M370050 五、新型說明: 【新型所屬之技術領域】 本創作是有關於一種光學元件,且特別是有關於一種 導光單元(light guide unit)。 【先前技術】 由於液晶顯示器(liquid crystal display,LCD )本身並 不具有發光的功能,故在液晶顯示器下方必須提供一背光 系統以提供光源,進而達到顯示的功能。習知的背光系統 由兩個基本部分所組成:光源以及導光板(light guide plate),其中光源又分為線光源的冷陰極燈管(c〇Wcath〇de fluorescence lamp,CCFL )以及多個點光源的發光二極體 (light emitting diode,LED )。光源所發出的光線會直接射 入導光板,並因全反射原理被導引至導光板後方,而導光 板下表面的微光學結構會破壞全反射現象,使光線均勻的 射出導光板上表面。 為提升出光的均勻性和顯示器的亮度,目前已有數種 習知技術提供改良方式,如台灣公開號2〇〇63〇7〇5、 200837410、200839329、美國專利號 6612722、美國公開 號20040145915等。一般傳統最常見的方式是搭配其他光 學擴散片(diffuser film)或稜鏡增光片(prismsheet)。 然而,搭配其他光學元件會增加顯示器的成本且在組裝上 也較為複雜,而顯示器所能呈現的光學效率也非最佳化。 在台灣公開號200630705中揭露一種導光板,其上表 M370050 面有垂直的稜鏡結構,而下表面有圓形、方形、菱形或直 條型的水平稜鏡結構。在美國專利號6612722中揭露—種 導光板’其上下表面有圓形的圖案,圖案中另有四角錐、 圓錐、圓柱體、多角體等微結構,而圖案以外的區域為平 滑鏡面。在美國公開號20040145915中揭露一種導光板, 其雙面有圓形的圖案’圖案中另有稜鏡柱結構,而圖案以 外的區域為平滑鏡面。然而,上述之技術皆須進行雙面结 構加工,在製程上較為困難。 另外’弟一毛織股份有限公司也提供—種新型導光 板,其利用下表面的直條狀水平稜鏡結構破壞全反射現 象,使光線均勻的垂直出射,並搭配其上表面的垂直稜鏡 結構將光線收斂。然而,由於上表面的垂直稜鏡易與上方 的液晶顯示面板(LCD panel )產生像素疊紋(pixel moire),因此需使用粗操度較高的擴散膜片來遮蓋上表面 的垂直稜鏡,進而降低了顯示器的光學效率。 在台灣公開號200839329中揭露一種導光板,其下表 面由垂直與水平的稜鏡結構將光線收斂。由於此垂^與^ 平的稜鏡結構具有一致的線性和輪廓,因此垂直與水^的 稜鏡在轉肖會有重疊或錯位,進轉致遮擔光線’,、產生疊 紋(moire)現象。 旦 在台灣公開號200837410中揭露一種導光板,其下表 面由垂直與水平的稜鏡結構將光線收斂,且平行於&管^ 稜鏡結構所構成的條紋随具有不規_輪廓,藉^善 垂直與水平_鏡邊界平面上的邊界®樣或疊紋現象。 M370050 【新型内容】 本創作k供一種導光板,其可降低成本,並能將光均 地 |ί |。 本創作之一實施例提出一種導光板,適於導引—發光 兀件發出之-光束。此導光板包括—透光基板、複數個棱 鏡柱以及複數個凸出鏡。此透光基板包括一第一表面、一 第二表面一、第一入光面以及一第三表面。此第一表面具 有一圖案化區域。此第二表面相對於此第一表面,且此第 一入光面連接此第一表面與此第二表面,其中此光束會經 ,此第一入光面進入此透光基板中。此第三表面相對於此 第一入光面,且連接此第一表面與此第二表面。這些稜鏡 柱配置於此第一表面上,並位於此圖案化區域以外,其中 這些稜鏡柱沿一第一方向延伸,且沿一第二方向排列。此 第一方向由此第一入光面指向此第三表面。這些凸出鏡配 置於此第一表面上,且位於此圖案化區域内,其中每一凸 出鏡具有相對之一第一底面及一第一頂部區域。此第二底 面鄰接此第一表面,此第一頂部區域為此凸出鏡中距離此 第一表面最遠的區域。此外,此第二底面呈一多邊形,且 此第一頂部區域在此第一表面上的一正投影落在此第一底 面的範圍内,且此正投影與此多邊形的每一邊皆維持一間 隔距離。 基於上述,本創作之實施例的導光板由於具有位於圖 案化區域的凸出鏡以及複數個沿第一方向延伸、沿第二方 向排列的稜鏡柱,因此可將發光元件的所發出的光束以較 M370050 小角度自導光板射出。如此一來,本創作之實施例的背光 模組便能夠形成均勻的面光源。此外,由於凸出鏡與棱鏡 柱是配置於導光板的同一側,因此可以簡化製程。 為讓本創作之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 下列各實施例的說明是參考附加的圖式,用以例示本 創作可用以實施之特定實施例。本創作所提到的方向用 語,例如「上」、「下」、「前」、「後」、「左」、「右」 等,僅是參考附加圖式的方向。因此,使用的方向用語是 用來說明,而非用來限制本創作。 圖1繪示為本創作之一實施例的背光模組剖面圖。如 圖1所示’背光模組100包括一第一發光元件31〇以及一導光 板320,其中導光板320可為平板導光板、楔形導光板或其 他形式之導光板,在此係以械形導光板為例。另外,本實 施例之背光模組100更包括一反射單元(Reflector) 330。 圖2A繪示為圖1之背光模組100的下視示意圖,其中在本圖 中省略反射單元330。請同時參照圖1與圖2A,導光板320 包括一透光基板322、複數個稜鏡柱324以及複數個凸出鏡 326。透光基板3Z2具有一第一表面322a、一第二表面322b、 一第一入光面322c以及一第三表面322d。如圖1與圖2A所 示,第二表面322b相對於第一表面322a,第一入光面322c 連接第一表面322a與第二表面322b,而第三表面322d相對 M370050 於第一入光面322c,且連接第一表面322a與第二表面322b。 如圖1與圖2A所示,發光元件310組裝於導光板320之 第一入光面322c的一侧。發光元件310所發出的一光束312 會經由第一入光面322c進入透光基板322中’且導光板320 適於導引光束312,並經由第一表面322a傳遞至稜鏡柱324 與凸出鏡326。反射單元330配置於第一表面322a的一侧, 用以將第一發光元件310所發出的光束312反射回第一表面 322a。此外,本實施例的第二表面322b例如是一平滑表面, 其可使光線全反射至導光板320後端。第二表面322b也可以是 一粗糙表面,以減低第二表面322a與上方液晶面板(未繪示) 間的疊紋現象’其中粗糙表面的粗糙度是落在Ra〇.〇4至〇 4 微米的範圍内。圖2B為習知粗糙度的定義說明圖,一般粗 糙度是由以下的公式來計算:M370050 V. New description: [New technical field] The present invention relates to an optical component, and in particular to a light guide unit. [Prior Art] Since a liquid crystal display (LCD) does not have a function of illuminating by itself, a backlight system must be provided under the liquid crystal display to provide a light source to achieve the display function. The conventional backlight system is composed of two basic parts: a light source and a light guide plate, wherein the light source is further divided into a line source of a cold cathode lamp (CCW), and a plurality of points. A light emitting diode (LED) of a light source. The light from the light source is directly incident on the light guide plate and guided to the rear of the light guide plate due to the principle of total reflection. The micro-optical structure on the lower surface of the light guide plate destroys the total reflection phenomenon, so that the light is uniformly emitted from the surface of the light guide plate. In order to improve the uniformity of light emission and the brightness of the display, several conventional techniques have been provided to provide improved methods, such as Taiwan Publication No. 2〇〇63〇7〇5, 200837410, 200839329, U.S. Patent No. 6612722, U.S. Publication No. 2004042515, and the like. The most common way of common tradition is to match other optical diffuser films or prism sheets. However, the use of other optical components increases the cost of the display and is complicated to assemble, and the optical efficiency exhibited by the display is not optimized. A light guide plate is disclosed in Taiwan Publication No. 200630705, in which the surface of the M370050 has a vertical 稜鏡 structure, and the lower surface has a horizontal 稜鏡 structure of a circular, square, diamond or straight shape. It is disclosed in U.S. Patent No. 6,611,722 that the light guide plate has a circular pattern on its upper and lower surfaces, and has a quadrangular pyramid, a cone, a cylinder, a polyhedron and the like in the pattern, and a region other than the pattern is a smooth mirror surface. A light guide plate is disclosed in U.S. Patent No. 20040145915, which has a circular pattern on both sides and a mast structure in the pattern, and a region outside the pattern is a smooth mirror. However, the above techniques all require double-sided structural processing, which is difficult in the process. In addition, 'Di Yi Wo Weaving Co., Ltd. also provides a new kind of light guide plate, which uses the straight horizontal horizontal 稜鏡 structure on the lower surface to destroy the total reflection phenomenon, so that the light is evenly and vertically emitted, and the vertical 稜鏡 structure of the upper surface is matched. Converging the light. However, since the vertical smoothness of the upper surface and the pixel panel of the upper liquid crystal display panel (pixel panel), it is necessary to use a diffuse film having a high degree of roughness to cover the vertical flaw of the upper surface. This in turn reduces the optical efficiency of the display. A light guide plate is disclosed in Taiwan Publication No. 200839329, the lower surface of which is converged by vertical and horizontal 稜鏡 structures. Since the 稜鏡 structure and the flat 稜鏡 structure have the same linearity and contour, the 垂直 of the vertical and the water 会有 will overlap or be misaligned, and the turn will cause the light to illuminate, and create a moire. phenomenon. A light guide plate is disclosed in Taiwan Publication No. 200837410, the lower surface of which is converged by vertical and horizontal 稜鏡 structures, and the stripes formed parallel to the & ^ 随 structure have a random _ contour, by ^ Good vertical and horizontal _ mirror boundary level on the mirror plane or superimposed phenomenon. M370050 [New Content] This creation is for a light guide that reduces costs and evenly distributes light |ί |. One embodiment of the present invention proposes a light guide plate adapted to guide the light beam emitted by the light-emitting element. The light guide plate includes a light transmissive substrate, a plurality of prismatic columns, and a plurality of convex mirrors. The transparent substrate includes a first surface, a second surface 1, a first light incident surface, and a third surface. This first surface has a patterned area. The second surface is opposite to the first surface, and the first light incident surface is coupled to the first surface and the second surface, wherein the light beam passes through, and the first light incident surface enters the transparent substrate. The third surface is opposite to the first light incident surface and connects the first surface to the second surface. The masts are disposed on the first surface and outside the patterned region, wherein the masts extend in a first direction and are aligned in a second direction. This first direction is thereby directed by the first light incident surface to the third surface. The projections are disposed on the first surface and are located in the patterned region, wherein each of the projections has a first first bottom surface and a first top surface. The second bottom surface abuts the first surface, and the first top region is the region of the mirror that is furthest from the first surface. In addition, the second bottom surface has a polygonal shape, and an orthographic projection of the first top region on the first surface falls within the range of the first bottom surface, and the orthographic projection maintains an interval with each side of the polygon. distance. Based on the above, the light guide plate of the embodiment of the present invention has a convex mirror located in the patterned region and a plurality of masts extending in the first direction and arranged in the second direction, so that the emitted light beam of the light emitting element can be Smaller angles from the light guide than the M370050. In this way, the backlight module of the embodiment of the present invention can form a uniform surface light source. In addition, since the projecting mirror and the prism column are disposed on the same side of the light guide plate, the process can be simplified. To make the above-described features and advantages of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings are set forth below. [Embodiment] The following description of the embodiments is provided to illustrate the specific embodiments in which the present invention can be practiced. The direction terms mentioned in this creation, such as "upper", "lower", "before", "after", "left", "right", etc., are only directions referring to the additional schema. Therefore, the directional terminology used is for illustration, not for limiting the creation. FIG. 1 is a cross-sectional view of a backlight module according to an embodiment of the present invention. As shown in FIG. 1 , the backlight module 100 includes a first light-emitting element 31 〇 and a light guide plate 320 , wherein the light guide plate 320 can be a flat light guide plate, a wedge-shaped light guide plate or other forms of light guide plates. The light guide plate is taken as an example. In addition, the backlight module 100 of the embodiment further includes a reflector unit 330. 2A is a schematic bottom view of the backlight module 100 of FIG. 1, in which the reflection unit 330 is omitted in the figure. Referring to FIG. 1 and FIG. 2A simultaneously, the light guide plate 320 includes a transparent substrate 322, a plurality of columns 324, and a plurality of protruding mirrors 326. The transparent substrate 3Z2 has a first surface 322a, a second surface 322b, a first light incident surface 322c, and a third surface 322d. As shown in FIG. 1 and FIG. 2A, the second surface 322b is opposite to the first surface 322a, the first light incident surface 322c is connected to the first surface 322a and the second surface 322b, and the third surface 322d is opposite to the M370050 on the first light incident surface. 322c, and connecting the first surface 322a and the second surface 322b. As shown in FIG. 1 and FIG. 2A, the light-emitting element 310 is assembled on one side of the first light-incident surface 322c of the light guide plate 320. A light beam 312 emitted by the light-emitting element 310 enters the light-transmitting substrate 322 via the first light-incident surface 322c and the light guide plate 320 is adapted to guide the light beam 312, and is transmitted to the mast 324 and the convex mirror via the first surface 322a. 326. The reflecting unit 330 is disposed on one side of the first surface 322a for reflecting the light beam 312 emitted by the first light emitting element 310 back to the first surface 322a. In addition, the second surface 322b of the present embodiment is, for example, a smooth surface that can totally reflect light to the rear end of the light guide plate 320. The second surface 322b may also be a rough surface to reduce the creping phenomenon between the second surface 322a and the upper liquid crystal panel (not shown), wherein the roughness of the rough surface falls on Ra〇.〇4 to 〇4 μm. In the range. Fig. 2B is an explanatory diagram of the definition of the conventional roughness, and the general roughness is calculated by the following formula:
Ra = ~\\fiAdx L ο 請對照圖2Β ’ f(x)表粗糙表面曲線^'的函數式,其中f(x) 會隨著位置X改變。一般而言,粗糙度的量測是從粗糙表面 曲線F在中心線Lc (即X軸)的方向中取一量測範圍r。接 著,於量測範圍R内將中心線L c與粗糙表面曲線F的偏差絕 對值加以平均計算所得到的值即為Ra (中心線平均粗 度)。簡言之,Ra越大表示物體表面越不平整。 當然設計者也可以直接在第二表面322b上加上一層 粗糙膜片來達到類似的效果。 圖3A繪不圖2A之稜鏡柱324的放大立體示意圖。 M370050 請同時參照圖2A與圖3,第一表面322a具有一圖案化區 域A ’稜鏡柱324配置於第一表面322a上,並位於圖案化 區域A以外。在本實施例中’圖案化區域a以外的區域是 由複數個彼此分離的連續區域B所構成,且每一連續區域 B中棱鏡柱324的底面324a彼此緊靠相接。值得一提的 是,在其他實施例中,每一連續區域B中的稜鏡柱324之 相鄰兩者的間距也可以是落在從2微米至3〇微米的範圍 内。也就是說’棱鏡柱324之間亦可以維持一間距而不一 定要緊靠相接。 睛繼續同時參照圖2A與圖3A,棱鏡柱324沿一第一 方向X延伸,且沿一第二方向y排列,第—方向χ由第一 入光面322c指向第三表面322d,且每一稜鏡柱324具有 相對之底面324a及一頂部區域324b,其中本實施例的頂 部區域324b為一線段。底面324a鄰接第一表面322a,且 頂部區域32牝為稜鏡柱324中距離第一表面324a最遠的 區域。值得注意的是,本實施例之圖案化區域A以外的區 域雖疋被數個條狀的連纟買區域B,然而在其他實施例中, 圖案化區域A以外的連續區域6也可以是複數個幾何形狀 :域其例如是多邊形區域、圓形區域或橢圓形區域,且 這上成何形狀區域的寬度隨著遠離第一入光面322c而遞 減。 —圖3B繪示為圖3A之棱鏡柱324沿剖面線IrIi,的剖 =不意圖。如圖3B所示,剖面線^。,所得到的截面具有 朝向遠離第一表面322a的頂角,其中頂角的範圍 M370050 是落在從90度至130度的範圍内,且由頂角θ !至第一表 面322a的距離匕是落在從5微米至3〇微米的範圍内。 圖4A績示圖2A之凸出鏡326的放大俯視示意圖。 圖4B繪示為圖4A之凸出鏡326沿剖面線l2_l2,的剖面示 意圖。圖4C繪示為圖4A之凸出鏡326沿刮面線13_13,的 剖面示意圖。請同時參照圖2A與圖4A〜4C,凸出鏡326 配置於第一表面322a上,且位於圖案化區域A内。在本 貫施例中,圖案化區域A是由複數個彼此分離的連續區域 Αι所構成’且每一連續區域Αι中的凸出鏡326的底面32如 彼此緊靠相接。值得注意的是,在其他實施例中,底面326b 的相鄰二者之間距也可以是落在從2微米至30微米的範圍 内。也就是說,凸出鏡320之間亦可以維持一間距而不一 定要緊靠相接。 另外’本實施例之圖案化區域A例如是複數個條狀區 域(即連續區域A!),其沿第一方向x延伸,且沿第二方 向y排列,且母一條狀區域在第二方向y上的寬度隨著遠 離第一入光面322c而遞增。然而,在其他實施例中,圖案 ,區域A也可以是複數個幾何形狀區域’其例如是多邊形 區域、圓形區域或橢圓形區域。此外,由於離第一入光面 322c越遠處的光線會越少,因此這些幾何形狀區域的寬度 必須隨著遠離第一入光面322c而遞增。也就是說,為了要 瓖更多的第一光束312可以入射至第—表面,322a凸出鏡 326的個數(或密度)會隨著遠離第一入光面322c而增加。 如圖4A所示,每一凸出鏡326具有相對之一底面326a M370050 及-頂部區域326b。底面326a鄰接第一 為凸出鏡326中距轉—表面处最遠的ΐ Ύ、中底© 326b呈—多邊形。值得—提的是,本實 之底面l26b的雜雖是以四邊形為例,然並不受限於此。 值知注意的是’不同於圖3的稜鏡柱似 :頁㈣域遍在第-表面322a上的—正投影^是= 弟二底面326b的範_,且正投影似 形 326b的每-邊f —間隔轉d。 》軌底面 請繼續參照圖4A,在此剖面線12-12,平行於第-方向 X,而沿剖赠Irl2,所得到的截面具有—朝向遠離第一表 面322a的頂角θ2。頂角02的範圍是落在從7〇度至11〇 度的範圍内,且由頂角θ2至第—表面322a的距離^是落 在從5微米至30微米的範圍内。接著,請參照圖4b,在 此剖面線Ι3·Ι3,平行於第二方向y (即垂直第―方向χ), 而沿剖面線13-13’所得到的截面具有—朝向遠離第一表面 322a的頂角〜。頂角<9 3的範圍是落在從9〇度至度 的範圍内’且由頂角θ3至第—表面322a的距離^是落在 從5微米至3G微米的範圍内。值得注意的是,在本實施例 中’上述兩截面的頂角範圍雖不同,然而在其他實施例中, 兩截面的頂角亦可-樣’也就是說,互相垂直的兩截面的 外形可以相同。 圖5A至圖5D為光束312於凸出鏡326中,以不同 入射角度射入凸出鏡326的光線行進圖,在此是以凸出鏡 326的頂角02等於90度作為例子。另外,入射角度是光 10 M370050 入射線與垂直反射單元330之法線L的夾角。如圖5A所 示,當入射角度大於65度時,光束312會在凸出鏡326 之介面發生兩次的折射或加上一次全反射,而被轉換為較 小角度的光線’因此光束312能以較原本接近垂直方向的 角度入射至透光基板322 ’進而達到光均勻化的功效。詳 言之,入射角度為65度的光束312在經過兩次介面折射後 會被轉為56度的出射角度。入射角度為80度的光束312 在經過兩次介面折射和一次的全反射後會被轉為25度的 •.- 出射角度,而入射角度為85度的光束312在經過兩次介面 折射和一次的全反射後會被轉為22度的出射角度。 接著,請參照圖5B,當入射角度是落在50度至65 度的範圍時,光束312會在凸出鏡326之介面發生兩次的 折射以及於下方反射單元330發生一次的反射,或是搭配 一次全反射’而可以被轉換為較小出射角度的光線。因此, 光束312能以較原本接近垂直方向的角度入射至透光基板 322,進而達到光均勻化的功效。詳言之,入射角度為55 度的光束312在經過兩次介面折射、一次反射單元330的 反射和一次的全反射後會被轉為35度的出射角度。入射角 度為60度的光束312在經過兩次介面折射、一次反射單元 330的反射和一次的全反射後會被轉為30度的出射角度。 只有入射角度落在40至50度角度範圍的光束312無法被 轉換為更小角度的光線。 再來,請參照圖5C ’當入射角度是落在〇度至2度 的範圍時,光束312會在凸出鏡326之介面發生兩次的全 11 M370050 反射並以相同的角度反射回透光基板322。由於原本角度 就已經很接近0度,因此可以達到光均勻化的功效。詳言 之,入射角度為0度的光束312在經過兩次全反射後,是 以〇度的出射角度反射回透光基板322。入射角度為2度 的光束312在經過兩次全反射後,是以2度的出射角度反 射回透光基板322。 隶後’請參照圖5D,當入射角度是落在2·度至40度 的範圍時,光束312會在凸出鏡326之介面發生兩次的折 射以及於下方的反射單元330發生一次的反射,或是搭配 一次全反射,而被轉換為小角度或是角度不變出射之光 線。詳言之,入射角度為17度的第一光束312在經過兩次 介面折射及反射單元330的一次反射後仍為η度的出射角 度。入射角度為35度的第一光束312在經過兩次介面折射 及反射單元330的一次反射後是以5度的出射角度入射至 透光基板322。 表1為圖5A至圖5D入射角度與出射角度的轉換過 程對照表。 ' 入射角度(度) 0 2 5 10 15 17 轉換過程(度) 〇>〇 2+2 5 + 35 + 5 10->25->10 15->20^15 17->17 出射角度(度) 0 2 5 10 15 17 12 M370050 20 20-^15 15 25 25 + 10 10 30 30+7 7 35 35~^5 5 40 40+50+40 40 45 45+45 45 50 50->40->50 50 55 55->35-^5 5 60 60->30->7 7 65 65+22+13 13 70 70+14 14 75 75->20^15 15 80 80^25->10 10 85 85->56->35->5 5 表1 • 因此,由表1可知,除了入射角度落在40至50度角 度範圍的光束312外,其他角度範圍入射至凸出鏡327的 光束312皆可被轉換為小出射的光線,進而達成光均勻化 的效果。圖6為表1之入射角度對出射角度的關係圖,從 圖6更可以清楚的看出大部分的入射角度都可以被轉換為 較小角度的出射角度。也就是說,光束312經由凸出鏡326 之多次的折射與全反射並搭配反射單元330的反射’大部 分的光束312 (除了入射角度落在40至50度範圍的第一 光束)皆可被轉換成出射角度在17度以内的光線,以接近 13 M370050 垂直反射單元330的方向出射導光板32〇。值得注意的是, 以上雖皆以凸出鏡326為說明例子,然上述之結果亦適用 於#鏡杯394。 表2為凸出鏡(棱鏡柱)頂角、出射角度與 次數的關係對照表。 、 頂角(度) 70 80 90 100 110 表2 出射角度(度) 14 15 17 20 24 平均轉換次數 5.9 3.7 1.8 1.5 1.3 其中’平均轉換次數代表通過—個凸出鏡似或棱鏡 柱324的次數。由表2可知,光線的出射角度與凸出鏡似 或棱鏡柱324的頂角成正比,但頂角越小轉換為小出射角 度所需的次數也越多,相對的光能量的損耗也會變多。舉 例而言,當凸出鏡326或稜鏡柱324的頂角為7〇度時,平 均需要轉換5.9次才能使出射角度變為14度,而當凸出鏡 326或稜鏡柱324的頂角增加到11〇度時,平均轉換工3 次就可以達到出射角度* 24度的小角度。由於目前市面上 常見背光關視肖約為24度與17度,因次在對應表2的 情況下,可選取頂角落在為9〇至11〇度範圍的凸出鏡似 或稜鏡柱324。如此—來,光能量的損耗可以降至最低, 且同時兼具光均勻化的功效。 14 M370050 圖7A至圖7H是本創作其他實施例之凸出鏡的剖面 示意圖,以下將針對這些剖面圖——說明。如圖7A所示, 凸出鏡326頂部區域326b可以是一平面區域’且平面區域 的寬度w是落在從2微米至3〇微米的範圍内。接著,請 麥照圖7B,凸出鏡326頂部區域326b也可以具有一圓弧 端,且此圓弧之曲率半徑r是落在從2微米至3〇微米 圍内。Ra = ~\\fiAdx L ο Please refer to the function of the rough surface curve ^' of Fig. 2 ’ f(x), where f(x) will change with position X. In general, the roughness is measured by taking a measurement range r from the rough surface curve F in the direction of the center line Lc (i.e., the X-axis). Next, the value obtained by averaging the absolute values of the deviations of the center line L c and the rough surface curve F in the measurement range R is Ra (center line average roughness). In short, a larger Ra means that the surface of the object is less flat. Of course, the designer can also add a rough film directly to the second surface 322b to achieve a similar effect. 3A is an enlarged perspective view of the mast 324 of FIG. 2A. M370050 Referring to FIG. 2A and FIG. 3 simultaneously, the first surface 322a has a patterned area A'. The pillars 324 are disposed on the first surface 322a and outside the patterned area A. In the present embodiment, the area other than the patterned area a is composed of a plurality of continuous areas B separated from each other, and the bottom surface 324a of the prism columns 324 in each of the continuous areas B is in close contact with each other. It is worth mentioning that in other embodiments, the spacing between adjacent ones of the masts 324 in each successive region B may also range from 2 microns to 3 microns. That is to say, a spacing can be maintained between the prism columns 324 without necessarily being close to each other. 2A and 3A, the prism columns 324 extend along a first direction X and are arranged along a second direction y, the first direction χ is directed by the first light incident surface 322c toward the third surface 322d, and each The mast 324 has an opposite bottom surface 324a and a top portion 324b, wherein the top portion 324b of the present embodiment is a line segment. The bottom surface 324a abuts the first surface 322a, and the top region 32 is the region of the mast 324 that is furthest from the first surface 324a. It should be noted that the area other than the patterned area A of the present embodiment is a plurality of strip-shaped purchase areas B, but in other embodiments, the continuous area 6 other than the patterned area A may be plural. The geometric shape: the domain is, for example, a polygonal area, a circular area or an elliptical area, and the width of the shape area on which this is decreased decreases away from the first light incident surface 322c. - Figure 3B is a cross-sectional view of the prism column 324 of Figure 3A along the section line IrIi. As shown in Fig. 3B, the section line ^. The resulting cross section has a vertex angle away from the first surface 322a, wherein the range of the vertex angle M370050 falls within a range from 90 degrees to 130 degrees, and the distance from the vertex angle θ! to the first surface 322a is Falling in the range from 5 microns to 3 microns. 4A is an enlarged top plan view of the projection 326 of FIG. 2A. 4B is a cross-sectional view of the convex mirror 326 of FIG. 4A along a section line l2-1. 4C is a cross-sectional view of the convex mirror 326 of FIG. 4A along the shaving line 13_13. Referring to FIG. 2A and FIGS. 4A to 4C simultaneously, the protruding mirror 326 is disposed on the first surface 322a and located in the patterned area A. In the present embodiment, the patterned area A is composed of a plurality of continuous areas separated from each other 且 and the bottom surface 32 of the convex mirror 326 in each continuous area 如 is in close contact with each other. It should be noted that in other embodiments, the spacing between adjacent sides of the bottom surface 326b may also range from 2 microns to 30 microns. That is to say, a pitch can be maintained between the projection mirrors 320 without necessarily being in close contact with each other. In addition, the patterned region A of the present embodiment is, for example, a plurality of strip regions (ie, continuous regions A!) extending in the first direction x and arranged in the second direction y, and the parent strip region is in the second direction The width on y increases as it moves away from the first light incident surface 322c. However, in other embodiments, the pattern, region A may also be a plurality of geometric regions 'which are, for example, polygonal regions, circular regions or elliptical regions. In addition, the smaller the distance from the first light incident surface 322c, the wider the width of these geometric regions must be as they move away from the first light incident surface 322c. That is, in order to allow more of the first light beam 312 to be incident on the first surface, the number (or density) of the lenticular mirrors 326 may increase as moving away from the first light incident surface 322c. As shown in FIG. 4A, each of the projections 326 has a pair of bottom surfaces 326a, M370050 and a top region 326b. The bottom surface 326a is adjacent to the first one of the convex mirrors 326 which is the farthest from the surface of the rotating surface, and the midsole © 326b is a polygon. It is worth mentioning that the miscellaneous bottom surface l26b is exemplified by a quadrilateral, but is not limited thereto. The value is noted to be 'different from the column of Fig. 3: the page (four) domain is over the first surface 322a - the positive projection ^ is = the second 326b of the second 326b, and the orthographic projection 326b - Edge f - interval to d. The bottom surface of the rail continues with reference to Fig. 4A, in which the section line 12-12, parallel to the first direction X, and along the section Irl2, the resulting section has a apex angle θ2 away from the first surface 322a. The range of the vertex angle 02 is in the range from 7 Torr to 11 Torr, and the distance from the apex angle θ2 to the first surface 322a falls within a range from 5 μm to 30 μm. Next, referring to FIG. 4b, the section line Ι3·Ι3 is parallel to the second direction y (ie, the vertical direction χ), and the section obtained along the section line 13-13' has a direction away from the first surface 322a. The top corner ~. The range of the apex angle <9 3 is within the range from 9 Torr to the degree ' and the distance from the apex angle θ3 to the first surface 322a is in the range from 5 μm to 3 μm. It should be noted that in the present embodiment, the range of the apex angles of the above two sections is different, but in other embodiments, the apex angles of the two sections may also be like 'that is, the shape of the two sections perpendicular to each other may be the same. 5A to 5D are diagrams of the ray travel of the light beam 312 into the convex mirror 326 at different incident angles in the convex mirror 326, where the apex angle 02 of the convex mirror 326 is equal to 90 degrees as an example. In addition, the incident angle is the angle between the incoming light of the light 10 M370050 and the normal L of the vertical reflecting unit 330. As shown in FIG. 5A, when the incident angle is greater than 65 degrees, the light beam 312 will be twice refracted or added to the total reflection at the interface of the convex mirror 326, and converted into a light of a smaller angle 'so the light beam 312 can The light is incident on the light-transmitting substrate 322' at an angle close to the original vertical direction to achieve light uniformization. In detail, the beam 312 having an incident angle of 65 degrees is converted to an exit angle of 56 degrees after being refracted by two interfaces. The beam 312 with an incident angle of 80 degrees is converted to a 25-degree angle of emergence after two times of interface refraction and one total reflection, while the beam 312 with an angle of incidence of 85 degrees is refracted twice by two interfaces. After the total reflection, it will be converted to an exit angle of 22 degrees. Next, referring to FIG. 5B, when the incident angle falls within the range of 50 degrees to 65 degrees, the light beam 312 may be twice refracted at the interface of the convex mirror 326 and once reflected by the lower reflecting unit 330, or may be matched with A total reflection 'can be converted to light with a smaller exit angle. Therefore, the light beam 312 can be incident on the light-transmitting substrate 322 at an angle close to the original vertical direction, thereby achieving the effect of light uniformization. In detail, the light beam 312 having an incident angle of 55 degrees is converted to an exit angle of 35 degrees after two times of interface refraction, reflection by the primary reflection unit 330, and total reflection. The beam 312 having an incident angle of 60 degrees is converted to an exit angle of 30 degrees after two times of interface refraction, reflection by the primary reflection unit 330, and total reflection once. Only the light beam 312 whose incident angle falls within the range of 40 to 50 degrees cannot be converted into light of a smaller angle. Referring to FIG. 5C, when the incident angle falls within the range of 2 degrees, the light beam 312 will be reflected by the full 11 M370050 twice at the interface of the convex mirror 326 and reflected back to the transparent substrate at the same angle. 322. Since the original angle is already close to 0 degrees, the effect of light homogenization can be achieved. In detail, the light beam 312 having an incident angle of 0 degrees is reflected back to the transparent substrate 322 at an exit angle of the twist after two times of total reflection. The light beam 312 having an incident angle of 2 degrees is reflected back to the transparent substrate 322 at a 2 degree exit angle after two times of total reflection. Referring to FIG. 5D, when the incident angle falls within the range of 2 to 40 degrees, the beam 312 will be twice refracted at the interface of the convex mirror 326 and once reflected by the lower reflecting unit 330. Or with a total reflection, and converted to a small angle or angle to the same light. In particular, the first beam 312 having an incident angle of 17 degrees is still at an exit angle of η after two reflections by the interface refraction and reflection unit 330. The first light beam 312 having an incident angle of 35 degrees is incident on the light-transmitting substrate 322 at an exit angle of 5 degrees after one-time reflection by the two-dimensional refractive and reflecting unit 330. Table 1 is a comparison table of the conversion process of the incident angle and the exit angle of Figs. 5A to 5D. ' Incidence angle (degrees) 0 2 5 10 15 17 Conversion process (degrees) 〇>〇2+2 5 + 35 + 5 10-&25;>10 15->20^15 17->17 Exit angle (degrees) 0 2 5 10 15 17 12 M370050 20 20-^15 15 25 25 + 10 10 30 30+7 7 35 35~^5 5 40 40+50+40 40 45 45+45 45 50 50- >40->50 50 55 55->35-^5 5 60 60->30->7 7 65 65+22+13 13 70 70+14 14 75 75->20^15 15 80 80^25->10 10 85 85->56->35->5 5 Table 1 • Therefore, as can be seen from Table 1, except for the light beam 312 whose incident angle falls within an angular range of 40 to 50 degrees, The light beams 312 incident on the convex mirror 327 at other angular ranges can be converted into light that is emitted slightly, thereby achieving the effect of light homogenization. Fig. 6 is a graph showing the relationship between the incident angle and the exit angle of Table 1. It can be clearly seen from Fig. 6 that most of the incident angles can be converted into the exit angles of the smaller angles. That is, the beam 312 is refracted and totally reflected by the projection mirror 326 and matched with the reflection of the reflection unit 330. Most of the beam 312 (except for the first beam whose incident angle falls within the range of 40 to 50 degrees) can be The light is converted into light having an exit angle of 17 degrees, and the light guide plate 32 is emitted in a direction close to the 13 M370050 vertical reflection unit 330. It should be noted that although the above-mentioned convex mirror 326 is used as an illustrative example, the above results are also applicable to the # mirror cup 394. Table 2 is a table showing the relationship between the apex angle of the convex mirror (prism column), the angle of exit, and the number of times. , apex angle (degrees) 70 80 90 100 110 Table 2 Exit angle (degrees) 14 15 17 20 24 Average number of conversions 5.9 3.7 1.8 1.5 1.3 where 'the average number of transitions represents the number of passes through a convex mirror or prism column 324. It can be seen from Table 2 that the exit angle of the light is proportional to the convex mirror or the apex angle of the prism column 324, but the smaller the apex angle is, the more times it takes to convert to a small exit angle, and the relative loss of light energy also changes. many. For example, when the apex angle of the convex mirror 326 or the mast 324 is 7 degrees, the average conversion needs to be 5.9 times to make the exit angle 14 degrees, and when the apex angle of the convex mirror 326 or the mast 324 is increased. At 11 degrees, the average conversion can be achieved three times to achieve a small angle of exit angle * 24 degrees. Since the common backlight viewing angles on the market are about 24 degrees and 17 degrees, in the case of the corresponding table 2, a convex mirror or a mast 324 having a top corner in the range of 9 〇 to 11 可 can be selected. In this way, the loss of light energy can be minimized, and at the same time it has the effect of light homogenization. 14 M370050 Figures 7A through 7H are schematic cross-sectional views of projections of other embodiments of the present invention, which will be described below. As shown in Fig. 7A, the top region 326b of the convex mirror 326 may be a planar region ' and the width w of the planar region falls within a range from 2 micrometers to 3 micrometers. Next, please refer to Fig. 7B. The top region 326b of the convex mirror 326 may also have a circular arc end, and the radius of curvature r of the circular arc falls within a range from 2 micrometers to 3 micrometers.
θ再來,請參照圖7C,凸出鏡320頂部區域326b還可 、疋相對之外凸的孤形邊緣。每一弧形邊緣的一端連接 底面326a,且其另一端連接該頂部區域32汕,其中弧形 緣的曲卞半梭r是落在30微米至300微米的範圍内。此 外,如圖7D所示,凸出鏡326頂部區域326b也可以是二 之的弧形邊緣。每―狐形邊緣的—端連接底面 1另—端連接該頂部區域326b,其中弧形邊緣的 曲率半役Γ是落在30微米至300微米的範圍内。 凸的:如圖7E所示’凸出鏡326也可以是兩個外 成,、盆中钭=其/別是由斜率不_兩斜邊Sl、S2所組 1最古^广i第—底部撕與斜邊心,且凸出鏡 取同2至底邛326a的距離匕為 部326a之距離h的! j 」〈取%點到底Referring again to Figure 7C, the top region 326b of the projection mirror 320 can also be a relatively convex, solitary edge. One end of each curved edge is joined to the bottom surface 326a, and the other end is connected to the top portion 32A, wherein the curved half-spindle r of the curved edge falls within the range of 30 micrometers to 300 micrometers. Further, as shown in Fig. 7D, the top region 326b of the convex mirror 326 may also be a curved edge of the two. The top end of each of the fox-shaped edges is joined to the bottom surface 1 and the other end is joined to the top region 326b, wherein the curvature of the curved edge is in the range of 30 micrometers to 300 micrometers. Convex: as shown in Fig. 7E, the bulging mirror 326 can also be two externally formed, and the sputum in the basin = its/or the slope is not _ two oblique sides S1, S2 group 1 the most ancient ^ wide i - bottom The torsion and the beveled core are separated, and the distance from the same to the bottom 邛 326a of the convex mirror is the distance h of the portion 326a! j ”<%% to the end
Sl的延1 中線相父於-編4,而左右對稱之兩斜邊s相 =〜。夾角物角^是落在從7〇度至邊 14二 的靶圍内,且皆朝向遠離第— 大於夾角θ4。 表面的方向,亚且頂角〜 M370050 類似於圖7E,凸出鏡326也可以是兩個内凹的v型 邊緣,其分別是由斜率不同的兩斜邊Sl、心所組成,其中 斜邊S!連接第一底部326a與斜邊S2,且凸出鏡326最高 點至底部326a的距離匕為斜邊81之最高點到底部32: 之距離h的1.1〜3倍。另外,左右對稱之兩斜邊心的延伸 線相交於一夾角04,而左右對稱之兩斜邊&相交於頂角 Θ2。夾角6> 4與頂角0 2是落在從70度至ho度的範圍内, 且皆朝向遠離第一表面的方向’並且頂角2小於爽角04。 最後是圖7G與圖7H,在圖7G與圖7H中,凸出鏡 326的截面也可以是弓形。如圖7G所示,弓形且有一圓孤 邊緣,其中圓孤邊緣的曲率半徑r是落在2微米至3〇微米 的範圍内’且由頂點(即最尚點)至第一表面322a的距離 h4疋洛在從5微米至30微米的範圍内。另外,弓形也可 以具有圖7H所示的一橢圓弧邊緣,其為橢圓形的一部分。 擴圓形的一長轴b與一短軸a是落在2微米至3〇微米的範 圍内,且由頂點(即最南點)至第一表面322a的距離h4 是落在從5微米至30微米的範圍内。值得注意的是,圖 7A〜圖7H之實施例雖是以凸出鏡326為說明例子,然而上 述之截面形狀亦適用於棱鏡柱324。 圖8A繪示為本創作之另一實施例之凸出鏡的放大俯 視示意圖。圖8B繪示為圖8A之凸出鏡沿剖面線ι4_ι4,的 剖面示意圖。圖8C繪示為圖8A之凸出鏡沿剖面線ι5_ι5, 的剖面示意圖。圖8A的凸出鏡426與圖4A的凸出鏡326 類似,惟二者差異之處在於:凸出鏡426的沿剖面線14_14, 16 M370050 的截面包括圖7H的橢圓弧邊緣,而凸出鏡426的沿剖面 線I〆5’的截面與圖4C相同。詳細内容已於前面提過,故 在此不加贅述。 圖9A綠示為本創作之另一實施例之凸出鏡的放大俯 視示意圖。圖9B繪示為圖9A之凸出鏡沿剖面線16-16,的 剖面示意圖。圖9C繪示為圖9A之凸出鏡沿剖面線17-17, 的剖面示意圖。圖9A的凸出鏡526與圖9A的凸出鏡326 類似’惟二者差異之處在於:凸出鏡426的沿剖面線Μ〆 的截面包括圖7H的兩外凸的v型邊緣,而凸出鏡426的 沿剖面線Irl/的截面包括與圖7F相同的兩内凹的V型邊 緣。同樣地,詳細内容已於前面提過,故在此不加贅述。 圖10A為本創作另一實施例的背光模組的下視示意 圖’其中本圖中省略反射單元。本實施例之背光模組2〇〇 與圖1的背光模組100類似,惟二者主要差異之處在於: 背光模組200更包括一位於第三表面322d旁的第二發光元 件340。在此,第三表面322d為一第二入光面,其適於讓 第二發光το件340所發出的另一光束(未繪示)通過,以 使另一光束進入如圖2A之透光基板322中。如此,此另 一光束就會經由第三表面322d進入如圖2A之導光板32〇 :、’ f經由第一表面傳遞至稜鏡柱324與凸出鏡326。值 得,意的是,由於背光模組200分別於第一入光面322c 二入光面322d旁皆配置發光元件31〇與33〇,因此光 =於兩·最強,並隨著越靠近中間位置而遞減。故在 Λ施例中’每—連續區域Αι (即條狀區域)在第二方向 17 M370050 y上的見度是設計由靠近第一入光面322c及第二入光面 322d之處往第一入光面322c與第二入光面322d間的中間 位置遞增,以提高中間光線的反射率,讓更多的光線可以 反射至透光基板。 圖10B為本創作另一實施例的背光模組的下視示意 圖,其中本圖中省略反射單元。本實施例之背光模組3〇〇 與背光模組200類似,惟二者主要差異之處在於:連續區 域八!的形狀不同。在圖10A中,連續區域、的形狀較接 近橢圓形的條狀區域,而本實施例之連續區域Αι的形狀為 長方形的條狀區域。 圖11A為本創作另一實施例的背光模組的下視示意 圖,其中本圖中省略反射單元。本實施例之背光模組4〇〇 與背光模組200類似,惟二者主要差異之處在於:連續區 域A!的形狀不同。在圖wa中,連續區域A!的形狀較為 接近橢圓形的長條區域,而本實施例中,連續區域的形 狀為圓形的幾何形狀區域。值得注意的是,這些圓形的幾 何形狀區域的寬度(面積)也是由靠近第一入光面322e 及第二入光面322d之處往第一入光面32^與第二入光面 322d的中間位置遞增。 圖11B為本創作另一實施例的背光模組的下視示意 圖’其中本圖中省略反射單元。本實施例之背光模組5〇〇 與背光模組400類似,惟二者主要差異之處在於:連續區 域八!的形狀不同。詳言之,本實施例之連續區域、的形 狀為六邊形的幾何形狀區域,且這些六邊形的幾何形狀區 18 M370050 域的寬度(面積>)也是由靠近第一入光面3故及第二入光 面322d,處往第人光面322c與第二入光面322d間的中 ^位置遞增。以此類推,圖案化區域Αι的形狀當然也可以 是例如三角形的其他幾何形狀。 圖12A為本創作另一實施例的背光模組的下視示意 圖’其中本圖中省略反射單元。本實施例之背光模組_ -與背光模組400類似,惟二者主要差異之處在於:本實施 象例之圖案化區域(即凸出鏡所在之區域326)以外的區域 包括複數個幾何形狀區域(即連續區域B),且幾何形狀 區域的寬度隨著遠離該第一入光面322c與第二入光面 322d而遞減。此外,本實施之幾何形狀區域B為一四邊形。 圖12B為本創作另一實施例的背光模組的下視示意 ^ 圖’其中本圖中省略反射單元。如圖12B所示,本實施例 之背光模組700與背光模組600類似,惟二者主要差異在 於二者於第一表面上的排列方式不同。詳言之,本實施例 之幾何形狀區域類似是將圖12A的連續區域B旋轉某特定 _ 肖絲做排列。 综上所述,本創作之實施例的導光板具有兩種型態的 微結構:複數個沿第一方向延伸、第二方向排列稜鏡柱以 及複數個凸出鏡。由於稜鏡柱可收斂光場在第二方向的發 散角度,而凸出鏡可同時收斂第一方向和第二方向的發散 角度,因此發光元件的所發出的光束最後能以一種較小角 度甚至接近垂直導光板的出射角度自導光板射出。如此一 來,本創作之實施例的背光模組便能夠形成均勻的面光 19 M370050 ,且=外’由於本創作之實施例的背光模組僅需使用上述 ς稜鏡柱及凸出鏡結構的導光板即可達到一般平面背 电的光學效果’其作法簡單且經濟,因此可降低背光模 、、且的蚪間或金錢成本。 雖然本創作已以實施例揭露如上,然其並非用以限定 ]作任何所屬技術領域中具有通常知識者,在不脫離 ^創作之f神和範圍内,當可作些許之更動與潤飾,故本 lJ作之保護範圍當視後附之申請專利範圍所界定者為準。 另外^創_任—實施例或ΐ料利範圍賴達成本創作 所f路之全部目的或優點或特點。此外,摘要部分和標題 僅是用來辅助專利文件搜尋之用,並非用來限制本創作之 權利範圍。 【圖式簡單說明】 圖1输示為本創作之一實施例的背光模組剖面圖。 圖2A繪示為圖1之背光模組的下視示意圖。 圖2B為習知粗糙度的定義說明圖。 圖3A繪示圖2A之稜鏡柱的放大立體示意圖。 圖3B繪示為圖3A之稜鏡柱沿剖面線1!·^,的剖面示 意圖。 圖4A繪示圖2A之凸出鏡的放大俯視示意圖。 圖4B %示為圖4A之凸出鏡沿剖面線H,的叫面示 意圖。 α ’、 圖4C繪示為圖4Α之凸出鏡沿剖面線W的剖面示 20 M370050 意圖。 圖5A至圖5D為光束於凸出鏡中,以不同入射角度 射入凸出鏡的光線行進圖。 圖6為表1之入射角度對出射角度的作圖。 圖7A至圖7H是本創作其他實施例之凸出鏡的剖面 示意圖 圖8A綠示為本創作之另一實施例之凸出鏡的放大俯 視示意圖。 圖8B繪示為圖8A之凸出鏡沿剖面線l4_l4,的剖面示 意圖。 圖8C繪示為圖8Α之凸出鏡沿剖面線15-15,的剖面示 意圖。 圖9Α繪示為本創作之另一實施例之凸出鏡的放大俯 視示意圖。 圖9Β繪示為圖9Α之凸出鏡沿剖面線16-16’的剖面示 意圖。 圖9C繪示為圖9Α之凸出鏡沿剖面線17-17,的剖面示 意圖。 圖10Α為本創作另一實施例的背光模組的下視示意 圖。 圖10Β為本創作另一實施例的背光模組的下視示意 圖。 圖11Α為本創作另一實施例的背光模組的下視示意 圖。 M370050 圖11B為本創作另—實施例的背光模組的下視示意 圖12A為本創作另—實施例的背光模組的下視示意 圖12B為本創作另—實施例的背光模組的下視示意 【主要元件符號說明】 100、200、300、400、500、600、700 :背光模組 310 :第一發光元件 312 :光束 320 :導光板 322 .透光基板 322a · % 一 表面 322b :第二表面 322c :第一入光面 322d :第三表面 324 :棱鏡柱 324a、326a :底面 324b、326b :頂部區域 326、426、526 :凸出鏡 326d :正投影 330 :反射單元 340 :第二發光元件 22 M370050 X :第一方向 y:第二方向 A:圖案化區域 A1、B .達_績區域 F:粗糙表面曲線 L :法線 R:量測範圍 Lc :中心線 θι、02、Θ3· 丁頁角 0 4 :夾角 d、知、h2、h3、tu :距离隹 w :寬度 r :半徑The extension of the midline of Sl is in the middle of the -4, and the two oblique sides of the left and right symmetry s phase = ~. The angle of the object angle ^ falls within the target range from 7 degrees to the side 14 and both are oriented away from the first - greater than the angle θ4. The direction of the surface, sub-apex angle ~ M370050 Similar to Figure 7E, the convex mirror 326 can also be two concave v-shaped edges, which are composed of two oblique sides S1 and a core with different slopes, wherein the oblique side S The first bottom portion 326a and the oblique side S2 are connected, and the distance 最高 from the highest point of the convex mirror 326 to the bottom portion 326a is 1.1 to 3 times the distance from the highest point of the oblique side 81 to the bottom 32:. In addition, the extension lines of the two beveled hearts of the left and right symmetry intersect at an angle 04, and the two oblique sides of the left and right symmetry intersect at the apex angle Θ2. The included angles > 4 and the apex angle 0 2 fall within a range from 70 degrees to ho degrees, and both are oriented in a direction away from the first surface and the apex angle 2 is smaller than the refresh angle 04. Finally, Fig. 7G and Fig. 7H, in Fig. 7G and Fig. 7H, the cross section of the convex mirror 326 may also be arcuate. As shown in FIG. 7G, it is arcuate and has a rounded edge, wherein the radius of curvature r of the rounded edge is in the range of 2 micrometers to 3 micrometers and the distance from the vertex (ie, the most desirable point) to the first surface 322a. The h4 疋 Luo is in the range from 5 microns to 30 microns. Alternatively, the arcuate shape may have an elliptical arc edge as shown in Figure 7H, which is part of an elliptical shape. A major axis b and a minor axis a of the expanded circle fall within a range of 2 micrometers to 3 micrometers, and the distance h4 from the vertex (ie, the southernmost point) to the first surface 322a falls from 5 micrometers to Within the 30 micron range. It is to be noted that the embodiment of Figs. 7A to 7H is an example of the projection mirror 326, but the above-described cross-sectional shape is also applicable to the prism column 324. Fig. 8A is a schematic enlarged plan view showing a projection of another embodiment of the present invention. Figure 8B is a cross-sectional view of the projection mirror of Figure 8A taken along section line ι4_ι4. 8C is a schematic cross-sectional view of the convex mirror of FIG. 8A along a section line ι5_ι5. The lenticular mirror 426 of FIG. 8A is similar to the lenticular mirror 326 of FIG. 4A except that the cross-section of the lenticular mirror 426 along section line 14_14, 16 M370050 includes the elliptical arc edge of FIG. 7H, and the edge of the convex mirror 426 The section of the hatching I 〆 5' is the same as that of Fig. 4C. The details have been mentioned above, so I will not repeat them here. Fig. 9A is a schematic enlarged plan view showing the projection of another embodiment of the creation. Figure 9B is a cross-sectional view of the projection of Figure 9A along section line 16-16. 9C is a cross-sectional view of the convex mirror of FIG. 9A along section line 17-17. The lenticular mirror 526 of FIG. 9A is similar to the lenticular mirror 326 of FIG. 9A' only differing in that the cross-section of the convex mirror 426 along the section line 包括 includes the two convex v-shaped edges of FIG. 7H, and the convex mirror 426. The section along the section line Irl/ includes the same two concave V-shaped edges as in Fig. 7F. Similarly, the details have been mentioned above, so I will not repeat them here. Fig. 10A is a bottom plan view of a backlight module of another embodiment of the present invention, in which a reflection unit is omitted in the figure. The backlight module 2 of the present embodiment is similar to the backlight module 100 of FIG. 1, but the main difference is that the backlight module 200 further includes a second illuminating element 340 located beside the third surface 322d. Here, the third surface 322d is a second light incident surface, which is adapted to pass another light beam (not shown) emitted by the second light emitting element 340, so that the other light beam enters the light transmission as shown in FIG. 2A. In the substrate 322. Thus, the other light beam enters the light guide plate 32A of FIG. 2A via the third surface 322d:, f is transmitted to the mast 324 and the convex mirror 326 via the first surface. It is worthwhile, because the backlight module 200 is disposed on the first light-incident surface 322c, respectively, adjacent to the light-emitting surface 322d, and the light-emitting elements 31〇 and 33〇 are disposed, so that the light is the strongest and the closer to the middle position. And decrement. Therefore, in the embodiment, the visibility of each of the continuous regions Αι (ie, the strip regions) in the second direction 17 M370050 y is designed to be close to the first light incident surface 322c and the second light incident surface 322d. The intermediate position between the light incident surface 322c and the second light incident surface 322d is increased to increase the reflectance of the intermediate light, so that more light can be reflected to the transparent substrate. Fig. 10B is a bottom plan view of a backlight module according to another embodiment of the present invention, in which a reflection unit is omitted in the figure. The backlight module 3〇〇 of the present embodiment is similar to the backlight module 200, but the main difference between the two is: continuous area eight! The shape is different. In Fig. 10A, the continuous region has a shape closer to the elliptical strip-like region, and the continuous region of the present embodiment has a rectangular strip-like region. Fig. 11A is a bottom plan view of a backlight module according to another embodiment of the present invention, in which the reflecting unit is omitted in the figure. The backlight module 4 of the present embodiment is similar to the backlight module 200, but the main difference between the two is that the shapes of the continuous areas A! are different. In the diagram wa, the shape of the continuous area A! is closer to the elliptical long area, and in the present embodiment, the continuous area has a circular geometric area. It should be noted that the width (area) of the circular geometrical regions is also from the first light incident surface 322e and the second light incident surface 322d to the first light incident surface 32^ and the second light incident surface 322d. The middle position is incremented. Figure 11B is a bottom plan view of a backlight module of another embodiment of the present invention. The reflection unit is omitted in the figure. The backlight module 5 of the embodiment is similar to the backlight module 400, but the main difference between the two is: continuous area eight! The shape is different. In detail, the continuous region of the present embodiment has a hexagonal geometrical shape, and the width (area >) of the hexagonal geometrical region 18 M370050 domain is also close to the first light incident surface 3 Therefore, the second light incident surface 322d is moved to the middle position between the first light surface 322c and the second light incident surface 322d. By analogy, the shape of the patterned area Αι can of course also be other geometric shapes such as triangles. Fig. 12A is a bottom plan view of a backlight module of another embodiment of the present invention. The reflection unit is omitted in the figure. The backlight module of the present embodiment is similar to the backlight module 400, but the main difference between the two is that the region other than the patterned region (ie, the region 326 where the convex mirror is located) of the embodiment includes a plurality of geometric shapes. The region (ie, continuous region B), and the width of the geometric region decreases as moving away from the first light incident surface 322c and the second light incident surface 322d. Further, the geometrical area B of the present embodiment is a quadrilateral. FIG. 12B is a bottom view of a backlight module according to another embodiment of the present invention. FIG. 12B illustrates a reflection unit omitted in the figure. As shown in FIG. 12B, the backlight module 700 of the present embodiment is similar to the backlight module 600, but the main difference between the two is that the arrangement of the two on the first surface is different. In detail, the geometrical region of this embodiment is similarly arranged by rotating a continuous region B of Fig. 12A by a particular _ chord. In summary, the light guide plate of the embodiment of the present invention has two types of microstructures: a plurality of types extending in a first direction, a second direction arranging a mast, and a plurality of protruding mirrors. Since the mast can converge the divergence angle of the light field in the second direction, and the convex mirror can simultaneously converge the divergence angles of the first direction and the second direction, the emitted light beam of the light-emitting element can finally be closer to a small angle. The exit angle of the vertical light guide plate is emitted from the light guide plate. In this way, the backlight module of the embodiment of the present invention can form a uniform surface light 19 M370050, and the outer backlight of the embodiment of the present invention only needs to use the above-mentioned mast and convex mirror structure. The light guide plate can achieve the optical effect of general planar back-up. The method is simple and economical, so that the backlight module can be reduced, and the cost of the backlight or the money can be reduced. Although the present invention has been disclosed in the above embodiments, it is not intended to be limited to any one of ordinary skill in the art, and may be modified and retouched without departing from the scope of creation. The scope of protection of this document is subject to the definition of the scope of the patent application. In addition, the scope of the invention or the benefit of the application is to achieve all the objectives or advantages or features of the creation. In addition, the abstract sections and headings are only used to assist in the search for patent documents and are not intended to limit the scope of this creation. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a backlight module according to an embodiment of the present invention. 2A is a schematic bottom view of the backlight module of FIG. 1. Fig. 2B is an explanatory diagram of the definition of the conventional roughness. 3A is an enlarged perspective view of the mast of FIG. 2A. Figure 3B is a cross-sectional view of the mast of Figure 3A along section line 1!. 4A is a schematic top plan view of the protruding mirror of FIG. 2A. Figure 4B is a schematic illustration of the projection of Figure 4A along section line H. α ′, FIG. 4C is a cross-sectional view of the lenticular lens of FIG. 4 along the section line W. 20 M370050 is intended. 5A to 5D are diagrams showing the ray travel of the light beam into the convex mirror at different incident angles in the convex mirror. Figure 6 is a plot of the angle of incidence versus the angle of exit for Table 1. 7A to 7H are schematic cross-sectional views showing a convex mirror of another embodiment of the present invention. Fig. 8A is a schematic enlarged plan view showing a convex mirror of another embodiment of the present invention. Figure 8B is a cross-sectional view of the lenticular lens of Figure 8A taken along section line 144-14. Figure 8C is a cross-sectional view of the lenticular lens of Figure 8 taken along section line 15-15. Fig. 9 is a schematic enlarged plan view showing a projection of another embodiment of the present invention. Figure 9A is a cross-sectional view of the projection of Figure 9 taken along section line 16-16'. Figure 9C is a cross-sectional view of the projection of Figure 9 taken along section line 17-17. Figure 10 is a bottom plan view of a backlight module of another embodiment of the present invention. Figure 10 is a bottom plan view of a backlight module of another embodiment of the present invention. Figure 11 is a bottom plan view of a backlight module of another embodiment of the present invention. M370050 FIG. 11B is a bottom view of a backlight module according to another embodiment of the present invention. FIG. 12B is a bottom view of the backlight module of the other embodiment of the present invention. FIG. [Main component symbol description] 100, 200, 300, 400, 500, 600, 700: backlight module 310: first light-emitting element 312: light beam 320: light guide plate 322. light-transmitting substrate 322a · % one surface 322b: second Surface 322c: first light incident surface 322d: third surface 324: prism pillars 324a, 326a: bottom surface 324b, 326b: top region 326, 426, 526: convex mirror 326d: orthographic projection 330: reflection unit 340: second light emitting element 22 M370050 X : First direction y: Second direction A: Patterned area A1, B. 达 —— 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Page angle 0 4 : angle d, know, h2, h3, tu: distance 隹 w: width r: radius
Si、S2 :斜邊 a :短軸 b :長轴 23Si, S2: hypotenuse a: short axis b: long axis 23