TWI839006B - Method of manufacturing biosensor, and biosensor chip - Google Patents
Method of manufacturing biosensor, and biosensor chip Download PDFInfo
- Publication number
- TWI839006B TWI839006B TW111146756A TW111146756A TWI839006B TW I839006 B TWI839006 B TW I839006B TW 111146756 A TW111146756 A TW 111146756A TW 111146756 A TW111146756 A TW 111146756A TW I839006 B TWI839006 B TW I839006B
- Authority
- TW
- Taiwan
- Prior art keywords
- nanoparticle solution
- biosensor
- nanolayer
- manufacturing
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000002105 nanoparticle Substances 0.000 claims abstract description 58
- 239000002052 molecular layer Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000002086 nanomaterial Substances 0.000 claims abstract description 10
- 239000007921 spray Substances 0.000 claims abstract description 6
- 238000007639 printing Methods 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 18
- 238000001723 curing Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000003292 glue Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 4
- 238000001029 thermal curing Methods 0.000 claims description 2
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000013060 biological fluid Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 208000006265 Renal cell carcinoma Diseases 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229910021542 Vanadium(IV) oxide Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本發明有關於感測模組製造方法與感測晶片,尤指一種生物感測模組製造方法與生物感測晶片。The present invention relates to a sensing module manufacturing method and a sensing chip, and in particular to a biological sensing module manufacturing method and a biological sensing chip.
近年來由於電化學技術的發展,電化學生物感測器結合生物酶對特定物質特異性、快速響應時間以及簡便操作的優點,加上奈米材料的多元化進而改善許多電化學生物感測器的性能。In recent years, due to the development of electrochemical technology, electrochemical biosensors have combined the advantages of enzymes' specificity for specific substances, fast response time, and simple operation, and the diversification of nanomaterials has improved the performance of many electrochemical biosensors.
舉例而言,金屬氧化物的奈米結構具有獨特的能力,能夠促進電化學生物感測器電極之間的電子轉移和所需酶的活性位點更為快速。其中,電解質-絕緣體-半導體(Electrolyte-Insulator-Semiconductor,EIS)構造的生醫晶片用於量測下電極(BT)與待測液體的參考電極間的電位-電容變化,具有快速的初始反應、穩固的固態結構、具小型化潛力、與CMOS製程技術相容及低成本等特點。眾多的無機奈米材料,如氧化鐵、金球、二氧化鈰、二氧化鋯等,長期被認為在接近生理條件下是化學惰性的,然而近年來逐漸發現多種無機奈米材料(例如:ZnO、ZrO 2)具有類似於天然酶的活性,能夠催化一系列生理條件下的化學反應。 For example, metal oxide nanostructures have the unique ability to promote faster electron transfer between the electrodes of electrochemical biosensors and the active sites of the required enzymes. Among them, the biomedical chip with an electrolyte-insulator-semiconductor (EIS) structure is used to measure the potential-capacitance change between the lower electrode (BT) and the reference electrode of the test liquid. It has the characteristics of fast initial response, stable solid structure, miniaturization potential, compatibility with CMOS process technology and low cost. Many inorganic nanomaterials, such as iron oxide, gold spheres, vanadium dioxide, and zirconium dioxide, have long been considered chemically inert under conditions close to physiological conditions. However, in recent years, it has been gradually discovered that a variety of inorganic nanomaterials (such as ZnO and ZrO 2 ) have activities similar to those of natural enzymes and can catalyze a series of chemical reactions under physiological conditions.
目前有許多材料的表面奈米粒製程已被研究揭露,習知以自由散落的方式散落於晶片表面,並無法在特定區域形成特定圖案。At present, the surface nanoparticle manufacturing process of many materials has been studied and revealed. It is known that they are scattered freely on the surface of the chip and cannot form a specific pattern in a specific area.
根據上述習知技術的問題,本發明的目的在於提出一種生物感測模組的製造方法與生物感測晶片,在晶圓表面設置具有奈米結構的基礎奈米層,將含有奈米顆粒之液體置入高解析度噴墨列印噴頭內,每一噴出的液滴約數個皮升(pl),使用程式控制依據預設圖形噴出含有奈米顆粒之液體在基礎奈米層表面,以形成任何可增加反應接觸面積的二維或三維圖案,以增加更多可接觸待測生物液體的面積,大幅提升感測靈敏度。In view of the above problems of the prior art, the purpose of the present invention is to provide a method for manufacturing a biosensing module and a biosensing chip, wherein a base nanolayer having a nanostructure is arranged on the surface of a wafer, and a liquid containing nanoparticles is placed in a high-resolution inkjet printing nozzle, and each ejected droplet is about several picoliters (pl). The liquid containing nanoparticles is ejected on the surface of the base nanolayer according to a preset pattern using program control to form any two-dimensional or three-dimensional pattern that can increase the reaction contact area, thereby increasing more areas that can contact the biological fluid to be tested, and greatly improving the sensing sensitivity.
根據本發明之目的提出一種生物感測模組的製造方法,包含以下步驟:提供一晶圓;在晶圓表面設置具有奈米結構的一基礎奈米層;放置具有基礎奈米層的晶圓在微液滴列印系統的晶片承載座上;藉由微液滴列印系統的列印噴頭依據預設圖形,將奈米粒溶液以預設液滴尺寸的液滴噴發至基礎奈米層的表面上;利用微液滴列印系統的固化控制模組固化圖案化的奈米粒溶液,使奈米粒溶液在基礎奈米層上固化為奈米感測薄膜層;於晶圓背部設置電極層,電極層為生物感測模組的底層;以及在奈米感測薄膜層之周圍設置感測窗口,而形成具有生物感測模組。According to the purpose of the present invention, a method for manufacturing a biosensing module is proposed, comprising the following steps: providing a wafer; setting a base nanolayer having a nanostructure on the surface of the wafer; placing the wafer having the base nanolayer on a chip carrier of a micro-droplet printing system; using a print head of the micro-droplet printing system to spray a nanoparticle solution in droplets of a preset droplet size onto the surface of the base nanolayer according to a preset pattern; using a curing control module of the micro-droplet printing system to cure the patterned nanoparticle solution so that the nanoparticle solution is cured on the base nanolayer to form a nanosensing film layer; setting an electrode layer on the back of the wafer, the electrode layer being the bottom layer of the biosensing module; and setting a sensing window around the nanosensing film layer to form a biosensing module.
其中,預設液滴尺寸可為數個皮升(pl)。The default droplet size may be a few picoliters (pl).
其中,該奈米感測薄膜層為複數個三維結構體。The nano-sensing film layer is a plurality of three-dimensional structures.
在一實施例中,固化控制模組為一紫外線光源,且紫外線光源與列印噴頭相隔一間距,奈米粒溶液為光固化膠。In one embodiment, the curing control module is a UV light source, and the UV light source is spaced apart from the print head by a distance, and the nanoparticle solution is a photocurable adhesive.
在另一實施例中,固化控制模組為加熱器,並設置於晶片承載座中,奈米粒溶液為熱固化膠。In another embodiment, the curing control module is a heater and is disposed in the chip carrier, and the nanoparticle solution is a thermal curing glue.
其中,微液滴列印系統還包含一驅動器與一電腦。驅動器連接列印噴頭,驅動器控制列印噴頭移動。電腦連接晶片承載座、列印噴頭與驅動器,而微液滴列印系統將奈米粒溶液的液滴依照預設圖形噴發至基礎奈米層的步驟進一步包括:電腦依照預設圖形產生控制程式;以及藉由電腦執行控制程式,以操作驅動器而帶動列印噴頭,以及控制列印噴頭輸出奈米粒溶液的液滴,使得列印噴頭依據預設圖形相對晶片承載座移動的過程中,將奈米粒溶液的液滴噴發至基礎奈米層上。The micro-droplet printing system further includes a driver and a computer. The driver is connected to the print head, and the driver controls the movement of the print head. The computer is connected to the chip carrier, the print head and the driver, and the step of the micro-droplet printing system spraying droplets of nanoparticle solution onto the base nanolayer according to a preset pattern further includes: the computer generates a control program according to the preset pattern; and the computer executes the control program to operate the driver to drive the print head, and control the print head to output droplets of nanoparticle solution, so that the print head sprays droplets of nanoparticle solution onto the base nanolayer during the process of moving relative to the chip carrier according to the preset pattern.
根據本發明之目的,更提出一種生物感測晶片,包含一基板、一生物感測模組以及一覆蓋層。基板的表面設有一金屬層。如前述的製造方法所製成的生物感測模組黏貼於基板上,並與金屬層電性連接。覆蓋層設置於基板上,且覆蓋於生物感測模組與金屬層之外的周圍區域。According to the purpose of the present invention, a biosensor chip is further provided, comprising a substrate, a biosensor module and a covering layer. A metal layer is provided on the surface of the substrate. The biosensor module manufactured by the aforementioned manufacturing method is adhered to the substrate and electrically connected to the metal layer. The covering layer is provided on the substrate and covers the surrounding area outside the biosensor module and the metal layer.
以下舉例說明本申請較佳實施方式,並配合圖式說明如後。The following examples illustrate the preferred implementation of this application, and are illustrated with accompanying drawings.
本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。The embodiments of the present invention will be further explained below in conjunction with the relevant drawings. As much as possible, the same reference numerals in the drawings and the specification represent the same or similar components. In the drawings, the shapes and thicknesses may be exaggerated for the sake of simplicity and convenience. It is understood that the components not specifically shown in the drawings or described in the specification are of a form known to those skilled in the art. Those skilled in the art can make various changes and modifications based on the content of the present invention.
請一併參閱圖1、圖2與圖3,圖1為本發明之生物感測模組製造方法的流程圖,圖2為本發明之生物感測晶片之示意圖,圖3為本發明之微液滴列印系統之一實施例之示意圖。本發明所提出的生物感測模組的製造方法,係用於製造一生物感測模組,製造方法包含下列步驟:Please refer to Figures 1, 2 and 3 together. Figure 1 is a flow chart of the biosensor module manufacturing method of the present invention, Figure 2 is a schematic diagram of the biosensor chip of the present invention, and Figure 3 is a schematic diagram of an embodiment of the micro-droplet printing system of the present invention. The biosensor module manufacturing method proposed by the present invention is used to manufacture a biosensor module, and the manufacturing method includes the following steps:
步驟S10:提供晶圓23。晶圓23較佳可為一種矽晶片。Step S10: Provide a
步驟S20:在晶圓23表面設置具有奈米結構的基礎奈米層24。Step S20: Disposing a
可藉由薄膜沉積方式(例如射頻濺鍍)或是溶膠-凝膠(sol-gel)塗佈方式在晶圓23表面形成。It can be formed on the surface of the
其中,以射頻濺鍍方式,亦可藉由第一材料與第二材料形成基礎奈米層24,而第一材料可為氧化釔(Y
2O
3)或二氧化鈦(TiO
2),第二材料可為鈦(Ti)或釔(Y),使其所形成的基礎奈米層24具有預設厚度,預設厚度可小於30nm(奈米)。
The
藉由快速退火系統,使此基礎奈米層24更具奈米結構,而適當的熱處理可使基礎奈米層24更加緻密,因此可通入氮氣或氧氣進行快速退火處理。The rapid annealing system can make the
步驟S30:將具有基礎奈米層24的晶圓放置於微液滴列印系統的晶片承載座11上。Step S30: placing the wafer with the
步驟S40:藉由微液滴列印系統的列印噴頭12依據預設圖形將奈米粒溶液121以預設液滴尺寸的液滴噴發至基礎奈米層24的表面上。Step S40: The
其中,為要穩定列印出高解析度液滴,所以具奈米粒溶液121的黏度(Viscosity)、表面張力(Surface Tension)、奈米顆粒大小(Nanoparticle Size)、奈米粒於溶液中的分散均勻性(dispersion uniformity)、pH值等皆須優化,以配合噴墨列印晶片內之微流道設計,同時噴墨晶片之微流道材料也須相對應的優化,使含奈米粒之溶液可被穩定地噴出微液滴。In order to stably print high-resolution droplets, the viscosity, surface tension, nanoparticle size, dispersion uniformity of the nanoparticles in the solution, pH value, etc. of the
在本實施例中,液滴的預設液滴尺寸為數個pl(皮升),進一步較佳的預設液滴尺寸為小於或等於0.01pl(皮升)。In this embodiment, the preset droplet size of the droplets is several pl (picoliters), and a further preferred preset droplet size is less than or equal to 0.01 pl (picoliter).
奈米粒溶液121較佳可包含氧化鋅(ZnO)或二氧化鋯(ZrO
2),奈米粒溶液121亦可視狀況添加至少一種懸浮粒子,此懸浮粒子的成分為將形成在晶片表面的奈米粒子。在本實施例中,先將奈米粒子粉末配製成適用於高解析度列印噴頭12的奈米粒溶液121,並使奈米粒子均勻分散在溶液中,形成懸浮粒子,再藉由噴印方式將含有奈米粒子的液滴噴在晶片表面,經過加熱或UV處理後,大部分的溶液皆會揮發,最終留在晶片表面的就是此奈米粒子。較佳地,懸浮粒子包含氧化釔(Y
2O
3)或二氧化鈦(TiO
2),其中奈米粒溶液121之黏度較佳為1~8m Pas(毫帕斯卡秒),表面張力較佳為25~75 m N/m(毫牛頓/米)。
The
步驟S50:利用微液滴列印系統的固化控制模組固化圖案化的奈米粒溶液,使奈米粒溶液在基礎奈米層24上固化為奈米感測薄膜層25a。其中,奈米感測薄膜層25a位於背離晶圓23的基礎奈米層24的表面上。Step S50: Use the curing control module of the micro-droplet printing system to cure the patterned nanoparticle solution, so that the nanoparticle solution is cured on the
預設圖形可使用程式控制噴出的圖案,可形成奈米點(Nanodots)、奈米柱(Nanorods)、奈米線(Nanowires)、奈米方格(Nanogrids)、或是任何可增加反應接觸面積的二維或三維圖案。The preset patterns can be programmed to form nanodots, nanorods, nanowires, nanogrids, or any two-dimensional or three-dimensional pattern that can increase the reactive contact area.
步驟S60:於晶圓23的背部設置電極層22。在此步驟中在晶圓背部鍍上一層金屬薄膜(例如:鋁)而形成電極層22,電極層22為生物感測模組的底層。此電極層22的厚度較佳為300nm(奈米)。Step S60: An electrode layer 22 is provided on the back of the
步驟S70:在奈米感測薄膜層25a之周圍設置感測窗口31,而形成具有生物感測模組。其中,感測窗口31較佳可為SU8環氧基負型光阻劑。Step S70: A
如圖2所示,生物感測晶片包含基板21、生物感測模組以及覆蓋層32。基板21的表面設有金屬層211。基板21可為PCB印刷電路板,金屬層211可為銅箔。As shown in FIG2 , the biosensor chip includes a
生物感測模組是如前述的生物感測模組製造方法所製成的,生物感測模組包含電極層22、晶圓23、基礎奈米層24以及奈米感測薄膜層25a。電極層22定義為生物感測模組的底層,電極層22設置於基板21上。晶圓23設置於電極層22上。基礎奈米層24設置於晶圓23上。奈米感測薄膜層25a設置於基礎奈米層24上,奈米感測薄膜層25a包含一特定圖形,以微液滴列印系統將奈米粒溶液以預設液滴尺寸的液滴噴發至基礎奈米層24的表面上,並具有奈米粒溶液的基礎奈米層24經加熱而形成特定圖案的奈米感測薄膜層25a。在圖2中奈米感測薄膜層25a的形狀僅作為舉例,並非以此為限。生物感測模組黏貼於基板21上,並與金屬層211電性連接,其中可使用銀膠將生物感測模組黏貼於基板21上。其中金屬層211延伸設置至生物感測模組下方,且金屬層211與電極層22互相接觸。The biosensing module is manufactured by the aforementioned biosensing module manufacturing method, and the biosensing module includes an electrode layer 22, a
覆蓋層32設置在基板上,且覆蓋於生物感測模組與金屬層211之外的周圍區域,可使用環氧黏著劑來密封生物感測模組與金屬層211之外的區域,確定樣本及銅導線皆密封不受量測溶液影響。其中,環氧樹脂AB膠是由環氧樹脂(A組份)與多功能固化劑(B組份)交聯固化而成。The
進一步言,本發明之生物感測模組製造方法所製成的生物感測晶片可應用於生醫感測技術領域感測生物液體之pH值、Na +K +離子濃度、血糖、尿素等,或是一些癌症早期血液化學檢驗指標,例如腎細胞癌 (RCC)的血液檢驗指標 血清AST、血清 ALT和它們的比值(AST/ALT),以達到提早檢驗出並預防疾病的目的。 Furthermore, the biosensor chip produced by the biosensor module manufacturing method of the present invention can be applied to the field of biomedical sensing technology to sense the pH value of biological fluids, Na + K + ion concentration, blood sugar, urea, etc., or some early blood chemistry test indicators of cancer, such as serum AST, serum ALT and their ratio (AST/ALT) of renal cell carcinoma (RCC), so as to achieve the purpose of early detection and prevention of diseases.
圖4為本發明之固化控制模組另一實施例示意圖,請進一步一併參閱圖3與圖4。FIG. 4 is a schematic diagram of another embodiment of the curing control module of the present invention. Please refer to FIG. 3 and FIG. 4 for further details.
微液滴列印系統包含晶片承載座11、列印噴頭12、固化控制模組、驅動器13以及電腦14。The micro-droplet printing system includes a
晶片承載座11用來放置待製物10,在本實施例中,晶片承載座11上係放置已完成快速退火處理的基礎奈米層與晶圓。The
列印噴頭12內裝有奈米粒溶液121,列印噴頭12的噴出孔以一預設液滴尺寸噴發奈米粒溶液121的液滴到待製物10的一面上。The
溫度控制單元控制晶片承載座11的表面溫度,且加熱表面具有奈米粒溶液121的待製物10,而在待製物10表面上形成一特定圖形。The temperature control unit controls the surface temperature of the
其中,固化控制模組可設置於晶片承載座11或另外裝設,在圖3中固化控制模組為加熱器,並裝設在晶片承載座11中(故圖中固化控制模組未標號),並不以此為限。在本實施例中,奈米粒溶液121為一熱固化膠,當奈米粒溶液121噴發至待製物10(基礎奈米層)的表面上時,藉由固化控制模組即時控制溫度並加熱晶片承載座11,使表面具有奈米粒溶液121的基礎奈米層的溫度提高,而在基礎奈米層表面上形成對應預設圖形的奈米感測薄膜層。The curing control module can be disposed on the
驅動器13連接列印噴頭12,驅動器13控制列印噴頭12移動。The
電腦14連接晶片承載座11、列印噴頭12與驅動器13,以藉由電腦14程式控制形成特定圖形。微液滴列印系統將奈米粒溶液121的液滴依照預設圖形噴發至基礎奈米層的步驟進一步包括:電腦14依照預設圖形產生控制程式;以及藉由電腦14執行控制程式,以操作驅動器13而帶動列印噴頭12,以及控制列印噴頭12輸出該奈米粒溶液121的液滴,使得列印噴頭12依據預設圖形相對晶片承載座11移動的過程中,將奈米粒溶液121的液滴噴發至基礎奈米層上。The computer 14 is connected to the
其中,電腦14亦可控制後續再堆疊列印,以形成更多立體空間,使奈米結構具有更多可被待測生物液體接觸的面積,以提高感測靈敏度。The computer 14 can also control subsequent stacking printing to form more three-dimensional space, so that the nanostructure has more area that can be contacted by the biological fluid to be tested, so as to improve the sensing sensitivity.
如此一來,可依據程式設計的二維或三維圖案,將奈米粒溶液121以微液滴方式列印於基礎奈米層表面,同時使用可溫度控制之晶片承載座11對含奈米粒微液滴的表面進行熱處理,或者使用UV光照射方式,以形成特定圖形之奈米感測薄膜層。In this way, the
如圖4所示,固化控制模組可以是紫外線光源15,且紫外線光源15與列印噴頭相隔一間距,奈米粒溶液121為光固化膠。在奈米粒溶液121噴發至待製物10(基礎奈米層)的表面上時,即時移動紫外線光源15並照射在具有奈米粒溶液121的基礎奈米層上,而在基礎奈米層表面上形成對應預設圖形的奈米感測薄膜層。As shown in FIG4 , the curing control module may be an ultraviolet
請參閱圖5至圖8,圖5至圖8為本發明之奈米感測薄膜層的第一示意圖、第二示意圖、第三示意圖與第四示意圖,在上述各實施例中,奈米感測薄膜層可為複數個三維結構體。Please refer to FIG. 5 to FIG. 8 , which are first, second, third and fourth schematic diagrams of the nano-sensing thin film layer of the present invention. In the above embodiments, the nano-sensing thin film layer can be a plurality of three-dimensional structures.
在圖5中,奈米感測薄膜層25b為奈米點(nanodots)結構。In FIG. 5 , the
在圖6中,奈米感測薄膜層25c為奈米線(nanowires)結構。In FIG. 6 , the
在圖7中,奈米感測薄膜層25d為奈米柱(nanorods)結構。In FIG. 7 , the
在圖8中,奈米感測薄膜層25e為奈米方格(nanogrids)結構。In FIG. 8 , the
以上所述,僅為舉例說明本發明的較佳實施方式,並非以此限定實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單置換及等效變化,皆屬本發明的專利申請範疇。The above is only an example to illustrate the preferred implementation of the present invention, and is not intended to limit the scope of implementation. All simple substitutions and equivalent changes made according to the scope of the patent application of the present invention and the content of the patent specification are within the scope of the patent application of the present invention.
S10~S70:步驟
10:待製物
11:晶片承載座
12:列印噴頭
121:奈米粒溶液
13:驅動器
14:電腦
15:紫外線光源
21:基板
211:金屬層
22:電極層
23:晶圓
24:基礎奈米層
25a、25b、25c、25d、25e:奈米感測薄膜層
31:感測窗口
32:覆蓋層
S10~S70: Steps
10: Object to be manufactured
11: Chip carrier
12: Print head
121: Nanoparticle solution
13: Driver
14: Computer
15: UV light source
21: Substrate
211: Metal layer
22: Electrode layer
23: Wafer
24:
圖1為本發明之生物感測模組製造方法的流程圖; 圖2為本發明之生物感測晶片之示意圖; 圖3為本發明之微液滴列印系統之一實施例之示意圖; 圖4為本發明之固化控制模組另一實施例示意圖; 圖5為本發明之奈米感測薄膜層的第一示意圖; 圖6為本發明之奈米感測薄膜層的第二示意圖; 圖7為本發明之奈米感測薄膜層的第三示意圖; 圖8為本發明之奈米感測薄膜層的第四示意圖。 Figure 1 is a flow chart of the biosensing module manufacturing method of the present invention; Figure 2 is a schematic diagram of the biosensing chip of the present invention; Figure 3 is a schematic diagram of an embodiment of the micro-droplet printing system of the present invention; Figure 4 is a schematic diagram of another embodiment of the curing control module of the present invention; Figure 5 is a first schematic diagram of the nanosensing film layer of the present invention; Figure 6 is a second schematic diagram of the nanosensing film layer of the present invention; Figure 7 is a third schematic diagram of the nanosensing film layer of the present invention; Figure 8 is a fourth schematic diagram of the nanosensing film layer of the present invention.
S10~S70:步驟 S10~S70: Steps
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111146756A TWI839006B (en) | 2022-12-06 | 2022-12-06 | Method of manufacturing biosensor, and biosensor chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111146756A TWI839006B (en) | 2022-12-06 | 2022-12-06 | Method of manufacturing biosensor, and biosensor chip |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI839006B true TWI839006B (en) | 2024-04-11 |
TW202424480A TW202424480A (en) | 2024-06-16 |
Family
ID=91618545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111146756A TWI839006B (en) | 2022-12-06 | 2022-12-06 | Method of manufacturing biosensor, and biosensor chip |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI839006B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040014240A1 (en) * | 2000-07-06 | 2004-01-22 | Keigo Takeguchi | Molecule detecting sensor |
TW201725389A (en) * | 2016-01-13 | 2017-07-16 | Univ Chang Gung | Prostate cancer detection module and operation method thereof using nano-scale nickel oxide as the detection film that contacts different concentrations of hydrogen peroxide |
TW201827820A (en) * | 2017-01-20 | 2018-08-01 | 長庚大學 | Detection module using a porous sensing film and a polycrystalline film under the porous sensing film to detect the concentration of hydrogen peroxide |
TW202039707A (en) * | 2019-03-07 | 2020-11-01 | 美商黎可德X印製金屬公司 | Thermal cure dielectric ink |
-
2022
- 2022-12-06 TW TW111146756A patent/TWI839006B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040014240A1 (en) * | 2000-07-06 | 2004-01-22 | Keigo Takeguchi | Molecule detecting sensor |
TW201725389A (en) * | 2016-01-13 | 2017-07-16 | Univ Chang Gung | Prostate cancer detection module and operation method thereof using nano-scale nickel oxide as the detection film that contacts different concentrations of hydrogen peroxide |
TW201827820A (en) * | 2017-01-20 | 2018-08-01 | 長庚大學 | Detection module using a porous sensing film and a polycrystalline film under the porous sensing film to detect the concentration of hydrogen peroxide |
TW202039707A (en) * | 2019-03-07 | 2020-11-01 | 美商黎可德X印製金屬公司 | Thermal cure dielectric ink |
Non-Patent Citations (1)
Title |
---|
期刊 Chyuan-Haur Kao et al. Comparison of Magnesium and Titanium Doping on Material Properties and pH Sensing Performance on Sb2O3 Membranes in Electrolyte-Insulator-Semiconductor Structure 2022, 12, 25 Membranes Published: 25 December 2021 all * |
Also Published As
Publication number | Publication date |
---|---|
TW202424480A (en) | 2024-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zub et al. | Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications | |
Lemarchand et al. | Challenges, Prospects, and Emerging Applications of Inkjet‐Printed Electronics: A Chemist's Point of View | |
US11768170B2 (en) | Biochip having a channel | |
Gonzalez-Macia et al. | Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices | |
US9616617B2 (en) | Scalable biochip and method for making | |
Komuro et al. | Inkjet printed (bio) chemical sensing devices | |
US7695689B2 (en) | Micro reactor device and method of manufacturing micro reactor device | |
Grunwald et al. | Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies | |
US20140308770A1 (en) | Chemical sensor | |
WO2007094254A1 (en) | Microchannel chip and method for manufacturing such chip | |
Zamani et al. | Recent advances in gold electrode fabrication for low-resource setting biosensing | |
Li et al. | Precise droplet manipulation based on surface heterogeneity | |
CN110567933A (en) | SERS substrate and preparation method thereof | |
Bridonneau et al. | Self-assembly of nanoparticles from evaporating sessile droplets: Fresh look into the role of particle/substrate interaction | |
Yu et al. | Ink-drop dynamics on chemically modified surfaces | |
TWI839006B (en) | Method of manufacturing biosensor, and biosensor chip | |
Gonzalez-Macia et al. | Screen printing and other scalable point of care (POC) biosensor processing technologies | |
US10828637B2 (en) | Microfluidic chip with anchored nano particle assembly | |
Du et al. | Hybrid printing of fully integrated microfluidic devices for biosensing | |
Zheng et al. | From functional structure to packaging: full-printing fabrication of a microfluidic chip | |
KR100532812B1 (en) | Method for fabricating a nano-biochip using the nanopattern of block copolymers | |
du Plooy et al. | Advances in paper-based electrochemical immunosensors: Review of fabrication strategies and biomedical applications | |
CN113117765B (en) | Detection chip for photonic crystal coding, preparation method and application thereof, and drug screening system and drug screening method | |
WO2022136262A1 (en) | Real time trace detection | |
Lemarchand et al. | Challenges and Prospects of Inkjet Printed Electronics Emerging Applications—A Chemist Point of View |