輕載效率。
然以上所述者,僅為本創作之較佳實施例,當不能限定本創作實施之範圍,即凡依本創作申請專利範圍所作之均等變化與修飾等,皆應仍屬本創作之專利涵蓋範圍意圖保護之範疇。
In the above formula, F is the ratio of the switching frequency fs to the resonance frequency fr, that is,
K is the ratio of the excitation inductor Lm to the resonant inductor Lr, ie
Also, switching the frequency variation
Therefore, the switching frequency change rate
Referring to the seventh figure, the frequency response diagram of the power supply device of the present invention. The dotted line shows the frequency response curve of the power conversion device 10 under heavy load operation, and the solid line is the frequency response curve of the power conversion device 10 under light load operation. Since the variable excitation inductor Lm has at least two different inductance values and is respectively suitable for light load operation and heavy load operation, the switching of the switching elements 112 under light load operation can be reduced. The power loss further increases the light load efficiency of the power conversion device 10.
In summary, the variable magnetizing inductance Lm of the power conversion device 10 of the present invention has at least two different inductance values, and the inductance estimating unit 150 is used to estimate the variable excitation inductor Lm in real time. Inductance value, and the inductance value is transmitted to the controller 160, the controller 160 calculates a switching frequency value corresponding to the inductance value to cause the driver 170 to control the switching frequency of the switching unit 110 according to the switching frequency value, As a result, the switching loss of the switching unit 110 can be reduced, thereby improving the light load efficiency of the power conversion device.
However, the above is only a preferred embodiment of the present invention, and the scope of the present invention cannot be limited, that is, the equal changes and modifications made by the scope of the patent application of the present invention should still be covered by the patent of the present invention. The scope of the scope is intended to protect.
10‧‧‧電源轉換裝置
110‧‧‧切換單元
112、Q1、Q2‧‧‧切換元件
120‧‧‧諧振單元
130‧‧‧轉換單元
140‧‧‧整流及濾波單元
142‧‧‧整流電路
144‧‧‧濾波電路
150‧‧‧電感估測單元
160、50‧‧‧控制器
170‧‧‧驅動器
Cr‧‧‧諧振電容器
Cf‧‧‧濾波電容器
C1‧‧‧第一電容器
C2‧‧‧第二電容器
Dr‧‧‧整流二極體
D‧‧‧二極體
D1‧‧‧第一二極體
D2‧‧‧第二二極體
Io‧‧‧輸出電流
Lm‧‧‧激磁電感器
Lr‧‧‧諧振電感器
L1‧‧‧第一電感器
L2‧‧‧第二電感器
Np‧‧‧一次側線圈
Ns‧‧‧二次側線圈
R‧‧‧負載
Rac‧‧‧交流負載阻抗
T1‧‧‧變壓器10‧‧‧Power conversion device
110‧‧‧Switch unit
112, Q1, Q2‧‧‧ switching components
120‧‧‧Resonance unit
130‧‧‧Transfer unit
140‧‧‧Rectifier and Filter Unit
142‧‧‧Rectifier circuit
144‧‧‧Filter circuit
150‧‧‧Inductance Estimation Unit
160, 50‧‧‧ controller
170‧‧‧ drive
Cr‧‧‧Resonance Capacitor
Cf‧‧‧Filter Capacitor
C1‧‧‧First Capacitor
C2‧‧‧second capacitor
Dr‧‧‧Rected Diode
D‧‧‧ diode
D1‧‧‧First Diode
D2‧‧‧ second diode
Io‧‧‧ output current
Lm‧‧‧Magnetic Inductors
Lr‧‧‧Resonant Inductors
L1‧‧‧First Inductor
L2‧‧‧second inductor
Np‧‧‧ primary side coil
Ns‧‧‧ secondary coil
R‧‧‧ load
Rac‧‧‧AC load impedance
T1‧‧‧ transformer
第一圖為習知之電源供應裝置之電路圖。
第二圖為對應第一圖所示之第二電感器之電感-電流曲線圖。
第三圖為習知之電源供應裝置之頻率響應圖。
第四圖為本發明之電源供應裝置之電路圖。
第五圖為對應第四圖之電源轉換裝置之交流等效電路圖。
第六圖為對應第三圖所示之可變激磁電感器之電抗-電流曲線圖。
第七圖為本發明之電源供應裝置之頻率響應圖。The first figure is a circuit diagram of a conventional power supply device.
The second figure is an inductance-current graph corresponding to the second inductor shown in the first figure.
The third figure is a frequency response diagram of a conventional power supply device.
The fourth figure is a circuit diagram of the power supply device of the present invention.
The fifth figure is an AC equivalent circuit diagram of the power conversion device corresponding to the fourth figure.
The sixth figure is a graph of the reactance-current curve corresponding to the variable excitation inductor shown in the third figure.
The seventh figure is a frequency response diagram of the power supply device of the present invention.
10‧‧‧電源轉換裝置 10‧‧‧Power conversion device
110‧‧‧切換單元 110‧‧‧Switch unit
112‧‧‧切換元件 112‧‧‧Switching components
120‧‧‧諧振單元 120‧‧‧Resonance unit
130‧‧‧轉換單元 130‧‧‧Transfer unit
140‧‧‧整流及濾波單元 140‧‧‧Rectifier and Filter Unit
142‧‧‧整流電路 142‧‧‧Rectifier circuit
144‧‧‧濾波電路 144‧‧‧Filter circuit
150‧‧‧電感估測單元 150‧‧‧Inductance Estimation Unit
160‧‧‧控制器 160‧‧‧ Controller
170‧‧‧驅動器 170‧‧‧ drive
Cr‧‧‧諧振電容器 Cr‧‧‧Resonance Capacitor
Cf‧‧‧濾波電容器 Cf‧‧‧Filter Capacitor
D‧‧‧二極體 D‧‧‧ diode
Dr‧‧‧整流二極體 Dr‧‧‧Rected Diode
Io‧‧‧輸出電流 Io‧‧‧ output current
Lm‧‧‧激磁電感器 Lm‧‧‧Magnetic Inductors
Lr‧‧‧諧振電感器 Lr‧‧‧Resonant Inductors
Np‧‧‧一次側線圈 Np‧‧‧ primary side coil
Ns‧‧‧二次側線圈 Ns‧‧‧ secondary coil
R‧‧‧負載 R‧‧‧ load
Claims (8)
一切換單元;
一諧振單元,電連接於該切換單元,該諧振單元包含一諧振電容、一諧振電感器及一可變激磁電感器;
一轉換單元,電連接於該諧振單元;
一整流及濾波單元,電連接於該轉換單元;
一電感估測單元,電連接於該整流及濾波單元,用以估測該可變激磁電感器的電感值;
一驅動器,電連接於該電感估測單元及該切換單元,並依據該電感估測單元估測之一電感值以控制該切換單元的切換頻率。A power conversion device comprising:
a switching unit;
a resonant unit electrically connected to the switching unit, the resonant unit comprising a resonant capacitor, a resonant inductor and a variable excitation inductor;
a conversion unit electrically connected to the resonance unit;
a rectifying and filtering unit electrically connected to the converting unit;
An inductance estimating unit electrically connected to the rectifying and filtering unit for estimating an inductance value of the variable excitation inductor;
A driver is electrically connected to the inductance estimating unit and the switching unit, and estimates an inductance value according to the inductance estimating unit to control a switching frequency of the switching unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101220641U TWM449407U (en) | 2012-10-25 | 2012-10-25 | Power converting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101220641U TWM449407U (en) | 2012-10-25 | 2012-10-25 | Power converting device |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM449407U true TWM449407U (en) | 2013-03-21 |
Family
ID=48472847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101220641U TWM449407U (en) | 2012-10-25 | 2012-10-25 | Power converting device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM449407U (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI492512B (en) * | 2013-07-08 | 2015-07-11 | Chicony Power Tech Co Ltd | Open loop power conversion apparatus |
TWI494731B (en) * | 2013-07-05 | 2015-08-01 | Chicony Power Tech Co Ltd | Power supply apparatus with reducing voltage overshooting |
US9122295B2 (en) | 2013-08-21 | 2015-09-01 | Chicony Power Technology Co., Ltd. | Power supply apparatus with reducing voltage overshooting |
TWI502875B (en) * | 2013-11-14 | 2015-10-01 | Ind Tech Res Inst | Dc/ac converter for solar photovoltaic module |
TWI554016B (en) * | 2014-11-14 | 2016-10-11 | LLC resonant converter with saturable resonant inductor | |
TWI558053B (en) * | 2014-12-23 | 2016-11-11 | 台達電子工業股份有限公司 | Power supply system, uninterruptible power supply system, and power supply method |
TWI767432B (en) * | 2020-12-01 | 2022-06-11 | 產晶積體電路股份有限公司 | Zero-voltage switching power control system |
US11594976B2 (en) | 2020-06-05 | 2023-02-28 | Delta Electronics, Inc. | Power converter and control method thereof |
-
2012
- 2012-10-25 TW TW101220641U patent/TWM449407U/en unknown
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI494731B (en) * | 2013-07-05 | 2015-08-01 | Chicony Power Tech Co Ltd | Power supply apparatus with reducing voltage overshooting |
TWI492512B (en) * | 2013-07-08 | 2015-07-11 | Chicony Power Tech Co Ltd | Open loop power conversion apparatus |
US9122295B2 (en) | 2013-08-21 | 2015-09-01 | Chicony Power Technology Co., Ltd. | Power supply apparatus with reducing voltage overshooting |
US9312754B2 (en) | 2013-08-21 | 2016-04-12 | Chicony Power Technology Co., Ltd. | Power supply apparatus with reducing voltage overshooting |
TWI502875B (en) * | 2013-11-14 | 2015-10-01 | Ind Tech Res Inst | Dc/ac converter for solar photovoltaic module |
TWI554016B (en) * | 2014-11-14 | 2016-10-11 | LLC resonant converter with saturable resonant inductor | |
TWI558053B (en) * | 2014-12-23 | 2016-11-11 | 台達電子工業股份有限公司 | Power supply system, uninterruptible power supply system, and power supply method |
US10056780B2 (en) | 2014-12-23 | 2018-08-21 | Delta Electronics, Inc. | Power supply system, uninterruptible power supply system, and power supply method |
US11594976B2 (en) | 2020-06-05 | 2023-02-28 | Delta Electronics, Inc. | Power converter and control method thereof |
TWI801891B (en) * | 2020-06-05 | 2023-05-11 | 台達電子工業股份有限公司 | Power converter and control method thereof |
US11777417B2 (en) | 2020-06-05 | 2023-10-03 | Delta Electronics, Inc. | Power converter and control method thereof |
TWI767432B (en) * | 2020-12-01 | 2022-06-11 | 產晶積體電路股份有限公司 | Zero-voltage switching power control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9660536B2 (en) | Switching power supply device performs power transmission by using resonance phenomenon | |
US9106141B2 (en) | Switching power supply device | |
TWM449407U (en) | Power converting device | |
JP4910525B2 (en) | Resonant switching power supply | |
JP4844674B2 (en) | Switching power supply | |
US11011936B2 (en) | Single-stage transmitter for wireless power transfer | |
TWI459697B (en) | Dc/dc converter, power converter and control method thereof | |
US20140153294A1 (en) | AC/DC Power Converter Arrangement | |
US8014177B2 (en) | Switching power supply with pulse frequency modulation control | |
JP6859034B2 (en) | Circuits and methods for synchronous rectification in resonant transducers | |
CN109586575B (en) | Virtual parametric high side MOSFET driver | |
WO2019206067A1 (en) | Switched-mode power supply circuit | |
JP6071051B2 (en) | Switching power supply | |
WO2017049179A1 (en) | Converters with hold-up operation | |
KR20160070820A (en) | Apparatus and method for high efficiency resonant converters | |
JP2006197755A (en) | Multiple-output dc-dc converter | |
TWI501529B (en) | Dc-dc power conversion apparatus and method | |
CN111010036A (en) | Power converter controller, power converter and method of operating power converter | |
US7388760B2 (en) | Switching power supply circuit | |
JP6526546B2 (en) | Resonant type power supply | |
US20140185330A1 (en) | DC to DC POWER CONVERTING DEVICE | |
TW201815043A (en) | DC-DC converter for modulating full-bridge control mode based on loading current capable of optimizing the conversion efficiency by switching to different operating mode based on magnitude of loading | |
KR100732612B1 (en) | High efficiency dc-dc converter for hybrid car | |
TWI482407B (en) | Power converting device | |
JP2009060747A (en) | Dc-dc converter |