M343817、 八、新型說明: 【新型所屬之技術領域】 本創作大體上是關於一種光擴散板結構,特別是關於 一種具有雷射内雕圖形以改善其輝度與輝度均勻性之擴散 板(diffusion plate)與導光板(light guide plate, LGP)。 【先前技術】 時至今日,薄膜電晶體液晶顯示器(TFT_LCD,thin film transistor liquid crystal displayer)在電腦、通訊與消費性等 參3C電子產業中已經大規模地取代了 一般傳統的陰極射線 管顯示器(CRT,cathode-ray tube)。TFT-LCD顯示器與傳統 的CRT顯示器相較之下,其厚度較薄、重量較輕,且具有 低輻射的優點,故TFT-LCD面板可適用時下熱門的電子產 品,如筆記型電腦、個人行動助理(PDA)、手機、數位相 機、平面電視、投影機以及數位相框等具商業潛力的3C 電子產u口上。文到LCD低價面板的刺激與電子產品對於外 #型輕薄可攜的訴求,TFT-LCD已變成近年來世界上主要的 • 顯不技術。 LCD面板主要是由彩色遽光片、背光模組响 则㈣)、驅動IC、補償膜(compensate film)、偏光片、玻 璃面板、ΙΤ〇層與控制電路等所組成。在lcd面板的製作 中’製造商須先將彩色濾、光片與玻璃面板組合並填入液晶 材料。其他的元件,如背光模組、驅動冗及控制電路等, 會在之後與該液晶面板組mCD模組再供給 記型電腦或LCD顯示器之製造商作進—步的加卫。由於液 4 M343817 * 晶面板本身無法自發光,所以需要發光模組提供光源。故 此,TFT-LCD產業的興盛也促進了其相關之背光模組與元 件的發展。 背光模組是LCD面板中的關鍵零組件之一,其重要性 僅次於彩色濾光片。背光模組主要是由光源、燈罩、反射 •片、導光板(light guide plate, LGP)、擴散板(diffuser)、增 亮膜(Brightness Enhancement Film, BEF)及外殼所組成,其 中光學層與導光板的製作是其中最重要的技術與成本的所 參在。受到LCD面板對於外型輕薄與低耗電訴求之影響,開 發新的背光模組與研究新的元件射出成形方法是現今 LCD產業需努力發展的方向。 背光模組的主要功能為提供一均勻、高亮度的光源(即 所謂的平面光源)。平面光源的基本原理為將一般常用的點 光源或線光源轉換為具有高亮度與輝度均勻性(luminance uniformity)的平面光。一般而言,背光模組的光源必須具 鲁有高亮度與壽命時間長的特性。現今背光模組所使用的光 * 源包含有冷陰極螢光燈管(cold cathode fluorescent lamp, , CCFL)、發光二極體(light emitting diode,LED)與電致發光 (electro luminescent, EL),其中CCFL具有高輝度、高發光 效率、使用壽命長以及高演色性等特點,再加上CCFL的 管狀外型易與光反射元件組合形成面板狀的發光裝置。故 CCFL現在已成為LCD面板中所使用的主要光源之一。一 般來說,CCFL多用於大尺寸的背光模組之中,至於小尺 寸的背光模組(使用在PDA、數位相機、手機等可攜式產 5 M3438.17 · 品)則多使用LED以提供低耗能且體積小的光源。 背光模組的結構依其燈源位置通常可分成兩種類別: 直下式(direct-light)與側光式(edge]ight),如圖一 a與圖二 • a所示。在圖一 a中,複數個光源1〇1以相互分隔的方式 配置在直下式背光模組1 〇〇的擴散板丨丨〇下方。從光源1 J 發出的光會往上經過擴散板〗i 0並被均勻散射以在LCD面 板105上形成平面光。由於擴散板11〇的下方有足夠的空 籲間供以光源101配置,故依LCD面板1〇5的尺寸大小,直 下式背光模組可具有兩個或兩個以上的燈管(或多個以陣 列方式排列的LED光源),但此作法亦會增加LCD模組整 體的重里、厚度與耗電量。一反射板1 〇4配置在光源j 〇工 的下方以將光源101朝下發射的光線反射至擴散板11〇以 提高平面光的輝度及輝度均勻性。直下式背光模組具有高 輝度、高發光效率以及結構簡單等優點,故可適用於大尺 寸的LCD電視或LCD顯示器方面。儘管先前技術中的直 鲁下式背光模組1〇〇使用了擴散板11〇以改善lcd面板1〇5 ‘中輝度不均的問題,但其輝度表現依然不佳。如圖—㈣ 示、,擴散板no的内部散佈著為數眾多的擴散粒子107。 因為透明塑膠材料(如PMMS,pc,MS,ps等材質)1〇3盘擴 散粒子(如PMMA材質)1〇7之間折射率不同的關係,擴散 粒子107可被用以將從光源1〇1處入射的光往各個方向散 射。要控制擴散粒子107在透明塑膠材料1〇3中各個位置 的密度分佈相當困難,故限制了擴散板11〇均化咖面板 輝度之能力。如圖一 b所示,其為普通直下式背光模組中 ^343817 輝度沿x軸之分佈圖。圖中輝度的最大值a·)位置在χ 軸上是與光源1〇1的位置對齊,而輝度的最小值位置 在X軸上則是與兩光源101的中點位置對齊。面板上最大 輝度與最小輝度之差值即決定了整個LCD面板的輝度均 •勻性。當取大輝度與最小輝度的差值超過i〇0nits(即cd/m2) 時,LCD面板上會產生肉眼可觀察到的亮暗條紋分佈,即 2謂的lamp mura現象(輝度不均)。為此’業界已開發出 • I些方法以解決此問題。請參閱圖—C,其說明了先前技 術中另一改善直下式背光模組之輝度均勻性的方法。如圖 一 c所示,擴散板110的上表面與下表面上有許多呈特定 圖形分佈的刻點(dot)109。本例中的刻點1〇9可為以油墨 印刷或其他方式所形成的微結構。如圖—c中所示,入二 光S又到擴散板1 1 〇上呈特定圖形分佈的刻點i⑽反射, 以此結構方法,通過擴散板109的光所呈現出來的輝度在 =同位置會有一致的表現。如圖中所示,在與光源⑻對 φ >=!的位置處所形成的刻點1 09較多以反射比其他X軸位置 更夕的入射光。因為通過的入射光量會受反射而變少, '故對應此光源位置處的輝度會下降使得整體的輝度表現均 化儘^在擴散板的上表面或下表面形成呈特定圖形分佈 的微結構之方法在輝度均勻性方面較圖一 b中之方法來的 佳(即圖一c之方法所產生的LCD面板最大輝度與最小輝 度差值會小於圖一 b之差值),但由於其點圖形只能在擴散 板表面以—維方式分佈,故此作法對於輝度均勻性之改呈 有疋的極限。再者,入射光被擴散板1 〇 7與刻點1 〇 9 7 M343817 · 一亦代表著通過擴散板1 1 〇的入射光量較少,而使得 月光杈組整體的輝度下降。故此,業界需要開發一種新穎 的方法以改善擴散板的輝度均勻性。 現在請參閱圖二a,其說明了先前技術中一側光式背 光模組結構。側光式背光模組200的光源201是設置在背 光杈組200的側邊。由於侧光式結構之設計能使lCD面板 更薄更輕且耗電量更低,故常被使用在中小尺寸或者具有 薄型化需求的LCD面板上,如手機、pDA、筆記型電腦的 顯不器,作為其光源。導光板2〇3是側光式背光模組中最 要的元件之,練澡影響背光模組整體的發光效率與輝 度均勻性。導光板203主要的功能為引導從侧邊發出的入 射光以增加LCD面板的輝度並控制其輝度均勻性。如圖二 a所示;k光源2〇1發出的光可藉由内部全反射的方式(tir, t〇=l mternai reflecti〇n)傳播至導光板之另側。導光板2〇3 通常是以不具光吸收性質的高折射率材質所製成。導光板 203的底面上具有諸多微結構2〇5形成用以破壞其内部全 反射桟制瓖光得以從導光板2〇3的上表面導光。隨之,光 會依序仃經下擴散膜(diffusi〇n film)2〇7、稜鏡片 sheet)209及上擴散膜211到LCD面板213。藉由控制導光 板203下表面的微結構2〇5之密度與大小,[〔ο面板 的輝度均勻性可獲得改善。微結構2〇5通常是以油墨印刷 或直接射出成形的方式形成。而v型刻槽(v_cut)是導光板 製作中種熱門且有效的微結構之一。如圖二b所示,V 型刻槽技術是在導光板的底面形成多個呈規律排列的溝槽 8M343817, VIII, new description: [New technical field] This creation is generally about a light diffusing plate structure, especially a diffusing plate with a laser inner carving pattern to improve its brightness and luminance uniformity. ) with a light guide plate (LGP). [Prior Art] Today, thin film transistor liquid crystal display (TFT_LCD) has replaced the conventional cathode ray tube display on a large scale in the 3C electronics industry such as computer, communication and consumer. CRT, cathode-ray tube). Compared with traditional CRT displays, TFT-LCD displays are thinner, lighter, and have lower radiation. Therefore, TFT-LCD panels can be used for popular electronic products such as notebook computers and personal computers. 3C electronic products such as mobile assistants (PDAs), mobile phones, digital cameras, flat-panel TVs, projectors, and digital photo frames. The stimuli of the LCD low-cost panel and the appeal of electronic products for the external-type thin and light portable, TFT-LCD has become the main technology in the world in recent years. The LCD panel is mainly composed of a color light film, a backlight module (4), a driver IC, a compensation film, a polarizer, a glass panel, a germanium layer and a control circuit. In the production of LCD panels, manufacturers must first combine color filters, light sheets and glass panels and fill them with liquid crystal materials. Other components, such as backlight modules, drive redundancy, and control circuitry, will be added later to the manufacturer of the LCD panel mCD module to the recorder or LCD display. Since the liquid 4 M343817 * crystal panel itself cannot self-illuminate, the light module is required to provide a light source. Therefore, the prosperity of the TFT-LCD industry has also contributed to the development of its related backlight modules and components. The backlight module is one of the key components in the LCD panel, and its importance is second only to the color filter. The backlight module is mainly composed of a light source, a lamp cover, a reflection sheet, a light guide plate (LGP), a diffuser, a brightness enhancement film (BEF) and an outer casing, wherein the optical layer and the guide are The production of light panels is one of the most important technologies and costs involved. Affected by the thinness and low power consumption of LCD panels, the development of new backlight modules and the research of new component injection molding methods are the current development direction of the LCD industry. The main function of the backlight module is to provide a uniform, high-brightness light source (so-called planar light source). The basic principle of a planar light source is to convert a commonly used point source or line source into planar light with high brightness and luminance uniformity. In general, the light source of the backlight module must have high brightness and long life. The light source used in the backlight module today includes a cold cathode fluorescent lamp (CCFL), a light emitting diode (LED), and an electro luminescent (EL). Among them, CCFL has the characteristics of high brightness, high luminous efficiency, long service life and high color rendering, and the tubular shape of CCFL is easy to combine with light reflecting elements to form a panel-like light-emitting device. Therefore, CCFL has now become one of the main light sources used in LCD panels. In general, CCFLs are mostly used in large-size backlight modules. As for small-sized backlight modules (used in portable models such as PDAs, digital cameras, and mobile phones, 5 M3438.17 products), LEDs are often used to provide Low energy and small size light source. The structure of the backlight module can be generally divided into two categories according to the position of the light source: direct-light and edge-wise, as shown in Figure 1 a and Figure 2 • a. In Fig. 1a, a plurality of light sources 1〇1 are disposed in a mutually separated manner under the diffusion plate 直 of the direct type backlight module 1 。. Light emitted from the light source 1 J passes upward through the diffuser plate i 0 and is uniformly scattered to form planar light on the LCD panel 105. Since there is enough space under the diffuser 11〇 for the light source 101 to be configured, the direct type backlight module may have two or more lamps (or more depending on the size of the LCD panel 1〇5). LED light sources arranged in an array, but this method will also increase the overall weight, thickness and power consumption of the LCD module. A reflecting plate 1 〇 4 is disposed under the completion of the light source j to reflect the light emitted downward by the light source 101 to the diffusing plate 11 〇 to improve the luminance and luminance uniformity of the planar light. The direct-lit backlight module has the advantages of high brightness, high luminous efficiency, and simple structure, so it can be applied to large-size LCD TVs or LCD displays. Although the prior art direct-lit backlight module 1 uses a diffuser 11 〇 to improve the unevenness of the lcd panel 1 〇 5 ′, the luminance performance is still poor. As shown in Fig. 4(4), a large number of diffusing particles 107 are interspersed inside the diffusing plate no. Because transparent plastic materials (such as PMMS, pc, MS, ps, etc.) 1 〇 3 disk diffusion particles (such as PMMA material) 1 〇 7 between the refractive index difference, the diffusion particles 107 can be used to be from the light source 1 One incident light scatters in all directions. It is quite difficult to control the density distribution of the diffusion particles 107 at various positions in the transparent plastic material 1〇3, thereby limiting the ability of the diffusion plate 11 to homogenize the brightness of the coffee panel. As shown in Figure 1b, it is the distribution of ^343817 luminance along the x-axis in a normal direct-lit backlight module. The maximum value a·) of the luminance in the figure is aligned with the position of the light source 〇1 on the χ axis, and the minimum position of the luminance is aligned with the midpoint position of the two light sources 101 on the X axis. The difference between the maximum luminance and the minimum luminance on the panel determines the brightness uniformity of the entire LCD panel. When the difference between the large luminance and the minimum luminance exceeds i〇0nits (ie, cd/m2), a bright and dark fringe distribution that is observable to the naked eye is generated on the LCD panel, that is, the 2nd lamp mura phenomenon (inhomogeneity of luminance). To this end, the industry has developed a number of methods to solve this problem. Please refer to Fig. C, which illustrates another method for improving the luminance uniformity of a direct type backlight module in the prior art. As shown in Fig. cc, the upper and lower surfaces of the diffuser plate 110 have a plurality of dots 109 distributed in a specific pattern. The indentation 1〇9 in this example may be a microstructure formed by ink printing or other means. As shown in Fig. c, the incoming light S is again reflected by the engraved point i(10) of the specific pattern distribution on the diffusing plate 1 1 ,. With this structural method, the luminance exhibited by the light passing through the diffusing plate 109 is at the same position. There will be consistent performance. As shown in the figure, the engraving point 119 formed at the position of φ >=! with the light source (8) is more likely to reflect the incident light than the other X-axis positions. Since the amount of incident light passing through is reduced by reflection, 'the brightness corresponding to the position of the light source is lowered, so that the overall luminance performance is uniformized. A microstructure having a specific pattern distribution is formed on the upper surface or the lower surface of the diffusion plate. The method is better than the method in Figure 1b in terms of luminance uniformity (that is, the difference between the maximum luminance and the minimum luminance of the LCD panel produced by the method of Figure 1c is smaller than the difference between Figure 1b), but due to its dot pattern It can only be distributed in a dimensional manner on the surface of the diffuser, so this method has a limit on the uniformity of luminance uniformity. Furthermore, the incident light is diffused by the diffusing plate 1 〇 7 and the engraved point 1 〇 9 7 M343817. The amount of incident light passing through the diffusing plate 1 1 〇 is also small, so that the luminance of the entire moonlight group is lowered. Therefore, the industry needs to develop a novel method to improve the luminance uniformity of the diffuser. Referring now to Figure 2a, a prior art side light backlight module structure is illustrated. The light source 201 of the edge-lit backlight module 200 is disposed on the side of the backlight unit 200. Because the design of the edge-light structure can make the lCD panel thinner, lighter and consume less power, it is often used in LCD panels with small or medium size or thinning requirements, such as mobile phones, pDA, and notebook computers. As its light source. The light guide plate 2〇3 is the most important component of the edge-lit backlight module, and the bathing effect affects the overall luminous efficiency and luminance uniformity of the backlight module. The main function of the light guide plate 203 is to guide the incident light emitted from the side to increase the brightness of the LCD panel and control its luminance uniformity. As shown in Fig. 2a, the light emitted by the k-light source 2〇1 can be propagated to the other side of the light guide plate by internal total reflection (tir, t〇=l mternai reflecti〇n). The light guide plate 2〇3 is usually made of a high refractive index material having no light absorbing property. The bottom surface of the light guide plate 203 has a plurality of microstructures 2 〇 5 formed to break the internal total reflection 瓖 light to guide light from the upper surface of the light guide plate 2 〇 3 . Accordingly, the light is sequentially passed through the lower diffusion film 2, 7, the reticle sheet 209 and the upper diffusion film 211 to the LCD panel 213. By controlling the density and size of the microstructure 2〇5 of the lower surface of the light guide plate 203, [[the brightness uniformity of the panel can be improved. The microstructure 2〇5 is usually formed by ink printing or direct injection molding. The v-cut is one of the most popular and effective microstructures in the manufacture of light guide plates. As shown in Figure 2b, the V-groove technique is to form a plurality of regularly arranged grooves on the bottom surface of the light guide plate.
07年V濟正 因為此結構類似於直接在導光板上形成片—H M343817 215 省略稜鏡層的成本,此結構亦可使LCD面板的輝度增加 3〇%mv型刻槽結構的導光板有上述之優點,其仍 舊存在著輝度均勻性不佳的問題。如圖二b所示,由於V 型溝槽215纟導光才反203上呈規律排列之緣故,導光板2〇3 靠近光源部位(时的範圍A以内)的輝度會因為光干涉現 象而呈柵欄分佈,而範圍A以外區域的輝度均勾性亦不 佳。因此,v型刻槽結構215會在LCD面板上產生斑光源 1平行、明暗相間的條紋,如圖:b所示,此即所謂的μ〇 鑛a效應。除了輝度均勻性的問題外,由於具v型刻槽的 導光板之製造需要開模的步驟’故其開發亦需要花費多餘 的時間與成本。此外,v型刻槽結構215的轉寫 (transcription)也是另一個要考慮的問題。 【新型内容】 構以揭露了 —種使用之擴散板與導光板結 H LCD面板的輝度均自性並料先前技術中咖 a與curtain mura(輝度不均)等問題。 文字=内雕是—種在基材上產生細微溝槽或裂縫以形成 :圖樣的製程。此技術採用具透光性與高折射係數之 4二 PMMA)以形成内部圖形或影像。雷射内雕 留的問題故後續不需額外的拋光製程。而且 以簡單的進行二維或三維的操控。因此,刻 ° ^可以準確的分佈在透光材質中。 本創作-實施例中提出了-種使用雷射内雕之擴散板 9 M343817 · I-- 結構。該内部散射點之密度是呈高斯分_, -置在擴散板下方的光源間中點對齊,而其最大值則與/光源 位置對齊。本實施例中散射點的密度分佈可抵銷其相制 :位置處不均勻的輝度分佈以改善LCD面板的輝度均勻: :,解決lamp mura等問題。除此之外,在導光板内部形成 ^ 散射點亦可增加LCD面板整體的輝度。 本創作另一實施例中提出了一種使用雷射内雕之導光 -板結構,以解決一般具V型刻槽微結構之導光板中常出現 •的kido mura問題。其内部散射點會配置在導光板中咖 mura所發生的區域以將經過該處的入射光散射並消除該 區域所呈現出來的亮暗條紋。 Λ 本創作另一實施例中提出了一種使用雷射内雕之導光 板結構,以解決一般採用複數LED點光源之導光板中常出 現的curtain mura問題。其内部散射圖形會配置在導光板 中curtain mura發生的區域以將㈣在與咖光源處對齊 _位置之光線散射以均化導光板整體的輝度分佈。 ' 纟本創作又—實施例中提出了 -種❹雷射内雕之導 .光板結構,其巾該内部散射點可㈣财複數個相分隔與 (或)平行的圖形平面上。該複數個圖形平面的點密度與平 面之間的間距可依導光板原本的輝度分佈以進行個職丑 同的調變。本實施例中散射點的密度分佈可緩和其相對應 位置處的輝度分佈以改善LCD面板的輝度均勻性並解決 =度不均的問題。除此之外,在導光板内部形成散射點亦 可增加LCD面板整體輝度。 M343817 97.年6.y|修正 光板=創::;實施例中提出了-種使用雷 °八该内部散射點排列在複數個沿導光板分佑 的正弦曲線平面上。哕 刀佈 正弦波之-分之二 點密度與周距(即In 2007, V Jizheng was similar to the cost of forming a sheet directly on the light guide plate-H M343817 215, which can also increase the brightness of the LCD panel by 3〇%mv. The above advantages still have the problem of poor uniformity of luminance. As shown in FIG. 2b, since the V-shaped grooves 215 are guided by the light 203, the brightness of the light guide plate 2〇3 close to the light source portion (within the range A) is caused by the light interference phenomenon. The fence is distributed, and the brightness outside the range A is also poor. Therefore, the v-groove structure 215 produces parallel, bright and dark streaks of the spot light source 1 on the LCD panel, as shown in Fig. b, which is the so-called μ〇 mine a effect. In addition to the problem of uniformity of luminance, since the manufacture of a light guide plate having a v-groove requires a step of opening a mold, the development thereof also requires extra time and cost. In addition, the transcription of the v-groove structure 215 is another problem to be considered. [New content] The structure reveals a diffusing plate and a light guide plate for use. The brightness of the H LCD panel is self-contained and the problems of the prior art, such as coffee and a curtain, are uneven. Text = internal engraving is a process in which fine grooves or cracks are created on a substrate to form: a pattern. This technique uses 4 PMMA with light transmission and high refractive index to form internal graphics or images. The problem of the laser engraving remains so that no additional polishing process is required. And with simple two- or three-dimensional manipulation. Therefore, the engraving ° ^ can be accurately distributed in the light-transmitting material. In the present creation-embodiment, a diffusion plate 9 M343817 · I-- structure using laser engraving is proposed. The density of the internal scattering points is Gaussian, which is aligned at the midpoint between the light sources below the diffuser, and its maximum is aligned with the position of the light source. The density distribution of the scattering points in this embodiment can offset the phase difference: the uneven brightness distribution at the position to improve the brightness uniformity of the LCD panel: :, solving the problem of lamp mura and the like. In addition, the formation of a scattering point inside the light guide plate can also increase the brightness of the entire LCD panel. In another embodiment of the present invention, a light guide-plate structure using laser engraving is proposed to solve the problem of the kido mura which is often found in a light guide plate having a V-shaped grooved microstructure. The internal scattering point is arranged in the area where the light mura occurs in the light guide plate to scatter the incident light passing therethrough and eliminate the bright and dark stripes appearing in the area. In another embodiment of the present invention, a light guide plate structure using laser engraving is proposed to solve the problem of curtain mura which is often found in a light guide plate using a plurality of LED point sources. The internal scattering pattern is arranged in the area where the curtain mura occurs in the light guide plate to scatter the light in the _ position at the position of the light source to homogenize the luminance distribution of the entire light guide plate. ' 纟 创作 又 — 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The dot density of the plurality of graphics planes and the spacing between the planes may be ugly and mutated according to the original luminance distribution of the light guide plate. The density distribution of the scattering dots in this embodiment can alleviate the luminance distribution at the corresponding positions to improve the luminance uniformity of the LCD panel and solve the problem of unevenness of the degree. In addition, the formation of scattering points inside the light guide plate can also increase the overall brightness of the LCD panel. M343817 97. Year 6.y|Correction Light plate=Creation::; In the embodiment, it is proposed that the internal scattering point is arranged on a plurality of sinusoidal planes along the light guide plate.哕 knife cloth sine wave - two points density and circumference (ie
,或共同的調變。本實施例中散射點== ·=,相對應位置處的輝度分佈以改善L 均勾性並解決輝度不均的問題。除此之外,n度 -形成散射點亦可增加LCD面板整體的輝度。 π 本創作之-觀點為以雷射 成内部散射點。 午尤极Τ形 的輝另一目的為以雷射内雕改善擴散板與導光板 本創作中所提之雷射内雕結構可使用在 組或側光式背光模組的製作中。 先拉 料“道丄1 氣作中其所述之散射點亦可刻在 抬政板與V光板的上表面與下表面上。 如油墨印刷、擴散粒子及微結構等)配合以進一步2 LCD面板的輝度均勻性。 口 以下t:,:述之形、式、目的、觀點、特徵及優點將隨著 :土貫轭例中詳細的描述及其伴隨之 1將:::節描r圖式僅用以述明本創作。而本創二 可將由隨附之專利請求項來定義。 【實施方式】 本創作將針對較佳實施例及其觀點加以詳細敛述,而 11 ,M343817 線 補充, 此類敘述為解釋本創作 丨丨1日補 以限制本創作之申靖專利f:鬥序’係用以纽•料 實施例之外,本因此’除說明書中之較佳 請參閱圖二c,其說二其r實施例。 结構與雷射内雕刻點之導光板截面圖。在圖中彳 =置的底面上有V型刻槽微結構215。-光源2。1 的= 的側面。圖二c中的區域A與圖二b中 的區域A相同,盆矣;7 , ,/、表不了一般V型刻槽導光板中會發生 kld〇鑛a的區域。許多刻點214被刻在導光板2〇3内部的 二mfr光源2gi處發出的人射光散射。在本創作 、匕歹1 ’經由刻點214散射的光線會均化區域A中因 v型刻槽微結構產生的亮暗條紋並解決k▲觸問題。 如圖二C中的曲線〇所示,其為本實施例中沿導光板203 ^分佈’可注意到原本圖二b區域A内所產生的柵攔 口 /在圖一 c的曲線c上已不見,而呈一平緩的曲線分佈。 、請參閱圖三a ’其說明了本創作實施例中-擴散板的 頂視圖與其内部刻點(或裂縫)沿X軸的密度分佈。在圖 中,區塊301代表了一背光模組中常用之擴散板結構。複 數個光源(如CCFL燈管)3〇5沿X轴以相分隔且平行的方 式設置在擴散板301的下方。在圖三a中,座標軸3ι〇描 緣了擴散板301中刻,點303沿χ軸的密度分佈。如座標軸 所示,擴散板301中刻點303沿χ軸的密度是呈高斯 分佈(Gaussian distribution)。座標軸31〇中刻點密度311 的最大值位置(Dmax)與最小值位置(Dmin)是視其光源的 12 a 7· ii P:'修玉 年補充 M343817- 排列與擴散板3 〇 1中的亥彳 ί—- &I虚 數目而定。一般而言,本 - 創作實施例中的刻點密度3 11、、儿Y紅AA 1=» _曰rt丨 山度jU /口 X軸的最大值位置(Dmax) 處疋與光源305的位置斜杳(盘千士 + μ 罝釕月(與垂直虛線307對齊),而刻 籲 點密度3 11沿X軸的最]、信办嬰、上 、- 7取小值位置⑴油)處則是與兩光源305 . 間的中點位置對齊。在本劎祚由 ^ ^ ; 社不刎作中,之所以形成呈高斯分佈 .之刻點圖形以及將刻點密度之最大值與最小值對齊某特定 位置是因為擴散板3〇1上表面的輝度並非均勾分佈,而是 -呈現如圖一b所#之輝度曲線分佈。舉例而言,在直下式 背光模組結構中,因為其光源(如^几線光源或咖點 光源)並非真正的平面光源,故在擴散板3〇1上表面所測量 到的輝度亦是呈高斯分佈而非一平緩的線性分佈。如圖一 b所柄述的,擴散板11 〇上在χ軸上的最大輝度值位置是 〃配置在其下母個光源1 〇 1的位置對齊,而最小輝度值位 置則是與其下兩光源101間的中點位置對齊。如圖一 b與 圖一 c所示,利用擴散粒子或底部圖形印刷以將入射光散 射之作法僅能使|Lmax _ Lmin|的值些微降低。故此,本創作 貝知例中使用呈咼斯分佈的内部刻點以緩和其輝度起伏。 由於LCD面板光源位置正上方的輝度值是最大值(及圖一 b中的Lmax),故在此位置處形成的雷射刻點密度(即圖三& 中的Dmax)要比X軸上其他位置來的大,以散射或抑制此 處過多的光線,使得整體的輝度分佈均化。相反地,在兩 光源中點上方的雷射刻點密度須是X軸位置上之最小值以 讓更多的光線能穿透擴散板301。該刻點密度311分佈配 合原本擴散板301沿X軸所對應之輝度表現可獲得一較佳 13, or a common modulation. In this embodiment, the scattering point == ·=, the luminance distribution at the corresponding position to improve the L-homing property and solve the problem of uneven luminance. In addition, n degrees - forming scattering points can also increase the overall brightness of the LCD panel. π This creation is based on a laser as an internal scattering point. Another purpose of the U.S. U.S. U.S. is to improve the diffuser plate and the light guide plate by laser engraving. The laser engraving structure proposed in the present invention can be used in the production of a group or side-lit backlight module. First, the scattering point of the ballast 1 gas can also be engraved on the upper and lower surfaces of the lift plate and the V-plate. For example, ink printing, diffusion particles and microstructures, etc. The uniformity of the brightness of the panel. The following t:,: the shape, formula, purpose, viewpoint, characteristics and advantages will follow: the detailed description of the yoke example and its accompanying 1 will::: The formula is only used to describe the creation, and the present invention can be defined by the accompanying patent claims. [Embodiment] This creation will be described in detail for the preferred embodiment and its viewpoint, and 11 and M343817 line supplements. This kind of narrative is to explain the creation of this patent on the 1st day to limit the creation of the Shenjing patent f: the order of the series is used in addition to the embodiment of the material, this is therefore the best in the description, please refer to Figure 2 c, which is the second embodiment of the structure. A cross-sectional view of the light guide plate of the structure and the laser engraving point. In the figure, the bottom surface of the 彳= is provided with a V-shaped grooved microstructure 215. The side of the light source 2. 1 = The area A in Figure 2c is the same as the area A in Figure 2b, and the basin is 7; , /, which does not represent the general V-shaped groove guide. The area of the kld antimony a will occur in the plate. Many engraved points 214 are scattered by the human light emitted from the two mfr light sources 2gi inside the light guide plate 2〇3. In this creation, 匕歹1' is scattered through the engraved point 214. The light will homogenize the bright and dark stripes generated by the v-groove microstructure in the region A and solve the k▲ touch problem. As shown by the curve 〇 in FIG. 2C, it is distributed along the light guide plate 203 in the present embodiment. It can be noted that the gate barrier generated in the area A of FIG. 2b is not visible on the curve c of FIG. 1c, but has a gentle curve distribution. Please refer to FIG. 3a', which illustrates the present embodiment. The top view of the mid-diffusion plate and the density distribution of its internal engraved points (or cracks) along the X-axis. In the figure, block 301 represents a diffuser plate structure commonly used in a backlight module. A plurality of light sources (such as CCFL lamps) 3〇5 is disposed below the diffuser plate 301 in a phase-separated and parallel manner along the X-axis. In Figure 3a, the coordinate axis 3ι traces the density distribution of the point 303 along the x-axis in the diffuser plate 301. As shown by the coordinate axis, the density of the engraved point 303 in the diffuser plate 301 along the x-axis is Gaussian (Gaussian) Distribution). The maximum position (Dmax) and minimum position (Dmin) of the engraved point density 311 in the coordinate axis 31〇 is 12 a 7· ii P: 'Retouching the year M343817- arranging and diffusing plate 3 〇 The number of 彳 — - - 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般 一般The maximum position (Dmax) of the X-axis is at the same position as the position of the light source 305 (the disk is ± 罝钌 ( (aligned with the vertical dotted line 307), and the point density 3 11 along the X-axis is the most] The position of the infant, the upper, and the - 7 small value (1) oil is aligned with the midpoint between the two light sources 305. In this book, the ^^; society does not work, the reason is to form a Gaussian distribution. The point pattern and the maximum and minimum values of the density of the points are aligned to a specific position because the upper surface of the diffusion plate 3〇1 The luminance is not uniformly distributed, but rather - the luminance curve distribution as shown in Figure 1b. For example, in a direct-lit backlight module structure, since the light source (such as a few line source or a coffee point source) is not a true planar light source, the luminance measured on the upper surface of the diffusion plate 3〇1 is also Gaussian distribution rather than a flat linear distribution. As shown in Figure 1b, the position of the maximum luminance value on the x-axis of the diffuser 11 is aligned with the position of the lower parent light source 1 〇1, and the minimum luminance value is the lower two light sources. The midpoints of 101 are aligned. As shown in Figure 1 b and Figure 1 c, the use of diffuse particles or bottom pattern printing to scatter incident light only slightly reduces the value of |Lmax _ Lmin|. Therefore, this creation uses the internal engraving of the Muse distribution to mitigate its luminance fluctuations. Since the luminance value directly above the light source position of the LCD panel is the maximum value (and Lmax in Fig. 1b), the laser spot density (i.e., Dmax in Fig. 3 &) formed at this position is higher than that on the X axis. Other locations come large to scatter or suppress excessive light here, so that the overall luminance distribution is homogenized. Conversely, the laser engraving density above the midpoint of the two sources must be the minimum of the X-axis position to allow more light to penetrate the diffuser plate 301. The dot density 311 is distributed to match the brightness of the original diffuser plate 301 along the X axis to obtain a better image.
• M343817 -的輝度均 -下方的CCFL燈管之間的距離A並不一定要相同,且ccFL 燈官彼此之間亦不一定平行。擴散板3〇1中刻點303的分 佈實質上是由其中光源設置之位置而定。• The brightness of the M343817 - the distance A between the CCFL lamps below does not have to be the same, and the ccFL lamps are not necessarily parallel to each other. The distribution of the engraved points 303 in the diffuser plate 3〇1 is substantially determined by the position in which the light source is disposed.
須注意者,圖三a的實施例係供以說明之用。此實施 例中CCFL燈管的設置僅為本創作中一種光源排列方式。 就直下式背光模組而言,請參閱圖三b,其說明了 一平面 上的光源排列。多個LED光源以陣列方式排列在一平面 上,每個LED都可作為擴散板上獨立的點光源,而所有X 方向與Y方向上的LED光源在擴散板刻點密度分佈的計 开田中都須力口以考慮。總而言之,不論採用何種光源,抑 或其點光源是呈何種形式㈣,直下式背光模組結構中刻 點圖形的密度是以光源為中心作高斯曲線分佈。 現在請參照圖四,其分別說明了本創作實施例中一導 光板的頂視圖與其咖沿χ軸與γ軸的密度分佈。在圖 中,區塊421代表了側光式背光模組中常用的一導光板結 構(頂視圖)。在圖中,複數個光源(如咖光源)425沿χ 軸以相互分隔的方式配置在導光板421的側面。如圖四所 二,導光板421中有多個刻點423呈特定圖形排列。每個 刻點423都作為-用來破壞導光板42丨中全 的微結構以讓光線能反射出導㈣⑽) T t ® ¥九板421。在此實施例中, 導光板421中與光源425斟赢 曰丨 對月的位置處所分佈的刻點423 =饮I、兩光源425中點對齊處(與垂直虛線429對齊) 所为佈的刻點423則最多。這是因Α I疋口為罪近或對齊光源425 14 年6·月1 § 修正 補充 M343817 位置處的輝度較其他位置來的高,會在LCD ^ 條條平行的亮紋,即所謂的curtain mura效應,如圖四下 方所示故此,較少的刻點423被形成在此導光板位置以 獲得平緩的X軸輝度分佈。圖形427描繪了導光板421中 刻點X軸分佈之截面圖。同樣地,圖形427中與光源對 片之位置處所分佈的刻點423最少。座標軸420說明了導 光板421中刻點423沿γ軸的密度分佈。如圖四所示,導 光板421中大部分的刻點423是分佈在γ軸上的區域β 内。圖四中的區域Β代表著採用複數LED光源的導光板 結構中會發生eurtain mura現象的區域。本創作實施例中 的亥!‘,.、占刀佈可提肖LED光源間^立置的輝度以消除 mura效應並改善其輝度均勻性。須注意圖四中每個光源 425間的距離不一定要相同,且導光板與每個光源間 勺門距亦可不同。在本創作實施例中,導光板似内部的 刻點423 ^佈是視其光源425的配置位置而定。 ,先W圖二a中所示’側光式背光模組的光源撕是 =導光板203的側邊。本創作揭露了一種以雷射内雕 板内部形成内部散射圖形之新穎方法 =刻:或微裂縫之群集)可將經過其間的入射光散射 二見ί請ί閱圖五3,其說明了本創作實施例 録相關的^ ^拉組的導光板中的一種雷射内雕圖形 導==分佈。在圖中,-光源_配置在- 光;fe 503 P側邊’該導光板内部有複數個斜面502。導 先板⑽令母個斜面(Ll,L2,L3)5〇2都是與頁面垂直的圖 15 M343817 < 形平面504之截面。眘# v丨丄 ,. 、也例中的斜線表示了呈y 占分 佈的截面圖形。如圖五中- ”、 許多刻點508。其沿圖形平面504上散佈著 為U、T2I — 同位置處的圖形密度被標示 ^ 以二維截面的觀點來說即為線密度)。另 外圖中亦定義了每個且右 、有不同刻點密度的圖形平面間的間 距A1,A2,A3以供後續p汗 -宓卢Ll L2 Μ 、述用。本創作實施例中的圖形 二又,2,L3與間距Α1,Α2,Α3可在雷 •變以使導光板503中所產生的圖㈣度沿 佈(如圖中的曲線幻。在以仞罢南从 掃度刀 在L1位置處的圖形平面504密度必 ,、他位置處似與L3)來的低以抑制過高的輝 地’此位置處的間距^必須大於其他位置處⑷盘ΑΓ) 的間距,因為較寬的間距即代表與圖中γ_ζ平面相交的圖 形平面504較少,故此位置處刻點5〇8數目的總和亦較少。 當導光板503中内部刻點5〇8的密度呈現如圖五&中 c之分佈時,其所產生的輝度分佈就像本圖中的曲心。明 顯地,在導光板503内部形成刻點密度圖形分佈可大幅辦 加距離光源較遠位置處的輝度,亦可改善導光板5〇3整^ 的輝度均勻性。須注意本實施例中所引用斜面li乙二 式以在導光板503中形成X軸方向的刻點密度梯度分佈 與間距A1,A2, A3係作為描述之用,其並非表示導光板 503内部實質存在著複數個斜面與間距’而導光板5〇3内 的每個斜面502亦不一定要相同。圖形平面5〇4密度與間 距之概念係為了說明一種以調變參數L1,L2, L3(導光板中 的線密度)與Al,A2, A3(每個圖形平面504間的間距)的方 之 16 M343817 方法。本創作實施例中問 年月自補充 到限制。反而,它=1、f圖形平面504的 3 在蛤光板503中的X軸方向上呈 傾佈。再者,本實施例中每個斜面的 傾斜角度Θ與刻點实 中择n相_,,…又 )亦可調變以在導光板503 度分佈。各圖形平面504上的刻點不 -。事實上,刻點5〇8在圖形平面5〇4上 .的方式配置可獲得比規律分佈更佳的輝度表現。除 ’控制刻點5G8的大小亦能影響整體的輝度表現。 =括而言,在本創作實施例中,要在lcd面板上達到理相 的輝f分佈(即如曲線c__般的刻點密度分佈),一些參數, 如線密度L1,L2,L3、斜面的傾斜角度θ、平面間距αι,μ, A3、刻點密度Dl,D2及刻點大小,都可被 所It should be noted that the embodiment of Figure 3a is for illustrative purposes. The setting of the CCFL lamp in this embodiment is only a light source arrangement in the present creation. For a direct-lit backlight module, see Figure 3b, which illustrates the arrangement of the light sources on a flat surface. A plurality of LED light sources are arranged in an array on a plane, and each LED can be used as an independent point source on the diffusion plate, and all the LED light sources in the X direction and the Y direction are in the diffusion density of the diffusion plate. It is necessary to consider it. In summary, no matter what kind of light source is used, or in what form (4), the density of the engraved pattern in the direct-lit backlight module structure is Gaussian curve distribution centered on the light source. Referring now to FIG. 4, the top view of a light guide plate and the density distribution along the χ axis and the γ axis of the present embodiment are respectively illustrated. In the figure, block 421 represents a light guide plate structure (top view) commonly used in edge-lit backlight modules. In the figure, a plurality of light sources (e.g., coffee light sources) 425 are disposed on the side of the light guide plate 421 so as to be spaced apart from each other along the χ axis. As shown in FIG. 4, a plurality of engraved points 423 in the light guide plate 421 are arranged in a specific pattern. Each of the engraving points 423 serves to destroy the entire microstructure of the light guide plate 42 to allow light to be reflected out of the guide (4) (10)) T t ® ¥9 plate 421. In this embodiment, the engraved point 423 in the position of the light guide plate 421 and the light source 425 斟 曰丨 曰丨 曰丨 = = =, I, the alignment of the two light sources 425 (aligned with the vertical dashed line 429) Point 423 is the most. This is because I 疋 为 近 或 或 或 或 或 425 425 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 The mura effect, as shown in the lower part of Fig. 4, is such that fewer engraving points 423 are formed at the position of the light guide plate to obtain a gentle X-axis luminance distribution. Graph 427 depicts a cross-sectional view of the X-axis distribution of the engraved points in the light guide plate 421. Similarly, the engraved point 423 in the pattern 427 that is distributed at the location of the source pair is the least. The coordinate axis 420 illustrates the density distribution of the engraved point 423 in the light guide plate 421 along the γ axis. As shown in Fig. 4, most of the engraved points 423 in the light guide plate 421 are distributed in the region β on the γ-axis. The area 图 in Figure 4 represents the area where the euron mura phenomenon occurs in the structure of the light guide plate using a plurality of LED light sources. In the present embodiment, the hai, ‘,., occupies the brightness of the illuminating light between the LED light sources to eliminate the mura effect and improve the luminance uniformity. It should be noted that the distance between each light source 425 in Figure 4 is not necessarily the same, and the distance between the light guide plate and each light source may be different. In the present embodiment, the inner point of the light guide plate is determined by the position of the light source 425. The light source of the 'sidelight type backlight module shown in Fig. 2a is the side of the light guide plate 203. This creation discloses a novel method of forming an internal scattering pattern inside a laser inner engraving plate = engraving: or a cluster of micro-cracks to scatter incident light passing therethrough. See Figure 5 3, which illustrates the creation. The embodiment records a laser engraving pattern in the light guide plate of the associated group. In the figure, the -light source_ is disposed in the -light; the side of the fe 503 P' has a plurality of slopes 502 inside the light guide plate. The guide plate (10) has a mother bevel (L1, L2, L3) 5〇2 which is a cross section perpendicular to the page 15 M343817 < shaped plane 504. The slash in the v#, 、, and 例 examples shows the cross-sectional pattern of y. As shown in Fig. 5 - ", many engraving points 508. It is spread along the graphic plane 504 as U, T2I - the pattern density at the same position is marked ^ is the line density from the viewpoint of the two-dimensional cross section). The spacings A1, A2, and A3 between the graphics planes of each and the right and having different engraving density are also defined for the subsequent p-KL L2 L2 Μ, which is described in the second embodiment of the present invention. 2, L3 and the spacing Α1, Α2, Α3 can be changed in the ray to make the picture (four) degree generated in the light guide plate 503 along the cloth (as shown in the curve in the figure. In the 仞 南 South from the sweeping knife at the L1 position The graphic plane 504 has a density, and its position seems to be lower than that of L3) to suppress excessively high radiance. 'The spacing ^ at this position must be greater than the spacing at other locations (4) ,) because the wider spacing is There are fewer graphic planes 504 representing the intersection of the γ_ζ planes in the figure, so the sum of the number of engraving points 5〇8 at this position is also less. When the density of the internal engraving points 5〇8 in the light guide plate 503 is as shown in Fig. 5 & c When distributed, the luminance distribution produced by it is like the curvature in this figure. Obviously, in the light guide plate 503 The formation of the dot density pattern distribution can greatly increase the luminance at a position farther from the light source, and can also improve the luminance uniformity of the light guide plate 5〇3. It should be noted that the slope of the reference plane in this embodiment is The engraved point density gradient distribution and the pitch A1, A2, A3 in the X-axis direction of the light guide plate 503 are used for description, which does not mean that there are substantially a plurality of slopes and pitches inside the light guide plate 503 and the light guide plate 5〇3 Each bevel 502 does not have to be the same. The concept of density and spacing of the graphic plane 5〇4 is to illustrate a modulation parameter L1, L2, L3 (line density in the light guide plate) and Al, A2, A3 (per 16 M343817 method of spacing between graphic planes 504. In the present creative embodiment, the year and month are self-supplemented to the limit. Instead, it is 1, and the pattern plane 504 of the f is 3 in the X-axis direction of the calender plate 503. In addition, in this embodiment, the inclination angle Θ of each slope and the selection of the n-phase _, ..., ... can also be modulated to be distributed at 503 degrees on the light guide plate. The point is not - in fact, the point is 5〇8 in the graphics plane 5〇4 The mode configuration can obtain better luminance performance than the regular distribution. In addition to the size of the control point 5G8 can also affect the overall luminance performance. In other words, in the present embodiment, it is necessary to achieve the rationality on the LCD panel. The radiance f distribution of the phase (ie, the point density distribution like curve c__), some parameters, such as line density L1, L2, L3, the inclination angle θ of the slope, the plane spacing αι, μ, A3, the engraved point density Dl, D2 and engraved point size, can be used
需的刻點分佈。 T 另一方面,本創作實施例中的雷射内雕結構可與其他 傳統的擴散技術’如油墨印刷、擴散粒子、微結構^前 φ技術配合使用以得到更佳的輝度均句性。再者,刻點圖形 亦可以雷射内雕方法形成在導光板或擴散板的上表面與下 .表面上以進一步提升導光板503的輝度均勻性。本創^中 的料内雕結構可使用透明或半透明的材質,其擴散板之 材質包括聚碳酸酯(PC,Polycarb_te)、聚甲基丙稀酸甲醋 (PMMA, polymethylmethacrylate) ' f i ^ 6 ^ (MS, methyl-styrene)及玻璃等。 在本創作-實施例中提出了另-種用於側光式背光模 組的導光板結構中的刻點圖形密度分佈。現在請參閱圖五 17 M343817 b,在圖中,一光源5〇5配置在一導光板5〇7的〜^ 光板507内部具有複數個正弦曲線。導光板507中的每 弦曲線平面(C1,C2,C3)都是與頁面垂直的刻點圖形平 面506之截面。本實施例中的正弦曲線平面表示了刻點5〇8 三f分佈之截面圖形。如圖五b所示,圖形平面5〇6中有 許多刻點散佈著。正弦曲線沿χ軸的密度被標示為 與C3(以二維截面圖的觀點來看即為曲線密度)。另一方 面χ軸上波峰與波谷之間的距離則被標示為B1,B2與 B3(即周距)以供後續描述之用。與圖五&之實施例類似了 為了要緩和侧光式背光模組中輝度不均的問題,其内部之 刻點密度必須要呈一梯度分佈。導光板5〇7中沿乂轴 點數目必須隨著與光源5〇5距離之增加而逐漸增加,就二 同圖五b中曲線c之刻點密度分佈。要達到此目的,本創 作實施例中的曲線密度C1,C2, C3與周距Bl,B2, B3可於 雷射内雕的過程中被調變以形成一圖形密度沿乂軸的梯产 分佈。同樣地,此位置處之周距B1必須大於其他位置的 周距(B2與B3),這是因為較寬之周距代表著χ抽上每單 位長度下所分佈的正弦曲線長數量愈少,也因此,分佈在 此區域的刻點亦愈少。舉例而言,假設圖五b中的— 2*B2 = 4*B3,那麼在同樣的m長度下,第一正弦波幻 會有一半波長落在此長度内’而第二正弦波與第三正弦波 則分別有-個波長與兩個波長落在此長度内。正弦曲線的 數量較少亦表示配置在此位置上的刻點較少。故此 調變X軸上周距B1,B2,B3的大小可控制擴散板50^刻 18 M343817 97.戚t修正 點密度之分佈。當導光板5〇7内部的刻點密戶 中曲線c之分佈時,其所產生之輝度就; b分佈。明顯地,在導光板5〇7内部 1中的曲線 ::大幅增加距離光源505較遠位置處的=== 導光板5〇7整體的輝度均勾性。須注意本實施例 的正弦曲線Cl,C2, C3與周距B2 用,t *非主-.耸, A B3係作為描述之 用其亚非表不導光板5〇7内部實質存在著複數個The required distribution of points. On the other hand, the laser engraving structure in the present embodiment can be used in combination with other conventional diffusion techniques such as ink printing, diffusion particles, and microstructure φ techniques to obtain better luminance uniformity. Furthermore, the engraved pattern may also be formed on the upper surface and the lower surface of the light guide plate or the diffusion plate by a laser engraving method to further enhance the luminance uniformity of the light guide plate 503. The material engraving structure in this creation can be made of transparent or translucent material, and the material of the diffusion plate includes polycarbonate (PC, Polycarb_te), polymethylmethacrylate (PMMA, polymethylmethacrylate) 'fi ^ 6 ^ (MS, methyl-styrene) and glass. A scribe pattern density distribution in another light guide plate structure for an edge-lit backlight module is proposed in the present creation-embodiment. Referring now to Figure 5, M343817 b, in the figure, a light source 5〇5 is disposed inside a light plate 507 of a light guide plate 5〇7 having a plurality of sinusoids. Each of the chord planes (C1, C2, C3) in the light guide plate 507 is a cross section of the embossed pattern plane 506 perpendicular to the page. The sinusoidal plane in this embodiment represents a cross-sectional pattern of the engraved point 5〇8 three f distribution. As shown in Figure 5b, there are many inscribed points in the graphics plane 5〇6. The density of the sinusoid along the x-axis is labeled as C3 (curvature density from the point of view of the two-dimensional cross-section). On the other hand, the distance between the peaks and valleys on the x-axis is denoted as B1, B2 and B3 (ie, the circumference) for subsequent description. Similar to the embodiment of Fig. 5 & in order to alleviate the problem of uneven brightness in the edge-lit backlight module, the internal point density must be a gradient distribution. The number of points along the axis of the light guide plate 5〇7 must be gradually increased as the distance from the light source 5〇5 increases, which is the point density distribution of the curve c in Fig. 5b. To achieve this, the curve densities C1, C2, C3 and the circumferences Bl, B2, B3 in the present embodiment can be modulated during laser engraving to form a pattern density distribution along the x-axis. . Similarly, the perimeter B1 at this location must be greater than the perimeters of the other locations (B2 and B3) because the wider perimeter represents the smaller number of sinusoids distributed per unit length on the pumping, As a result, the number of engravings distributed in this area is also less. For example, suppose that -2*B2 = 4*B3 in Figure 5b, then at the same m length, the first sine wave will have half the wavelength falling within this length' and the second sine wave and the third A sine wave has a wavelength and two wavelengths falling within this length. A smaller number of sinusoids also means fewer points are placed at this location. Therefore, the size of the peripheral circumference B1, B2, and B3 on the X-axis can be controlled to control the diffusion plate 50^11 M343817 97.戚t Correct the distribution of dot density. When the distribution of the curve c in the interior of the light guide plate 5〇7 is in the outline, the brightness produced by it is; b is distributed. Obviously, the curve :: in the interior 1 of the light guide plate 5 〇 7 greatly increases the luminance of the entire light guide plate 5 〇 7 at a position farther from the light source 505. It should be noted that the sinusoids Cl, C2, C3 and the circumference B2 of the present embodiment are used, t* is not the main-span, and the A B3 system is used as the description. The sub-surface of the non-light-guide plate 5〇7 is substantially present in the plural.
線與周距。正弦曲線密度與周距之概幻 Z 調變參數以以⑼曲線平面上的刻點密度)/bi^ B3(每-正弦曲線之周距)的方式以在導光板撕中形成χ 軸方向的刻點密度梯度分佈之方法。本創作實施例中周距 與曲線平面之數目並未受到限制。反而,它們可以在導光 板507中的X轴方向上呈現連續或是不連續的分佈。再 者,本實施例中每個圖形平面5〇6的刻點密度(m, D2)亦 可調變以在導光板5〇7中獲得理想的刻點密度分佈。各圖 形平面506上的刻點508不一定要呈規律分佈。事實上, 刻點508在圖形平面506上以隨機的方式配置可獲得比規 律分佈更佳的輝度表現。除此之外,控制刻點5〇8的大小 亦能影響整體的輝度表現。概括而言,在本創作實施例中, 要在LCD面板上達到理想的輝度分佈(即如曲線^ 一般的 刻點密度分佈),-些參數,如輯密度Cl,c2,c3、周距 m,B2,B3、刻點密gD1,D2及刻點大[都可被調變以 獲付所需的刻點分佈。 另一方面,本創作實施例中的雷射内雕結構可與其他 19 i i 7·年6· $1¾修正 補充 M343817 傳統的擴散技術,如油墨印刷、擴散粒子、微巧 技術配合使用以得到更佳的輝度均勻性。再者,刻點圖= 亦可以雷射内雕方法形成在導光板或擴散板的上表面與^ :表面上以進一步提升導光板5〇7的輝度均勻性。本創^中 的雷射内雕方法可用於透明或半透明的材質,其擴散板之 材質包括聚碳酸酯(PC,P〇1yCarb〇nate)、聚甲基丙烯酸甲酯 (PMMA,P〇lymethylmethacrylate)、甲基苯乙烯⑽ methyl- styrene)及玻璃等。 , _ i述敘述係為本創作之較佳實施例。此領域之技藝者 應知以領會其係用以說明本創作而非用以限定本創作所主 張之專利權利範圍。其專利保護範圍當視後附之申請 範圍及其等同領域而定。凡熟悉此領域之技藝者,在不脫 離本專利精神或範圍内’所作之更動或潤飾,均屬於本創 作所揭不精神下所完成之等效改變或設計,且應包含在下 述之申請專利範圍内。 【圖式簡單說明】 本=可糟由說明書中若干較佳實施例及詳細敛述以 戶 得以瞭解。然而,此領域之技藝者應得以領會 作之較佳實施例係用以說 之申請專利範圍,其中: 列+別作 圖一 a說明了先 之截面圖; 月1J技術中傳統的直下式背光模 組結構 直下式背光模組之擴散板 圖一 b說明了先前技術中一 結構與其相關之輝度分佈; 20 M343817 . 說明了先前技術中另一直下式背光 板結構與其相關之輝度分佈; /、 圖二a說明了先前技術中一般的側光式背光模 之截面圖; 圖二b說明了先前技術的側光式背光模組中—具有v 型刻槽微結構之導域截面圖與其相關之輝度分佈; 圖二c說明了本創作實施例的側光式背光模組中一具 有V型刻槽微結構與内部散射^ ^ ^ ^ ^ ^ ^ ^ 之輝产八佈· 狀π”、、5之蜍先板截面圖與其相關 圖三a說明了本創作實施例的直下式背光模組中一具 有内部散射點之擴散板結構圖與其相關之輝度分佈; 圖三b說明了本創作實施例中以陣列形式配置的L E D 光源; 圖四說明了本創作實施例的側光式背光模組中一具有 LED光源之導光板結構圖與其相關之輝度分佈;八 圖五a說明了本創作實施例的侧光式背光模組中一且 有平行面㈣的導光板結構與其相關之輝度分佈;- 圖五b說明了本創作實施例的側光式背光模組中一具 有正弦曲線分佈之導光板結構與其相關之輝度分佈。 【主要元件符號說明】 組 100直下式背光模 1〇1 光源 103 透明塑膠材料 104 反射板 105 LCD面板 107 擴散粒子 109 刻點 200 侧光式背光模組 21 M343817 201 光源 203 導光板 205 微結構 207 下擴散膜 209 稜鏡片 211 上擴散膜 213 L C D面板 214 刻點 215 V型刻槽 301 區塊 303 刻點 305 光源 307 虛線 310 座標軸 311 刻點密度 420 座標軸 421 導光板 423 刻點 425 光源 427 圖形 428 虛線 429 虛線 501 光源 502 斜面 503 導光板 504 圖形平面 505 光源 506 圖形平面 507 導光板 508 刻點Line and perimeter. The sinusoidal density and the pitch of the Z-modulation parameter are in the direction of (9) the engraved point density on the curve plane/bi^B3 (the circumference of each sinusoid) to form the χ-axis direction in the tearing of the light guide plate. A method of engraving a density gradient distribution. The number of circumferential and curved planes in the present embodiment is not limited. Instead, they may exhibit a continuous or discontinuous distribution in the X-axis direction in the light guide plate 507. Furthermore, the indentation density (m, D2) of each of the pattern planes 5〇6 in this embodiment can also be adjusted to obtain a desired indentation density distribution in the light guide plate 5?. The engraved points 508 on each of the graphic planes 506 do not have to be regularly distributed. In fact, engraving 508 is configured in a random manner on graphics plane 506 to achieve better luminance performance than the regulatory distribution. In addition, controlling the size of the engraving point 5〇8 can also affect the overall brightness performance. In summary, in the present embodiment, an ideal luminance distribution (ie, a general point density distribution such as a curve) is achieved on the LCD panel, and some parameters, such as the density Cl, c2, c3, and the circumference m. , B2, B3, engraved point gD1, D2 and engraved point [all can be modulated to get the required engraving distribution. On the other hand, the laser engraving structure in the present embodiment can be combined with other 19 ii 7·6·$13⁄4 corrections to supplement the traditional diffusion technique of M343817, such as ink printing, diffusion particles, and micro-technology to obtain more Good brightness uniformity. Furthermore, the engraved pattern = can also be formed on the upper surface of the light guide plate or the diffusion plate and the surface of the diffusion plate to further enhance the luminance uniformity of the light guide plate 5?7. The laser engraving method in this creation can be used for transparent or translucent materials, and the material of the diffusion plate includes polycarbonate (PC, P〇1yCarb〇nate), polymethyl methacrylate (PMMA, P〇lymethylmethacrylate). ), methyl styrene (10) methyl- styrene) and glass. The description of the _ is a preferred embodiment of the creation. Those skilled in the art should be aware of the scope of the patent rights that are used to illustrate the creation and not to limit the scope of the patent rights claimed by this creation. The scope of patent protection is subject to the scope of the application and its equivalent. Anyone who is familiar with the field, without departing from the spirit or scope of this patent, is subject to the equivalent changes or designs made by the authors and shall be included in the following patent application. Within the scope. [Simple description of the drawings] This = can be understood by a number of preferred embodiments and detailed descriptions of the specification. However, those skilled in the art should be able to appreciate that the preferred embodiment is used to describe the scope of the patent application, wherein: Column + Figure 1 a illustrates the cross-sectional view; the conventional direct-lit backlight in the 1J technique Diffusion plate of the module structure direct type backlight module FIG. 1B illustrates the luminance distribution associated with a structure in the prior art; 20 M343817 . Describes the luminance distribution of another direct type backlight structure in the prior art; Figure 2a illustrates a cross-sectional view of a general edge-lit backlight module of the prior art; Figure 2b illustrates a cross-sectional view of a lead-domain with a v-groove microstructure in a prior art edge-lit backlight module. The luminance distribution; FIG. 2c illustrates a side-light backlight module of the present embodiment, which has a V-shaped groove microstructure and an internal scattering ^^^^^^^^. 5 蜍 截面 截面 截面 与其 与其 与其 与其 与其 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明 说明Zhongyi LED light source arranged in a column form; FIG. 4 illustrates a structure diagram of a light guide plate having an LED light source in the edge-lit backlight module of the present embodiment and its associated luminance distribution; FIG. 5 a illustrates the side of the present embodiment The light guide plate structure of the parallel type (4) and the brightness distribution thereof associated with the light-type backlight module; - Figure 5b illustrates a light guide plate structure having a sinusoidal distribution in the edge-lit backlight module of the present embodiment Relevant luminance distribution. [Main component symbol description] Group 100 direct backlight module 1〇1 Light source 103 Transparent plastic material 104 Reflector 105 LCD panel 107 Diffusion particles 109 Engraving point 200 Sidelight backlight module 21 M343817 201 Light source 203 Guide Light plate 205 Microstructure 207 Lower diffusing film 209 Backing plate 211 Upper diffusing film 213 LCD panel 214 Marking point 215 V-shaped groove 301 Block 303 Marking point 305 Light source 307 Dotted line 310 Coordinate axis 311 Marking density 420 Coordinate axis 421 Light guide plate 423 Engraving 425 Light Source 427 Graphic 428 Dotted Line 429 Dotted Line 501 Light Source 502 Bevel 503 Light Guide 504 Graphic Plane 505 Light Plane of the light guide plate 506 in 507 punctures 508