TWI836119B - Fuel cell interconnect with iron rich rib regions and method of making thereof - Google Patents
Fuel cell interconnect with iron rich rib regions and method of making thereof Download PDFInfo
- Publication number
- TWI836119B TWI836119B TW109123877A TW109123877A TWI836119B TW I836119 B TWI836119 B TW I836119B TW 109123877 A TW109123877 A TW 109123877A TW 109123877 A TW109123877 A TW 109123877A TW I836119 B TWI836119 B TW I836119B
- Authority
- TW
- Taiwan
- Prior art keywords
- interconnect
- iron
- powder
- coating
- layer
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 317
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 151
- 239000000446 fuel Substances 0.000 title claims abstract description 119
- 238000004519 manufacturing process Methods 0.000 title description 6
- 239000007787 solid Substances 0.000 claims abstract description 19
- 239000011651 chromium Substances 0.000 claims description 146
- 239000000843 powder Substances 0.000 claims description 122
- 239000000463 material Substances 0.000 claims description 92
- 229910052804 chromium Inorganic materials 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 56
- 238000005245 sintering Methods 0.000 claims description 50
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 38
- 238000003825 pressing Methods 0.000 claims description 30
- 229910052727 yttrium Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 abstract description 79
- 229910052751 metal Inorganic materials 0.000 abstract description 78
- 239000010949 copper Substances 0.000 abstract description 57
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 29
- 150000004706 metal oxides Chemical class 0.000 abstract description 29
- 229910052802 copper Inorganic materials 0.000 abstract description 20
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 14
- 229910017052 cobalt Inorganic materials 0.000 abstract description 13
- 239000010941 cobalt Substances 0.000 abstract description 13
- 229910000601 superalloy Inorganic materials 0.000 abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 7
- 229910000599 Cr alloy Inorganic materials 0.000 abstract description 7
- 239000000788 chromium alloy Substances 0.000 abstract description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 177
- 238000000576 coating method Methods 0.000 description 162
- 239000011248 coating agent Substances 0.000 description 153
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 142
- 239000011572 manganese Substances 0.000 description 107
- 239000003570 air Substances 0.000 description 61
- 229910052596 spinel Inorganic materials 0.000 description 59
- 239000011029 spinel Substances 0.000 description 59
- 229910052759 nickel Inorganic materials 0.000 description 55
- 239000002245 particle Substances 0.000 description 54
- 239000000956 alloy Substances 0.000 description 43
- 239000000203 mixture Substances 0.000 description 38
- 229910045601 alloy Inorganic materials 0.000 description 36
- 229910052748 manganese Inorganic materials 0.000 description 35
- 239000012071 phase Substances 0.000 description 34
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 29
- 230000002829 reductive effect Effects 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 24
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 23
- 229910000423 chromium oxide Inorganic materials 0.000 description 23
- 238000009792 diffusion process Methods 0.000 description 21
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 229910019589 Cr—Fe Inorganic materials 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 238000000151 deposition Methods 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 239000011148 porous material Substances 0.000 description 14
- 150000001768 cations Chemical class 0.000 description 13
- 239000003792 electrolyte Substances 0.000 description 12
- 239000000314 lubricant Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 10
- 230000015556 catabolic process Effects 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 238000006731 degradation reaction Methods 0.000 description 10
- 230000008021 deposition Effects 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 229910002467 CrFe Inorganic materials 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 229910052566 spinel group Inorganic materials 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- -1 1-100% Chemical compound 0.000 description 8
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000004663 powder metallurgy Methods 0.000 description 7
- 230000032258 transport Effects 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000000280 densification Methods 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 238000005488 sandblasting Methods 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910018487 Ni—Cr Inorganic materials 0.000 description 5
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium dioxide Chemical compound O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 229910000480 nickel oxide Inorganic materials 0.000 description 5
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 238000007750 plasma spraying Methods 0.000 description 5
- 238000005476 soldering Methods 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 150000003624 transition metals Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910021532 Calcite Inorganic materials 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910001026 inconel Inorganic materials 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 231100000572 poisoning Toxicity 0.000 description 4
- 230000000607 poisoning effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910017060 Fe Cr Inorganic materials 0.000 description 3
- 229910002544 Fe-Cr Inorganic materials 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- IGPAMRAHTMKVDN-UHFFFAOYSA-N strontium dioxido(dioxo)manganese lanthanum(3+) Chemical compound [Sr+2].[La+3].[O-][Mn]([O-])(=O)=O IGPAMRAHTMKVDN-UHFFFAOYSA-N 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910001430 chromium ion Inorganic materials 0.000 description 2
- UXJMPWMAAZYCMP-UHFFFAOYSA-N chromium(3+) manganese(2+) oxygen(2-) Chemical compound [O-2].[Cr+3].[Mn+2] UXJMPWMAAZYCMP-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000006112 glass ceramic composition Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910001119 inconels 625 Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WSHADMOVDWUXEY-UHFFFAOYSA-N manganese oxocobalt Chemical compound [Co]=O.[Mn] WSHADMOVDWUXEY-UHFFFAOYSA-N 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910020632 Co Mn Inorganic materials 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910020678 Co—Mn Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910003166 Mn1.5Co1.5O4 Inorganic materials 0.000 description 1
- 229910018669 Mn—Co Inorganic materials 0.000 description 1
- 229910014211 My O Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910002796 Si–Al Inorganic materials 0.000 description 1
- JTCFNJXQEFODHE-UHFFFAOYSA-N [Ca].[Ti] Chemical compound [Ca].[Ti] JTCFNJXQEFODHE-UHFFFAOYSA-N 0.000 description 1
- PMTBMZQLTAVEGP-UHFFFAOYSA-N [O-2].[Cr+3].[Co+2].[Mn+2] Chemical compound [O-2].[Cr+3].[Co+2].[Mn+2] PMTBMZQLTAVEGP-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- MOEHVXSVUJUROX-UHFFFAOYSA-M chromium(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Cr+3] MOEHVXSVUJUROX-UHFFFAOYSA-M 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 239000011532 electronic conductor Substances 0.000 description 1
- 238000001652 electrophoretic deposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005324 grain boundary diffusion Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910000816 inconels 718 Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical class [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本發明係關於燃料電池堆疊組件,特定言之,係關於互連件及製備用於燃料電池堆疊之互連件之方法。 The present invention relates to a fuel cell stack assembly, and more particularly, to an interconnector and a method for preparing the interconnector for a fuel cell stack.
典型的固體氧化物燃料電池堆疊包括由金屬互連件(IC)分離之多個燃料電池,其提供堆疊中相鄰電池之間的電連接及用於傳輸且移除燃料及氧化劑的通道。金屬互連件通常由基於Cr之合金(諸如稱為CrFe之合金)構成,其具有95wt% Cr-5wt% Fe之組成或具有94wt% Cr-5wt% Fe-1wt% Y組成之Cr-Fe-Y。CrFe及CrFeY合金在典型的固體氧化物燃料電池(SOFC)運行條件(例如空氣及濕燃料氛圍中之700-900℃)下保持其強度且在尺寸上為穩定的。然而,在SOFC之運行期間,CrFe或CrFeY合金中之鉻與氧反應且形成氧化鉻,導致SOFC堆疊之劣化。 A typical solid oxide fuel cell stack includes multiple fuel cells separated by metallic interconnects (ICs), which provide electrical connections between adjacent cells in the stack and channels for transporting and removing fuel and oxidant. Metallic interconnects are typically composed of Cr-based alloys, such as those known as CrFe, with a composition of 95 wt% Cr-5 wt% Fe or Cr-Fe- with a composition of 94 wt% Cr-5 wt% Fe-1 wt% Y. Y. CrFe and CrFeY alloys maintain their strength and are dimensionally stable under typical solid oxide fuel cell (SOFC) operating conditions, such as 700-900°C in air and wet fuel atmospheres. However, during operation of the SOFC, chromium in the CrFe or CrFeY alloy reacts with oxygen and forms chromium oxide, causing degradation of the SOFC stack.
影響SOFC堆疊之主要劣化機制中之兩者與金屬互連件組件的氧化鉻形成直接相關:i)由於在互連件上形成原生氧化鉻(氧化鉻(chromia),Cr2O3)而導致之更高的堆疊歐姆電阻,及ii)SOFC陰極之鉻中毒。 Two of the main degradation mechanisms affecting SOFC stacks are directly related to chromium oxide formation on metal interconnect components: i) higher stack ohmic resistance due to native chromium oxide (chromia, Cr 2 O 3 ) formation on the interconnects, and ii) chromium poisoning of the SOFC cathode.
儘管Cr2O3為一種電子導體,但此材料在SOFC運行溫度 (700-900℃)下之導電性極低,其中在850℃下值為約0.01S/cm(而Cr金屬之導電性為7.9×104S/cm)。氧化鉻層在互連件之表面上之厚度隨時間推移而增長,且因此互連件之歐姆電阻以及由於此氧化物層而導致之SOFC堆疊的歐姆電阻隨時間推移增加。 Although Cr 2 O 3 is an electronic conductor, the material has extremely low conductivity at SOFC operating temperatures (700-900°C), with a value of about 0.01S/cm at 850°C (while the conductivity of Cr metal is 7.9×10 4 S/cm). The thickness of the chromium oxide layer on the surface of the interconnect increases over time, and therefore the ohmic resistance of the interconnect, and therefore the SOFC stack due to this oxide layer, increases over time.
與形成金屬互連件之氧化鉻相關的第二劣化機制稱為陰極之鉻中毒。在SOFC運行溫度下,鉻蒸汽擴散穿過塗層中之裂紋或孔隙且鉻離子可經由固態擴散來擴散穿過互連件塗層材料之晶格進入SOFC陰極中。另外,在燃料電池運行期間,環境空氣(潮濕空氣)流過互連件之空氣(陰極)側且濕燃料流過互連件之燃料(陽極)側。在SOFC運行溫度下且在潮濕空氣(陰極側)之存在下,互連件上之Cr2O3層之表面上的鉻與水反應且以氣態物質氧化鉻氫氧化物(CrO2(OH)2)之形式蒸發。氧化鉻氫氧化物物質以蒸汽形式自互連件表面傳輸至燃料電池之陰極電極,其中其可以固體形式(Cr2O3)沈積。Cr2O3在SOFC陰極上及其中(例如,經由晶粒邊界擴散)沈積且/或與陰極反應(例如以形成Cr-Mn尖晶石),導致陰極電極之顯著效能退化。典型的SOFC陰極材料,諸如鈣鈦礦材料(例如,LSM、LSC、LSCF及LSF)尤其易受氧化鉻降解影響。 The second degradation mechanism associated with the chromium oxide that forms the metal interconnects is called chromium poisoning of the cathode. At SOFC operating temperatures, chromium vapor diffuses through cracks or pores in the coating and chromium ions can diffuse through the lattice of the interconnect coating material into the SOFC cathode via solid-state diffusion. Additionally, during fuel cell operation, ambient air (humid air) flows through the air (cathode) side of the interconnect and wet fuel flows through the fuel (anode) side of the interconnect. At SOFC operating temperatures and in the presence of moist air (cathode side), chromium on the surface of the Cr 2 O 3 layer on the interconnect reacts with water and oxidizes chromium hydroxide (CrO 2 (OH)) as a gaseous species 2 ) evaporates in the form. The chromium oxide hydroxide species is transported in vapor form from the interconnect surface to the cathode electrode of the fuel cell, where it can be deposited in solid form (Cr 2 O 3 ). Cr 2 O 3 deposits on and in the SOFC cathode (eg, via grain boundary diffusion) and/or reacts with the cathode (eg, to form Cr-Mn spinel), resulting in significant performance degradation of the cathode electrode. Typical SOFC cathode materials such as perovskite materials (eg, LSM, LSC, LSCF, and LSF) are particularly susceptible to chromium oxide degradation.
一實施例包括一種製備用於固體氧化物燃料電池堆疊之互連件之方法,其包含將富含鐵之材料提供至模具之通道中;將含有4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末提供至模具中之含有至少25wt%鐵的富含鐵之材料上方;在模具中壓製含有至少25wt%鐵之富含鐵之材料及包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末以形成互連件;及燒結互連件以形成在互連件之肋部中具有鐵濃度大於10%之富含鐵之區域的 經燒結互連件。 One embodiment includes a method of preparing an interconnect for a solid oxide fuel cell stack, comprising providing an iron-rich material into a channel of a mold; providing a powder containing 4-6 wt% Fe, 0-1 wt% Y and the balance Cr over the iron-rich material containing at least 25 wt% iron in the mold; pressing the iron-rich material containing at least 25 wt% iron and the powder containing 4-6 wt% Fe, 0-1 wt% Y and the balance Cr in the mold to form an interconnect; and sintering the interconnect to form a sintered interconnect having an iron-rich region with an iron concentration greater than 10% in a rib of the interconnect.
另一實施例包括一種製備用於固體氧化物燃料電池堆疊之互連件之方法,其包含提供具有由通道分離之肋部之鉻合金互連件,及直接在該等肋部之頂表面上而非該等通道之底部上形成金屬或金屬氧化物覆蓋層,其中該等金屬或金屬氧化物覆蓋層包含鐵、錳、鈷、銅、超合金及其氧化物。 Another embodiment includes a method of preparing an interconnect for a solid oxide fuel cell stack, comprising providing a chromium alloy interconnect with ribs separated by channels, and directly on the top surface of the ribs Rather than forming a metal or metal oxide coating layer on the bottom of the channels, the metal or metal oxide coating layer includes iron, manganese, cobalt, copper, superalloys and their oxides.
另一實施例包括一種用於固體氧化物燃料電池堆疊之互連件,其包含鉻合金互連件,該鉻合金互連件具有由通道分離之肋部;及金屬或金屬氧化物覆蓋層,其直接位於該等肋部之頂表面上而非該等通道之底部上,其中該等金屬或金屬氧化物覆蓋層包含鐵、錳、鈷、銅、超合金或其氧化物。 Another embodiment includes an interconnect for a solid oxide fuel cell stack that includes a chromium alloy interconnect having ribs separated by channels; and a metal or metal oxide capping layer, It is located directly on the top surface of the ribs rather than on the bottom of the channels, wherein the metal or metal oxide coating includes iron, manganese, cobalt, copper, superalloys or oxides thereof.
3:陽極電極 3: Anode electrode
5:電池電解質 5:Battery electrolyte
8:氣流通道 8:Air flow channel
10:肋部 10: Ribs
11:LSM塗層 11:LSM coating
13:一側 13: One side
14:相對側 14: Opposite side
15:環形密封件 15: Ring seal
16A:燃料入口開口/通孔 16A: Fuel inlet opening/through hole
16B:燃料出口開口/通孔 16B: Fuel outlet opening/through hole
17:平坦區域/燃料分佈氣室 17: Flat area/fuel distribution air chamber
18:窗用密封件 18: Window seals
19:條狀密封件 19: Strip seal
25:氧化物層 25: Oxide layer
27:金屬或金屬氧化物接觸層 27: Metal or metal oxide contact layer
29:反應區 29: Reaction area
31:鎳網 31: Nickel mesh
33:雜質 33: Impurities
35:間隙 35: Gap
36:燃料入口上升管 36:Fuel inlet riser pipe
37A:焊接點 37A:Welding point
37B:焊接點 37B: welding point
37C:焊接點 37C: Welding point
37D:焊接點 37D: Welding point
100:互連件 100:Interconnectors
101:尖晶石相/鉻晶體 101:Spinel phase/chromium crystal
102:尖晶石層 102: Spinel layer
103:裂紋 103:Crack
104:LSM互連件塗層 104: LSM interconnect coating
111:塗層 111: Coating
129:富含鐵之區域 129: Iron-rich area
200:模具空腔 200:Mold cavity
201:模具 201: Mould
202:潤滑劑及Cr/Fe粉末 202: Lubricant and Cr/Fe powder
204:塗層材料粉末 204: Coating material powder
205P:純Fe粉 205P:Pure Fe powder
205S:Fe箔帶 205S:Fe foil tape
206:第二鞋形件 206: Second shoe-shaped part
208:衝頭 208:Punch
305:Fe-Cr粉末 305:Fe-Cr powder
308:通道 308: Channel
310:肋部 310: Ribs
312:黏著劑 312: Adhesive
470:金屬覆蓋層 470:Metal coating
570:金屬覆蓋層 570:Metal coating
圖1為展示基於LSM之陰極之孔隙內之Mn-Cr尖晶石相的顯微圖。 Figure 1 is a micrograph showing the Mn-Cr spinel phase within the pores of an LSM-based cathode.
圖2為展示藉由空氣電漿噴塗沈積之LSM互連件塗層之裂紋中之含Cr相的顯微圖。SOFC堆疊在850℃下運行2000小時。 Figure 2 is a micrograph showing Cr-containing phases in cracks in an LSM interconnect coating deposited by air plasma spraying. The SOFC stack was operated at 850°C for 2000 hours.
圖3A至3C為根據一實施例之製備互連件之方法中之步驟的示意圖。 3A to 3C are schematic diagrams of steps in a method of preparing an interconnect according to an embodiment.
圖4為根據一實施例之製備互連件之方法的另一示意圖。 FIG. 4 is another schematic diagram of a method for preparing an interconnect according to an embodiment.
圖5為具有雙層複合塗層之互連件之一實施例的側視示意圖。 FIG5 is a schematic side view of an embodiment of an interconnect having a double-layer composite coating.
圖6A至6B及圖7為說明以下之示意圖:(6A)根據一實施例之互連件之空氣側、(6B)互連件之空氣側之密封部分的特寫視圖、(7)互 連件之燃料側。 Figures 6A to 6B and Figure 7 are schematic diagrams illustrating the following: (6A) the air side of an interconnect according to one embodiment, (6B) a close-up view of a sealing portion of the air side of the interconnect, and (7) the fuel side of the interconnect.
圖8為說明在還原燒結步驟之後互連件之燃料側(未塗佈側)之氧化鉻的顯微圖。 Figure 8 is a micrograph illustrating chromium oxide on the fuel side (uncoated side) of the interconnect after the reduction sintering step.
圖9為SOFC堆疊之一部分之顯微圖,其說明由於燃料經由多孔IC擴散,塗層/IC界面處之MCO塗層(在條帶密封區域中)的減少。 Figure 9 is a micrograph of a portion of a SOFC stack illustrating the reduction of MCO coating at the coating/IC interface (in the strip seal area) due to diffusion of fuel through the porous IC.
圖10為說明Mn3O4-Co3O4系統之相圖。 FIG. 10 is a phase diagram illustrating the Mn 3 O 4 -Co 3 O 4 system.
圖11為習知的燃料電池堆疊中之燃料入口上升管之示意圖。 Figure 11 is a schematic diagram of a fuel inlet riser in a known fuel cell stack.
圖12為說明電解質腐蝕理論之SOFC之示意圖。 Figure 12 is a schematic diagram of SOFC to illustrate the electrolyte corrosion theory.
圖13為根據一實施例之互連件之一部分的示意性側面橫截面圖。 Figure 13 is a schematic side cross-sectional view of a portion of an interconnect according to an embodiment.
圖14A、圖14B及圖14C為根據替代實施例之互連件之俯視圖。 Figures 14A, 14B and 14C are top views of interconnects according to alternative embodiments.
圖15A至15C為根據另一實施例之製備互連件之方法中之步驟的示意圖。 15A to 15C are schematic diagrams of steps in a method of preparing an interconnect according to another embodiment.
圖16為根據另一實施例之製備互連件之方法的示意圖。 16 is a schematic diagram of a method of preparing an interconnect according to another embodiment.
圖17A至17B為根據另一實施例之製備互連件之方法中之步驟的示意圖。 17A-17B are schematic diagrams of steps in a method of preparing an interconnect according to another embodiment.
圖18A至18D為根據各種實施例製備之互連件之示意圖。 Figures 18A to 18D are schematic diagrams of interconnects prepared according to various embodiments.
為限制鉻離子(例如,Cr3+)經由互連件塗層材料擴散至SOFC陰極,可選擇具有極少陽離子空位及因此低鉻擴散率之材料。具有低陽離子擴散率之一系列材料屬於鈣鈦礦族,諸如鑭鍶氧化物,例如 La1-xSrxMnO3(LSM),其中0.1x0.3,諸如0.1x0.2。此等材料已用作互連件塗層材料。在LSM之情況下,材料具有高電子導電性,但具有低陰離子及陽離子擴散。 To limit the diffusion of chromium ions (e.g., Cr 3+ ) through the interconnect coating material to the SOFC cathode, a material with very few cation vacancies and thus low chromium diffusion rate can be selected. A family of materials with low cation diffusion rates belongs to the calcium-titanium family, such as strontium oxides, such as La 1-x Sr x MnO 3 (LSM), where 0.1 x 0.3, such as 0.1 x 0.2. These materials have been used as interconnect coating materials. In the case of LSM, the material has high electronic conductivity but low anion and cation diffusion.
互連件塗層之第二作用為抑制在互連件表面上形成原生氧化物。當氧與互連件合金中之鉻反應以形成相對較高的Cr2O3電阻層時,形成原生氧化物。若互連件塗層可抑制氧氣及水蒸氣自空氣傳輸至互連件之表面,則可降低氧化物生長之動力學。 A secondary function of the interconnect coating is to inhibit the formation of native oxide on the interconnect surface. Native oxide forms when oxygen reacts with chromium in the interconnect alloy to form a relatively high resistance layer of Cr2O3 . If the interconnect coating can inhibit the transport of oxygen and water vapor from the air to the surface of the interconnect, the kinetics of oxide growth can be reduced.
類似於鉻,氧(例如,O2-離子)可經由固態擴散傳輸穿過塗層或藉由氣體傳輸穿過塗層中之孔隙及裂紋。此機制亦可用於空浮水蒸氣,一種用於Cr蒸發及可能的氧化物生長之促進劑。如上文所論述,在潮濕空氣環境中,鉻以氣體分子CrO2(OH)2形式自Cr2O3之表面蒸發,其可隨後經由塗層中之疵點(諸如孔隙及裂紋)擴散。在氧氣及水蒸氣之情況下,視疵點或孔隙之大小而定,分子藉由體擴散或克努森擴散過程(Knudsen diffusion process)擴散穿過疵點。 Similar to chromium, oxygen (eg, O2- ions) can be transported through the coating via solid-state diffusion or through gaseous transport through pores and cracks in the coating. This mechanism can also be used for floating water vapor, an accelerator for Cr evaporation and possible oxide growth. As discussed above, in a humid air environment, chromium evaporates from the surface of CrO2 as gas molecules CrO2 (OH) 2 , which can then diffuse through imperfections in the coating, such as pores and cracks. In the case of oxygen and water vapor, molecules diffuse through the defect by bulk diffusion or the Knudsen diffusion process, depending on the size of the defect or pore.
若CrO2(OH)2分子接觸塗層表面,則可反應以形成晶體且接著再蒸發以繼續在氣流中(在裂紋或孔隙)中擴散。實驗已展示,CrO2(OH)2與LSM互連件塗層104反應以形成尖晶石相101,例如,如圖1中所展示之錳鉻氧化物(Mn,Cr)3O4。儘管CrO2(OH)2與LSM反應以形成尖晶石相,但鉻物質不會禁止再蒸發且進一步擴散至裂紋或疵點處。已觀測到鉻沿著在燃料電池中長時間運行之LSM IC塗層中之裂紋之長度傳輸。圖2展示LSM IC塗層104中之裂紋103中的鉻晶體101,該塗層104在陰極側在環境空氣下在800-850℃的通常條件下在SOFC堆疊中運行2000小時。含鉻晶體之形成為彼等由氣相固相轉變所形成之晶體的特徵。遠離 裂紋之整體LSM塗層之SEM及EDS分析並未顯示鉻之存在。因此,可得出結論,自CrFe互連件穿過LSM IC塗層的大部分鉻傳輸係經由氣相傳輸穿過且沿著LSM塗層中之微型裂紋及巨型裂紋、粒子間空間及孔隙而發生。 If CrO 2 (OH) 2 molecules contact the coating surface, they can react to form crystals and then re-evaporate to continue diffusion in the gas flow (in cracks or pores). Experiments have shown that CrO 2 (OH) 2 reacts with the LSM interconnect coating 104 to form a spinel phase 101, such as manganese chromium oxide (Mn,Cr) 3 O 4 as shown in Figure 1 . Although CrO 2 (OH) 2 reacts with LSM to form a spinel phase, the chromium species does not inhibit reevaporation and further diffuses into cracks or defects. Chromium transport has been observed along the length of cracks in the coating of LSM ICs operating in fuel cells for extended periods of time. Figure 2 shows chromium crystals 101 in cracks 103 in an LSM IC coating 104 on the cathode side operating in a SOFC stack for 2000 hours under typical conditions of 800-850°C in ambient air. The formation of chromium-containing crystals is characteristic of those crystals formed from gas phase to solid phase transition. SEM and EDS analysis of the overall LSM coating away from the cracks did not show the presence of chromium. Therefore, it can be concluded that the majority of chromium transport from CrFe interconnects through the LSM IC coating occurs via gas phase transport through and along micro- and macro-cracks, interparticle spaces and pores in the LSM coating happen.
在固態傳輸之情況下,選擇具有極少氧化物離子空位及因此低氧化物離子導電性之材料。舉例而言,鈣鈦礦LSM之獨特之處在於其展現低陽離子及陰離子導電性,但具有高電子導電性,使得其為極好的塗層材料。其他鈣鈦礦(諸如La1-xSrxFeO3-d、La1-xSrxCoO3-d及La1-xSrxCo1-yFeyO3-d)皆展現高電子導電性及低陽離子導電性(低鉻擴散速率)。然而,此等特定材料亦展現高氧化物離子導電性,且因此在保護互連件免受氧化(氧化物生長)方面不太有效。 In the case of solid-state transport, materials are chosen that have very few oxide ion vacancies and therefore low oxide ion conductivity. For example, calcite LSM is unique in that it exhibits low cation and anion conductivity, but has high electron conductivity, making it an excellent coating material. Other calcites (such as La1 - xSrxFeO3 -d , La1 - xSrxCoO3 -d , and La1 - xSrxCo1- yFeyO3 - d ) all exhibit high electron conductivity and low cation conductivity (low chromium diffusion rate ). However, these particular materials also exhibit high oxide ion conductivity and are therefore less effective in protecting interconnects from oxidation (oxide growth).
可用於互連件塗層之第二材料家族為錳鈷氧化物(MCO)尖晶石材料。在一實施例中,MCO尖晶石涵蓋Mn2CoO4至Co2MnO4之組合範圍。亦即,可使用具有組合物Mn2-xCo1+xO4(0x1)或書寫為z(Mn3O4)+(1-z)(Co3O4)(其中(z))或書寫為(Mn,Co)3O4之任何尖晶石,諸如Mn1.5Co1.5O4、MnCo2O4或Mn2CoO4。含有過渡金屬之許多尖晶石展現良好的電子導電性及相當低的陰離子及陽離子擴散率,且因此為適合之塗層材料。 A second family of materials that can be used for interconnect coatings is manganese cobalt oxide (MCO) spinel materials. In one embodiment, MCO spinel covers a range of combinations from Mn 2 CoO 4 to Co 2 MnO 4. That is, a material having the composition Mn 2-x Co 1+x O 4 (0 x 1) or written as z(Mn 3 O 4 )+(1-z)(Co 3 O 4 )(where ( z )) or any spinel written as (Mn,Co) 3 O 4 , such as Mn 1.5 Co 1.5 O 4 , MnCo 2 O 4 or Mn 2 CoO 4 . Many spinels containing transition metals exhibit good electronic conductivity and relatively low anion and cation diffusion rates and are therefore suitable coating materials.
在一實施例中,尖晶石(例如(Mn,Co)3O4)粉末摻雜有Cu以降低尖晶石之熔化溫度。降低的熔化溫度提高(增加)用塗佈方法(諸如空氣電漿噴塗(APS))沈積時之塗層密度,且增加反應區氧化物之導電性。由於較低的熔化溫度,塗層密度之提高可能發生在APS沈積期間及在SOFC溫度下長時間運行期間。 In one embodiment, a spinel (e.g., (Mn,Co) 3 O 4 ) powder is doped with Cu to lower the melting temperature of the spinel. The lowered melting temperature improves (increases) the coating density when deposited by coating methods such as air plasma spraying (APS) and increases the conductivity of the oxide in the reaction zone. Due to the lower melting temperature, the increase in coating density may occur during APS deposition and during long-term operation at SOFC temperatures.
將Cu添加至尖晶石層中具有額外優勢。摻雜Cu之尖晶石(諸如(Mn,Co)3O4)可導致基礎尖晶石相以及尖晶石與原生Cr2O3氧化物之間形成的任何反應區氧化物之更高電導率。來自(Mn,Co,Cu,Cr)3O4家族之氧化物之電導率的實例包括:CuCr2O4:在800℃下0.4S/cm,Cu1.3Mn1.7O4:在750℃下225S/cm及CuMn2O4:在800℃下40S/cm。 Adding Cu to the spinel layer has additional advantages. Cu-doped spinels such as (Mn,Co) 3 O 4 can result in higher conductivity of the base spinel phase and any reaction zone oxides formed between the spinel and native Cr 2 O 3 oxides Rate. Examples of conductivities of oxides from the (Mn, Co, Cu, Cr) 3 O 4 family include: CuCr 2 O 4 : 0.4 S/cm at 800°C, Cu 1.3 Mn 1.7 O 4 : 225 S at 750°C /cm and CuMn 2 O 4 : 40S/cm at 800°C.
尖晶石材料家族具有通式AB2O4。視佔據A及B位點之元素而定,此等材料可形成八面體或立方體晶體結構。此外,視摻雜條件而定,銅原子可佔據A位點、B位點或A及B位點之組合。一般而言,Cu偏好進入B位點。當A元素為Mn,B元素為Co且尖晶石摻雜有Cu時,尖晶石家族可用通式(Mn,Co,Cu)3O4來描述。更特定言之,視Cu合金元素之位置而定,尖晶石家族可用下式描述: The family of spinel materials has the general formula AB 2 O 4 . Depending on the elements occupying the A and B sites, these materials can form octahedral or cubic crystal structures. In addition, depending on the doping conditions, the copper atoms can occupy the A site, the B site, or a combination of the A and B sites. Generally speaking, Cu prefers to enter the B site. When the A element is Mn, the B element is Co and the spinel is doped with Cu, the spinel family can be described by the general formula (Mn, Co, Cu) 3 O 4. More specifically, depending on the position of the Cu alloying element, the spinel family can be described by the following formula:
(1)若Cu進入A位點,則Mn2-x-yCo1+xCuyO4(0x1),(0y0.3) (1) If Cu enters the A site, then Mn 2-xy Co 1+x Cu y O 4 (0 x 1),(0 y 0.3)
(2)若Cu進入B位點,則Mn2-xCo1+x-yCuyO4(0x1),(0y0.3) (2) If Cu enters the B site, then Mn 2-x Co 1+xy Cu y O 4 (0 x 1), (0 y 0.3)
(3)若Cu同等地進入A及B位點,則Mn2-x-y/2Co1+x-y/2CuyO4(0x1),(0y0.3) (3) If Cu enters the A and B sites equally, then Mn 2-xy /2Co 1+xy /2Cu y O 4 (0 x 1),(0 y 0.3)
特定(Mn,Co,Cu)3O4組合物包括(但不限於)Mn1.5Co1.2Cu0.3O4、Mn1.5Co1.4Cu0.1O4;Mn2Co0.8Cu0.2O4及Co2Mn0.8Cu0.2O4。若Cu進入B位點,則額外組合物包括Mn2Co1-yCuyO4,其中(0y0.3)。此等組合物亦可寫為(Mn2O3)+(1-z)(CoO)+z(CuO),其中(0z0.3)。若Cu進入B位點,則其他組合物包括Co2Mn1-yCuyO4,其中(0y0.3)。此等組合物亦可寫為(Co2O3)+(1-z)(MnO)+z(CuO),其中(0z0.3)。在一種較 佳的Mn,Co尖晶石組合物中,Mn/Co比率為1.5/1.5,例如M1.5Co1.5O4。當B位點摻雜有Cu時,較佳組合物包括Mn1.5Co1.5-yCuyO4,其中(0y0.3)。 Specific (Mn, Co, Cu) 3 O 4 compositions include, but are not limited to, Mn 1.5 Co 1.2 Cu 0.3 O 4 , Mn 1.5 Co 1.4 Cu 0.1 O 4 ; Mn 2 Co 0.8 Cu 0.2 O 4 , and Co 2 Mn 0.8 Cu 0.2 O 4 . If Cu is incorporated into the B site, additional compositions include Mn 2 Co 1-y Cu y O 4 , wherein (0 y 0.3). These compositions can also be written as (Mn 2 O 3 )+(1-z)(CoO)+z(CuO), where (0 z 0.3). If Cu enters the B site, the other compositions include Co 2 Mn 1-y Cu y O 4 , where (0 y 0.3). These compositions can also be written as (Co 2 O 3 )+(1-z)(MnO)+z(CuO), where (0 z 0.3). In a preferred Mn, Co spinel composition, the Mn/Co ratio is 1.5/1.5, such as M 1.5 Co 1.5 O 4 . When the B site is doped with Cu, the preferred composition includes Mn 1.5 Co 1.5-y Cu y O 4 , wherein (0 y 0.3).
在另一實施例中,(Mn,Co)3O4或(Mn,Co,Cu)3O4尖晶石家族摻雜有一或多種單一價態物質。亦即,僅具有一個價態之一或多種物質。摻雜有單一價態物質會減少高溫下之陽離子傳輸且因此減少中間氧化物層之厚度。尖晶石中之主要離子傳輸機制係經由晶格結構中之陽離子空位進行陽離子擴散。在具有多價物質M2+/3+(諸如Mn3+/4+及Co2+/3+)之尖晶石中,當M物質自較低價態氧化至較高價態以保持局部電荷中性時,產生陽離子空位。單一價態物質之引入通常減少陽離子空位之量且減少尖晶石塗層102與原生Cr2O3氧化物或CrFe基板100之間的相互擴散量。以此方式,所形成之中間氧化物層之量減少。可引入至尖晶石塗層中之單一價態物質之實例包括Y3+、Al3+、Mg2+及/或Zn2+金屬。在一態樣中,尖晶石塗層具有(Mn,Co,M)3O4之組合物,其中M=Y、Al、Mg或Zn。舉例而言,若在A位置中摻雜M=Al,則尖晶石組合物可包括Mn2-yAlyCoO4(0y0.3)或(1-z)(Mn2O3)+z(Al2O3)+CoO,其中(0z0.15)。 In another embodiment, the (Mn,Co) 3 O 4 or (Mn,Co,Cu) 3 O 4 spinel family is doped with one or more monovalent species. That is, one or more species having only one valence state. Doping with monovalent species reduces cation transport at high temperatures and thus reduces the thickness of the intermediate oxide layer. The main ion transport mechanism in spinel is cation diffusion through cation vacancies in the lattice structure. In spinels with multivalent species M 2+/3+ (such as Mn 3+/4+ and Co 2+/3+ ), cation vacancies are generated when the M species oxidizes from a lower valence state to a higher valence state to maintain local charge neutrality. The introduction of monovalent species generally reduces the amount of cation vacancies and reduces the amount of interdiffusion between the spinel coating 102 and the native Cr 2 O 3 oxide or CrFe substrate 100. In this way, the amount of intermediate oxide layer formed is reduced. Examples of monovalent species that can be introduced into the spinel coating include Y 3+ , Al 3+ , Mg 2+ and/or Zn 2+ metals. In one embodiment, the spinel coating has a composition of (Mn, Co, M) 3 O 4 , where M = Y, Al, Mg or Zn. For example, if M = Al is doped in the A position, the spinel composition may include Mn 2-y AlyCoO 4 (0 y 0.3) or (1-z)(Mn 2 O 3 )+z(Al 2 O 3 )+CoO, where (0 z 0.15).
在一實施例中,互連件塗層用空氣電漿噴塗(APS)製程沈積於基於Cr之合金互連件上,諸如含有93-97wt% Cr及3-7wt% Fe之IC,諸如上文所描述之Cr-Fe-Y或CrFe互連件。空氣電漿噴塗製程為熱噴塗製程,其中粉末狀塗層材料經饋入至塗佈裝置中。將塗層顆粒引入至電漿噴射器中,其中將該等塗層顆粒熔化且接著加速朝向基板。在到達基板時,將經熔融液滴平坦化且冷卻,從而形成塗層。電漿可藉由直流電(DC電漿)或藉由感應(RF電漿)產生。此外,不同於需要惰性氣體或真空 之受控氛圍電漿噴塗(controlled atmosphere plasma spraying;CAPS),空氣電漿噴塗在環境空氣中進行。 In one embodiment, the interconnect coating is deposited on a Cr-based alloy interconnect, such as an IC containing 93-97 wt% Cr and 3-7 wt% Fe, such as the Cr-Fe-Y or CrFe interconnects described above, using an air plasma spray (APS) process. The air plasma spray process is a thermal spray process in which a powdered coating material is fed into a coating apparatus. The coating particles are introduced into a plasma jet, where they are melted and then accelerated toward the substrate. Upon reaching the substrate, the molten droplets are planarized and cooled, thereby forming a coating. Plasma can be generated by direct current (DC plasma) or by induction (RF plasma). In addition, unlike controlled atmosphere plasma spraying (CAPS), which requires an inert gas or vacuum, air plasma spraying is performed in ambient air.
塗層中之裂紋可在兩個不同的時間出現,a)在沈積期間,及b)在SOFC條件下運行期間。在沈積期間所形成之裂紋受噴槍參數及塗層材料之材料特性的影響。在運行期間所形成之裂紋很大程度上隨材料特性(且更特定言之,材料之密度及燒結性)而變化。在不受特定理論束縛之情況下,咸信在運行期間出現的裂紋為繼續燒結塗層之結果且因此隨時間而增加塗層之緻密化。隨著塗層緻密化,其進行橫向收縮。然而,塗層受基板限制且因此形成裂紋以緩解應力。以較低密度塗覆之塗層更可能在運行期間進一步緻密化,從而導致裂紋形成。相比之下,以較高密度塗覆之塗層不大可能形成裂紋。 Cracks in the coating can appear at two different times, a) during deposition, and b) during operation under SOFC conditions. Cracks formed during deposition are affected by the spray gun parameters and the material properties of the coating material. Cracks formed during operation vary greatly with the material properties, and more specifically, the density and sinterability of the material. Without being bound by a particular theory, it is believed that cracks that appear during operation are a result of continued sintering of the coating and therefore increasing densification of the coating over time. As the coating densifies, it shrinks laterally. However, the coating is constrained by the substrate and therefore forms cracks to relieve stress. Coatings applied at lower densities are more likely to densify further during operation, leading to crack formation. In contrast, coatings applied at higher densities are less likely to form cracks.
在一第一實施例中,將燒結助劑添加至IC塗層中以減少裂紋形成且因此減少鉻蒸發。燒結助劑為增加沈積態塗層密度且/或在塗層沈積後降低緻密化之材料。由於燒結助劑增加塗層材料之沈積態密度,其因此減少塗層形成後由於後續緻密化及/或於相對多孔材料上運行應力而產生之裂紋形成。適合之燒結助劑包括以下材料:a)降低塗層材料之體相之熔化溫度,b)在低於體相之溫度下熔化,從而導致液相燒結,或c)形成具有較低熔化溫度之次級相。對於包括LSM之鈣鈦礦族,燒結助劑包括Fe、Co、Ni及Cu。此等過渡金屬可溶於LSM且容易摻雜ABO3鈣鈦礦相中之B位點。3d過渡金屬中之氧化物的熔化溫度傾向於按次序Fe>Co>Ni>Cu降低。將此等元素添加至LSM之B位點中將降低熔化溫度且提高噴塗態密度。在一實施例中,將Fe、Co、Ni及Cu中之一或多者添加至塗層中,使得塗層包含0.5wt%至5wt%(諸如1%至4%,諸如2%至3%)之此等 金屬。在一替代實施例中,塗層組合物以原子百分比表示,且包含La1-xSrxMn1-yMyO3-d,其中(M=Fe、Co、Ni及/或Cu),0.1x0.3,0.005y0.05且0d0.3。應注意,Fe、Co、Ni及Cu之原子百分比範圍不一定必須與先前實施例之此等元素的重量百分比範圍相匹配。 In a first embodiment, a sintering aid is added to the IC coating to reduce crack formation and therefore chromium evaporation. Sintering aids are materials that increase the density of the as-deposited coating and/or reduce the densification of the coating after deposition. Because sintering aids increase the as-deposited density of the coating material, they thereby reduce crack formation after coating formation due to subsequent densification and/or operating stresses on relatively porous materials. Suitable sintering aids include materials that: a) reduce the melting temperature of the bulk phase of the coating material, b) melt at a temperature lower than the bulk phase, thereby causing liquid phase sintering, or c) form a layer with a lower melting temperature Secondary phase. For the perovskite family including LSM, sintering aids include Fe, Co, Ni and Cu. These transition metals are soluble in LSM and easily doped into the B sites in the ABO 3 perovskite phase. The melting temperatures of oxides in 3d transition metals tend to decrease in the order Fe>Co>Ni>Cu. Adding these elements to the B site of LSM will lower the melting temperature and increase the density of states as sprayed. In one embodiment, one or more of Fe, Co, Ni, and Cu are added to the coating such that the coating contains 0.5 to 5 wt%, such as 1 to 4%, such as 2 to 3% ) of such metals. In an alternative embodiment, the coating composition is expressed in atomic percent and includes La 1-x Sr x Mn 1-y My O 3-d , where (M=Fe, Co, Ni and/or Cu), 0.1 x 0.3, 0.005 y 0.05 and 0 d 0.3. It should be noted that the atomic percent ranges of Fe, Co, Ni, and Cu do not necessarily have to match the weight percent ranges of these elements of the previous embodiments.
其他元素亦可與上文過渡金屬組合添加以使導電性、穩定性及燒結性最大化。此等元素包括(但不限於)Ba、Bi、B、Cu或其任何組合(例如Cu+Ba組合),諸如在5wt%或更小之範圍內,諸如0.5-5wt%。另外,尤其摻雜LSM之A-位點的燒結助劑(諸如Y)可添加以獲得類似效應。根據此實施例之一實例為LayYxSr1-x-yMnO3,其中x=0.05-0.5,y=0.2-0.5,諸如La0.4Y0.1Sr0.5MnO3。對於除LSM以外之塗層材料,銅可用作上文所描述之MCO尖晶石材料中的燒結助劑。 Other elements may also be added in combination with the above transition metals to maximize conductivity, stability and sinterability. Such elements include, but are not limited to, Ba, Bi, B, Cu or any combination thereof (e.g., Cu+Ba combination), such as in the range of 5 wt% or less, such as 0.5-5 wt%. In addition, sintering aids (such as Y), especially doping the A-site of the LSM, may be added to obtain similar effects. An example according to this embodiment is La y Y x Sr 1-xy MnO 3 , wherein x=0.05-0.5, y=0.2-0.5, such as La 0.4 Y 0.1 Sr 0.5 MnO 3 . For coating materials other than LSM, copper can be used as a sintering aid in the MCO spinel materials described above.
在另一實施例中,將容易在APS氛圍下還原至其金屬狀態之金屬氧化物粉末添加至電漿中,而非在沈積期間將過渡金屬粉末引入至空氣電漿噴射中。較佳地,金屬氧化物之金屬展現低於塗層相(鈣鈦礦或尖晶石相)之熔化溫度。舉例而言,二元氧化物鈷氧化物(例如,CoO、Co3O4或Co2O3)、NiO、In2O3、SnO、B2O3、銅氧化物(例如,CuO或Cu2O)、BaO、Bi2O3、ZnO或其任何組合(例如,(Cu,Ba)O)可作為第二相添加至塗層粉末(亦即,LSM粉末或La+Sr+Mn粉末或其氧化物)。此添加產生饋入至噴槍之二相粉末混合物。第二相之量可小於或等於5wt%,諸如在總粉末重量之0.1wt%至5wt%之範圍內。 In another embodiment, metal oxide powders that are easily reduced to their metallic state in an APS atmosphere are added to the plasma rather than introducing transition metal powders into the air plasma jet during deposition. Preferably, the metal of the metal oxide exhibits a melting temperature lower than that of the coating phase (perovskite or spinel phase). For example, binary oxides cobalt oxide (for example, CoO, Co 3 O 4 or Co 2 O 3 ), NiO, In 2 O 3 , SnO, B 2 O 3 , copper oxide (for example, CuO or Cu 2 O), BaO, Bi 2 O 3 , ZnO, or any combination thereof (e.g., (Cu,Ba)O) can be added as a second phase to the coating powder (i.e., LSM powder or La+Sr+Mn powder or its oxide). This addition creates a two-phase powder mixture that is fed to the spray gun. The amount of the second phase may be less than or equal to 5 wt%, such as in the range of 0.1 wt% to 5 wt% of the total powder weight.
在APS噴槍中,當LSM顆粒在IC之表面上固化時,將金屬氧化物還原至其金屬相,熔化且促進經熔化LSM顆粒之燒結。金屬及二元氧化物之較低熔化溫度促進沈積及固化期間之緻密化。 In the APS gun, as the LSM particles solidify on the surface of the IC, the metal oxide is reduced to its metallic phase, melting and promoting sintering of the molten LSM particles. The lower melting temperatures of metals and binary oxides promote densification during deposition and solidification.
在另一實施例中,在APS製程期間,將與塗層材料(諸如LSM)反應且形成具有較低熔化溫度之次級相的材料添加至塗層饋料中。較低熔化溫度之次級相促進緻密化。舉例而言,矽酸鹽及/或鋁酸鈣粉末可與APS噴槍之熱電漿部分中的塗層材料粉末反應以形成玻璃相。在一實施例中,來自LSM材料之La與Si-Ca-Al氧化物(其亦可包括K或Na)反應以形成玻璃相,諸如在LSM粒子之間形成的La-Ca-Si-Al氧化物。塗層可包括小於或等於5wt%,諸如0.5-5%之矽酸鹽、Ca-Al氧化物或Si-Ca-Al氧化物。 In another embodiment, a material that reacts with the coating material (such as LSM) and forms a secondary phase with a lower melting temperature is added to the coating feed during the APS process. The lower melting temperature secondary phase promotes densification. For example, silicate and/or calcium aluminate powders can react with coating material powder in the hot plasma portion of the APS gun to form a glass phase. In one embodiment, La from the LSM material reacts with Si-Ca-Al oxide (which may also include K or Na) to form a glass phase, such as La-Ca-Si-Al oxide formed between LSM particles things. The coating may include less than or equal to 5 wt%, such as 0.5-5% silicate, Ca-Al oxide or Si-Ca-Al oxide.
在一第二實施例中,塗層以引起無應力緻密化之方式經後處理。此後處理可組合或不組合添加第一實施例之燒結助劑來進行。在根據第二實施例之一實例後處理中,在N2及O2氛圍中進行「氧化還原」循環。在此循環中,塗層交替地暴露於中性及氧化氛圍中。舉例而言,塗層可在包含氮氣或惰性氣體(例如,氬氣)之中性氛圍中經處理且接著在包含氧氣、水蒸氣、空氣等之氧化氛圍中經處理。視需要,可進行一或多個循環,諸如2、3、4個或更多個。必要時,可使用還原(例如,氫氣)氛圍,而非中性氛圍或除中性氛圍之外。N2及O2氛圍中之氧化還原循環可產生陽離子空位濃度梯度,其增加陽離子空位之擴散且藉此有效地增加燒結速率。可藉由使用La1-xSrxMnO3-d(其中x<=0.1,例如0.01x0.1,d0.3)之較低Sr含量LSM塗層來進一步增加此效應,使得氧之非化學計量最大化。使用此燒結步驟可增強任何或所有上文所描述之燒結助劑技術。 In a second embodiment, the coating is post-treated in a manner that causes stress-free densification. The post-processing can be performed with or without adding the sintering aid of the first embodiment. In an example post-processing according to the second embodiment, an "oxidation-reduction" cycle is performed in an N 2 and O 2 atmosphere. During this cycle, the coating is alternately exposed to neutral and oxidizing atmospheres. For example, the coating may be treated in a neutral atmosphere containing nitrogen or an inert gas (eg, argon) and then in an oxidizing atmosphere containing oxygen, water vapor, air, and the like. If desired, one or more cycles may be performed, such as 2, 3, 4 or more. If necessary, a reducing (eg, hydrogen) atmosphere may be used instead of or in addition to a neutral atmosphere. Redox cycling in N 2 and O 2 atmospheres can create a cation vacancy concentration gradient, which increases the diffusion of cation vacancies and thereby effectively increases the sintering rate. By using La 1-x SrxMnO 3-d (where x<=0.1, for example 0.01 x 0.1,d 0.3) The lower Sr content LSM coating further increases this effect, maximizing the non-stoichiometry of oxygen. Use of this sintering step can enhance any or all of the sintering aid technologies described above.
在一第三實施例中,塗層與下層的Cr-Fe IC表面之間的電交互作用的表面積經擴大。隨著氧化鉻層之厚度增長,在塗層與IC之間形成之氧化鉻層隨時間推移導致毫伏降。總電壓降視電壓降發生之面積及 厚度而定。增加IC與塗層之間的氧化物生長面積降低了對電壓損耗之影響,藉此增加堆疊之使用壽命。藉由添加將深層穿透塗層之物,此實施例有效地增加接觸之表面積且藉此減少生長的氧化鉻層之影響。 In a third embodiment, the surface area of electrical interaction between the coating and the underlying Cr-Fe IC surface is expanded. The chromium oxide layer that forms between the coating and the IC causes a millivolt drop over time as the thickness of the chromium oxide layer grows. The total voltage drop depends on the area over which the voltage drop occurs and the thickness. Increasing the oxide growth area between the IC and the coating reduces the impact on voltage losses, thereby increasing the useful life of the stack. By adding something that will penetrate deep into the coating, this embodiment effectively increases the surface area of contact and thereby reduces the impact of the growing chromium oxide layer.
根據此第三實施例之方法包括將少量塗層材料嵌入至IC中。存在此實施例之兩個替代性態樣。一個態樣包括在壓製以形成IC之前,在IC粉末(例如,Cr-Fe粉末)內充分且均勻地分佈塗層材料,諸如LSM或MCO。當在壓製之前將潤滑劑及Fe、Cr(或Cr-Fe合金)粉末混合在一起時,塗層粉末(例如,LSM及/或MCO粉末)可包括在內。較佳地,粉末混合物能夠耐受燒結溫度及還原環境。第二態樣包括僅在Cr合金IC之頂表面中併入(例如,嵌入)預定量之塗層粉末。在IC燒結步驟之後,嵌入於CrFe或CrFeY IC之表面中的氧化物區域增加IC之表面粗糙度。在壓製及燒結步驟之後,整個塗層沈積於Cr合金互連件上。 A method according to this third embodiment includes embedding a small amount of coating material into the IC. There are two alternative aspects of this embodiment. One aspect includes fully and uniformly distributing a coating material, such as LSM or MCO, within the IC powder (eg, Cr-Fe powder) prior to pressing to form the IC. Coating powders (eg, LSM and/or MCO powders) may be included when the lubricant and Fe, Cr (or Cr-Fe alloy) powders are mixed together prior to pressing. Preferably, the powder mixture is able to withstand sintering temperatures and reducing environments. A second aspect includes incorporating (eg, embedding) a predetermined amount of coating powder into only the top surface of the Cr alloy IC. After the IC sintering step, the oxide regions embedded in the surface of the CrFe or CrFeY IC increase the surface roughness of the IC. After the pressing and sintering steps, the entire coating is deposited on the Cr alloy interconnect.
圖3A至3C中說明用於在互連件之頂表面中嵌入塗層材料之方法。如圖3A中所展示,用第一鞋形件(未展示)或藉由另一適合之方法,將用於形成IC之本體的潤滑劑及Cr/Fe粉末202添加至模具空腔200中。如圖3B中所展示,在壓製步驟之前,模具空腔使用第二鞋形件206將塗層材料粉末204(例如,LSM或MCO)或塗層材料粉末204及潤滑劑/Cr/Fe粉末202之混合物提供至模具空腔中位於模具空腔中之粉末202的上方。接著如圖3C中所展示,使用衝頭208壓製粉末204、202以形成在空氣側上具有嵌入於其表面中之塗層材料的互連件(亦即,若IC之空氣側在模具中朝向上方形成)。 A method for embedding coating material in the top surface of an interconnect is illustrated in Figures 3A-3C. As shown in Figure 3A, lubricant and Cr/Fe powder 202 used to form the body of the IC are added to the mold cavity 200 using a first shoe (not shown) or by another suitable method. As shown in Figure 3B, prior to the pressing step, the mold cavity is filled with coating material powder 204 (eg, LSM or MCO) or coating material powder 204 and lubricant/Cr/Fe powder 202 using a second shoe 206 The mixture is provided into the mold cavity above the powder 202 in the mold cavity. Next, as shown in Figure 3C, the powders 204, 202 are pressed using a punch 208 to form an interconnect on the air side with a coating material embedded in its surface (i.e., if the air side of the IC is facing in the mold formed above).
替代地,首先將塗層材料粉末204(例如,LSM或MCO)(或塗層材料粉末204及潤滑劑/Cr/Fe粉末202之混合物)提供至模具空腔 200中。若IC之空氣側在模具中朝向下方形成,則在壓製步驟之前,將潤滑劑/Cr/Fe粉末202提供至模具空腔200中之粉末204的上方模具空腔。以此方式,塗層材料主要在IC之空氣側表面之頂部處併入至IC中。 Alternatively, coating material powder 204 (eg, LSM or MCO) (or a mixture of coating material powder 204 and lubricant/Cr/Fe powder 202) is first provided to the mold cavity. 200 in. If the air side of the IC is formed facing downwards in the mold, lubricant/Cr/Fe powder 202 is provided to the mold cavity 200 above the powder 204 before the pressing step. In this manner, the coating material is incorporated into the IC primarily at the top of the IC's air side surface.
替代地,如圖4中所展示,塗層粉末204可靜電吸引至按壓機之上衝頭208。接著,上衝頭208按壓模具空腔200中之塗層粉末204及潤滑劑/互連件粉末材料202以形成具有嵌入於空氣側之頂部中之塗層材料204的IC。 Alternatively, as shown in FIG. 4 , the coating powder 204 may be electrostatically attracted to the upper punch 208 of the press. The upper punch 208 then presses the coating powder 204 and the lubricant/interconnect powder material 202 in the mold cavity 200 to form an IC having the coating material 204 embedded in the top portion of the air side.
使用上述方法,在壓製步驟之後,可將塗層粉末均勻地併入於IC之空氣側之表面中。接著,壓製步驟之後為燒結及塗佈步驟,諸如藉由APS或本文所描述之另一方法的MCO及/或LSM塗佈步驟。 Using the above method, after the pressing step, the coating powder can be uniformly incorporated into the surface of the air side of the IC. The pressing step is then followed by a sintering and coating step, such as an MCO and/or LSM coating step by APS or another method described herein.
較佳地選擇塗層粉末與Cr-Fe合金中之Fe的比率,使得頂部塗層材料具有與經燒結及氧化互連件之熱膨脹係數(CTE)類似的熱膨脹係數。Cr-Fe合金之熱膨脹係數為合金之組成的函數且可藉由選擇Cr與Fe之比率來進行選擇。可調節燒結過程以保持粉末氧化及穩定。舉例而言,燒結可使用濕氫,或在惰性氛圍(諸如氮氣、氬氣或另一惰性氣體)中進行。濕氫或惰性氣體氛圍分別為氧化的或中性的,且藉此防止氧化物粉末還原。 The ratio of coating powder to Fe in the Cr-Fe alloy is preferably selected so that the top coating material has a coefficient of thermal expansion similar to the coefficient of thermal expansion (CTE) of the sintered and oxidized interconnect. The coefficient of thermal expansion of the Cr-Fe alloy is a function of the composition of the alloy and can be selected by selecting the ratio of Cr to Fe. The sintering process can be adjusted to keep the powder oxidized and stable. For example, sintering can be performed using humid hydrogen, or in an inert atmosphere such as nitrogen, argon, or another inert gas. Humid hydrogen or inert gas atmospheres are oxidizing or neutral, respectively, and thereby prevent the oxide powder from reducing.
在第四實施例中,塗層為多層複合物。圖5說明具有複合塗層之IC之第四實施例的實例。複合塗層由尖晶石層102及鈣鈦礦層104構成。尖晶石層102首先沈積於Cr合金(例如,CrFe)互連件100上。鈣鈦礦層104(例如上文所描述之LSM層)接著沈積於尖晶石層102之頂部上。在層102沈積期間及/或在含有互連件之燃料電池堆疊的高溫運行期間,含原生鉻之界面尖晶石層101可形成於互連件100與層102之間。 In a fourth embodiment, the coating is a multi-layer composite. FIG. 5 illustrates an example of a fourth embodiment of an IC having a composite coating. The composite coating consists of a spinel layer 102 and a calcite layer 104. The spinel layer 102 is first deposited on a Cr alloy (e.g., CrFe) interconnect 100. A calcite layer 104 (e.g., an LSM layer described above) is then deposited on top of the spinel layer 102. During deposition of layer 102 and/or during high temperature operation of a fuel cell stack containing the interconnect, an interfacial spinel layer 101 containing native chromium may form between the interconnect 100 and layer 102.
較佳地,較低尖晶石層102包含上文所描述之含有Cu及/或Ni的MCO尖晶石。層102充當摻雜層,其增加下層的錳鉻氧化物(Mn,Cr)3O4或錳鈷鉻氧化物(Mn,Co,Cr)3O4界面尖晶石層101之導電性。換言之,在形成層101期間及/或之後,來自尖晶石層102之Cu及/或Ni擴散至界面尖晶石層101中。此產生Cu及/或Ni摻雜層101(例如,(Mn及Cr)3-x-yCox(Cu及/或Ni)yO4,其中(0x1),(0y0.3)),其降低層101之電阻率。 Preferably, the lower spinel layer 102 comprises the MCO spinel containing Cu and/or Ni described above. Layer 102 acts as a doping layer that increases the conductivity of the underlying manganese chromium oxide (Mn,Cr) 3 O 4 or manganese cobalt chromium oxide (Mn,Co,Cr) 3 O 4 interface spinel layer 101. In other words, during and/or after forming layer 101, Cu and/or Ni from the spinel layer 102 diffuse into the interface spinel layer 101. This produces a Cu and/or Ni doped layer 101 (e.g., (Mn and Cr) 3-xy Co x (Cu and/or Ni) y O 4 , where (0 x 1),(0 y 0.3)), which reduces the resistivity of layer 101.
層102可包含上文所描述之含Cu之MCO層及/或含Ni之MCO層及/或含Ni及Cu之MCO層。在MCO層中,當A元素為Mn,B元素為Co且尖晶石摻雜有Cu及/或Ni時,尖晶石家族可用通式(Mn,Co)3-y(Cu,Ni)yO4描述,其中(0<y0.3)。更特定言之,視Cu及/或Ni合金元素之位置而定,尖晶石家族可用下式描述: Layer 102 may include the MCO layer containing Cu and/or the MCO layer containing Ni and/or the MCO layer containing Ni and Cu described above. In the MCO layer, when the A element is Mn, the B element is Co and the spinel is doped with Cu and/or Ni, the spinel family can be described by the general formula (Mn, Co) 3-y (Cu, Ni) y O 4 , where (0<y 0.3). More specifically, depending on the position of the Cu and/or Ni alloying elements, the spinel family can be described by the following formula:
(1)若Cu及/或Ni進入A位點,則Mn2-x-yCo1+x(Cu,NiyO4(0x1),(0y0.3) (1) If Cu and/or Ni enter the A site, then Mn 2-xy Co 1+x (Cu,Ni y O 4 (0 x 1), (0 y 0.3)
(2)若Cu及/或Ni進入B位點,則Mn2-xCo1+x-y(Cu,Ni)yO4(0x1),(0y0.3) (2) If Cu and/or Ni enter the B site, then Mn 2-x Co 1+xy (Cu,Ni) y O 4 (0 x 1),(0 y 0.3)
(3)若Cu及/或Ni同等地進入A及B位點,則Mn2-x-y/2Co1+x-y/2(Cu,NiyO4(0x1),(0y0.3)。 (3) If Cu and/or Ni enter the A and B sites equally, then Mn 2-xy/2 Co 1+xy/2 (Cu,Ni y O 4 (0 x 1), (0 y 0.3).
儘管含有Cu及/或Ni之尖晶石摻雜層102降低互連件之ASR,但其對於氧及鉻皆為可滲透的。因此,在本發明實施例中,第二鈣鈦礦障壁層104形成於摻雜層102之上方。較佳地,層104為減少或防止Cr及氧氣擴散之緻密LSM層。層104可用上文所描述之燒結助劑形成以增加其密度。緻密層104藉由在堆疊運行期間阻斷空氣及氧氣自燃料電池陰極 側擴散至CrFe IC表面來減少或防止界面尖晶石層101之生長。層104亦藉由減少或防止鉻自IC擴散至陰極來減少或防止堆疊中之燃料電池陰極的鉻中毒。 Although the spinel doped layer 102 containing Cu and/or Ni reduces the ASR of the interconnect, it is permeable to both oxygen and chromium. Therefore, in an embodiment of the present invention, a second calcium titanate barrier layer 104 is formed above the doped layer 102. Preferably, the layer 104 is a dense LSM layer that reduces or prevents the diffusion of Cr and oxygen. The layer 104 can be formed with a sintering aid as described above to increase its density. The dense layer 104 reduces or prevents the growth of the interfacial spinel layer 101 by blocking the diffusion of air and oxygen from the cathode side of the fuel cell to the CrFe IC surface during stack operation. Layer 104 also reduces or prevents chromium poisoning of the cathodes of fuel cells in the stack by reducing or preventing chromium from diffusing from the IC to the cathode.
因此,複合塗層102/104藉由減少或消除燃料電池陰極之Cr中毒來減少或消除互連件與堆疊之面積比電阻(area specific resistance;ASR)劣化比重且降低燃料電池堆疊之整體劣化。首先,尖晶石摻雜層102用減小尖晶石層101之電阻的元素(例如Ni及/或Cu)摻雜含鉻之界面尖晶石層101。第二,尖晶石層102防止鈣鈦礦層104與含Cr之界面尖晶石層101之間的直接交互作用,其可導致不合需要且電阻性的次相之形成。第三,尖晶石(例如具有Co、Cu及/或Ni之含Mn尖晶石)層102比LSM層104較不易於開裂,其增強塗層之完整性。第四,頂部鈣鈦礦層104為減少將氧傳輸至互連件表面上之界面氧化物101的第二障壁層。因此,頂部鈣鈦礦層104降低原生氧化物層101之生長率,且減少經由摻雜層102將鉻自層101傳輸至燃料電池陰極。 Thus, the composite coating 102/104 reduces or eliminates the area specific resistance (ASR) degradation contribution of the interconnects and stack and reduces overall degradation of the fuel cell stack by reducing or eliminating Cr poisoning of the fuel cell cathode. First, the spinel doped layer 102 dopes the chromium-containing interfacial spinel layer 101 with elements (e.g., Ni and/or Cu) that reduce the electrical resistance of the spinel layer 101. Second, the spinel layer 102 prevents direct interaction between the calcite layer 104 and the Cr-containing interfacial spinel layer 101, which can result in the formation of an undesirable and resistive secondary phase. Third, the spinel (e.g., Mn-containing spinel with Co, Cu, and/or Ni) layer 102 is less prone to cracking than the LSM layer 104, which enhances the integrity of the coating. Fourth, the top calcium titanate layer 104 is a second barrier layer that reduces the transfer of oxygen to the interfacial oxide 101 on the surface of the interconnect. Thus, the top calcium titanate layer 104 reduces the growth rate of the native oxide layer 101 and reduces the transfer of chromium from the layer 101 to the fuel cell cathode via the doped layer 102.
圖6A展示例示性互連件100之空氣側。互連件可用於堆疊中,其內部裝有用於燃料之歧管且外部裝有用於空氣之歧管。互連件在肋部10之間含有氣流通道(passages/channels)8以允許空氣自互連件之一側13流向相對側14。環形(例如環狀)密封件15位於燃料入口開口16A及出口開口16B(亦即互連件100中之通孔16A、16B)周圍。條狀密封件19位於互連件100之側面上。 Figure 6A shows the air side of an exemplary interconnect 100. Interconnects can be used in stacks with manifolds for fuel on the inside and air manifolds on the outside. The interconnect contains passages/channels 8 between the ribs 10 to allow air to flow from one side 13 of the interconnect to the opposite side 14 . An annular (eg annular) seal 15 is located around the fuel inlet opening 16A and the outlet opening 16B (ie, the through holes 16A, 16B in the interconnect 100). Strip seals 19 are located on the sides of the interconnect 100 .
圖6B展示例示性密封件15、通道8及肋部10之特寫視圖。密封件15可包含任何適合之密封玻璃或玻璃陶瓷材料,諸如硼矽酸鹽玻璃。替代地,密封件15可包含描述於2008年11月12日申請之美國申請案 第12/292,078中之玻璃陶瓷材料,其以引用之方式併入本文中。 FIG. 6B shows a close-up view of an exemplary seal 15, channel 8, and rib 10. Seal 15 may include any suitable sealing glass or glass ceramic material, such as borosilicate glass. Alternatively, seal 15 may include a glass ceramic material as described in U.S. Application No. 12/292,078, filed November 12, 2008, which is incorporated herein by reference.
必要時,互連件100可含有在密封件15下方之凸起或凸台區域。另外,如圖6B中所說明,密封件15較佳位於互連件100之平坦區域17中。亦即,密封件15位於不包括肋部10之互連件的一部分中。必要時,互連件100可經組態以用於內部裝有用於空氣及燃料之歧管的堆疊。在此情況下,互連件100及相應的燃料電池電解質將亦含有額外的進氣口開口及出氣口開口(未展示)。 If desired, the interconnect 100 may contain a raised or boss area below the seal 15. In addition, as illustrated in FIG. 6B , the seal 15 is preferably located in a flat area 17 of the interconnect 100. That is, the seal 15 is located in a portion of the interconnect that does not include the rib 10. If desired, the interconnect 100 may be configured for use with a stack that has manifolds for air and fuel installed internally. In this case, the interconnect 100 and the corresponding fuel cell electrolyte will also contain additional inlet and outlet openings (not shown).
圖7說明互連件100之燃料側。窗用密封件18位於互連件100之邊緣上。亦展示肋部10之間的燃料分佈氣室17及燃料流動通道8。值得注意的係,展示於圖7中之互連件100具有兩種類型之燃料流動通道;然而,此並非對本發明之限制。互連件100之燃料側可具有深層及長度皆相同之燃料流動通道或短通道及長通道之組合,及/或深通道及淺通道之組合。 Figure 7 illustrates the fuel side of interconnect 100. Window seal 18 is located on the edge of interconnect 100 . Also shown are the fuel distribution plenums 17 and fuel flow channels 8 between the ribs 10 . It is worth noting that the interconnect 100 shown in Figure 7 has two types of fuel flow channels; however, this is not a limitation of the present invention. The fuel side of interconnect 100 may have fuel flow channels that are deep and of the same length, or a combination of short and long channels, and/or a combination of deep and shallow channels.
在一實施例中,使用氣霧劑噴塗方法在室溫下用Mn1.5Co1.5O4(MCO)尖晶石塗佈互連件100且進一步用一或多種熱處理進行處理。一般而言,藉由遮蔽或移除沈積於此等區域中之MCO,在密封區域(環形15,條帶19)中省略MCO塗層。 In one embodiment, interconnect 100 is coated with Mn1.5Co1.5O4 (MCO) spinel at room temperature using an aerosol spraying method and further treated with one or more thermal treatments. Generally, MCO coating is omitted in the sealing areas (rings 15, stripes 19) by masking or removing the MCO deposited in these areas.
MCO塗層可藉由上升管孔中之燃料而減少且接著在環形密封件15處與玻璃密封材料反應。因此,在一實施例中,對於圖6B中所展示之互連件100,在堆疊組裝及測試之前,MCO塗層自互連件之空氣側上之平坦區域17(例如,藉由噴砂)移除。替代地,平坦區域17可在氣霧劑沈積期間經遮蔽以防止塗佈平坦區域17。因此,在鄰近於燃料入口開口16A及/或出口開口16B之環形密封件15下之區域17中省略MCO塗層。 The MCO coating can be reduced by fuel in the riser bore and then react with the glass seal material at the annular seal 15. Therefore, in one embodiment, for the interconnect 100 shown in Figure 6B, the MCO coating is removed from the flat area 17 (eg, by sandblasting) on the air side of the interconnect prior to stack assembly and testing. remove. Alternatively, flat areas 17 may be masked during aerosol deposition to prevent coating of flat areas 17 . Therefore, the MCO coating is omitted in the area 17 under the annular seal 15 adjacent the fuel inlet opening 16A and/or the outlet opening 16B.
在另一實施例中,互連件100由粉末冶金製程製造。粉末冶金製程可產生已連通互連件100之主體內之孔隙的零件,該孔隙允許燃料自燃料側擴散至空氣側。經由孔隙傳輸之此燃料可在塗層/互連件界面處與空氣側上之MCO塗層反應。此反應可導致密封失效及堆疊分離。在一實施例中,藉由在MCO沈積期間遮蔽互連件之邊緣上之密封件19位置,省略條狀密封件19下之MCO塗層,可緩和此失效,藉此消除此等密封區域中之塗層且允許玻璃密封件19直接接合至金屬互連件。 In another embodiment, the interconnect 100 is manufactured by a powder metallurgy process. The powder metallurgy process can produce a part that has connected pores within the body of the interconnect 100, which allow fuel to diffuse from the fuel side to the air side. This fuel transmitted through the pores can react with the MCO coating on the air side at the coating/interconnect interface. This reaction can cause seal failure and stack separation. In one embodiment, this failure can be mitigated by masking the seal 19 location on the edge of the interconnect during MCO deposition, omitting the MCO coating under the strip seal 19, thereby eliminating the coating in these sealed areas and allowing the glass seal 19 to be directly bonded to the metal interconnect.
在另一實施例中,互連件100在互連件100之燃料側上形成薄的綠色Cr2O3氧化物層25。此燃料側氧化物之橫截面顯微圖在圖8中示出。發現Cr2O3氧化物厚度在0.5至2微米之間。下文所描述之三種方法可用於轉化或移除此不合需要的氧化鉻層。 In another embodiment, the interconnect 100 forms a thin green Cr2O3 oxide layer 25 on the fuel side of the interconnect 100. A cross-sectional micrograph of this fuel side oxide is shown in Figure 8. The Cr2O3 oxide thickness was found to be between 0.5 and 2 microns. The three methods described below can be used to convert or remove this undesirable chromium oxide layer.
在方法之一第一實施例中,此氧化物層藉由任何適合之方法(諸如噴砂處理)移除。此方法為有效的。然而,此方法為耗時的且增加處理成本。 In a first embodiment of the method, the oxide layer is removed by any suitable method, such as sandblasting. This method is effective. However, this method is time consuming and increases processing costs.
替代地,Cr2O3氧化物層25可留在原位且轉化為複合層。在此實施例中,鎳網陽極接觸件沈積於Cr2O3氧化物層25上且允許其擴散至氧化鉻層中。鎳與Cr2O3氧化物層25反應且形成減小層25之歐姆電阻之Ni-金屬/Cr2O3複合層。必要時,該網可在接觸層25之後加熱以加快複合物形成。 Alternatively, the Cr2O3 oxide layer 25 can be left in place and converted to a composite layer. In this embodiment, a nickel mesh anode contact is deposited on the Cr2O3 oxide layer 25 and allowed to diffuse into the chromium oxide layer. The nickel reacts with the Cr2O3 oxide layer 25 and forms a Ni - metal/ Cr2O3 composite layer that reduces the ohmic resistance of layer 25. If necessary, the mesh can be heated after contacting the layer 25 to accelerate composite formation.
在另一實施例中,藉由在具有低氧分壓之環境中燒製經MCO塗佈之互連件來減少或完全消除氧化物層25。舉例而言,基於熱動力學,Cr2O3可在900℃下在10-24atm之pO2(分壓)下還原為Cr金屬,而CoO在900℃下在10-16atm之pO2下還原為Co-金屬。藉由在900℃下將燒 製氛圍之氧分壓(亦即降低露點)降低至小於10-24atm,可防止在燃料側(未塗佈側)上形成Cr2O3氧化物,同時允許將互連件之空氣側上之MCO塗層還原為MnO(或若pO2<10-27atm,則為Mn金屬)及Co-金屬,以有益於燒結。在pO2<10-27atm下,MCO將還原為Mn-金屬及Co-金屬,其可導致與MnO/Co-金屬相比更好的燒結及更緻密的塗層。一般而言,經MCO塗佈之互連件可在T>850℃(諸如900℃至1200℃)下,在10-24atm之pO2(例如10-25atm至10-30atm,包括10-27atm至10-30atm)下退火30分鐘至40小時,諸如2-10小時。 In another embodiment, the oxide layer 25 is reduced or completely eliminated by firing the MCO coated interconnect in an environment with low oxygen partial pressure. For example, based on thermodynamics, Cr2O3 can be reduced to Cr metal at 900°C at a pO2 (partial pressure) of 10-24 atm, while CoO can be reduced to Co-metal at 900°C at a pO2 of 10-16 atm. By reducing the oxygen partial pressure of the firing atmosphere (i.e., lowering the dew point) to less than 10-24 atm at 900°C, the formation of Cr2O3 oxide on the fuel side (uncoated side) can be prevented, while allowing the MCO coating on the air side of the interconnect to be reduced to MnO (or Mn metal if pO2 <10-27 atm) and Co-metal to facilitate sintering. At pO2 <10-27 atm, MCO will be reduced to Mn-metal and Co-metal, which can result in better sintering and a denser coating compared to MnO/Co-metal. Generally, the MCO coated interconnect can be annealed at T>850°C (eg, 900°C to 1200°C) at a pO2 of 10-24 atm (eg, 10-25 atm to 10-30 atm, including 10-27 atm to 10-30 atm) for 30 minutes to 40 hours, such as 2-10 hours.
在下文所描述之另一實施例中,在鎳網陽極接觸順應層與互連件之燃料側之間的位置中減少或避免Cr2O3氧化物層25之形成。 In another embodiment described below, the formation of a Cr 2 O 3 oxide layer 25 is reduced or avoided in the location between the nickel mesh anode contact compliant layer and the fuel side of the interconnect.
如上文所描述,在SOFC堆疊中,通常引入呈鎳形式之順應層,從而符合表面形狀變化以改善與電池陽極電極之接觸。在使用壽命開始時,簡單的接觸足以由活動區提供預期的電力。然而,當互連件主要由鉻製備時,由於燃料中之水含量,氧化物層25可接著在運行期間形成於燃料側上。在以下實施例中,此氧化物層25之生長可在Ni網下方經減少或消除。 As described above, in SOFC stacks, a compliant layer in the form of nickel is typically introduced to conform to surface shape changes to improve contact with the battery's anode electrode. At the beginning of the service life, simple contact is sufficient to provide the expected power from the active area. However, when the interconnect is made primarily from chromium, an oxide layer 25 may then form on the fuel side during operation due to the water content in the fuel. In the following embodiments, the growth of this oxide layer 25 may be reduced or eliminated beneath the Ni mesh.
本發明人觀測到,在IC與Ni網之間含有氧化物層25生長之互連件通常具有與面積比電阻劣化(「Area Specific Resistance Degradation;ASRD」)速率密切相關(經由歐姆定律(ohm's law)及活動區)之高壓損耗及劣化速率。低導電性氧化物之生長可通常造成ASRD增加。相反,在IC與Ni網之間提供極少的氧化物層25生長之互連件通常具有低ASRD。隨著氧化物層25之缺失,本發明人亦觀測到緊接在Ni網下方之互連件形成Cr-Fe-Ni合金。在不希望受特定理論束縛之情況下,本 發明人咸信,此Cr-Fe-Ni合金或Cr-Ni合金之形成可導致實現較低ASRD且此合金比Cr-Fe互連件對氧化物生長更具有抗性。因此,在Ni網與IC之間儘可能多的接觸點下形成此合金為有利的,尤其在高電流密度之區域中,諸如在互連件之中間部分中。此外,在堆疊運行期間,電流必須強制通過在堆疊壽命後期生長之電阻性氧化物層25,或固結至較高導電點,藉此減少有效的活動區。 The inventors have observed that interconnects containing oxide layer 25 growth between the IC and the Ni mesh generally have high voltage losses and degradation rates that are closely related to the area specific resistance degradation ("ASRD") rate (via Ohm's law and active area). The growth of low conductivity oxides can generally cause an increase in ASRD. Conversely, interconnects that provide minimal oxide layer 25 growth between the IC and the Ni mesh generally have low ASRD. With the absence of oxide layer 25, the inventors have also observed that the interconnect immediately below the Ni mesh forms a Cr-Fe-Ni alloy. Without wishing to be bound by a particular theory, the inventors believe that the formation of this Cr-Fe-Ni alloy or Cr-Ni alloy can lead to lower ASRD and that this alloy is more resistant to oxide growth than Cr-Fe interconnects. Therefore, it is advantageous to form this alloy at as many contact points as possible between the Ni mesh and the IC, especially in areas of high current density, such as in the middle of the interconnect. Furthermore, during stack operation, the current must be forced through the resistive oxide layer 25 that grows late in the stack life, or consolidate to higher conductivity points, thereby reducing the effective active area.
此外,本發明人亦咸信,此合金之形成受數種因素影響,包括Ni網與互連件之間的壓縮壓力、在Ni網下方之局部互連件中之未擴散的Fe百分比、互連件與Ni網之間的表面污染、網與互連件之連接及/或將鎳添加至互連件合金中。舉例而言,若未擴散之Fe百分比較低且污染物較高,則可置放高壓以克服此等阻礙。相比之下,若未擴散之Fe百分比增加且污染物含量減小,則可置放較少壓力以避免ASRD增加。 Furthermore, the inventors also believe that the formation of this alloy is affected by several factors, including the compression pressure between the Ni mesh and the interconnect, the undiffused Fe percentage in the local interconnect below the Ni mesh, surface contamination between the interconnect and the Ni mesh, the connection between the mesh and the interconnect, and/or the addition of nickel to the interconnect alloy. For example, if the undiffused Fe percentage is low and the contaminants are high, high pressure can be placed to overcome these obstacles. In contrast, if the undiffused Fe percentage increases and the contaminant content decreases, less pressure can be placed to avoid an increase in ASRD.
在本實施例之第一態樣中,燃料電池堆疊中之Ni網與互連件之間的壓縮壓力增加以減少氧化鉻層25之形成。一種增加堆疊中之網上之壓力的方式為使互連件厚度不均勻以在網上產生壓力場或梯度。較佳地,互連件之中部中之互連件肋部的高度略微大於互連件之邊緣中之肋部的高度(亦即互連件之中部的厚度略微大於互連件之外圍部分的厚度)。此在互連件之中部產生壓力場(其中大部分電流在堆疊中之相鄰燃料電池中產生)且在將網及互連件置放於燃料電池堆疊中之後,對接觸互連件之中部的鎳網施加比接觸互連件之邊緣更高的壓力。反過來,咸信此增加網下之Cr-Fe-Ni合金之形成及/或降低ASRD。 In a first aspect of this embodiment, the compressive pressure between the Ni mesh and the interconnect in the fuel cell stack is increased to reduce the formation of the chromium oxide layer 25. One way to increase the pressure on the mesh in the stack is to make the interconnect thickness non-uniform to create a pressure field or gradient on the mesh. Preferably, the height of the interconnect ribs in the middle of the interconnect is slightly greater than the height of the ribs in the edge of the interconnect (i.e., the thickness of the middle of the interconnect is slightly greater than the thickness of the outer portion of the interconnect). This creates a pressure field in the middle of the interconnect (where most of the current is generated in adjacent fuel cells in the stack) and, after the mesh and interconnect are placed in the fuel cell stack, a higher pressure is applied to the nickel mesh contacting the middle of the interconnect than to the edge of the interconnect. This, in turn, is believed to increase the formation of Cr-Fe-Ni alloy beneath the mesh and/or reduce ASRD.
在此實施例之一第二態樣中,互連件之燃料側與網之間的污染減少。此可藉由在堆疊製造製程期間減少污染物存在及/或藉由清潔 互連件之表面來實現。 In a second aspect of this embodiment, contamination between the fuel side of the interconnect and the mesh is reduced. This can be done by reducing the presence of contaminants during the stack manufacturing process and/or by cleaning surface of the interconnect.
在此實施例之一第三態樣中,至少在互連件之燃料側上保持足夠高百分比之未擴散鐵以形成Cr-Fe-Ni合金。未擴散鐵包括尚未用互連件之鉻基質合金化之鐵區域(例如,在具有4-6wt% Fe及其餘為Cr及視情況選用之0-1wt%氧化釔或釔之互連件中)。達成高百分比之未擴散鐵可經由任何適合之方法實現,諸如較少的燒結經壓製粉末互連件及/或自較大鐵顆粒開始。較少燒結包括在將鉻及含鐵粉末壓製至互連件中之後,在比使經壓製鐵及鉻粉末顆粒完全合金化所需之溫度或持續時間更低的溫度或更短的持續時間下部分燒結互連件。較大鐵顆粒對於達成ASRD還原目的所需之未擴散鐵百分比為有效的,但可能需要較長燒結時間及/或較高燒結溫度。因此,一種實現未擴散鐵之方法涉及壓製具有第一平均粒度之鉻粉及具有大於第一粒度(例如,直徑大30-200%,諸如大50-100%)之第二粒度之鐵粉的混合物以形成互連件,隨後燒結互連件。 In a third aspect of this embodiment, a sufficiently high percentage of undiffused iron remains on at least the fuel side of the interconnect to form a Cr-Fe-Ni alloy. Undiffused iron includes regions of iron that have not yet been alloyed with the chromium matrix of the interconnect (e.g., in an interconnect having 4-6 wt % Fe and the balance being Cr and optionally 0-1 wt % yttrium oxide or yttrium). Achieving a high percentage of undiffused iron can be achieved by any suitable method, such as less sintered pressed powder interconnects and/or starting with larger iron particles. Less sintering involves partially sintering the interconnect after pressing the chromium and iron-containing powders into the interconnect at a lower temperature or for a shorter duration than required to fully alloy the pressed iron and chromium powder particles. Larger iron particles are effective in achieving the desired percentage of undiffused iron for ASRD reduction purposes, but may require longer sintering times and/or higher sintering temperatures. Thus, one method of achieving undiffused iron involves pressing a mixture of chromium powder having a first average particle size and iron powder having a second particle size larger than the first particle size (e.g., 30-200% larger in diameter, such as 50-100% larger) to form the interconnect, followed by sintering the interconnect.
在此實施例之一第四態樣中,鎳網實體上連接至互連件之燃料側表面以防止在網與互連件表面之間形成氧化鉻。舉例而言,至少在互連件之中部,且較佳地在互連件之中部及邊緣中,鎳網可在網之整個表面中熱熔接、焊接或銅焊至互連件表面。藉由在複數個位置中將網焊接至互連件,尤其在經常發現低壓之互連件之中部,有效的活動區增加且在該活動區中發現高導電性。替代地,經壓製粉末Cr-Fe互連件可與Ni網接觸置放且接著燒結,同時與低於Ni之熔點(例如,低於1450℃,諸如在1350-1425℃下)的Ni網接觸。伴隨著燒結時間增加,此燒結溫度可保持該部分之CTE,同時在所有接觸點中將Ni網熱熔合至互連件。 In a fourth aspect of this embodiment, a nickel mesh is physically connected to the fuel side surface of the interconnect to prevent chromium oxide from forming between the mesh and the surface of the interconnect. For example, at least in the middle of the interconnect, and preferably in the middle and edges of the interconnect, the nickel mesh can be thermally welded, welded or brazed to the interconnect surface over the entire surface of the mesh. By soldering the mesh to the interconnect in a plurality of locations, especially in the middle of the interconnect where low voltages are often found, the effective active area is increased and high conductivity is found in this active area. Alternatively, pressed powder Cr-Fe interconnects may be placed in contact with a Ni mesh and then sintered while in contact with a Ni mesh below the melting point of Ni (eg, below 1450°C, such as at 1350-1425°C) . This sintering temperature maintains the CTE of the part as the sintering time increases while thermally fusing the Ni mesh to the interconnect in all contact points.
在此實施例之一第五態樣中,將鎳添加至Cr-Fe互連件合 金中以促進至少在互連件之燃料表面上形成Cr-Fe-Ni合金。將鐵粉添加至基礎Cr粉中以將互連件之CTE增加至超過鉻之CTE,且匹配固體氧化物燃料電池之CTE。在具有與Fe近似相同的CTE之Ni之情況下,Ni可取代Fe係合理的。在粉末冶金按壓機/模具中將Ni粉摻雜至鉻粉或鉻及鐵(或鉻-鐵合金)粉末混合物中,隨後壓製粉末,產生在整個部分中含有Cr-Ni或Cr-Fe-Ni合金的經壓製互連件部分。此外,Co及Ni之可壓縮性略微高於Fe,因此用此等元素取代Fe將僅有助於壓製過程。眾所周知,將Fe添加至Cr基質中降低氧化程度,因此保持一定的Fe含量可仍為有利的。因此,互連件中之全部或部分鐵可經鎳取代(例如,1-100%,諸如10-90%,例如Cr-Fe(4-6wt%)合金中之30-70%的鐵可經鎳取代以形成Cr-M(4-6wt%)合金,其中M=1-99% Ni及99-1Fe %。 In a fifth aspect of this embodiment, nickel is added to the Cr-Fe interconnect gold to promote the formation of a Cr-Fe-Ni alloy at least on the fuel surface of the interconnect. Iron powder is added to the base Cr powder to increase the CTE of the interconnect beyond that of chromium and match the CTE of the solid oxide fuel cell. In the case of Ni, which has approximately the same CTE as Fe, it is reasonable for Ni to replace Fe. Ni powder is doped into chromium powder or chromium and iron (or chromium-iron alloy) powder mixture in a powder metallurgy press/die, followed by pressing the powder, resulting in a part containing Cr-Ni or Cr-Fe-Ni The pressed interconnect portion of the alloy. Additionally, Co and Ni are slightly more compressible than Fe, so replacing Fe with these elements will only aid the compaction process. It is known that adding Fe to the Cr matrix reduces the degree of oxidation, so it may still be advantageous to maintain a certain Fe content. Therefore, all or part of the iron in the interconnect may be replaced by nickel (e.g., 1-100%, such as 10-90%, e.g., 30-70% of the iron in a Cr-Fe (4-6 wt%) alloy may be replaced by nickel). Nickel is substituted to form Cr-M (4-6wt%) alloy, where M=1-99% Ni and 99-1Fe%.
粉末組合物調節描述於上述實施例中,用於藉由用LSM、MCO、Co及/或Mn部分取代粉末混合物中之Fe來輔助互連件之空氣側上之塗層的功能,以便促進在互連件之陰極側(空氣側)上形成Mn-Co-Cr尖晶石層。 Powder composition adjustments are described in the above examples for assisting the function of the coating on the air side of the interconnect by partially replacing Fe in the powder mixture with LSM, MCO, Co and/or Mn in order to facilitate the A Mn-Co-Cr spinel layer is formed on the cathode side (air side) of the interconnect.
在此實施例之另一態樣中,將適用於空氣側(例如,Co及/或Mn)及燃料側(例如,Ni)之合金元素併入至Cr-Fe互連件中。因此,置放於按壓機/模具中之粉末組合物包括Cr、Fe、Ni,及Co及Mn中之至少一者。然而,在空氣側上僅需要Co及/或Mn,且在燃料側上僅需要Ni。本發明人已觀測到,在按壓機/模具中發生Fe及Cr粉末之一定量之分離,導致較小Cr顆粒在按壓機壓製空腔中(亦即在模具空腔中)向下篩分,導致燃料側具有更稀釋的Fe含量,且空氣側具有更濃縮的Fe含量。可充分利用此現象以藉由混合粉末組合物且將其置放至壓製空腔中來用所需材料對IC 進行分層,在該壓製空腔中,Ni粒度小於Cr及Fe顆粒且Cr及Fe顆粒大小相同。若亦使用含有Co及/或Mn之顆粒(例如,Co及/或Mn金屬顆粒及/或MCO及/或LSM金屬氧化物顆粒),則其大於空氣側朝上壓製之互連件的Cr及Fe顆粒。接著,在填充壓製空腔時,可振動衝頭及模頭以幫助分離過程發生。此將導致Ni沈降於將形成互連件之燃料側之空腔的底部上,Co及/或Mn沈降於將形成互連件之空氣側之空腔的頂部上,且Fe及Cr保留在中部。對於燃料側朝上壓製之互連件,Ni粒度大於Cr及Fe顆粒,Cr及Fe顆粒大小相同,且含有Co及/或Mn之顆粒小於Cr及Fe顆粒。如本文所使用,粒度係指平均粒度,且較大顆粒可具有比Fe及Cr平均粒度大25-200%之平均粒度,且較小顆粒可具有比Fe及Cr平均粒度小25-200%之平均粒度。 In another aspect of this embodiment, alloying elements applicable to the air side (e.g., Co and/or Mn) and the fuel side (e.g., Ni) are incorporated into the Cr-Fe interconnect. Thus, the powder composition placed in the press/die includes Cr, Fe, Ni, and at least one of Co and Mn. However, only Co and/or Mn are required on the air side, and only Ni is required on the fuel side. The inventors have observed that a quantitative separation of the Fe and Cr powders occurs in the press/die, resulting in smaller Cr particles sifting down in the press pressing cavity (i.e., in the die cavity), resulting in the fuel side having a more dilute Fe content, and the air side having a more concentrated Fe content. This phenomenon can be exploited to layer the IC with the desired materials by mixing the powder composition and placing it into a press cavity where the Ni particle size is smaller than the Cr and Fe particles and the Cr and Fe particles are the same size. If particles containing Co and/or Mn are also used (e.g., Co and/or Mn metal particles and/or MCO and/or LSM metal oxide particles), they are larger than the Cr and Fe particles of the interconnect pressed with the air side up. The punch and die can then be vibrated as the press cavity is filled to help the separation process occur. This will cause Ni to settle on the bottom of the cavity that will form the fuel side of the interconnect, Co and/or Mn to settle on the top of the cavity that will form the air side of the interconnect, and Fe and Cr to remain in the middle. For interconnects pressed with the fuel side up, the Ni particle size is larger than the Cr and Fe particles, the Cr and Fe particles are the same size, and the particles containing Co and/or Mn are smaller than the Cr and Fe particles. As used herein, particle size refers to the average particle size, and larger particles can have an average particle size that is 25-200% larger than the average particle size of Fe and Cr, and smaller particles can have an average particle size that is 25-200% smaller than the average particle size of Fe and Cr.
以下為此實施例之平均粒度之非限制性實施例。 The following is a non-limiting example of the average particle size of this embodiment.
若氧化鉻管理不需要Fe,則:2.5% Co,粒度約為100μm If chromium oxide management does not require Fe, then: 2.5% Co, particle size is about 100μm
95% Cr,粒度約為50μm 95% Cr, particle size about 50μm
2.5% Ni,粒度約為25μm 2.5% Ni, particle size is about 25μm
若氧化鉻管理需要Fe,則:2% Co,粒度約為100μm If chromium oxide management requires Fe, then: 2% Co, particle size is about 100μm
95% Cr,粒度約為50μm 95% Cr, particle size is about 50μm
1% Fe,粒度約為50μm 1% Fe, particle size is about 50μm
2% Ni,粒度約為25μm 2% Ni, particle size is about 25μm
若形成基於Mn之尖晶石,則:1% Co,粒度約為100μm If a Mn-based spinel is formed, then: 1% Co, particle size is about 100μm
1% Mn,粒度約為100μm 1% Mn, particle size is about 100μm
95% Cr,粒度約為50μm 95% Cr, particle size is about 50μm
1% Fe,粒度約為50μm 1% Fe, particle size is about 50μm
2% Ni,粒度約為25μm 2% Ni, particle size is about 25μm
在此實施例之另一態樣中,可使用上文關於圖3及圖4所描述之方法僅將鎳粉添加至IC之燃料側中。必要時,可將鎳粉添加至燃料側中,同時可僅將Co、Mn、氧化鈷及/或氧化錳粉末添加至互連件之空氣側中。 In another aspect of this embodiment, nickel powder may be added only to the fuel side of the IC using the method described above with respect to Figures 3 and 4. If desired, nickel powder may be added to the fuel side while Co, Mn, cobalt oxide, and/or manganese oxide powders may be added only to the air side of the interconnect.
圖3A至3C中說明用於在互連件之頂表面中嵌入合金材料之方法。如圖3A中所展示,用第一鞋形件(未展示)或藉由另一適合之方法,將用於形成IC之本體的潤滑劑及Cr/Fe粉末202添加至模具空腔200中。如圖3B中所展示,在壓製步驟之前,使用第二鞋形件206將合金材料粉末204(例如,Ni)或合金材料粉末204及潤滑劑/Cr/Fe粉末202之混合物提供至模具空腔中位於模具空腔中之粉末202的上方。接著如圖3C中所展示,使用衝頭208壓製粉末204、202,以形成在燃料側上具有嵌入於其表面中之合金材料(例如,Ni)的互連件(亦即,若IC之燃料側在模具中朝向上方形成)。在合金(例如,Ni)材料形成於互連件之頂部側上之前,如關於上文圖3A至3C所描述,空氣側塗層材料粉末(例如,LSM、MCO、Co及/或Mn)可形成於互連件之相對的底部側上。 A method for embedding alloy material in the top surface of the interconnect is illustrated in FIGS. 3A-3C. As shown in FIG. 3A, a lubricant and Cr/Fe powder 202 for forming the body of the IC are added to a mold cavity 200 using a first shoe (not shown) or by another suitable method. As shown in FIG. 3B, prior to the pressing step, a second shoe 206 is used to provide an alloy material powder 204 (e.g., Ni) or a mixture of alloy material powder 204 and lubricant/Cr/Fe powder 202 to the mold cavity above the powder 202 in the mold cavity. The powders 204, 202 are then pressed using a punch 208 as shown in FIG. 3C to form an interconnect having an alloy material (e.g., Ni) embedded in its surface on the fuel side (i.e., if the fuel side of the IC is formed facing upward in the mold). Prior to the alloy (e.g., Ni) material being formed on the top side of the interconnect, an air side coating material powder (e.g., LSM, MCO, Co and/or Mn) may be formed on the opposing bottom side of the interconnect as described above with respect to FIGS. 3A-3C .
替代地,首先將合金材料粉末204(或合金材料粉末204及潤滑劑/Cr/Fe粉末202之混合物)提供至模具空腔200中。若IC之燃料側在模具中朝向下方形成,則在壓製步驟之前,接著將潤滑劑/Cr/Fe粉末202提供至模具空腔200中之粉末204的上方。以此方式,Ni主要在IC之燃料 側表面之頂部處併入至IC中。如關於上文圖3A至3C所描述,空氣側塗層材料粉末(例如,LSM、MCO、Co及/或Mn)可接著形成於互連件之相對頂部側上。 Alternatively, alloy material powder 204 (or a mixture of alloy material powder 204 and lubricant/Cr/Fe powder 202) is first provided into mold cavity 200. If the fuel side of the IC is formed in the mold facing downward, lubricant/Cr/Fe powder 202 is then provided above powder 204 in mold cavity 200 prior to the pressing step. In this way, Ni is incorporated into the IC primarily at the top of the fuel side surface of the IC. Air side coating material powder (e.g., LSM, MCO, Co and/or Mn) may then be formed on the opposite top side of the interconnect as described above with respect to FIGS. 3A-3C.
替代地,如圖4中所展示,合金粉末204可靜電吸引至按壓機之上衝頭208。接著,上衝頭208按壓模具空腔200中之合金粉末204及潤滑劑/互連件粉末材料202以形成具有嵌入於燃料側之頂部中之合金材料204的互連件。 Alternatively, as shown in FIG. 4 , the alloy powder 204 may be electrostatically attracted to the upper punch 208 of the press. The upper punch 208 then presses the alloy powder 204 and lubricant/interconnector powder material 202 in the die cavity 200 to form an interconnector having the alloy material 204 embedded in the top portion of the fuel side.
使用上述方法,在壓製步驟之後,可將合金粉末均勻地併入於互連件之燃料側之表面中。接著,壓製步驟之後為燒結及鎳網形成步驟。 Using the above method, after the pressing step, the alloy powder can be uniformly incorporated into the surface of the fuel side of the interconnect. Then, the pressing step is followed by the sintering and nickel mesh forming steps.
在此實施例之一第六態樣中,如圖13中所展示,金屬或金屬氧化物接觸層27至少形成於互連件之燃料側上之肋部10之頂部部分上。接觸層27接觸鎳網31,其反過來接觸堆疊中之相鄰燃料電池之陽極電極3。 In a sixth aspect of this embodiment, as shown in FIG13, a metal or metal oxide contact layer 27 is formed on at least the top portion of the rib 10 on the fuel side of the interconnect. The contact layer 27 contacts the nickel mesh 31, which in turn contacts the anode electrode 3 of an adjacent fuel cell in the stack.
在不希望受特定理論束縛之情況下,咸信接觸層27打破氧化鉻層25之連續氧化鉻皮且促進在網31下方之互連件肋部10中之「反應區」29中形成Cr-Fe-Ni或Cr-Ni合金,尤其在接觸層27包含鎳或氧化鎳時。特定而言,鎳可自鎳或氧化鎳接觸層27擴散至氧化鉻層25中,從而產生經由氧化物之導電路徑(例如,藉由固態鎳擴散形成之鎳路徑),且擴散至互連件肋部之「反應區」29中,藉此增加Cr-Fe-Ni或Cr-Ni合金之形成且增加「反應區」29之大小(例如,深層及/或寬度)。此外,接觸層27擴增鎳或氧化鎳材料與互連件肋部10之間的接觸表面積(與鎳網31之導線與肋部10之間的接觸表面積相比)。因此,接觸層27可有助於互連 件肋部10與網31之間的良好接觸。此外,咸信接觸層27防止或減少雜質33自網31擴散至氧化鉻層25中,其否則可潛在地導致氧化鉻層25之電阻之不合需要的增加。 Without wishing to be bound by a particular theory, it is believed that the contact layer 27 breaks the continuous chromium oxide scale of the chromium oxide layer 25 and promotes the formation of Cr- in the "reaction zone" 29 in the interconnect rib 10 below the mesh 31 Fe-Ni or Cr-Ni alloy, especially when the contact layer 27 contains nickel or nickel oxide. Specifically, nickel may diffuse from the nickel or nickel oxide contact layer 27 into the chromium oxide layer 25, thereby creating a conductive path through the oxide (eg, a nickel path formed by solid nickel diffusion) and diffusing to the interconnect. in the "reaction zone" 29 of the rib, thereby increasing the formation of Cr-Fe-Ni or Cr-Ni alloy and increasing the size (eg, depth and/or width) of the "reaction zone" 29. Furthermore, the contact layer 27 increases the contact surface area between the nickel or nickel oxide material and the interconnect ribs 10 (compared to the contact surface area between the conductors of the nickel mesh 31 and the ribs 10). Therefore, contact layer 27 may facilitate interconnection Good contact between the ribs 10 and the mesh 31. Furthermore, it is believed that the contact layer 27 prevents or reduces the diffusion of impurities 33 from the mesh 31 into the chromium oxide layer 25 , which could otherwise potentially lead to an undesirable increase in the resistance of the chromium oxide layer 25 .
接觸層27可由任何適合之金屬製成,諸如鎳、鉑或鉑族金屬(諸如銠、鈀或釕)、銅、鐵、鈷、銀、金、鎢、任何其他過渡族金屬或前述金屬之任何合金。金屬可以金屬(還原)相(例如,鎳金屬)應用,或可應用其氧化物(例如,氧化鎳)。氧化物將在富氫燃料流之正常操作中還原為金屬、導電相。 The contact layer 27 may be made of any suitable metal, such as nickel, platinum or a platinum group metal (such as rhodium, palladium or ruthenium), copper, iron, cobalt, silver, gold, tungsten, any other transition group metal or any alloy of the foregoing metals. The metal may be applied in the metallic (reduced) phase (e.g., nickel metal), or may be applied as an oxide (e.g., nickel oxide). The oxide will be reduced to the metallic, conductive phase during normal operation of the hydrogen-rich fuel stream.
呈金屬或金屬氧化物形式之接觸層27可藉由任何適合之方法應用,諸如網版印刷、濺鍍、電子束沈積、蒸發、原子層沈積、電鍍、無電極電鍍、熱噴塗、塗刷、浸塗、氣霧劑噴塗、電泳沈積等。以上製造製程中之任一者可視情況在熱製程(例如,退火)之後進行以實現接合及相互擴散,諸如燒結、還原、氧化、擴散接合或銅焊。 Contact layer 27 in the form of metal or metal oxide can be applied by any suitable method, such as screen printing, sputtering, electron beam deposition, evaporation, atomic layer deposition, electroplating, electroless plating, thermal spraying, painting, Dip coating, aerosol spray coating, electrophoretic deposition, etc. Any of the above fabrication processes may optionally be performed after thermal processes (eg, annealing) to achieve bonding and interdiffusion, such as sintering, reduction, oxidation, diffusion bonding, or brazing.
舉例而言,接觸層27(諸如含有油墨之接觸層金屬或金屬氧化物)可網版印刷在肋部10上、在另一層(諸如Ni網31)上或在燃料電池陽極電極3上。陽極印刷可呈與肋部10對準、垂直於肋部(或以任何其他角度)之肋部圖案,或連續層。 For example, a contact layer 27 (such as a contact layer metal or metal oxide containing ink) can be screen printed on the ribs 10 , on another layer (such as a Ni mesh 31 ) or on the fuel cell anode electrode 3 . The anode print may be in a pattern of ribs aligned with the ribs 10, perpendicular to the ribs (or at any other angle), or in a continuous layer.
對於含有經網版印刷之接觸層27及焊接至肋部10之網31的互連件,較佳的係接觸層27不塗佈所有肋部之整個頂表面,以提供網31將焊接至肋部10之未經塗佈區域。一般而言,網版印刷層可具有較差導電性。因此,接觸層27圖案較佳地具有間隙35,以便容納網焊接點。舉例而言,如圖14A中所展示,可存在四個焊接點37A、37B、37C及37D用於焊接,一個在互連件之各拐角中。接觸層27圖案應具有暴露此等點37A至 37D之間隙35以使其不經接觸層27塗佈。 For interconnects with screen printed contact layer 27 and mesh 31 soldered to ribs 10, it is preferred that contact layer 27 does not coat the entire top surface of all ribs to provide that mesh 31 will be soldered to the ribs. Part 10 of the uncoated area. Generally speaking, screen printed layers can have poor electrical conductivity. Therefore, the contact layer 27 pattern preferably has gaps 35 to accommodate mesh bonding points. For example, as shown in Figure 14A, there may be four soldering points 37A, 37B, 37C, and 37D for soldering, one in each corner of the interconnect. The contact layer 27 pattern should have points 37A exposed to The gap 35 of 37D is such that it is not coated by the contact layer 27 .
舉例而言,圖14A中所展示之接觸層27圖案含有不會一直延伸至肋部之末端以暴露條形間隙35中之焊接點37A至37D的印刷線。然而,覆蓋有陽極接觸層27之區域將比間隙35中之區域具有與網之較佳電接觸。 For example, the contact layer 27 pattern shown in FIG. 14A contains printed lines that do not extend all the way to the ends of the ribs to expose the solder points 37A to 37D in the strip gaps 35 . However, the area covered with anode contact layer 27 will have better electrical contact with the mesh than the area in gap 35 .
更多複雜的圖案展示於圖14B中。此接觸層27圖案具有更多塗佈有陽極接觸油墨之肋部,從而形成較佳的電接觸。圖14C說明圖14A及14B之圖案之間的中間背景。圖14C中之接觸層27圖案為十字形的,使得間隙35僅位於互連件之拐角處。因為接觸層27油墨具有有限的厚度及可壓縮性,所以應圍繞焊接點37A至37D提供足夠的間隙35空間,使得網在向下按壓於待焊接之裸肋部10上時不會過於變形。圖14C中所展示之圖案具有很大的空間以容納焊接點37A至37D以及自動焊接過程中之變化,同時仍一直與電池中心中之肋部末端保持良好的接觸,其對於電化學及重組係重要的。 More complex patterns are shown in Figure 14B. This contact layer 27 pattern has more ribs coated with anode contact ink, thereby forming better electrical contact. Figure 14C illustrates the intermediate background between the patterns of Figures 14A and 14B. The contact layer 27 pattern in Figure 14C is cross-shaped so that gaps 35 are located only at the corners of the interconnects. Because the contact layer 27 ink has limited thickness and compressibility, sufficient gap 35 space should be provided around the weld points 37A to 37D so that the mesh does not deform excessively when pressed down onto the bare ribs 10 to be welded. The pattern shown in Figure 14C has a large amount of space to accommodate soldering points 37A to 37D and changes in the automated soldering process, while still maintaining good contact with the ends of the ribs in the center of the cell, which is important for electrochemical and recombination systems. important.
上文所描述之圖案不受限制且可使用其他接觸層27圖案。舉例而言,可使用剖面線(「虛線」)圖案。以虛線(例如,非連續的)印刷接觸油墨可能為有利的。此可增加局部接觸壓力且因此增加電接觸。在另一組態中,經印刷之每一個肋部或每第2個肋部(或每第3個肋部等)用接觸層油墨印刷。 The patterns described above are not limited and other contact layer 27 patterns may be used. For example, a hatch ("dashed") pattern may be used. It may be advantageous to print the contact ink in dashed lines (eg, discontinuous). This can increase local contact pressure and therefore electrical contact. In another configuration, each printed rib or every 2nd rib (or every 3rd rib, etc.) is printed with contact layer ink.
接觸層可具有5微米至1000微米(諸如25微米)之厚度。若需要較厚的印刷,則可在連續步驟中網版印刷多層。陽極接觸油墨應為可印刷的,在環境條件下為足夠穩定的且以適當之耐磨性進行印刷。粉末可為金屬、金屬合金或氧化物,諸如在操作中還原為Ni金屬之氧化鎳。油墨 可含有溶劑,諸如水、乙醇、乙二醇、松香醇(terpineol)、異丙醇、甲苯、己烷或丙酮。油墨亦可含有分散劑、黏合劑及/或塑化劑。亦可將抗磨損組分添加至油墨中。視粉末之粒度及相關表面區域而定,可使用50-90%之固體負載量,諸如約80%。在印刷之後,油墨可在低溫過程中乾燥以使得印刷層更穩定且耐磨。其可在80℃-200℃之溫度(諸如約120℃)下乾燥。 The contact layer may have a thickness of 5 microns to 1000 microns (e.g. 25 microns). If a thicker print is required, multiple layers may be screen printed in consecutive steps. The anodic contact ink should be printable, sufficiently stable under ambient conditions and printed with suitable wear resistance. The powder may be a metal, a metal alloy or an oxide such as nickel oxide which is reduced to Ni metal during operation. The ink may contain a solvent such as water, ethanol, ethylene glycol, terpineol, isopropyl alcohol, toluene, hexane or acetone. The ink may also contain a dispersant, a binder and/or a plasticizer. An anti-wear component may also be added to the ink. Depending on the particle size of the powder and the relevant surface area, a solid loading of 50-90% may be used, such as about 80%. After printing, the ink may be dried in a low temperature process to make the printed layer more stable and wear-resistant. It may be dried at a temperature of 80°C-200°C, such as about 120°C.
接觸層27可選擇性地形成於肋部之頂部、肋部之頂部及側面上,或在互連件之整個表面的至少一部分上方塗佈肋部10及通道8。較佳地,若印刷接觸層27,則其僅位於肋部10之頂部上。若油墨往下倒入燃料通道8中,則燃料流可能受影響,其反過來可能影響熱盒中之燃料分佈。在嚴重情況下,可能需要降低熱盒燃料利用率,其降低系統效率及/或功率輸出。印刷可仔細對準且週期性地檢查。可實施人工檢測或自動化視覺系統以篩選出印刷錯誤的互連件。油墨可用對比添加劑著色以便提高自動化視覺系統之準確性。篩選應與「間距(pitch)」(肋部間距)仔細匹配。因此,互連件製造變化可能需要具有不同肋部間距之多種篩網以確保良好對準的印刷。 The contact layer 27 may be selectively formed on the top of the rib, the top and sides of the rib, or the ribs 10 and channels 8 may be coated over at least a portion of the entire surface of the interconnect. Preferably, if the contact layer 27 is printed, it is located only on the top of the rib 10. If ink pours down into the fuel channel 8, the fuel flow may be affected, which in turn may affect the fuel distribution in the hot box. In severe cases, it may be necessary to reduce the hot box fuel utilization, which reduces system efficiency and/or power output. The printing can be carefully aligned and periodically checked. Manual inspection or an automated vision system can be implemented to screen out misprinted interconnects. The ink may be tinted with contrast additives to improve the accuracy of automated vision systems. Screening should be carefully matched to "pitch" (rib spacing). Therefore, interconnect manufacturing variations may require multiple screens with different rib spacings to ensure well-registered printing.
總而言之,藉由以下中之至少一者來減少或避免氧化鉻層之形成:增加鎳網與互連件之間的壓製壓力、在鎳網下方之互連件中提供未擴散Fe、減少互連件與鎳網之間的表面污染、將鎳網連接至互連件、將鎳添加至互連件合金中或在互連件之燃料側上之肋部上方塗佈金屬或金屬氧化物接觸層,包括以上步驟中之任何兩個、三個、四個、五個或所有六個的組合。 In summary, the formation of the chromium oxide layer is reduced or avoided by at least one of: increasing the press pressure between the nickel mesh and the interconnect, providing undiffused Fe in the interconnect below the nickel mesh, reducing surface contamination between the interconnect and the nickel mesh, bonding the nickel mesh to the interconnect, adding nickel to the interconnect alloy, or applying a metal or metal oxide contact layer over the ribs on the fuel side of the interconnect, including any combination of two, three, four, five, or all six of the above steps.
在另一實施例中,為降低MCO塗佈製程之成本,MCO塗 層可在粉末冶金(PM)所形成之互連件的燒結步驟期間退火(例如經燒製或經燒結)。粉末冶金互連件100及互連件上之MCO塗層之燒結可在還原環境中在相同的步驟中進行,該還原環境諸如露點在-20與-30℃之間、溫度在1300與1400℃之間的氫還原鍋爐,且持續時間在0.5與6小時之間。在此等溫度及氧分壓下,MCO塗層將完全還原為Co-金屬及Mn-金屬。然而,Mn之熔化溫度為約1245℃,Co之熔化溫度為約1495℃,且Co-Mn系統具有低壓液相線。因此,在1300與1400℃之間的溫度下進行燒結可導致不合需要的液相形成。 In another embodiment, to reduce the cost of the MCO coating process, the MCO coating can be annealed (e.g., sintered or sintered) during the sintering step of the powder metallurgy (PM) formed interconnect. The sintering of the powder metallurgy interconnect 100 and the MCO coating on the interconnect can be performed in the same step in a reducing environment, such as a hydrogen reduction furnace with a dew point between -20 and -30°C, a temperature between 1300 and 1400°C, and a duration between 0.5 and 6 hours. At such temperatures and oxygen partial pressures, the MCO coating will be completely reduced to Co-metal and Mn-metal. However, the melting temperature of Mn is about 1245°C, the melting temperature of Co is about 1495°C, and the Co-Mn system has a low-pressure liquidus. Therefore, sintering at temperatures between 1300 and 1400°C may result in the formation of an undesirable liquid phase.
避免形成液體之可能解決方案包括將燒結溫度降低至低於1300℃,諸如低於1245℃,例如1100℃至1245℃;增加氧分壓以將MCO中之Mn(但不氧化Cr)還原為與Mn-金屬相對的MnO(熔化溫度1650℃);降低MCO中之Mn:Co比率以增加Mn-Co金屬系統之熔化溫度;將摻雜物添加至MCO(諸如Cr)中以增加Co-Mn-Cr金屬系統之熔化溫度;及/或將摻雜物(諸如Fe、V及或Ti)添加至MCO塗層中以穩定二元及三元氧化物(以防止還原為金屬相)。舉例而言,在1400℃之燒結溫度下,MnO在10-17atm之pO2下還原為Mn-金屬,而Cr2O3在10-15atm之pO2下還原為Cr-金屬,其提供其中Cr還原為金屬但MnO仍保持為具有高熔點之氧化物的小範圍(在10-17與10-15atm之間的pO2)。因此,互連件及MCO塗層可在1300-1400℃下在pO2=10-15-10-17atm下經燒結。 Possible solutions to avoid liquid formation include lowering the sintering temperature below 1300°C, such as below 1245°C, for example 1100°C to 1245°C; increasing the oxygen partial pressure to reduce the Mn (but not oxidize Cr) in the MCO to Mn-metal opposite MnO (melting temperature 1650°C); reduce the Mn:Co ratio in MCO to increase the melting temperature of the Mn-Co metal system; add dopants to MCO (such as Cr) to increase Co-Mn- Melting temperature of the Cr metal system; and/or adding dopants (such as Fe, V and or Ti) to the MCO coating to stabilize binary and ternary oxides (to prevent reduction to the metallic phase). For example, at a sintering temperature of 1400° C , MnO is reduced to Mn-metal at a pO2 of 10-17 atm, while Cr2O3 is reduced to Cr-metal at a pO2 of 10-15 atm, which provides where Cr is reduced to metal but MnO remains as a small range oxide with a high melting point (pO 2 between 10 −17 and 10 −15 atm). Therefore, interconnects and MCO coatings can be sintered at 1300-1400°C at pO 2 =10 -15 -10 -17 atm.
在另一實施例中,可首先進行IC燒結步驟,隨後將MCO塗層塗覆至經燒結IC。接著使IC及塗層經受描述於前述實施例之更適合於MCO塗層的還原步驟。 In another embodiment, the IC sintering step can be performed first and then the MCO coating is applied to the sintered IC. The IC and coating were then subjected to the reduction steps described in the previous examples and more suitable for MCO coatings.
在另一實施例中,互連件製造成本可藉由將MCO層沈積為 已經還原之組分(諸如MnO、CoO、Mn金屬、Co金屬或此等組分之任何組合)之混合物來降低。接著將混合物燒結,較佳地在低pO2條件下。然而,此類燒結可更容易或起始材料可能更緻密,藉此減少燒結時間。另外,此等前驅體顆粒可能比MCO前驅體便宜很多,該MCO前驅體需要昂貴的合成方法來產生。 In another embodiment, interconnect manufacturing costs may be reduced by depositing the MCO layer as a mixture of already reduced components such as MnO, CoO, Mn metal, Co metal, or any combination of these components. The mixture is then sintered, preferably under low pO2 conditions. However, such sintering may be easier or the starting material may be denser, thereby reducing sintering time. Additionally, such precursor particles may be significantly cheaper than MCO precursors, which require expensive synthetic methods to produce.
另外,在用MCO層塗佈互連件之前,可進行噴砂處理步驟,以自互連件之空氣及燃料側移除原生氧化鉻層。為降低成本,在互連件之空氣側上形成MCO塗層之前,可僅自互連件之空氣側移除原生氧化物。MCO塗層接著沈積於空氣側上且如上文所描述對互連件進行退火。在完成退火之後,接著可自燃料側諸如藉由噴砂處理移除氧化物。以此方式,噴砂處理步驟之次數減少,此係因為不需要額外的噴砂處理步驟以移除在MCO塗層退火期間發生在互連件之燃料側上的氧化物生長。 Additionally, a sandblasting step may be performed to remove native chromium oxide layers from both the air and fuel sides of the interconnect prior to coating the interconnect with the MCO layer. To reduce costs, native oxide may be removed only from the air side of the interconnect prior to forming the MCO coating on the air side of the interconnect. The MCO coating is then deposited on the air side and the interconnect is annealed as described above. After the annealing is complete, the oxide may then be removed from the fuel side, such as by sandblasting. In this manner, the number of sandblasting steps is reduced because an additional sandblasting step is not required to remove oxide growth on the fuel side of the interconnect that occurs during annealing of the MCO coating.
在其他實施例中,MCO塗層之組合物經改性以在SOFC操作溫度(諸如800-1000℃)下增加穩定性。一些先前實施例之MCO組合物為Mn1.5Co1.5O4。此材料具有高導電率。然而,MCO材料可還原為二元氧化物、MnO及CoO,或還原為二元氧化物MnO及Co-金屬。 In other embodiments, the composition of the MCO coating is modified to increase stability at SOFC operating temperatures, such as 800-1000°C. The MCO composition of some previous examples was Mn 1.5 Co 1.5 O 4 . This material has high electrical conductivity. However, MCO materials can be reduced to binary oxides, MnO and CoO, or to binary oxides MnO and Co-metal.
在一些燃料電池幾何形狀中,MCO塗層僅直接暴露於上升管開口16A、16B處之燃料流。此燃料/塗層界面可藉由不塗佈開口周圍的平坦區域17來消除(圖6B)。然而,由粉末冶金方法製造之互連件使得具有一些連通(開放)孔隙的部分可允許燃料經由該部分擴散至空氣側。經由孔隙擴散之燃料可與MCO/互連件界面(展示於圖9中)處之MCO反應且將其還原,從而產生由MnO及Co-金屬組成之多孔層。如圖9中所展示,塗層/IC界面可能受損,導致在常規處理期間黏著失效及電池自互連件分離。 In some fuel cell geometries, the MCO coating is only directly exposed to the fuel flow at riser openings 16A, 16B. This fuel/coating interface can be eliminated by not coating the flat area 17 around the opening (Figure 6B). However, interconnects fabricated by powder metallurgy methods allow for portions with some connected (open) pores to allow fuel to diffuse to the air side through the portion. Fuel diffusing through the pores can react with and reduce the MCO at the MCO/interconnect interface (shown in Figure 9), creating a porous layer composed of MnO and Co-metal. As shown in Figure 9, the coating/IC interface can be damaged, leading to adhesion failure and cell separation from the interconnect during routine handling.
當暴露於燃料環境時,期望塗層材料更穩定且更不可能還原。下文所描述之實施例使組合物最佳化且/或用其他元素摻雜MCO,以便在還原氛圍中穩定材料。 It is desirable for the coated material to be more stable and less likely to reduce when exposed to a fuel environment. The embodiments described below optimize the composition and/or dope the MCO with other elements to stabilize the material in a reducing atmosphere.
圖11及圖12說明電解質腐蝕之理論。在圖11及12中所展示之先前技術SOFC堆疊中,互連件上之LSM塗層11與環形密封件15接觸。密封件15接觸電池電解質5。在不希望受特定理論束縛之情況下,咸信來自含有錳及/或鈷之金屬氧化物(例如,LSCo之LSM)層11的錳及/或鈷瀝濾至玻璃密封件15中且/或與其反應,且接著自玻璃傳輸至電解質。錳及/或鈷可作為錳及/或鈷原子或離子或作為含有錳及/或鈷之化合物(諸如富含錳及/或鈷之矽酸鹽化合物)自玻璃傳輸至電解質。舉例而言,咸信錳及鈷與玻璃反應以形成(Si,Ba)(Mn,Co)O6+δ行動相,其自玻璃密封件傳輸至電解質。電解質5處或其中之錳及/或鈷(例如,作為行動相之部分)傾向於聚集在基於氧化鋯之電解質的晶粒邊界處。此產生晶粒間腐蝕及弱化電解質晶粒邊界之凹坑,最終導致電解質5中之裂紋(例如,開口16A至開口16B裂紋)。在不受特定理論束縛之情況下,亦有可能的係,穿過燃料入口上升管36之燃料(例如,天然氣、氫氣及/或一氧化碳)亦可與金屬氧化物層11及/或玻璃密封件15反應以產生行動相且增強錳及/或鈷自層11瀝濾至密封件15中,如圖11中所展示。 Figures 11 and 12 illustrate the theory of electrolyte corrosion. In the prior art SOFC stack shown in Figures 11 and 12, the LSM coating 11 on the interconnect is in contact with the annular seal 15. The seal 15 is in contact with the cell electrolyte 5. Without wishing to be bound by a particular theory, it is believed that manganese and/or cobalt from the metal oxide (e.g., LSM of LSCo) layer 11 containing manganese and/or cobalt filters into and/or reacts with the glass seal 15 and is then transported from the glass to the electrolyte. Manganese and/or cobalt can be transferred from the glass to the electrolyte as manganese and/or cobalt atoms or ions or as compounds containing manganese and/or cobalt (such as manganese and/or cobalt-rich silicate compounds). For example, it is believed that manganese and cobalt react with the glass to form a (Si,Ba)(Mn,Co)O 6+δ mobile phase, which is transferred from the glass seal to the electrolyte. Manganese and/or cobalt at or in the electrolyte 5 (e.g., as part of the mobile phase) tend to accumulate at the grain boundaries of the zirconia-based electrolyte. This produces intergranular corrosion and pits that weaken the electrolyte grain boundaries, ultimately leading to cracks in the electrolyte 5 (e.g., opening 16A to opening 16B cracks). Without being bound by a particular theory, it is also possible that the fuel (e.g., natural gas, hydrogen and/or carbon monoxide) passing through the fuel inlet riser 36 may also react with the metal oxide layer 11 and/or the glass seal 15 to produce a mobile phase and enhance the filtration of manganese and/or cobalt from the layer 11 into the seal 15, as shown in Figure 11.
如上文所論述,在其他實施例中,MCO塗層之組合物經改性以在SOFC操作溫度(諸如800-1000℃)下增加穩定性。因此,MCO組合物可基於穩定性及電導率而最佳化。實例組合物包括(但不限於)Mn2CoO4、Mn1.75Co0.25O4、Co1.75Mn0.25O4、CoMnO4及Co2.5Mn0.5O4。 As discussed above, in other embodiments, the composition of the MCO coating is modified to increase stability at SOFC operating temperatures, such as 800-1000°C. Therefore, MCO compositions can be optimized based on stability and conductivity. Example compositions include, but are not limited to, Mn 2 CoO 4 , Mn1.75Co 0.25 O 4 , Co 1.75 Mn 0.25O4 , CoMnO 4 and Co 2.5 Mn 0.5 O 4 .
基於相圖(圖10)且根據穩定性觀點,具有富含Mn之多相組合物可為有益的,諸如Mn2.5Co0.5O4及Mn2.75Co0.25O4(例如Mn:Co原子比率為5:1或更大,諸如5:1至11:1)。更高的Mn含量亦可產生更穩定的組合物,此係因為組合物比在高Co含量下發現之二相尖晶石+二元氧化物處於更高的氧化態。然而,(Mn,Co)3O4家族中之在Co3O4及Mn3O4之最終組合物之間的任何組合物可為適合的。 Based on the phase diagram (Fig. 10) and from a stability point of view, it can be beneficial to have Mn-rich heterogeneous compositions, such as Mn 2.5 Co 0.5 O 4 and Mn 2.75 Co 0.25 O 4 (e.g. Mn:Co atomic ratio of 5 :1 or greater, such as 5:1 to 11:1). Higher Mn contents also produce more stable compositions because the compositions are in a higher oxidation state than the binary spinel + binary oxide found at high Co contents. However, any composition in the (Mn,Co)3O4 family between the final composition of Co3O4 and Mn3O4 may be suitable.
在另一實施例中,MCO藉由添加較不易於還原之額外摻雜物來穩定化。舉例而言,眾所周知MCO與IC合金中之Cr反應以形成(Cr,Co,Mn)3O4尖晶石。若有意將Cr以低含量添加至MCO塗層中,諸如0.1原子%至10%,則此將產生比MCO更穩定的尖晶石(Cr,Co,Mn)3O4,此係因為Cr3+為極其穩定的。可溶於尖晶石結構之可增加穩定性之其他過渡金屬元素包括Fe、V及Ti。實例塗層材料包括具有1%至50at% Fe之尖晶石(Fe,Co,Mn)3O4、具有1%至50%Ti之(Ti,Co,Mn)3O4或(Fe,Ti,Co,Mn)3O4之組合。 In another embodiment, MCO is stabilized by adding additional dopants that are less susceptible to reduction. For example, MCO is known to react with Cr in IC alloys to form (Cr,Co,Mn) 3 O 4 spinel. If Cr is intentionally added to the MCO coating at low levels, such as 0.1 atomic % to 10%, this will produce spinel (Cr,Co,Mn) 3 O 4 that is more stable than MCO due to the Cr 3 + is extremely stable. Other transition metal elements that are soluble in the spinel structure and can increase stability include Fe, V and Ti. Example coating materials include spinel (Fe,Co,Mn) 3 O 4 with 1% to 50 at% Fe, (Ti,Co,Mn) 3 O 4 or (Fe,Ti ,Co,Mn) 3 O 4 combination.
添加Ti可導致更穩定的次級相,包括Co2TiO4、Mn2TiO4或Fe2TiO4。此等相有益於整體塗層穩定性。具有上文所提及之摻雜物之任何組合的尖晶石可能包括(Fe,Cr,Co,Mn)3O4、(Cr,Ti,Co,Mn)3O4等。 Adding Ti can lead to more stable secondary phases including Co2TiO4 , Mn2TiO4 or Fe2TiO4 . These phases are beneficial to the overall coating stability. Spinels with any combination of the dopants mentioned above may include (Fe,Cr,Co,Mn)3O4 , ( Cr ,Ti,Co,Mn) 3O4 , etc.
眾所周知基於Mg、Ca及Al之尖晶石為極其穩定的且阻抗還原。然而,此等尖晶石具有低電導率且因此不較佳應用為互連件塗層。相比之下,將Ca、Mg及/或Al以低含量摻雜至導電性尖晶石(諸如MCO)中增加材料之穩定性,同時僅略微降低電導率。實例尖晶石包括具有1%至10at% Ca之(Ca,Co,Mn)3O4、具有1%至10at% Mg之(Mg,Co,Mn)3O4、具有1%至10at% Al之(Al,Co,Mn)3O4或諸如(Ca,Al,Mn, Co)3O4之組合,其中Ca、Al及/或Mg以1-10at%添加。Si及Ce為可用作MCO尖晶石之摻雜物(1-10at%)的其他元素。 It is known that spinels based on Mg, Ca and Al are extremely stable and resistant to reduction. However, these spinels have low electrical conductivity and are therefore not well suited for interconnect coatings. In contrast, doping Ca, Mg and/or Al at low levels into conductive spinels such as MCO increases the stability of the material while only slightly reducing the conductivity. Example spinels include (Ca,Co,Mn) 3 O 4 with 1 to 10 at% Ca, (Mg, Co, Mn) 3 O 4 with 1 to 10 at% Mg, (Mg, Co, Mn) 3 O 4 with 1 to 10 at% Al (Al, Co, Mn) 3 O 4 or a combination such as (Ca, Al, Mn, Co) 3 O 4 , where Ca, Al and/or Mg are added at 1-10 at%. Si and Ce are other elements that can be used as dopants (1-10at%) of MCO spinels.
除上文所描述之屬於材料特定穩定化成果之通用類別的方法之外,替代實施例用於設計可與上述實施例組合或作為上述實施例之替代方案來改善塗層之穩定性的改變。在一第一替代實施例中,在添加MCO塗層之前,可將穩定的障壁層添加至互連件中。此障壁層將較佳地由比MCO更穩定的氧化物製成,且將為導電性的且足夠薄而不會不利地影響互連件組件的導電性。此外,此障壁層較佳為緻密且密封的。實例障壁層包括(但不限於)摻雜Ti之氧化物(例如TiO2)層或錳酸鑭鍶(LSM)。 In addition to the above-described methods belonging to the general category of material-specific stabilization efforts, alternative embodiments are intended to devise modifications that can be combined with or as an alternative to the above-described embodiments to improve the stability of the coating. In a first alternative embodiment, a stabilizing barrier layer may be added to the interconnect prior to adding the MCO coating. This barrier layer will preferably be made of a more stable oxide than MCO, and will be conductive and thin enough not to adversely affect the conductivity of the interconnect assembly. In addition, the barrier layer is preferably dense and sealed. Example barrier layers include, but are not limited to, a Ti-doped oxide (eg, TiO2 ) layer or lanthanum strontium manganate (LSM).
第二替代實施例包括在互連件與MCO塗層之間添加反應性障壁層,該MCO塗層包括上文所論述之作為可能摻雜物之元素中之任一者(例如Cr、V、Fe、Ti、Al、Mg、Si、Ce及/或Ca)。在將互連件加熱至標準運行溫度(800-1000℃)時,此層將此等元素擴散至MCO塗層中,從而在發生還原之互連件界面處產生具有更高濃度摻雜物的梯度摻雜分佈。以此方式,大部分塗層含有相對極少的摻雜物且因此導電性可受塗層材料之均勻摻雜的影響較小。反應層為金屬層(例如Ti或含金屬化合物,其允許金屬在800℃或更高溫度下向外擴散)。 A second alternative embodiment includes adding a reactive barrier layer between the interconnect and the MCO coating, the MCO coating including any of the elements discussed above as possible dopants (e.g., Cr, V, Fe, Ti, Al, Mg, Si, Ce, and/or Ca). When the interconnect is heated to standard operating temperatures (800-1000°C), this layer diffuses these elements into the MCO coating, thereby creating a gradient doping profile with a higher concentration of dopants at the interconnect interface where reduction occurs. In this way, the majority of the coating contains relatively few dopants and thus the conductivity may be less affected by the uniform doping of the coating material. The reaction layer is a metal layer (such as Ti or a metal-containing compound that allows metal to diffuse outward at 800°C or higher).
第三實施例包括將互連件材料設計為含有反應性摻雜元素(例如用於Cr-4-6% Fe互連件之Si、Ce、Mg、Ca、Ti及/或Al),該反應性摻雜元素以剛才所描述之相同方式擴散至MCO塗層中。因此,互連件將含有90wt% Cr、4-6wt% Fe及0.1-2wt% Mg、Ti、Ca及/或Al。 A third embodiment includes designing the interconnect material to contain reactive dopants (e.g. Si, Ce, Mg, Ca, Ti and/or Al for Cr-4-6% Fe interconnects) that diffuse into the MCO coating in the same manner as just described. Thus, the interconnect will contain 90wt% Cr, 4-6wt% Fe and 0.1-2wt% Mg, Ti, Ca and/or Al.
另外,除標準氧化方法之外,沈積或處理IC以減少或封閉零件之孔隙的任何方法將有助於限制MCO塗層還原。舉例而言,Cr層可 在MCO退火步驟之前電鍍至多孔部分上以進一步減少孔隙。或,如上文所描述,若緻密且密封,則添加反應性障壁層亦將減少或阻斷自表面孔隙之氫擴散。 Additionally, any method of depositing or treating the IC to reduce or close the porosity of the part, in addition to standard oxidation methods, will help limit MCO coating reduction. For example, a Cr layer can Plating onto the porous parts prior to the MCO annealing step to further reduce porosity. Alternatively, as described above, if dense and sealed, adding a reactive barrier layer will also reduce or block hydrogen diffusion from surface pores.
為確保Ni網31與Cr-Fe合金肋部10之間的長期良好電連接,期望在肋部10之頂部處具有Fe以確保Ni網31與Cr/Fe肋部10之頂部之間的長期良好電連接。然而,在互連件100具有4至6wt%之鐵含量的情況下,Fe顆粒不足以確保所有或至少大部分Ni與含有Fe之Cr接觸。藉由有意地將Fe置放在肋部10之頂部,較佳在燒結之前,可提高電接觸使用壽命,而不會不可接受地改變整個互連件100之熱膨脹係數。 To ensure a long-term good electrical connection between the Ni mesh 31 and the Cr-Fe alloy rib 10, it is desirable to have Fe at the top of the rib 10 to ensure a long-term good electrical connection between the Ni mesh 31 and the top of the Cr/Fe rib 10 Electrical connection. However, in the case where the interconnect 100 has an iron content of 4 to 6 wt%, the Fe particles are not sufficient to ensure that all or at least most of the Ni is in contact with the Fe-containing Cr. By intentionally placing Fe on top of the ribs 10 , preferably prior to sintering, electrical contact life can be increased without unacceptably changing the coefficient of thermal expansion of the entire interconnect 100 .
與通道8及位於互連件之相對側上之肋部之間的互連件100之基底部分相比,增加互連件肋部10頂端之鐵濃度之以下非限制性實施例方法包括(1)在肋部10之頂部處置放純Fe顆粒,諸如99%純,諸如99.9%純,(2)使用Fe箔帶及/或(3)將含有更高濃度Fe之Cr置放至肋部10之整個燃料側上。 The following non-limiting example methods of increasing the iron concentration at the tips of interconnect ribs 10 compared to the base portion of interconnect 100 between channels 8 and ribs on opposite sides of the interconnect include (1 ) placing pure Fe particles, such as 99% pure, such as 99.9% pure, on top of the ribs 10 , (2) using Fe foil strips and/or (3) placing Cr containing a higher concentration of Fe into the ribs 10 on the entire fuel side.
顆粒可藉由在壓製工具(諸如含有空腔200之模具201)之燃料側上方噴塗粒子來提供至肋部10之頂部,該模具含有以與互連件之肋部10及通道8相反的組態由通道308分離之肋部310。重力將顆粒保持在壓製工具之通道308之底部。若模具包含具有上衝頭及下衝頭之空心圓柱,則肋部310及通道308可位於壓製工具之下衝頭中,或若模具之底部為固定的且工具僅含有一個上衝頭,則其位於模具201之底部中。 Particles may be provided to the top of the ribs 10 by spraying particles over the fuel side of a pressing tool, such as a mold 201 containing a cavity 200 containing the ribs 10 and channels 8 in an opposite arrangement to the interconnects. Ribs 310 are separated by channels 308. Gravity keeps the particles at the bottom of the passage 308 of the pressing tool. If the mold consists of a hollow cylinder with upper and lower punches, the ribs 310 and channels 308 may be located in the lower punch of the pressing tool, or if the bottom of the mold is fixed and the tool contains only one upper punch, then It is located in the bottom of mold 201.
如圖15A中所展示,將純Fe粉末205P(諸如99.9wt%純Fe顆粒)提供(例如,噴塗)至模具空腔200之通道308中。如圖15B中所展示,將包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末202提供至模具空腔200 之通道308中的純Fe粉205P之頂部上。接著,亦如圖15B中所說明,用衝頭208(例如,上衝頭)壓製粉末202。如圖15C中所說明,結果為互連件100在互連件100之燃料側之肋部10的頂端處具有富含鐵之區域129。區域129具有大於10wt%鐵(諸如15-99wt%鐵,諸如25-75wt%鐵)、視情況0至1wt% Y及其餘為鉻。此方法之優勢係其便宜且可導致較低的高面積比電阻劣化(「ASRD」)。此實施例之一個特徵為使用噴塗方法將少量鐵粉晶粒置放至位置中,而非使用粉末鞋形件方法。 As shown in FIG. 15A , pure Fe powder 205P (e.g., 99.9 wt% pure Fe particles) is provided (e.g., sprayed) into the channel 308 of the mold cavity 200. As shown in FIG. 15B , a powder 202 comprising 4-6 wt% Fe, 0-1 wt% Y, and the balance Cr is provided onto the top of the pure Fe powder 205P in the channel 308 of the mold cavity 200. Then, as also illustrated in FIG. 15B , the powder 202 is pressed with a punch 208 (e.g., an upper punch). As illustrated in FIG. 15C , the result is an interconnect 100 having an iron-rich region 129 at the top of the rib 10 on the fuel side of the interconnect 100. Region 129 has greater than 10 wt% Fe (e.g., 15-99 wt% Fe, e.g., 25-75 wt% Fe), optionally 0 to 1 wt% Y, and the balance is chromium. The advantage of this method is that it is inexpensive and results in lower high area ratio resistive degradation ("ASRD"). One feature of this embodiment is that a small amount of iron powder grains are placed in place using a spraying method rather than a powder shoe method.
在另一實施例中,如圖16中所說明,將Fe箔帶205S置放於壓製工具201之空腔200的通道308中。在一實施例中,Fe箔帶205可為20-80微米厚,諸如30-70微米厚。箔帶205S可為約二分之一至一毫米寬,諸如0.25至0.75mm寬。在一實施例中,箔帶205S可用黏著劑312(諸如丙烯酸黏膠或另一適合的黏著劑)原位保持在通道308之底部。此方法之優勢為提供至互連件100肋部10之頂部之Fe量比粉末噴塗方法更受控。類似於圖15B中所說明之方法,將包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末202提供至模具201空腔200之通道308中之Fe箔帶205S之頂部上。接著,用衝頭208壓製粉末202。結果為互連件100在肋部10之頂端處具有富含鐵之區域129,類似於圖15C中所說明之互連件100。有利地,當使用充滿Cr-Fe 4-6wt%粉末之鞋形件時,避免與上述方法相關之Fe顆粒的位移。 In another embodiment, as illustrated in FIG. 16 , a Fe foil strip 205S is placed in the channel 308 of the cavity 200 of the press tool 201. In one embodiment, the Fe foil strip 205 may be 20-80 microns thick, such as 30-70 microns thick. The foil strip 205S may be about one-half to one millimeter wide, such as 0.25 to 0.75 mm wide. In one embodiment, the foil strip 205S may be held in place at the bottom of the channel 308 with an adhesive 312, such as an acrylic adhesive or another suitable adhesive. An advantage of this method is that the amount of Fe provided to the top of the rib 10 of the interconnect 100 is more controlled than a powder spraying method. Similar to the method illustrated in FIG. 15B , a powder 202 comprising 4-6wt% Fe, 0-1wt% Y and the balance Cr is provided on top of the Fe foil strip 205S in the channel 308 of the cavity 200 of the mold 201. The powder 202 is then pressed with a punch 208. The result is an interconnect 100 having an iron-rich region 129 at the top of the rib 10, similar to the interconnect 100 illustrated in FIG. 15C . Advantageously, when a shoe filled with Cr-Fe 4-6wt% powder is used, displacement of Fe particles associated with the above method is avoided.
在圖17A中所說明之另一實施例中,在將較低Fe濃度之Fe-Cr粉末202(例如4-6wt% Fe)提供至壓製工具201之空腔200之前,將具有比互連件100之基底部分更高濃度Fe(例如25-50wt% Fe、50-25wt% Cr)的純鐵粉(例如,99%純鐵粉)或Fe-Cr粉末305提供至壓製工具201之空腔 200的通道308。在此實施例中,第一鞋形件206用於將含有更高Fe之粉末305置放至肋部通道308中。在第二鞋形件206用包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末202裝滿空腔200中的剩餘空間之後,如圖17B中所說明,衝頭208用於壓製步驟中,類似於圖15B中所說明,以將含有粉末305之區域的高度降低約一半。至少約25% Fe之目標值足以在互連件100肋部10之頂部提供足夠的Fe顆粒,而不會不可接受地影響互連件之CTE。在此實施例中,互連件100肋部10在粉末之Fe濃度中具有故意梯度。 In another embodiment illustrated in FIG. 17A , pure iron powder (e.g., 99% pure iron powder) or Fe-Cr powder 305 having a higher Fe concentration (e.g., 25-50wt% Fe, 50-25wt% Cr) than the base portion of the interconnect 100 is provided to the channel 308 of the cavity 200 of the pressing tool 201 before the Fe-Cr powder 202 having a lower Fe concentration (e.g., 4-6wt% Fe) is provided to the cavity 200 of the pressing tool 201. In this embodiment, the first shoe 206 is used to place the powder 305 containing a higher Fe content into the rib channel 308. After the second shoe 206 fills the remaining space in the cavity 200 with powder 202 comprising 4-6wt% Fe, 0-1wt% Y and the balance Cr, as illustrated in FIG. 17B , a punch 208 is used in a pressing step similar to that illustrated in FIG. 15B to reduce the height of the area containing powder 305 by about half. The target value of at least about 25% Fe is sufficient to provide sufficient Fe particles at the top of the interconnect 100 rib 10 without unacceptably affecting the CTE of the interconnect. In this embodiment, the interconnect 100 rib 10 has an intentional gradient in the Fe concentration of the powder.
在另一實施例中,金屬互連件100之燃料側在濕燃料氛圍之存在下與陽極腔室中之鎳網31接觸。實施例包括改變肋部10之頂部之化學性質及肋部10之微觀結構以降低在鎳網31與肋部10之頂部之間形成的層之電阻的材料及方法。咸信,將某些材料沈積至肋部10之頂部上將減小歐姆電阻。此等材料包括Fe、Mn、Co、Cu及高溫超合金(包括(但不限於)英高鎳(Inconel)625及718、海恩斯(Haynes)230及不同的赫史特合金(Hastelloy alloy))及其氧化物。英高鎳625、718及海恩斯230及不同的赫史特合金之化學式提供於下文中。 In another embodiment, the fuel side of the metal interconnect 100 contacts the nickel screen 31 in the anode chamber in the presence of a wet fuel atmosphere. Embodiments include materials and methods that alter the chemistry of the top of the rib 10 and the microstructure of the rib 10 to reduce the resistance of the layer formed between the nickel screen 31 and the top of the rib 10. It is believed that depositing certain materials onto the top of the rib 10 will reduce the ohmic resistance. Such materials include Fe, Mn, Co, Cu, and high temperature superalloys (including but not limited to Inconel 625 and 718, Haynes 230, and various Hastelloy alloys) and their oxides. The chemical formulas of Inconel Nickel 625, 718 and Haynes 230 and various Herschel alloys are provided below.
英高鎳625(wt%) Inconel 625(wt%)
英高鎳718(wt%) Inco Nickel 718 (wt%)
海恩斯230 Haynes 230
赫史特組合物 Hersted combination
舉例而言,若Fe覆蓋層沈積且冶金接合至肋部頂部,則Cr2O3不在Fe覆蓋層與肋部10之Cr-Fe頂部之間形成。然而,Cr仍可經由 Cr蒸發及沈積自互連件肋部擴散穿過Fe覆蓋層且沈積於鎳線網31上。因此,『新』界面覆蓋層將在Fe覆蓋層與鎳網31之間。若氧化物在此界面形成,則其將為Fe-Ni-Cr之合金之氧化物(Fe與Ni在藉由蒸發/擴散添加Cr之情況下接觸)。此Fe-Ni-Cr合金可為奧氏體相(austenitic phase)且在不存在氧化物之情況下將鎳網31接合至Fe覆蓋層。然而,若氧化物形成,則其將為比Cr2O3更具導電性之Fe,Ni,Cr)3O4尖晶石相。在Mn覆蓋層接合至肋部10頂部之情況下,原理為類似的但相將不同。舉例而言,除Mn-Ni-Cr合金之外,亦可形成高導電性(Mn,Ni,Cr)3O4氧化物。然而,亦形成較低電阻界面。 For example, if an Fe capping layer is deposited and metallurgically bonded to the top of the rib, Cr 2 O 3 is not formed between the Fe capping layer and the Cr-Fe top of the rib 10 . However, Cr can still diffuse from the interconnect ribs through the Fe capping layer and deposit on the nickel wire mesh 31 via Cr evaporation and deposition. Therefore, the "new" interface coating will be between the Fe coating and the nickel mesh 31. If an oxide forms at this interface, it will be an oxide of an alloy of Fe-Ni-Cr (Fe and Ni are in contact with Cr added by evaporation/diffusion). This Fe-Ni-Cr alloy may be in an austenitic phase and join the nickel mesh 31 to the Fe capping layer without the presence of oxides. However, if an oxide forms, it will be the Fe,Ni,Cr) 3O4 spinel phase , which is more conductive than Cr2O3 . In the case where the Mn coating is bonded to the top of the rib 10, the principle is similar but will be different. For example, in addition to Mn-Ni-Cr alloys, highly conductive (Mn,Ni,Cr) 3 O 4 oxides can also be formed. However, a lower resistance interface is also formed.
減小肋部10之頂部上之氧化物之歐姆電阻的另一實施例包括在Cr-Fe互連件材料之頂部上沈積英高鎳或其他Ni-Cr超合金之覆蓋層。眾所周知,與Ni-Cr超合金相比,Cr-Fe的氧化速率及因此後續的Cr2O3層厚度大很多。藉由沈積緻密超合金之覆蓋層且將其冶金接合至肋部10之頂部,在鎳線下(在覆蓋層之頂部上)形成之Cr2O3層的厚度相對於Cr-Fe合金應明顯更薄,諸如厚度小於一半,諸如厚度在10-50%之間。另外,許多超合金形成雙重氧化物塗層,包含Cr2O3及(Mn,Cr)3O4尖晶石,其比Cr2O3更具導電性且具有更低的Cr-蒸發。 Another embodiment of reducing the ohmic resistance of the oxide on top of the rib 10 includes depositing a capping layer of inconel or other Ni-Cr superalloy on top of the Cr-Fe interconnect material. As is well known, the oxidation rate of Cr-Fe, and therefore the subsequent Cr2O3 layer thickness, is much greater than that of Ni-Cr superalloy. By depositing a capping layer of dense superalloy and metallurgically bonding it to the top of the rib 10, the thickness of the Cr2O3 layer formed under the nickel wire (on top of the capping layer) should be significantly thinner relative to the Cr-Fe alloy, such as less than half the thickness, such as between 10-50% the thickness. In addition, many superalloys form dual oxide coatings, including Cr 2 O 3 and (Mn,Cr) 3 O 4 spinel, which is more conductive than Cr 2 O 3 and has lower Cr-evaporation.
在上述實施例中,額外益處為金屬覆蓋層470可填充孔隙且增加肋部10之頂部的密度。有一些證據表明,多孔且形成不佳之肋部頂部可導致氧化物形成過多及氧化層較厚。在金屬或金屬氧化物覆蓋層470形成於互連件100肋部10之頂端上的實施例中,可省略關於圖13所描述之Ni接觸層27。然而,圖15A至17B之實施例之肋部10的富含Fe之頂部部分可包括在覆蓋層470下面或省略。 In the above embodiments, an additional benefit is that the metal capping layer 470 can fill the pores and increase the density of the top of the rib 10. There is some evidence that a porous and poorly formed rib top can lead to excessive oxide formation and thicker oxide layers. In embodiments where the metal or metal oxide capping layer 470 is formed on the top of the rib 10 of the interconnect 100, the Ni contact layer 27 described with respect to FIG. 13 can be omitted. However, the Fe-rich top portion of the rib 10 of the embodiments of FIGS. 15A to 17B can be included below the capping layer 470 or omitted.
為在由粉末冶金形成之已經燒結的互連件100之頂部上獲得緻密金屬覆蓋層,雷射可用於熔化已沈積至肋部10之頂部上的金屬粉末。在一第一態樣中,將互連件100置放於所需覆蓋層材料之金屬粉末的床層中。接著,將額外粉末散佈在互連件100上以填充通道8且在肋部10之頂部上達至給定深度(例如10-50μm)。接著,雷射掃描肋部10之頂部以隨後熔化金屬粉末且將其接合至肋部10之頂部。在一第二態樣中,將所選擇之金屬粉末與一或多種有機化合物混合且專門網版印刷至具有所需寬度及厚度之肋部10的頂部。接著,雷射掃描肋部10之頂部以熔化且接合粉末。在兩種情況下,應選擇適當之惰性氛圍(氬氣、氖氣、氦氣等),使得金屬粉末不容易氧化。可針對各材料集合最佳化其他參數(諸如雷射功率、雷射類型、掃描速率及粉末粒度)以實現金屬覆蓋層之所需接合、厚度及密度。 To obtain a dense metal coating on top of the sintered interconnect 100 formed by powder metallurgy, a laser can be used to melt the metal powder that has been deposited on the top of the rib 10. In a first aspect, the interconnect 100 is placed in a bed of metal powder of the desired coating material. Additional powder is then spread over the interconnect 100 to fill the channels 8 and to a given depth (e.g., 10-50 μm) on top of the rib 10. The laser is then scanned over the top of the rib 10 to subsequently melt the metal powder and bond it to the top of the rib 10. In a second embodiment, the selected metal powder is mixed with one or more organic compounds and screen printed onto the top of the rib 10 with the desired width and thickness. The top of the rib 10 is then laser scanned to melt and bond the powder. In both cases, an appropriate inert atmosphere (argon, neon, helium, etc.) should be selected so that the metal powder does not oxidize easily. Other parameters (such as laser power, laser type, scan rate, and powder particle size) can be optimized for each material set to achieve the desired bonding, thickness, and density of the metal coating.
在圖18A中所展示之實施例中,金屬或金屬氧化物覆蓋層470僅形成於肋部10之頂表面上,而非肋部10之側壁上或通道8底部。在圖18B中所展示之一替代實施例中,金屬或金屬氧化物覆蓋層470形成於肋部10側壁之頂部上及其至少部分上。 In the embodiment shown in FIG. 18A , the metal or metal oxide coating layer 470 is formed only on the top surface of the rib 10 , but not on the sidewalls of the rib 10 or the bottom of the channel 8 . In an alternative embodiment shown in FIG. 18B , the metal or metal oxide coating layer 470 is formed on the top of the sidewalls of the rib 10 and at least a portion thereof.
覆蓋層470可有利地在互連件100製造之不同階段形成。舉例而言,可在壓製之後或在氧化互連件100之後將覆蓋層470添加至互連件100中,其中之每一者具有不同優勢。舉例而言,在壓製包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末之後,將Fe覆蓋層470添加至肋部10之頂部將導致更高密度的富含Fe之區域,但仍含有足夠的Cr以防止Fe氧化。此確保將足夠的Fe金屬保留在肋部10之頂部上以執行電阻降低功能。 The capping layer 470 can advantageously be formed at different stages of interconnect 100 fabrication. For example, the capping layer 470 can be added to the interconnect 100 after pressing or after oxidizing the interconnect 100, each of which has different advantages. For example, adding a Fe capping layer 470 to the top of the rib 10 after pressing a powder comprising 4-6wt% Fe, 0-1wt% Y, and the balance Cr will result in a higher density Fe-rich region, but still contain enough Cr to prevent Fe oxidation. This ensures that enough Fe metal remains on the top of the rib 10 to perform the resistance reduction function.
若在氧化經壓製且經燒結互連件100之後添加Fe(例如,如美國專利第8,652,691號中所描述,特此以全文引用之方式併入),則在堆疊運行期間在SOFC堆疊中隨後暴露於水(例如,潮濕的燃料)可導致Fe覆蓋層470之一些氧化。鐵之一些氧化態作為氧化物係導電的。優勢係產生甚至更高的局部濃度之Fe,而不會負面地影響互連件之熱膨脹分佈係數。 If Fe is added after oxidation of the pressed and sintered interconnect 100 (e.g., as described in U.S. Patent No. 8,652,691, hereby incorporated by reference in its entirety), subsequent exposure to water (e.g., wet fuel) in the SOFC stack during stack operation can result in some oxidation of the Fe capping layer 470. Some oxidation states of iron are electrically conductive as oxides. The advantage is to produce even higher local concentrations of Fe without negatively affecting the thermal expansion distribution coefficient of the interconnect.
在形成Mn覆蓋層470之一實施例中,由於Mn之高蒸汽壓,較佳在燒結之後及氧化互連件100之前在肋部10之頂部形成Mn。接著,與Mn在作為SOFC運行條件之部分之潮濕燃料中氧化相比,後續的純氧化步驟可形成更高質量、更具導電性的氧化錳。 In one embodiment of forming the Mn capping layer 470, due to the high vapor pressure of Mn, it is preferable to form Mn on top of the ribs 10 after sintering and before oxidizing the interconnect 100. A subsequent pure oxidation step then forms a higher quality, more conductive manganese oxide than when Mn is oxidized in wet fuel as part of the SOFC operating conditions.
在圖18C中所展示之一替代實施例中,金屬覆蓋層570形成於互連件100之空氣側肋部10之頂部上。此金屬覆蓋層570亦可降低空氣側界面處之ASRD。如前述實施例中所描述,互連件100之空氣側可藉由大氣電漿噴塗(APS)用減少或防止Cr-蒸發之LSM、MCO或LSM/MCO複合材料塗佈。然而,電阻性Cr2O3層可仍形成於塗層下方。在一個實施例中,互連件經噴砂處理,空氣側肋部頂部用金屬覆蓋層570(諸如英高鎳合金)封覆蓋層,且接著互連件之整個空氣側塗佈有APS LSM、MCO或LSM/MCO層。英高鎳(或其他超合金)較佳地減少形成於肋部頂部上之Cr2O3之厚度。此外,因為肋部10之頂部攜帶有較大比例的電流,所以減少的Cr2O3厚度降低空氣側上之ASRD。類似地,Fe或Mn覆蓋層促進形成比Cr2O3原生氧化物皮更具導電性之(Cr,Fe)3O4及(Cr,Fe)3O4尖晶石相。除在互連件100之燃料側上之金屬或金屬氧化物覆蓋層470之外,或不在互連件之燃料側上形成金屬或金屬氧化物覆蓋層470,可形成覆蓋層570。 In an alternative embodiment shown in FIG. 18C , a metal capping layer 570 is formed on top of the air side ribs 10 of the interconnect 100 . This metal covering layer 570 can also reduce the ASRD at the air side interface. As described in previous embodiments, the air side of interconnect 100 may be coated by atmospheric plasma spraying (APS) with LSM, MCO, or LSM/MCO composite materials that reduce or prevent Cr-evaporation. However, a resistive Cr 2 O 3 layer may still form beneath the coating. In one embodiment, the interconnect is sandblasted, the top of the air side ribs are capped with a metal overlay 570 (such as Inconel), and then the entire air side of the interconnect is coated with APS LSM, MCO Or LSM/MCO layer. Inconel (or other superalloy) preferably reduces the thickness of Cr 2 O 3 formed on top of the ribs. Furthermore, the reduced Cr 2 O 3 thickness reduces the ASRD on the air side because the tops of the ribs 10 carry a greater proportion of the current. Similarly, the Fe or Mn capping layer promotes the formation of (Cr,Fe)3O4 and (Cr,Fe) 3O4 spinel phases that are more conductive than the native Cr2O3 oxide skin. Capping layer 570 may be formed in addition to, or without, metal or metal oxide capping layer 470 on the fuel side of interconnect 100 .
在圖18D中所展示之其他替代實施例中,上文關於圖18A或18B所描述之第一金屬覆蓋層470形成於肋部10之燃料側上,而上文關於圖18C所描述之第二金屬覆蓋層570形成於互連件100之空氣側肋部10的頂部上。 In other alternative embodiments shown in Figure 18D, the first metal coating 470 described above with respect to Figure 18A or 18B is formed on the fuel side of the rib 10, and the second metal coating 470 described above with respect to Figure 18C is formed on the fuel side of the rib 10. A metal capping layer 570 is formed on top of the air side ribs 10 of the interconnect 100 .
因此,在替代實施例中,金屬或金屬氧化物覆蓋層(例如Fe、Mn、超合金、Co、Cu等)570形成於LSM、MCO或LSM/MCO塗層111下之互連件100之空氣側上的肋部10頂端上,該塗層覆覆蓋層空氣側上之互連件100之肋部10及通道8。 Thus, in an alternative embodiment, a metal or metal oxide coating (e.g., Fe, Mn, superalloy, Co, Cu, etc.) 570 is formed on top of the ribs 10 on the air side of the interconnect 100 beneath the LSM, MCO, or LSM/MCO coating 111, which covers the ribs 10 and channels 8 of the interconnect 100 on the air side of the coating.
圖15A至17B中所說明之實施例包括製備用於固體氧化物燃料電池堆疊之互連件之方法,其包含將含有至少7wt%(諸如至少10wt%,諸如至少20wt%,諸如至少25wt%鐵,例如約10wt%至約99.9wt%,諸如約10wt%至約95wt%鐵,例如約20wt%至約80wt%鐵,包括約25wt%至約50wt%鐵)之富含鐵之材料(205P、205S、305)提供至模具201之通道308中;將包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末202提供至模具201中富含鐵之材料(205P、205S、305)上方;在模具201中壓製富含鐵之材料及粉末(例如,使用衝頭208)以形成互連件100;及燒結互連件100以形成具有鐵濃度比互連件100之肋部10的鐵濃度大10%之富含鐵之區域129的經燒結互連件,如圖15C中所展示。 15A-17B include a method of preparing an interconnect for a solid oxide fuel cell stack comprising at least 7 wt%, such as at least 10 wt%, such as at least 20 wt%, such as at least 25 wt% iron. , such as about 10 wt% to about 99.9 wt%, such as about 10 wt% to about 95 wt% iron, such as about 20 wt% to about 80 wt% iron, including about 25 wt% to about 50 wt% iron, an iron-rich material (205P, 205S, 305) are provided to the channel 308 of the mold 201; the powder 202 containing 4-6wt% Fe, 0-1wt% Y and the rest is Cr is provided to the iron-rich material (205P, 205S, 305) in the mold 201 Above; pressing an iron-rich material and powder in mold 201 (e.g., using punch 208 ) to form interconnect 100 ; and sintering interconnect 100 to form rib 10 having an iron concentration ratio of interconnect 100 The sintered interconnect of the iron-rich region 129 with a 10% greater iron concentration, as shown in Figure 15C.
在一個實施例中,方法進一步包含將Ni網31(展示於圖13中)連接至互連件100之燃料側之肋部10中的富含鐵之區域129。在一個實施例中,富含鐵之區域129包含10-99wt%鐵,諸如15-99wt%鐵,諸如20-80wt%鐵,諸如25-75wt%鐵。互連件100可置放於含有固體氧化物燃料電池之固體氧化物燃料電池堆疊中。 In one embodiment, the method further includes connecting the Ni mesh 31 (shown in FIG. 13 ) to the iron-rich region 129 in the rib 10 on the fuel side of the interconnect 100 . In one embodiment, iron-rich region 129 contains 10-99 wt% iron, such as 15-99 wt% iron, such as 20-80 wt% iron, such as 25-75 wt% iron. The interconnect 100 may be placed in a solid oxide fuel cell stack containing solid oxide fuel cells.
在一個實施例中,富含鐵之區域129僅位於在鎳網31(展示於圖13中)下方之互連件之燃料側之肋部10的頂端中,該鎳網接觸此等肋部之頂端。在另一實施例中,富含鐵之區域129僅位於互連件100之空氣側之肋部10之頂端中。在另一實施例中,富含鐵之區域129位於互連件之燃料側及空氣側之肋部10的頂端中。 In one embodiment, the iron-rich region 129 is located only in the top ends of the ribs 10 on the fuel side of the interconnect beneath the nickel mesh 31 (shown in FIG. 13 ) that contacts the top ends of these ribs. In another embodiment, the iron-rich region 129 is located only in the top ends of the ribs 10 on the air side of the interconnect 100. In another embodiment, the iron-rich region 129 is located in the top ends of the ribs 10 on both the fuel side and the air side of the interconnect.
在圖15A中所展示之一個實施例中,將含有至少25wt%鐵之富含鐵之材料提供至模具之通道中的步驟包含將包含至少99wt%鐵之鐵粉205P噴塗至模具201之通道308中。 In one embodiment shown in Figure 15A, the step of providing an iron-rich material containing at least 25 wt% iron into the channels of the mold includes spraying iron powder 205P containing at least 99 wt% iron into the channels 308 of the mold 201 middle.
在圖16中所展示之另一實施例中,將富含鐵之材料提供至模具之通道中的步驟包含將鐵箔帶205S提供至模具201之通道308中。視情況,黏著劑312可設置於鐵箔帶205S與模具201之通道308之間。 In another embodiment shown in FIG. 16 , the step of providing the iron-rich material into the channels of the mold includes providing iron foil strips 205S into the channels 308 of the mold 201 . Depending on the situation, the adhesive 312 can be disposed between the iron foil strip 205S and the channel 308 of the mold 201.
在圖17A中所展示之另一實施例中,將富含鐵之材料提供至模具之通道中的步驟包含用第一鞋形件206將包含純鐵或鉻及至少25wt%鐵之粉末305提供至模具201之通道308中。如圖17B中所展示,提供包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末的步驟包含用第二鞋形件206將包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末202提供至模具201中之包含純鐵或鉻及至少25wt%鐵之粉末305上方。 In another embodiment shown in Figure 17A, the step of providing the iron-rich material into the channels of the mold includes using a first shoe 206 to provide a powder 305 containing pure iron or chromium and at least 25 wt% iron. to the channel 308 of the mold 201. As shown in Figure 17B, the step of providing a powder containing 4-6 wt% Fe, 0-1 wt% Y, and the remainder Cr includes using a second shoe 206 to provide a powder containing 4-6 wt% Fe, 0-1 wt% Y, and Powder 202, the balance being Cr, is provided in mold 201 over powder 305 containing pure iron or chromium and at least 25 wt% iron.
在圖18A至18C中所展示之另一實施例中,一種製備用於固體氧化物燃料電池堆疊之互連件之方法包含提供具有由通道8分離之肋部10的鉻合金互連件100,及直接在互連件之空氣側及燃料側之肋部10之頂部表面上而非在通道8之底部上形成金屬或金屬氧化物覆蓋層(470、570)。金屬或金屬氧化物覆蓋層(470、570)包含鐵、錳、鈷、銅、超合金或其氧化物。 In another embodiment shown in Figures 18A to 18C, a method of preparing an interconnect for a solid oxide fuel cell stack includes providing a chromium alloy interconnect 100 having ribs 10 separated by channels 8, and forming a metal or metal oxide coating (470, 570) directly on the top surface of the ribs 10 on the air side and the fuel side of the interconnect, but not on the bottom of the channel 8. The metal or metal oxide coating (470, 570) includes iron, manganese, cobalt, copper, superalloys or oxides thereof.
在圖18A中所展示之一個實施例中,覆蓋層470僅位於肋部10之頂部表面上而非肋部10之側面上。在圖18B中所展示之另一實施例中,覆蓋層470位於肋部10之頂部表面上及肋部10之側面上,而非通道8之底部上。 In one embodiment shown in FIG. 18A , the covering layer 470 is located only on the top surface of the rib 10 and not on the side surface of the rib 10 . In another embodiment shown in FIG. 18B , the covering layer 470 is located on the top surface of the rib 10 and on the side surface of the rib 10 and not on the bottom of the channel 8 .
在一個實施例中,方法進一步包含在模具201中壓製包含4-6wt% Fe、0-1wt% Y及其餘為Cr之粉末202以形成互連件100;及在形成金屬或金屬氧化物覆蓋層(470、570)之前燒結互連件;及在形成金屬或金屬氧化物覆蓋層之後將互連件置放至含有固體氧化物燃料電池之固體氧化物燃料電池堆疊中。 In one embodiment, the method further comprises pressing a powder 202 comprising 4-6 wt% Fe, 0-1 wt% Y and the balance Cr in a mold 201 to form an interconnect 100; and sintering the interconnect before forming a metal or metal oxide coating (470, 570); and placing the interconnect into a solid oxide fuel cell stack containing a solid oxide fuel cell after forming the metal or metal oxide coating.
在一個實施例中,上文所描述且圖15C中所說明之富含鐵之區域129可位於互連件100之燃料側及/或空氣側之金屬或金屬氧化物覆蓋層(470、570)下方。 In one embodiment, the iron-rich region 129 described above and illustrated in Figure 15C may be located in the metal or metal oxide coating (470, 570) on the fuel side and/or the air side of the interconnect 100 below.
在圖18C中所展示之一個實施例中,方法進一步包含在金屬或金屬氧化物覆蓋層570上且在通道8之底部上形成錳酸鑭鍶層、錳鈷氧化物層或複合錳酸鑭鍶/錳鈷氧化物層111。 In one embodiment shown in FIG. 18C , the method further includes forming a lanthanum strontium manganate layer, a manganese cobalt oxide layer, or a composite lanthanum strontium manganate layer on the metal or metal oxide capping layer 570 and on the bottom of the channel 8 /Manganese cobalt oxide layer 111.
儘管前述內容涉及尤佳實施例,但應理解,本發明不限於此。一般熟習此項技術者將想到,可對所揭示之實施例進行各種改變且此類改變意欲在本發明之範疇內。本文所引用之所有公開案、專利申請案及專利以全文引用之方式併入本文中。 Although the foregoing relates to preferred embodiments, it should be understood that the invention is not limited thereto. It will be apparent to those skilled in the art that various changes may be made to the disclosed embodiments and that such changes are intended to be within the scope of the invention. All publications, patent applications, and patents cited herein are incorporated by reference in their entirety.
8:氣流通道 8: Air flow channel
10:肋部 10: Ribs
100:互連件 100:Interconnectors
129:富含鐵之區域 129: Iron-rich area
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962878420P | 2019-07-25 | 2019-07-25 | |
US62/878,420 | 2019-07-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202114280A TW202114280A (en) | 2021-04-01 |
TWI836119B true TWI836119B (en) | 2024-03-21 |
Family
ID=74222153
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109123877A TWI836119B (en) | 2019-07-25 | 2020-07-15 | Fuel cell interconnect with iron rich rib regions and method of making thereof |
TW113108197A TW202443940A (en) | 2019-07-25 | 2020-07-15 | Fuel cell interconnect with iron rich rib regions and method of making thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW113108197A TW202443940A (en) | 2019-07-25 | 2020-07-15 | Fuel cell interconnect with iron rich rib regions and method of making thereof |
Country Status (2)
Country | Link |
---|---|
CA (1) | CA3086917A1 (en) |
TW (2) | TWI836119B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3213130A1 (en) * | 2022-09-21 | 2024-03-21 | Bloom Energy Corporation | Method of forming an interconnect coating for an electrochemical device stack using laser sintering |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060099442A1 (en) * | 2003-02-18 | 2006-05-11 | Frank Tietz | Protective coating for substrates that are subjected to high temperatures and method for producing said coating |
US7951509B2 (en) * | 2006-04-03 | 2011-05-31 | Bloom Energy Corporation | Compliant cathode contact materials |
AU2010241468B2 (en) * | 2007-01-09 | 2012-09-27 | Technical University Of Denmark | A method of producing a multilayer barrier structure |
-
2020
- 2020-07-15 TW TW109123877A patent/TWI836119B/en active
- 2020-07-15 CA CA3086917A patent/CA3086917A1/en active Pending
- 2020-07-15 TW TW113108197A patent/TW202443940A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060099442A1 (en) * | 2003-02-18 | 2006-05-11 | Frank Tietz | Protective coating for substrates that are subjected to high temperatures and method for producing said coating |
US7951509B2 (en) * | 2006-04-03 | 2011-05-31 | Bloom Energy Corporation | Compliant cathode contact materials |
AU2010241468B2 (en) * | 2007-01-09 | 2012-09-27 | Technical University Of Denmark | A method of producing a multilayer barrier structure |
Also Published As
Publication number | Publication date |
---|---|
TW202114280A (en) | 2021-04-01 |
TW202443940A (en) | 2024-11-01 |
CA3086917A1 (en) | 2021-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10553879B2 (en) | Fuel cell interconnect with metal or metal oxide contact layer | |
US10505206B2 (en) | Coatings for SOFC metallic interconnects | |
TWI566461B (en) | Coatings for sofc metallic interconnects | |
TWI632728B (en) | Fuel cell interconnect with reduced voltage degradation over time and associated method | |
US11456464B2 (en) | Fuel cell interconnect with reduced voltage degradation and manufacturing method | |
RU2399996C1 (en) | Solid oxide fuel cell | |
US10431833B2 (en) | Coatings for metal interconnects to reduce SOFC degradation | |
JP2008529226A (en) | Method for producing a reversible solid oxide fuel cell | |
EP4033573A1 (en) | Wet sprayed coatings for interconnects for soec and sofc | |
US8163353B2 (en) | Fabrication of copper-based anodes via atmosphoric plasma spraying techniques | |
US9054348B2 (en) | Protective coatings for metal alloys and methods incorporating the same | |
KR100803085B1 (en) | Manufacturing Method of Metal Connecting Material for Solid Oxide Fuel Cell | |
TWI836119B (en) | Fuel cell interconnect with iron rich rib regions and method of making thereof | |
US11335914B2 (en) | Fuel cell interconnect with iron rich rib regions and method of making thereof | |
CN112602215B (en) | Protection of metal substrates of solid oxide fuel cells by inkjet printing | |
EP4235878B1 (en) | Fuel cell interconnect alloyed with transition metal element and method of making thereof | |
TW202432892A (en) | Method of forming an interconnect coating for an electrochemical device stack using laser sintering |