TWI836948B - Power conversion system - Google Patents
Power conversion system Download PDFInfo
- Publication number
- TWI836948B TWI836948B TW112111919A TW112111919A TWI836948B TW I836948 B TWI836948 B TW I836948B TW 112111919 A TW112111919 A TW 112111919A TW 112111919 A TW112111919 A TW 112111919A TW I836948 B TWI836948 B TW I836948B
- Authority
- TW
- Taiwan
- Prior art keywords
- power
- conversion system
- preset
- frequency
- control unit
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 69
- 239000003990 capacitor Substances 0.000 claims abstract description 25
- 230000001965 increasing effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/66—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/04—Circuit arrangements for AC mains or AC distribution networks for connecting networks of the same frequency but supplied from different sources
- H02J3/06—Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/388—Islanding, i.e. disconnection of local power supply from the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Inverter Devices (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本發明係有關於一種功率轉換系統(Power conversion system;PCS),尤指一種可依據充電電池的已充電比例調整其輸出的交流電頻率之功率轉換系統。 The present invention relates to a power conversion system (Power conversion system; PCS), and in particular, to a power conversion system that can adjust the output AC frequency of a rechargeable battery according to its charged ratio.
功率轉換系統(Power conversion system;PCS)是一種雙向的電力轉換逆變器,可用於併網(on-grid)和離網(off-grid)的電能儲存應用。如何有效地操作功率轉換系統,一直是本技術領域的一項重要課題。 A power conversion system (PCS) is a bidirectional power conversion inverter that can be used for on-grid and off-grid electrical energy storage applications. How to effectively operate a power conversion system has always been an important issue in this technical field.
本發明的功率轉換系統中包含交流電電源埠、第一直流電電源埠、第二直流電電源埠、高壓電容、第一直流轉換器、第二直流轉換器、電源逆變器、以及微控制單元。交流電電源埠耦接於太陽光電變流器。第一直流電電源埠耦接於充電電池。第二直流電電源埠耦接於太陽能板。第一直流轉換器耦接於高壓電容與第一直流電電源埠之間。第二直流轉換器耦接於高壓電容與第二直流電電源埠之間。電源逆變器耦接於高壓電容與交流電電源埠之間。微控制單元用以依據高壓電容兩端之電壓差調整功率轉換系統從交流電電源埠所輸出的交流電的頻率。其中,當微控制單元偵測到發生市電離網,且電壓差大於第 一臨界值時,微控制單元將從交流電電源埠所輸出的交流電的頻率設定為截止頻率,以使太陽光電變流器停止輸出電能。當微控制單元偵測到發生市電離網,且電壓差介於第一臨界值與第二臨界值時的連續時間超過預設時間長度時,微控制單元將從交流電電源埠所輸出的交流電的頻率設定為截止頻率。當微控制單元偵測到發生市電離網,且電壓差介於第二臨界值與第三臨界值時,微控制單元將交流電電源埠所輸出的交流電的頻率調升第一預設值。第一臨界值大於第二臨界值,而第二臨界值大於第三臨界值。 The power conversion system of the present invention includes an AC power supply port, a first DC power supply port, a second DC power supply port, a high-voltage capacitor, a first DC converter, a second DC converter, a power inverter, and a microcontrol unit. The AC power port is coupled to the solar photovoltaic converter. The first DC power port is coupled to the rechargeable battery. The second DC power port is coupled to the solar panel. The first DC converter is coupled between the high voltage capacitor and the first DC power port. The second DC converter is coupled between the high voltage capacitor and the second DC power port. The power inverter is coupled between the high-voltage capacitor and the AC power port. The microcontrol unit is used to adjust the frequency of the AC power output by the power conversion system from the AC power port based on the voltage difference across the high-voltage capacitor. Among them, when the micro control unit detects that the mains power is off-grid and the voltage difference is greater than the When a critical value is reached, the microcontrol unit sets the frequency of the alternating current output from the alternating current power port to the cutoff frequency, so that the solar photovoltaic converter stops outputting electric energy. When the micro-control unit detects that the mains power is off-grid and the continuous time when the voltage difference is between the first critical value and the second critical value exceeds the preset time length, the micro-control unit will output the AC power from the AC power port. The frequency is set to the cutoff frequency. When the micro-control unit detects that the mains power is off-grid and the voltage difference is between the second critical value and the third critical value, the micro-control unit increases the frequency of the AC power output by the AC power port to the first preset value. The first critical value is greater than the second critical value, and the second critical value is greater than the third critical value.
10:市電 10: Mains power
12:市電連接埠 12: Mains power connection port
14:交流電電源埠 14:AC power port
16、90:直流電電源埠 16, 90: DC power port
20、82:直流轉換器 20, 82: DC converter
22:電源逆變器 22: Power inverter
30:電壓電流計 30: Voltage ammeter
40:微控制單元 40:Micro control unit
50:太陽光電變流器 50: Solar Photovoltaic Converter
60:負載 60:Load
70:充電電池 70: Rechargeable battery
80、92:太陽能板 80, 92: Solar panels
100:功率轉換系統 100:Power conversion system
C:高壓電容 C: high voltage capacitor
F:頻率 F: Frequency
F_min:最小頻率 F_min: minimum frequency
F_normal:一般頻率 F_normal: normal frequency
F_Start:啟始頻率 F_Start: starting frequency
F_Stop:停止頻率 F_Stop: Stop frequency
F_Trip:截止頻率 F_Trip: Cutoff frequency
Ia:電流 Ia: Current
P_Inv:功率 P_Inv: power
Va:電壓 Va: voltage
Vb:直流電壓 Vb: DC voltage
Vbus:電壓差 Vbus: voltage difference
SOC:荷電狀態信號 SOC: state of charge signal
S200至S212、S302至S306、S401至S409:步驟 S200 to S212, S302 to S306, S401 to S409: steps
第1圖是本發明一實施例之功率轉換系統與所耦接的市電、負載、充電電池、太陽光電變流器及太陽能板之功能方塊圖。 Figure 1 is a functional block diagram of a power conversion system and the coupled mains, load, rechargeable battery, solar photovoltaic converter and solar panel according to an embodiment of the present invention.
第2圖是第1圖之太陽光電變流器的對外輸出功率比值與功率轉換系統所輸出的交流電的頻率之間的關係圖。 Figure 2 is a graph showing the relationship between the external output power ratio of the solar photovoltaic converter in Figure 1 and the frequency of the AC power output by the power conversion system.
第3A圖和第3B圖是第1圖之微控制單元控制功率轉換系統的流程圖。 Figures 3A and 3B are flow charts of the microcontroller unit in Figure 1 controlling the power conversion system.
第4圖是第1圖之微控制單元控制功率轉換系統的另一流程圖。 Figure 4 is another flow chart of the microcontroller unit in Figure 1 controlling the power conversion system.
第5A圖和第5B圖是第1圖之微控制單元控制功率轉換系統的另一流程圖。 Figures 5A and 5B are another flow chart of the microcontroller in Figure 1 controlling the power conversion system.
第1圖是本發明一實施例之功率轉換系統(Power conversion system;PCS)100與所耦接的市電10、負載60、充電電池70、太陽光電變流器(Photovoltaic inverter;PV inverter)50、太陽能板80及太陽能板92之功能方塊圖。太陽能板80及太陽能板92用以將光照轉換成電能。太陽光電變流器50用以將太陽能板80所產生的直流電轉換成交流電,並將轉換後的交流電饋入負載60及/或功率轉換系
統100。
FIG. 1 is a functional block diagram of a power conversion system (PCS) 100 of an embodiment of the present invention and the coupled
功率轉換系統100包含市電連接埠12、交流電電源埠14、直流電電源埠16、高壓電容C、直流轉換器20、電源逆變器22、電壓電流計30、直流轉換器82、直流電電源埠90以及微控制單元(microcontroller unit;MCU)40。功率轉換系統100可通過市電連接埠12連接於市電10,並從市電10接收電力。直流電電源埠16耦接於充電電池70,而功率轉換系統100可透過直流電電源埠16對充電電池70進行充電或從充電電池70接收電力。電壓電流計30耦接於交流電電源埠14,用以偵測功率轉換系統100從交流電電源埠14所輸出的電壓Va及電流Ia。其中,電壓Va及電流Ia分別為交流電電壓及交流電電流。微控制單元40用以控制功率轉換系統的操作,並從充電電池70接收荷電狀態信號SOC。微控制單元40可根據荷電狀態信號SOC得到充電電池70的目前已充電比例,並依據電壓電流計30所偵測到的電壓Va及電流Ia,得到功率轉換系統100的對外輸出功率P_Inv。當對外輸出功率P_Inv為正時,表示功率轉換系統100透過交流電電源埠14對外輸出電能;而當對外輸出功率P_Inv為負時,表示功率轉換系統100透過交流電電源埠14從外部接收電能。直流轉換器20耦接於高壓電容C與直流電電源埠16之間,用以將充電電池70所輸出的直流電壓Vb轉換成高壓電容C兩端的電壓差Vbus。直流轉換器82耦接於高壓電容C與直流電電源埠90之間,用以將太陽能板92所輸出的直流電壓轉換成高壓電容C兩端的電壓差Vbus。因此,電壓差Vbus的大小由直流電壓Vb和太陽能板92所輸出的直流電壓共同決定。電源逆變器22耦接於高壓電容C與交流電電源埠14之間,用以將電壓差Vbus轉換成交流電形式的電壓Va,而交流電壓Va的頻率為F。
The
請參考第2圖,第2圖是第1圖之太陽光電變流器50的對外輸出功率比
值與功率轉換系統100所輸出的交流電的頻率F之間的關係圖。第2圖的橫軸表示功率轉換系統100從交流電電源埠14所輸出的交流電的頻率F,而第2圖的縱軸表示太陽光電變流器50的對外輸出功率比值。第2圖的縱軸標示100之處表示太陽光電變流器50以最大值(即100%)進行輸出,而縱軸標示0之處表示太陽光電變流器50停止輸出。此外,當頻率F介於F_Start和F_Stop之間時,對外輸出功率比值與頻率F呈現線性的反向關係,亦即此時的對外輸出功率比值越大,則交流電的頻率F會越低。其中,F_min<F_normal<F_Start<F_Stop,而F_min表示功率轉換系統100所輸出的交流電之頻率F的最小值,F_normal為功率轉換系統100一般正常操作的頻率,F_Start所對應的對外輸出功率比值等於100%,而F_Stop所對應的對外輸出功率比值等於0%。其中,F_min可簡稱為「最小頻率」,F_normal可簡稱為「一般頻率」,F_Start可簡稱為「啟始頻率」,而F_Stop可簡稱為「停止頻率」。啟始頻率F_Start例如是60赫茲(Hz),而停止頻率F_Stop例如是60.5赫茲(Hz)。此外,另有一截止頻率F_trip,用以強制太陽光電變流器50停止輸出電能,而使功率轉換系統100進入過頻保護(F_Trip例如是60.6赫茲(Hz)。由於交流電的頻率F一旦到達F_Trip以上,太陽光電變流器50就會停止輸出電能,故頻率F_trip可稱為「截止頻率」)。
Please refer to FIG. 2, which is a relationship diagram between the external output power ratio of the solar photovoltaic converter 50 of FIG. 1 and the frequency F of the AC power output by the
直流轉換器82可偵測高壓電容C兩端的電壓差Vbus,並將電壓差Vbus的資料傳送給微控制單元40,以使微控制單元40根據電壓差Vbus來調整頻率F,以控制太陽光電變流器50的輸出功率。更進一步地說,當微控制單元40偵測到發生市電離網(off-grid)時(例如:市電連接埠12與市電10之間的連接被切斷或市電10發生斷電時),微控制單元40可根據電壓差Vbus調整頻率F,進而調整太陽光電變流器50的輸出功率。舉例來說,電壓差Vbus的正常值為400至430伏特,而當電壓差Vbus超過450伏特時,即表示高壓電容C所累積的能量過多,
故此時微控制單元40會先關閉太陽能板92,再關閉太陽光電變流器50。此外,倘若電壓差Vbus小於450伏特但大於430伏特,則提升頻率F,以使太陽光電變流器50降低其所輸出的電能。
The
請參考第3A圖和第3B圖,第3A圖和第3B圖是第1圖之微控制單元40控制功率轉換系統100的流程圖。當微控制單元40偵測到發生市電離網(off-grid)時(例如:市電連接埠12與市電10之間的連接被切斷或市電10發生斷電時)或重新連線併網饋電時,微控制單元40會執行第3A圖和第3B圖的流程,此流程包含下述步驟:步驟S200:微控制單元40判斷功率轉換系統100是否重新連網?其中,當轉換系統100重新連上市電10或是太陽光電變流器50開始供電時,即表示功率轉換系統100重新連網。當微控制單元40判斷出功率轉換系統100重新連網時,執行步驟S201;反之,則執行步驟S204;步驟S201:微控制單元40根據荷電狀態信號SOC判斷充電電池70的目前已充電比例是否小於一預設比例S1?其中,預設比例S1可介於10%至80%;若微控制單元40判斷充電電池70的目前已充電比例並未小於預設比例S1時,則執行步驟S202;反之,則執行步驟S203;步驟S202:微控制單元40將其計時器所累計的時間T歸零(T=0),並將功率轉換系統100從交流電電源埠14所輸出的交流電的頻率F設定為截止頻率F_trip,以使太陽光電變流器50停止輸出電能,而使功率轉換系統100進入過頻保護;回到步驟S201;步驟S203:微控制單元40將頻率F從停止頻率F_Stop調降一預設值Min_Step(即:F=F_Stop-Min_Step),以使太陽光電變流器50恢復輸出電能,並回到步驟S200。預設值Min_Step可以等於((F_Stop-F_Start)/8);
步驟S204:微控制單元40判斷高壓電容C兩端的電壓差Vbus是否大於臨界值V2?其中,臨界值V2可以例如是為445伏特至455伏特;若微控制單元40判斷電壓差Vbus大於臨界值V2時,則執行步驟S205;反之,則執行步驟S210;步驟S205:微控制單元40中的計時器將其所累計的時間加1;步驟S206:微控制單元40判斷高壓電容C兩端的電壓差Vbus是否大於臨界值V3?其中,臨界值V3可介於465伏特至475伏特;若微控制單元40判斷電壓差Vbus大於臨界值V3時,則執行步驟S207;反之,則執行步驟S208;步驟S207:微控制單元40將頻率F提高至(F_Trip+Max_step),以使耦接於交流電電源埠14的太陽光電變流器50停止輸出電能,而進入過頻保護。其中,Max_step例如是0.3赫茲或等於((F_Stop-F_Start)/2)。更進一步地說,一旦交流電的頻率F到達F_Trip以上,太陽光電變流器50就會停止輸出電能,故當交流電的頻率F等於(F_Trip+Max_step)時,則可更加確保太陽光電變流器50會停止輸出電能;回到步驟S200;步驟S208:微控制單元40判斷其計時器目前所累計的時間T是否大於預設時間長度Th?預設時間長度Th例如可以是5秒鐘,而當微控制單元40判斷其計時器目前所累計的時間T大於預設時間長度Th時,則執行步驟S209;反之,則回到步驟S204;步驟S209:微控制單元40將頻率F提高至(F_Trip+Max_step),以使耦接於交流電電源埠14的太陽光電變流器50停止輸出電能,而進入過頻保護;當微控制單元40執行完步驟S209後,即回到步驟S200;步驟S210:微控制單元40將其計時器目前所累計的時間T歸零(T=0);步驟S211:微控制單元40判斷高壓電容C兩端的電壓差Vbus是否大於臨界值V1?其中,臨界值V1可為425伏特至435伏特;若微控制單元40判斷電
壓差Vbus大於臨界值V1時,則執行步驟S212;反之,則回到步驟S204;以及步驟S212:微控制單元40將頻率F提高Max_step,即F=(F+Max_step),以使太陽光電變流器50降低其所輸出的電能;回到步驟S204。
Please refer to FIG. 3A and FIG. 3B, which are flowcharts of the micro-control unit 40 in FIG. 1 controlling the
當太陽光電變流器50偵測到電壓或頻率超出正常工作範圍會啟動保護(例如:過壓、欠壓、過頻、欠頻、孤島運轉(Islanding)...等情況),進而不再輸出功率饋網,此時微控制單元40會判斷太陽光電變流器50是否跳脫,依據狀態來調控功率轉換系統100的交流輸出頻率來決定太陽光電變流器50是否可再重新連線併網饋電,若太陽光電變流器50偵測市電端的電壓與頻率符合正常的工作範圍時,則會判定可重新連網饋電的條件成立,太陽光電變流器50計數特定秒數(例如:併網法規規範的300秒)後就會饋網輸出。
When the solar photovoltaic converter 50 detects that the voltage or frequency exceeds the normal operating range, it will start protection (for example: overvoltage, undervoltage, overfrequency, underfrequency, islanding, etc.), and then no longer output power to the grid. At this time, the micro control unit 40 will determine whether the solar photovoltaic converter 50 is tripped, and adjust the
在本發明另一實施例中,微控制單元40除了會依據電壓差Vbus來執行第3A圖和第3B圖的流程之外,還會另依據充電電池70的目前已充電比例,來執行第4圖的流程。第4圖的流程包含下述步驟:步驟S200:此步驟同第3A圖中的步驟S200,即微控制單元40會判斷功率轉換系統100是否重新連網?當微控制單元40判斷出功率轉換系統100重新連網時,執行第3A圖中的步驟S201;反之,則執行步驟S302;步驟S302:微控制單元40根據荷電狀態信號SOC判斷充電電池70的目前已充電比例是否大於一預設比例S2?其中,預設比例S2例如介於20%至90%,而當微控制單元40判斷出充電電池70的目前已充電比例大於預設比例S2時,執行步驟S304;反之,則回到步驟S200;步驟S304:微控制單元40判斷對外輸出功率P_Inv是否小於預設功率P1?其中,預設功率P1例如是500瓦,並可依照不同的控制需求進行調整。當微
控制單元40判斷出對外輸出功率P_Inv小於預設功率P1時,執行步驟S306;反之,則回到步驟S200;以及步驟S306:微控制單元40將功率轉換系統100從交流電電源埠14所輸出的交流電的頻率F提高,以使耦接於交流電電源埠14的太陽光電變流器50停止輸出電能,而進入過頻保護。例如:微控制單元40將交流電的頻率F提高至(F_Trip+Max_step)。其中,F_Trip例如是60.6赫茲(Hz),而Max_step例如是0.3赫茲。更進一步地說,一旦交流電的頻率F到達F_Trip以上,太陽光電變流器50就會停止輸出電能,頻率F_trip可稱為截止頻率。因此,當交流電的頻率F等於(F_Trip+Max_step)時,則可更加確保太陽光電變流器50會停止輸出電能;當微控制單元40執行完步驟S306後,即回到步驟S200。
In another embodiment of the present invention, in addition to executing the processes of FIGS. 3A and 3B based on the voltage difference Vbus, the micro control unit 40 also executes the fourth step based on the current charged ratio of the
在本發明另一實施例中,微控制單元40除了會依據電壓差Vbus來執行第3A圖和第3B圖的流程之外,還會另依據充電電池70的目前已充電比例,來執行第5A圖和第5B圖的流程。第5A圖和第5B圖的流程包含下述步驟:步驟S200:此步驟同第3A圖中的步驟S200,即微控制單元40會判斷功率轉換系統100是否重新連網?當微控制單元40判斷出功率轉換系統100重新連網時,執行第3A圖中的步驟S201;反之,則執行步驟S401;步驟S401:微控制單元40根據荷電狀態信號SOC判斷充電電池70的目前已充電比例是否大於預設比例S2?其中,預設比例S2可介於20%至90%,而當微控制單元40判斷出充電電池70的目前已充電比例大於預設比例S2時,執行步驟S402;反之,則執行步驟S403;步驟S402:微控制單元40將功率轉換系統100從交流電電源埠14所輸出的交流電的頻率F提高至(F_Trip+Max_Step),以使耦接於交流電電源埠14的太陽光電變流器50停止輸出電能,而進入過頻保護。其中,F_Trip例如是62
赫茲(Hz),而Max_step例如是0.3赫茲。更進一步地說,一旦交流電的頻率F到達F_Trip以上,太陽光電變流器50就會停止輸出電能,頻率F_Trip可稱為「截止頻率」。因此,當交流電的頻率F等於(F_Trip+Max_step)時,則可更加確保太陽光電變流器50會停止輸出電能;此外,Max_Step可以等於((F_Stop-F_Start)/2),而F_Trip大於F_Stop;當微控制單元40執行完步驟S402後,即回到步驟S200;步驟S403:微控制單元40根據荷電狀態信號SOC判斷充電電池70的目前已充電比例是否大於預設比例S3?其中,預設比例S3小於預設比例S2,並可介於15%至85%。當微控制單元40判斷出充電電池70的目前已充電比例大於預設比例S3時,執行步驟S404;反之,則執行步驟S407;步驟S404:微控制單元40判斷對外輸出功率P_Inv的負值(即:-P_Inv)是否大於預設功率P2?其中,當對外輸出功率P_Inv的負值為正時,即表示功率轉換系統100從外部接收電力,而預設功率P2例如是1000瓦,但並不以此為限。當微控制單元40並未判斷出對外輸出功率P_Inv的負值大於預設功率P2時,執行步驟S405;而當微控制單元40判斷出對外輸出功率P_Inv的負值大於預設功率P2時,執行步驟S409;步驟S405:微控制單元40判斷對外輸出功率P_Inv是否小於預設功率P1?其中,預設功率P1小於預設功率P2,而預設功率P1例如是500瓦,但並不以此為限。當判斷出對外輸出功率P_Inv小於預設功率P1時,執行步驟S406;反之,則回到步驟S401;步驟S406:微控制單元40將頻率F調升一預設值Min_Step(即:F=F+Min_Step),並回到步驟S401;其中,預設值Min_Step可以等於((F_Stop-F_Start)/8),而頻率F在此步驟中最高被調高至F_Stop,亦即頻率F在此步驟中的最大值F_Max為F_Stop。步驟S406的作用在於:當充電電池70的目前已充電比例大於預設比例S3,且對外輸出功率P_Inv小於預設功率P1時,藉由調升頻率
F,而降低太陽光電變流器50的輸出功率;步驟S407:微控制單元40根據荷電狀態信號SOC判斷充電電池70的目前已充電比例是否小於預設比例S1?其中,預設比例S1小於預設比例S2及S3,並可介於10%至80%,而當微控制單元40判斷出充電電池70的目前已充電比例小於預設比例S1時,執行步驟S408;反之,則回到步驟S401;步驟S408:微控制單元40將頻率F調降一預設值Min_Step(即:F=F-Min_Step),並回到步驟S401;其中,頻率F在此步驟中最低被調至F_Start,亦即頻率F在此步驟中的最小值F_Min為F_Start。步驟S408的作用在於:當充電電池70的目前已充電比例小於預設比例S1時,藉由調降頻率F,而調升太陽光電變流器50的輸出功率;以及步驟S409:微控制單元40將頻率F調升一預設值Mid_Step(即:F=F+Mid_Step),並回到步驟S401;其中,預設值Mid_Step可以等於((F_Stop-F_Start)/4),而頻率F在此步驟中最高被調至F_Stop,亦即頻率F在此步驟中的最大值F_Max為F_Stop。步驟S409的作用在於:當充電電池70的目前已充電比例大於預設比例S3,且功率轉換系統100從外部所接收電力大於預設功率P2時,藉由調升頻率F,而降低太陽光電變流器50的輸出功率。
In another embodiment of the present invention, in addition to executing the processes of FIGS. 3A and 3B based on the voltage difference Vbus, the micro control unit 40 also executes the 5A process based on the current charged ratio of the
本發明的微控制單元40偵測到發生市電離網時則會讓功率轉換系統100輸出交流電頻率F,進而誘導太陽光電變流器50不進入孤島(Islanding)保護而能發電饋網,其能量可供給負載60與功率轉換系統100,微控制單元40可根據高壓電容C兩端的電壓差Vbus、充電電池70的目前已充電比例,及對外輸出功率P_Inv的正負大小,來動態調整功率轉換系統100所輸出的交流電的頻率,因此,功率轉換系統100之整體的電力潮流可得到有效率的調控。
When the micro-control unit 40 of the present invention detects that the mains power is off-grid, it will cause the
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the patentable scope of the present invention shall fall within the scope of the present invention.
F_min:最小頻率 F_min: minimum frequency
F_normal:一般頻率 F_normal: normal frequency
F_Start:啟始頻率 F_Start: starting frequency
F_Stop:停止頻率 F_Stop: Stop frequency
F_Trip:截止頻率 F_Trip: cutoff frequency
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023061159A JP2023154420A (en) | 2022-04-06 | 2023-04-05 | power conversion system |
US18/131,357 US12136819B2 (en) | 2022-04-06 | 2023-04-05 | Power conversion system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263328267P | 2022-04-06 | 2022-04-06 | |
US63/328,267 | 2022-04-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202341601A TW202341601A (en) | 2023-10-16 |
TWI836948B true TWI836948B (en) | 2024-03-21 |
Family
ID=88313957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112111919A TWI836948B (en) | 2022-04-06 | 2023-03-29 | Power conversion system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116896288A (en) |
TW (1) | TWI836948B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW355867B (en) * | 1997-01-07 | 1999-04-11 | Phaze Technologies Incorpordted | Improved method and apparatus for rapidly charging and reconditioning a battery |
US10389178B2 (en) * | 2015-11-02 | 2019-08-20 | Hyundai Motor Company | Method for controlling DC-AC converter and ground assembly and wireless power transfer method using the same |
TWM601482U (en) * | 2020-04-15 | 2020-09-11 | 宏碁股份有限公司 | Electronic system and hybrid power supply device |
-
2023
- 2023-03-29 TW TW112111919A patent/TWI836948B/en active
- 2023-03-31 CN CN202310338637.0A patent/CN116896288A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW355867B (en) * | 1997-01-07 | 1999-04-11 | Phaze Technologies Incorpordted | Improved method and apparatus for rapidly charging and reconditioning a battery |
US10389178B2 (en) * | 2015-11-02 | 2019-08-20 | Hyundai Motor Company | Method for controlling DC-AC converter and ground assembly and wireless power transfer method using the same |
TWM601482U (en) * | 2020-04-15 | 2020-09-11 | 宏碁股份有限公司 | Electronic system and hybrid power supply device |
Also Published As
Publication number | Publication date |
---|---|
CN116896288A (en) | 2023-10-17 |
TW202341601A (en) | 2023-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI497866B (en) | Charging equipment | |
WO2021008235A1 (en) | Dc coupling off-network hydrogen production system and power supply device for control cabinet thereof, and control method | |
CN103972976A (en) | Electric energy supply system | |
WO2015003443A1 (en) | Anti-countercurrent grid-connected photovoltaic power generation system | |
CN106936148B (en) | Photovoltaic-energy storage converter system and control method thereof | |
CN103762621A (en) | Alternating current and direct current interworking control circuit, alternating current and direct current interworking micro-grid and alternating current and direct current interworking control method | |
KR20150106694A (en) | Energy storage system and method for driving the same | |
JP7482281B2 (en) | Power Conversion Systems | |
TWI836948B (en) | Power conversion system | |
JP6101523B2 (en) | Power supply system | |
RU167946U1 (en) | Uninterrupted power supply unit | |
TWI829573B (en) | Power conversion system | |
EP4325691A1 (en) | Electric power conversion system and electric power conversion device | |
US12136819B2 (en) | Power conversion system | |
CN104505857A (en) | Power frequency isolation type photovoltaic grid-connected inverter | |
CN204559398U (en) | Wind power generation adjustable fly-back power circuit | |
US20230327449A1 (en) | Power conversion system | |
CN203761058U (en) | Solar DC grid-connected generation DC-DC special-purpose control device of communication base station | |
TW202341600A (en) | Power conversion system | |
JP2018170929A (en) | Electric power conversion system, and electric power conversion device | |
WO2024164490A1 (en) | Power supply method for photovoltaic air conditioner, and power supply system for photovoltaic air conditioner | |
CN203690945U (en) | AC-DC exchange control circuit and micro power grid | |
JP3242499U (en) | power controller | |
CN204615502U (en) | The system power supply electric supply installation of bidirectional energy-storage photovoltaic DC-to-AC converter | |
RU98080U1 (en) | SOURCE OF POWER |