TWI836175B - 先進在線零件平均測試 - Google Patents
先進在線零件平均測試 Download PDFInfo
- Publication number
- TWI836175B TWI836175B TW110100354A TW110100354A TWI836175B TW I836175 B TWI836175 B TW I836175B TW 110100354 A TW110100354 A TW 110100354A TW 110100354 A TW110100354 A TW 110100354A TW I836175 B TWI836175 B TW I836175B
- Authority
- TW
- Taiwan
- Prior art keywords
- defect rate
- defects
- die
- group
- outlier
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims description 123
- 230000007547 defect Effects 0.000 claims abstract description 544
- 238000004458 analytical method Methods 0.000 claims abstract description 56
- 238000007689 inspection Methods 0.000 claims abstract description 41
- 230000004931 aggregating effect Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 113
- 238000001514 detection method Methods 0.000 claims description 38
- 238000012549 training Methods 0.000 claims description 25
- 238000013461 design Methods 0.000 claims description 9
- 230000000670 limiting effect Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 238000010801 machine learning Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 230000007812 deficiency Effects 0.000 claims description 2
- 238000012876 topography Methods 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims 3
- 238000011056 performance test Methods 0.000 claims 1
- 238000012552 review Methods 0.000 claims 1
- 230000003068 static effect Effects 0.000 description 27
- 238000004519 manufacturing process Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 10
- 238000009826 distribution Methods 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- 230000002452 interceptive effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000013477 bayesian statistics method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013450 outlier detection Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000003094 perturbing effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009662 stress testing Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2894—Aspects of quality control [QC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2832—Specific tests of electronic circuits not provided for elsewhere
- G01R31/2836—Fault-finding or characterising
- G01R31/2837—Characterising or performance testing, e.g. of frequency response
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/01—Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
- G01R31/2831—Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2832—Specific tests of electronic circuits not provided for elsewhere
- G01R31/2836—Fault-finding or characterising
- G01R31/2846—Fault-finding or characterising using hard- or software simulation or using knowledge-based systems, e.g. expert systems, artificial intelligence or interactive algorithms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2855—Environmental, reliability or burn-in testing
- G01R31/286—External aspects, e.g. related to chambers, contacting devices or handlers
- G01R31/2868—Complete testing stations; systems; procedures; software aspects
- G01R31/287—Procedures; Software aspects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本發明揭示一種檢測系統,其可包含通信地耦合至包含但不限於一檢測工具或一度量衡工具之一或多個在線樣本分析工具之一控制器。該控制器可基於自該一或多個在線樣本分析工具之至少一者接收之資料識別一晶粒群體中之缺陷;使用一經加權缺陷率模型將指示該等經識別缺陷對該等晶粒之可靠性之經預測影響之權重指派至該等經識別缺陷;藉由彙總該群體中之該等各自晶粒中之該等經加權缺陷而產生該群體中之該等晶粒之缺陷率分數;及基於該群體中之該等晶粒之該等缺陷率分數而判定一組離群點晶粒,其中將該組離群點晶粒之至少一些離群點晶粒與該群體隔離。
Description
本發明大體上係關於程序控制且更特定言之,係關於半導體裝置製造程序中之缺陷檢測及可靠性控制。
半導體裝置之製造可通常需要數百個處理步驟來形成一功能裝置。在此等處理步驟之進程內,可執行各種檢測及/或度量衡量測以識別缺陷及/或監測裝置上之各種參數。亦可執行電測試以驗證或評估裝置之功能性。然而,雖然一些經偵測缺陷及度量衡誤差可非常顯著以便清楚地指示一裝置失效,但更小變動可引起裝置在曝露至其等工作環境之後之早期可靠性失效。半導體裝置(諸如汽車、軍事、航空及醫療應用)之風險規避使用者可需要遠低於當前位準之十億分之幾(PPB)範圍中之失效率。辨識且控制可靠性缺陷對於滿足此等產業要求係關鍵的。因此,可期望提供用於可靠性缺陷偵測之系統及方法。
根據本發明之一或多項闡釋性實施例,揭示一種檢測系統。在一項闡釋性實施例中,該系統包含通信地耦合至一或多個在線樣本分析工具之一控制器。在另一闡釋性實施例中,該控制器基於自該一或多個在線樣本分析工具之至少一者接收之資料識別一晶粒群體中之缺陷。在另一闡釋性實施例中,該控制器使用一經加權缺陷率模型將權重指派至該等經識別缺陷,其中該經加權缺陷率模型將指示該等經識別缺陷對該等晶粒之可靠性之經預測影響之權重指派至該等經識別缺陷。在另一闡釋性實施例中,該控制器藉由彙總該群體中之該等各自晶粒中之該等經加權缺陷而產生該群體中之該等晶粒之缺陷率分數。在另一闡釋性實施例中,該控制器基於該群體中之該等晶粒之該等缺陷率分數而判定一組離群點晶粒,其中將該組離群點晶粒之至少一些離群點晶粒與該群體隔離。
根據本發明之一或多項闡釋性實施例,揭示一種檢測方法。在一項闡釋性實施例中,該方法包含基於自一或多個在線樣本分析工具接收之檢測資料識別一晶粒群體中之缺陷。在另一闡釋性實施例中,該方法包含使用一經加權缺陷率模型將權重指派至該等經識別缺陷,其中該經加權缺陷率模型將指示該等經識別缺陷對該等晶粒之可靠性之經預測影響之權重指派至該等經識別缺陷。在另一闡釋性實施例中,該方法包含藉由彙總該群體中之該等各自晶粒中之該等經加權缺陷而產生該群體中之該等晶粒之缺陷率分數。在另一闡釋性實施例中,該方法包含基於該群體中之該等晶粒之該等缺陷率分數而判定一組離群點晶粒,其中將該組離群點晶粒之至少一些離群點晶粒與該群體隔離。
根據本發明之一或多項闡釋性實施例,揭示一種檢測系統。在一項闡釋性實施例中,該系統包含通信地耦合至一或多個在線樣本分析工具之一控制器。在另一闡釋性實施例中,該控制器基於自該一或多個在線樣本分析工具接收之檢測資料識別一晶粒群體中之缺陷。在另一闡釋性實施例中,該控制器使用兩個或更多個經加權缺陷率模型識別該群體中之兩組或更多組候選離群點晶粒,其中使用該兩個或更多個經加權缺陷率模型之一特定經加權缺陷率模型識別一組特定候選離群點晶粒包括:使用該特定經加權缺陷率模型將指示該等經識別缺陷對該等晶粒之可靠性之經預測影響之權重指派至該等經識別缺陷;藉由彙總該群體中之該等各自晶粒中之該等經加權缺陷而產生該群體中之該等晶粒之缺陷率分數;及基於該群體中之該等晶粒之該等缺陷率分數而判定一特定組候選離群點晶粒。在另一闡釋性實施例中,該控制器基於該兩組或兩組以上候選離群點晶粒判定一輸出組離群點晶粒,其中將該等輸出組離群點晶粒之至少一些離群點晶粒與該群體隔離。
應理解,前文概述及下文詳細描述兩者僅係例示性及說明性的且未必限制本發明。併入本說明書中且構成本說明書之一部分之隨附圖式繪示本發明之實施例且與概述一起用於解釋本發明之原理。
相關申請案之交叉參考
本申請案根據35 U.S.C. § 119(e)主張2020年1月12日申請之美國臨時申請案第62/959,984號之權利,該案之全文以引用的方式併入本文中。
現將詳細參考在隨附圖式中繪示之所揭示標的物。已關於某些實施例及其等之特定特徵特別展示且描述本發明。將本文中闡述之實施例視為闡釋性而非限制性。一般技術者將容易瞭解,可做出形式及細節上之各種改變及修改而不脫離本發明之精神及範疇。
本發明之實施例係關於使用先進在線零件平均測試(I-PAT)以偵測可導致經製造裝置(諸如(但不限於)半導體裝置)中之立即或早期可靠性失效之缺陷之系統及方法。
在製造程序期間產生之缺陷可對該領域中之裝置之效能具有廣泛範圍之影響。例如,「致命」缺陷可導致立即裝置失效,而許多次要缺陷可貫穿裝置壽命對裝置之效能具有較少或無影響。然而,可存在當裝置用於一工作環境中時可不導致立即裝置失效但可導致裝置之早期失效之一種類別之缺陷,在本文中稱為可靠性缺陷或潛伏缺陷。
可利用各種策略以監測或控制進入一供應或分佈鏈之裝置之可靠性。例如,通常執行晶粒之電測試以評估晶粒之一或多個態樣之功能作為用於可靠性分析之資料。此電測試可在製造程序中之任何點執行且可包含(但不限於)一預燒前電晶圓排序及最終測試(例如,一電測試)或一預燒後電測試。未通過一電測試步驟之裝置可經「塗墨」且與群體中之剩餘裝置隔離。例如,可將晶粒自供應鏈移除(例如,摒棄)或進行標記用於進一步測試。
然而,本文中經審慎考慮,單獨電測試可不提供足以滿足嚴格可靠性標準同時維持成本及產量目標之資訊。例如,一預燒後電測試可提供一晶粒之功能之一準確分析,此係因為晶粒處於一近最終狀態中,但歸因於成本、時間要求或引入長期可靠性問題之可能性而無法大批量生產。此外,在生產之任何步驟期間之電測試通常僅提供適用於識別已經展現完全或部分失效之裝置之通過/未通過資訊,但可能不適合識別可能在一後續時間失效之裝置(例如,具有潛伏缺陷之裝置)。藉由另一實例,使用電測試完全特性化各晶粒通常不實際或有時不可行,從而導致電測試中之間隙。例如,在一特定電路佈局中可存在即使使用一「完美」測試策略仍可能無法使用電測試偵測之理論上可能缺陷。
此外,完全特性化各晶粒之全部態樣可能不具成本效益或不實際,使得一選定測試策略可自一原本「完美」或原本經最佳化測試策略偏離。例如,不完美測試覆蓋範圍可源自(但不限於)一特定電路之不可測試區域、可難以測試之類比電路(例如,高電壓類比電路)或將需要多個部分之複雜同時或循序通電之電路。為了本發明之目的,術語「測試覆蓋範圍」用於廣泛地描述用於評估一測試策略之效能之度量。
鑑於僅基於電測試之可靠性判定之不足,故一些完全或部分非功能性晶粒可能無法經偵測且容許進入供應鏈。此等晶粒通常稱為「測試逃脫」。本文中應認知,測試逃脫之準確偵測在諸如汽車產業之產業中變得愈來愈重要。例如,支援自主及先進駕駛輔助系統(ADAS)所需之融合處理器可需要使用電技術完全測試可相對困難或低效之複雜半導體裝置(例如,圖形處理單元(GPU)、記憶體保護單元(MPU)、系統單晶片(SOC)裝置或類似者)。藉由另一實例,感測器(相機、LIDAR或類似者)之增加之使用可使使用電技術完全測試類似地困難或低效。
除通過/未通過電測試之外,可靠性研究已展示,相對於一共同群體中之類似零件具有異常電特性之半導體零件趨於對長期品質及可靠性問題之更高促成因素。具體言之,相較於相同群體或批次中之其他零件,通過全部製造及電測試但仍被視為離群點之裝置更可能在領域中失效。
零件平均測試(PAT)通常係指用於識別具有異常特性之晶粒(例如,離群點)之統計方法。半導體裝置通常被製造為或包含由一樣本(例如,一半導體晶圓)上之圖案化層形成之晶粒。此外,具有相同設計之許多晶粒通常係在一單一樣本上製造且多個樣本作為一批次一起製造。因此,PAT方法論可比較來自相同樣本或來自一共同批次中之樣本之晶粒以判定比群體中之其他晶粒具有展現可靠性問題之一更高概率之統計離群點晶粒。此等離群點接著可經塗墨且自供應鏈移除(例如,摒棄)或進行標記用於進一步測試。
在一般意義上,對於判定將何裝置品質作為離群點之指導可基於具有相同或實質上類似設計之裝置(例如,一選定群體中之裝置)之一取樣之一分析而建立。以此方式,對於各測試要求之測試結果之一分佈及此資料可用作用於建立PAT限制之基礎。此外,PAT限制可由產業標準導引。例如,與待用於汽車產業中之裝置相關聯之標準可(但不需要)藉由汽車電子委員會建立或導引。
PAT方法論亦可利用額外資訊作為晶粒可靠性之預測器。例如,參數零件平均測試(P-PAT)可基於具有在群體中之裝置之規範之外但仍在規格內之一參數信號而將一晶粒標記為具有失效之一更高概率。藉由另一實例,地理零件平均測試(G-PAT)可基於與其他離群點晶粒之地理接近性而將一晶粒標記為具有失效之一更高概率。例如,可藉由G-PAT標記離群點晶粒之「一不良鄰域中之一良好晶粒」 (GDBN)。藉由一進一步實例,複合零件平均測試(C-PAT)可基於在製造期間一晶粒上之修理之數目而將晶粒標記為具有失效之一更高概率。
本文中經審慎考慮,與用於可靠性控制之PAT方法論之應用相關聯之一關鍵挑戰係平衡一給定應用之可靠性標準與控制程序之效率及準確度。例如,PAT方法論可易受「誤宰」,其中具有早期失效之一低機率之原本良好晶粒不適當地經塗墨,從而導致生產線之產量降低且每裝置之成本增加。此外,汽車產業、行動裝置或類似者之新可靠性標準可需要可靠性缺陷控制之十億分之一之控制位準。以一合理成本及產量滿足此等嚴格標準要求裝置之可靠性之有效及準確預測。以此方式,可期望藉由準確且有效地識別易受可靠性問題之晶粒而避免、限制或以其他方式限制誤宰。
在線零件平均測試(I-PAT)藉由考量藉由在處理期間(例如,在裝置之製造期間)偵測一裝置之一或多個層上之缺陷之在線樣本分析工具(例如,檢測工具及/或度量衡工具)提供之檢測結果而擴展一般PAT方法論。可靠性研究已指示,導致立即或潛伏可靠性失效之大多數缺陷可使用在線樣本分析工具在線偵測。因此,基於藉由在線樣本分析工具識別之缺陷之I-PAT方法論可有效地識別易受立即或早期可靠性失效之裝置。接著,可將此等經識別裝置自供應鏈移除(例如,摒棄)或經受進一步測試。在2020年9月1日發佈之美國專利第10,761,128號中大體上描述在線零件平均測試(I-PAT),該專利之全文以引用的方式併入本文中。例如,一I-PAT方法論可通常包含偵測一晶粒之一或多個層中之缺陷及將晶粒中之總經識別缺陷之一數目判定為一缺陷率分數。以此方式,可將具有許多經識別缺陷之晶粒自供應鏈移除或識別該等晶粒用於進一步測試。
應認知,半導體裝置可通常包含可使用在線樣本分析工具偵測之某一種類之缺陷。然而,並非藉由在線缺陷檢測系統識別之全部缺陷皆導致經製造裝置之可靠性問題。因此,現有I-PAT技術可遭受高檢測取樣率及/或與對良好裝置不適當地塗墨相關聯之誤宰。因此,現有I-PAT技術可未能在滿足產量及成本要求之同時亦達成嚴格可靠性標準(例如,十億分之一之控制)。因此,提供可靠性缺陷或具有引發裝置失效(例如,立即失效、早期失效或類似者)之一統計上更高概率之缺陷之準確及有效識別尤其重要。
本發明之實施例係關於用於可靠性缺陷偵測之先進I-PAT方法論。本文中揭示之系統及方法可適用於偵測廣泛範圍之缺陷,包含(但不限於)可導致立即裝置失效之致命缺陷或可導致早期失效之潛伏缺陷。
本發明之一些實施例係關於偵測在裝置用於一工作環境中時可不導致裝置之立即失效但可導致過早或早期失效之潛伏缺陷。
在一項實施例中,可基於幾何考量(諸如晶圓級圖案及/或與未通過電測試(例如,電測試失效)之晶粒之接近性)而對包含一或多個經識別缺陷之晶粒塗墨。例如,可基於一缺陷導引G-PAT方法論對一晶粒塗墨。傳統G-PAT方法論可基於實體上接近電測試失效晶粒之晶粒歸因於基於跨越多個晶粒之根本原因之晶圓級缺陷率問題而更可能展現早期失效之一推測而對實體上接近選定數目個電測試失效晶粒之晶粒塗墨。然而,本文中經審慎考慮,傳統G-PAT方法論可未能準確地識別晶圓級圖案且因此通常遭受其中大量良好晶粒經不適當地塗墨之實質誤宰。本文中經進一步審慎考慮,可使用在線樣本分析工具識別之缺陷(例如,在線缺陷率)通常係晶圓級缺陷率問題之一根本原因。因此,在一項實施例中,G-PAT塗墨決策藉由一缺陷分析導引。例如,與經識別缺陷相關聯之I-PAT資料(例如,一晶粒中之經識別缺陷之總數)可與電測試失效覆疊或以其他方式組合(視覺上或經由一控制器)以識別晶圓級缺陷率圖案。以此方式,可藉由對位於經識別圖案內之晶粒選擇性地塗墨而非僅依賴於數個接近電測試失效晶粒而減少誤宰。
在另一實施例中,使用基於缺陷將影響裝置之可靠性之一經預測可能性指派權重之一加權方案加權一晶粒之一或多個層中之經識別缺陷。隨後,可彙總晶粒之全部經分析層中之經加權缺陷以產生晶粒之一經加權缺陷率分數。以此方式,可基於經加權缺陷率分數相對於彼此分析一給定群體內之晶粒,使得可識別離群點晶粒且對離群點晶粒塗墨。例如,可基於經加權缺陷率分數之值對一群體內之晶粒排序,使得可清楚地識別離群點值。此外,可使用各種技術(包含(但不限於)用於視覺判定之一I-PAT離群點圖表(例如,一IOC圖表)、自動化或機器學習演算法、經統計或動態評估之基於全域經濟良率之限制、將缺陷之N類別加權(例如,3類別加權)成對可靠性具有不同經預測影響之類別、幾何考量(例如,缺陷叢集、與未通過電測試之晶粒之接近性或類似者)或多個技術之一組合(例如,一集成方法))基於經加權缺陷率分數識別離群點晶粒。
本發明之一些實施例係關於用於偵測導致立即裝置失效之「致命」缺陷之I-PAT方法論。如本文中先前描述,可使用電測試偵測此等致命缺陷,但一些致命缺陷可未經偵測且顯現為測試逃脫。本文中經審慎考慮,致命缺陷通常可大於潛伏缺陷(例如,可導致早期失效之可靠性缺陷)且因此可良好適合於使用在線樣本分析工具進行識別。本文中經進一步審慎考慮,使用I-PAT方法論以偵測致命缺陷可不施加任何顯著負面影響。特定言之,在I-PAT偵測(例如,歸因於缺陷定位於一不可偵測區中、測試覆蓋範圍中之一間隙中或類似者)藉由電測試遺漏之一致命缺陷之情況中,接著I-PAT之應用防止一測試逃脫到達供應鏈。在I-PAT偵測最終導致一未通過電測試之一缺陷之情況中,不造成額外傷害且僅識別缺陷兩次。
在一項實施例中,透過標定分級將致命缺陷與其他所關注缺陷分離。以此方式,具有歸於致命缺陷之特性(例如,增加一缺陷導致一裝置失效之可能性之屬性)之缺陷可被指派相對高權重,使得對包含一或多個致命缺陷之晶粒塗墨。例如,可基於各種因素(包含(但不限於)缺陷大小、缺陷類型、缺陷分級屬性(例如,量值、極性或類似者)、缺陷密度、度量衡資料或缺陷位置(例如,基於已知或疑似熱點))識別致命缺陷。此外,可使用各種技術(包含(但不限於)確定性分級方法或機器學習技術)識別致命缺陷。
在另一實施例中,使用標定定限將致命缺陷與其他所關注缺陷分離。以此方式,可設定對於每晶粒之高風險缺陷之可容許數量之固定或動態限制。例如,可基於各種準則(諸如(但不限於)一或多個關鍵層中之缺陷之一總數或全部經檢測層中之一晶粒中缺陷之一總數)設定限制。此外,限制可係基於任何選定群體(包含(但不限於)一單一晶圓、一批次或多個批次)。
在另一實施例中,至少部分基於在標定關照區域中之存在而識別致命缺陷。例如,關照區域可包含一樣本之與電測試覆蓋範圍中之已知間隙相關聯之區域。以此方式,不可透過電測試識別在此等關照區域中識別之缺陷。
應理解,標記「致命缺陷」、「潛伏缺陷」、「可靠性缺陷」及類似者僅為了闡釋性目的在本文中使用且不應解譯為限制性。此外,與特定類型之缺陷(例如,致命缺陷、潛伏缺陷或類似者)相關之本文中描述之基於缺陷之可靠性判定及控制之實例僅係為了闡釋性目的提供且不應解譯為限制性。實情係,用於基於缺陷之可靠性預測之各種方法論可通常用於識別任何類型之缺陷或多個類型之缺陷而無關於用於描述缺陷之標記。
現參考圖1至圖9C,根據本發明之一或多項實施例更詳細描述用於實施先進I-PAT方法論之系統及方法。
圖1係根據本發明之一或多項實施例之一可靠性控制系統100之一方塊圖。
在一項實施例中,可靠性控制系統100包含用於偵測一樣本104之一或多個層中之缺陷之至少一個檢測工具102 (例如,一在線樣本分析工具)。可靠性控制系統100通常可包含任何數目或類型之檢測工具102。例如,一檢測工具102可包含經組態以基於來自任何源(諸如(但不限於)一雷射源、一燈源、一X射線源或一寬頻電漿源)之光對樣本104之詢問而偵測缺陷之一光學檢測工具。藉由另一實例,一檢測工具102可包含經組態以基於使用一或多個粒子束(諸如(但不限於)一電子束、一離子束或一中性粒子束)對樣本之詢問而偵測缺陷之一粒子束檢測工具。
在另一實施例中,可靠性控制系統100包含用於量測樣本104或其一或多個層之一或多個性質之至少一個度量衡工具106 (例如,一在線樣本分析工具)。例如,一度量衡工具106可特性化諸如(但不限於)層厚度、層組合物、臨界尺寸(CD)、疊對或微影處理參數(例如,一微影步驟期間之照明之強度或劑量)之性質。在此方面,一度量衡工具106可提供關於樣本104、樣本104之一或多個層或樣本104之一或多個晶粒之製造之資訊,其可與可導致所得經製造裝置之可靠性問題之製造缺陷之概率相關。
在另一實施例中,可靠性控制系統100包含用於測試一經製造裝置之一或多個部分之功能性之至少一個電測試工具108。可靠性控制系統100可包含用於測試、檢測或以其他方式特性化一經製造裝置之一或多個部分在製造循環中之任何點之性質之任何數目或類型之電測試工具108。例如,電測試工具108可包含(但不限於)一預燒前電測試工具108或一預燒後電測試工具108。
在一項實施例中,可靠性控制系統100包含一控制器110。控制器110可包含經組態以執行維持於記憶體114 (例如,一記憶體媒體、記憶體裝置或類似者)上之程式指令之一或多個處理器112。此外,控制器110可與可靠性控制系統100之任何組件(包含(但不限於)檢測工具102、度量衡工具106或電測試工具108)通信地耦合。在此方面,控制器110之一或多個處理器112可執行貫穿本發明描述之各種程序步驟之任何者。例如,控制器110之一或多個處理器112可接收與任何樣本層中之缺陷相關聯之缺陷資料,尋找缺陷屬性與認定實況源之間之相關性作為缺陷相關性之一判定,基於對可靠性之預期影響將權重指派至缺陷,彙總跨一晶粒中之多個樣本層之經偵測缺陷或識別離群點晶粒以供上墨。
一控制器110之一或多個處理器112可包含此項技術中已知之任何處理器或處理元件。為了本發明之目的,術語「處理器」或「處理元件」可被廣泛地定義以涵蓋具有一或多個處理或邏輯元件(例如,一或多個微處理器裝置、一或多個特定應用積體電路(ASIC)裝置、一或多個場可程式化閘陣列(FPGA)或一或多個數位信號處理器(DSP))之任何裝置。在此意義上,一或多個處理器112可包含經組態以執行演算法及/或指令(例如,儲存於記憶體中之程式指令)之任何裝置。在一項實施例中,一或多個處理器112可體現為一桌上型電腦、主機電腦系統、工作站、影像電腦、平行處理器、網路連結電腦或經組態以執行一程式(其經組態以操作可靠性控制系統100或結合可靠性控制系統100操作)之任何其他電腦系統,如貫穿本發明所描述。
記憶體114可包含此項技術中已知之適用於儲存可由相關聯之一或多個處理器112執行之程式指令之任何儲存媒體。例如,記憶體114可包含一非暫時性記憶體媒體。藉由另一實例,記憶體114可包含(但不限於)一唯讀記憶體(ROM)、一隨機存取記憶體(RAM)、一磁性或光學記憶體裝置(例如,磁碟)、一磁帶、一固態硬碟及類似者。應進一步注意,記憶體114可與一或多個處理器112一起容置於一共同控制器外殼中。在一項實施例中,記憶體114可相對於一或多個處理器112及控制器110之實體位置遠端定位。例如,控制器110之一或多個處理器112可存取可透過一網路(例如,網際網路、內部網路及類似者)存取之一遠端記憶體(例如,伺服器)。
在一項實施例中,一使用者介面116通信地耦合至控制器110。在一項實施例中,使用者介面116可包含(但不限於)一或多個桌上型電腦、膝上型電腦、平板電腦及類似者。在另一實施例中,使用者介面116包含用於將可靠性控制系統100之資料顯示給一使用者之一顯示器。使用者介面116之顯示器可包含此項技術中已知之任何顯示器。例如,顯示器可包含(但不限於)一液晶顯示器(LCD)、一基於有機發光二極體(OLED)之顯示器或一CRT顯示器。熟習此項技術者應認知,能夠與一使用者介面116整合之任何顯示裝置適用於本發明中之實施方案。在另一實施例中,一使用者可回應於經由使用者介面116之一使用者輸入裝置顯示給使用者之資料而輸入選擇及/或指令。
現參考圖2至圖9C,根據本發明之一或多項實施例更詳細描述I-PAT方法論。
如本文中先前描述,I-PAT方法論通常可藉由以下者評估一晶粒之可靠性:對一樣本104之一或多個層執行缺陷檢測步驟;彙總定位於跨樣本104之一或多個晶粒中之經識別缺陷;及基於群體中之各晶粒中之缺陷之一經偵測總數隔離可被視為群體中之離群點之晶粒或對該等晶粒塗墨。
圖2A係根據本發明之一或多項實施例之一樣本104之多個層中之缺陷之彙總之一概念圖解。可藉由可靠性控制系統100之任何組件(諸如(但不限於)一檢測工具102或一度量衡工具106)在樣本104之一或多個層204 (例如,8個層204,如圖2A中繪示)中偵測各種缺陷202。可接著以各種方式表示此等經識別缺陷202。
例如,可將經識別缺陷以圖形表示為其中將全部經偵測缺陷合併成樣本104之一單一俯視圖表示之一經堆疊晶粒圖206。以此方式,可以圖形比較來自一樣本104上之不同位置之晶粒或跨不同樣本104之晶粒。例如,圖2A中之插圖繪示在不同層中具有不同經識別缺陷之一第一晶粒208a及一第二晶粒208b。
藉由另一實例,一群體內之晶粒可按經彙總缺陷之總數排序。以此方式,可將具有超過一臨限值210 (例如,一I-PAT控制限制)之總數目個缺陷之離群點晶粒識別為離群點晶粒且塗墨。圖2B係繪示根據本發明之一或多項實施例之基於一群體中之缺陷之總數之一缺陷直方圖之一曲線圖212。在2020年9月1日發佈之美國專利第10,761,128號中大體上描述基於經堆疊缺陷之數目之I-PAT控制限制,該專利之全文以引用的方式併入本文中。
本文中揭示之先進I-PAT方法論以各種方式(諸如藉由提供用於加權經識別缺陷以更準確地評估各種缺陷對可靠性之影響之加權方案;基於經加權缺陷產生一群體內之晶粒之缺陷率分數;及提供用於選擇將離群點晶粒與群體之剩餘部分分離之截止限制(例如,缺陷率分數之臨限值)之技術)改良現有I-PAT方法論。此外,本文中揭示之系統及方法可旨在識別特定缺陷類型或類別(例如,將導致測試逃脫之未經電測試區域中之致命缺陷)或可提供包含廣泛範圍之缺陷類型或類別之晶粒之廣泛分析。
圖3A係繪示根據本發明之一或多項實施例之在用於基於在線缺陷偵測進行可靠性判定之一方法300中執行之步驟之一流程圖。申請者應注意,本文中在可靠性控制系統100之背景內容中先前描述之實施例及實現技術應解譯為延伸至方法300。然而,應進一步注意,方法300不限於可靠性控制系統100之架構。
在一項實施例中,方法300包含識別一晶粒群體之晶粒中之缺陷之一步驟302。例如,可在晶粒中之所關注層之一或多個處理步驟(例如,微影、蝕刻或類似者)之後使用在線樣本分析工具(例如,檢測工具102或度量衡工具106)之任何組合識別缺陷。在此方面,可將在製造程序之各種階段處之缺陷偵測稱為在線缺陷偵測。此外,方法300中之經考量群體可包含任何選定數目個樣本104內之任何選定晶粒。例如,一群體可包含(但不限於)來自一單一樣本104、一批次(例如,一生產批次)內之多個樣本104或跨多個批次之選定樣本104之選定晶粒。
為了本發明之目的,可將一缺陷視為一經製造層或一層中之圖案自設計特性(包含(但不限於)實體、機械、化學或光學性質)之任何偏差。此外,一缺陷可具有相對於一晶粒或其上之特徵之任何大小。以此方式,一缺陷可小於一晶粒(例如,在一或多個圖案化特徵之尺度上)或可大於一晶粒(例如,作為一晶圓級劃痕或圖案之部分)。例如,一缺陷可包含圖案化之前或之後之一樣本層之一厚度或組合物之偏差。藉由另一實例,一缺陷可包含一圖案化特徵之一大小、形狀、定向或位置之一偏差。藉由另一實例,一缺陷可包含與微影及/或蝕刻步驟相關聯之瑕疵,諸如(但不限於)鄰近結構之間之橋接件(或其缺乏)、凹坑或孔。藉由另一實例,一缺陷可包含一樣本104之一經損害部分,諸如(但不限於)一劃痕或一晶片。藉由另一實例,一缺陷可包含經引入至樣本104之一外界粒子。因此,應理解,本發明中之缺陷之實例僅係為了闡釋性目的提供且不應解譯為限制性。
在另一實施例中,方法300包含使用一經加權缺陷率模型識別群體中之一組離群點晶粒之一步驟304,其中經加權缺陷率模型基於經識別缺陷之經量測特性將指示經識別缺陷對晶粒之可靠性之經預測影響之權重指派至經識別缺陷。此外,在一些實施例中,該組離群點晶粒通過評估群體中之晶粒之功能性之一或多個電測試。以此方式,該組離群點晶粒可表示群體內在製造時間操作(例如,在步驟304中已通過一或多個電測試)但在一工作環境中時經預測展現可靠性問題(諸如(但不限於)早期失效)之晶粒。
如下文更詳細論述,本文中經審慎考慮,離群點晶粒可使用各種經加權缺陷率模型識別且可係基於經識別缺陷之各種經量測特性。此外,在一些實施例中,可利用且考量多個經加權缺陷率模型。以此方式,各經加權缺陷率模型可識別一組潛在不同候選離群點晶粒且步驟304可基於候選離群點晶粒之一組合或子集產生一組最終離群點晶粒。例如,該組最終離群點晶粒可包含藉由選定數目個經加權缺陷率模型識別之候選離群點晶粒。
在另一實施例中,方法300包含將該組離群點晶粒之至少一部分與群體之剩餘部分隔離(其可稱為對離群點晶粒塗墨)之一步驟306。本文中經審慎考慮,可在使一晶粒隔離或上墨之後採取多個動作。例如,一經隔離晶粒可經受額外測試(例如,晶粒之未經測試區域之額外電測試、應力測試或類似者)以進一步分析晶粒之效能及其在一操作環境中之預期可靠性或壽命期限。藉由另一實例,可立即或在額外測試之後自一分佈供應移除一經隔離晶粒。藉由一進一步實例,在其中一特定晶粒可用於具有不同可靠性標準之多個工作環境中之情況中,可將一經隔離晶粒放置於其中可靠性標準相對低之一工作環境之一分佈供應中。
另外,隔離該組離群點晶粒之至少一部分之步驟306可藉由使用者輸入或算數技術之任何組合執行。在一項實施例中,步驟306包含隔離整組離群點晶粒用於進一步測試或自一分佈供應移除。以此方式,步驟302至304足以識別用於自群體移除之晶粒。在另一實施例中,步驟306包含執行判定離群點晶粒之哪一者應立即經摒棄且哪一者可適用於基於測試之結果對進入分佈供應之可能性進行進一步測試之一算數判定。
在另一實施例中,步驟306包含將該組離群點晶粒呈現給一使用者,使得使用者可作出關於如何繼續之一最終判斷。以此方式,一使用者(例如,一測試工程師或類似者)可使用其判斷添加至該組離群點晶粒,自該組離群點晶粒移除晶粒,標記用於進一步測試之一或多個離群點晶粒,標記待摒棄之一或多個離群點晶粒或類似者。例如,步驟306可包含將各種缺陷相關資訊提供給一或多個樣本104之晶粒圖。例如,一晶粒圖可(例如,按色彩或其他特性)區分離群點晶粒與群體之剩餘部分。在另一例項中,一晶粒圖可包含跨樣本104之離群點及/或非離群點晶粒之缺陷率分數。在另一例項中,一晶粒圖可包含跨樣本104之缺陷位置之表示。
圖3B係繪示根據本發明之一或多項實施例之與使用一經加權缺陷率模型識別群體中之一組離群點晶粒(例如,方法300之步驟304)相關聯之步驟(或子步驟)之一流程圖。
在一項實施例中,步驟304包含使用其中權重表示各自缺陷對經製造裝置之可靠性之一預期或經預測影響之一經加權缺陷率模型將權重指派至經識別缺陷之一步驟308。在另一實施例中,步驟304包含藉由彙總群體中之各自晶粒中之經加權缺陷而產生群體中之晶粒之基於晶粒之缺陷率分數之一步驟310。在另一實施例中,步驟304包含基於群體中之晶粒之缺陷率分數判定該組離群點晶粒之一步驟312。
一特定晶粒之缺陷率分數可係如藉由選定經加權缺陷率模型特性化之特定晶粒之可靠性之一指示符。特定言之,缺陷率分數可表示可靠性之一逆度量,使得具有缺陷率分數之較高值之晶粒可經預測為較不可靠(例如,當在一操作環境中時經預測展現早期失效或類似者)。因此,一特定晶粒之缺陷率分數之值愈高,其經預測為愈不可靠。
現參考使用一經加權缺陷率模型將權重指派至經識別缺陷之步驟308,本文中經審慎考慮,並非存在於樣本104上之全部缺陷皆可以相同方式影響可靠性。實情係,一經製造裝置之一特定層中之一特定缺陷對經製造裝置之可靠性之影響可受多個因素(包含(但不限於)特定缺陷自身之特性、特定缺陷在樣本上或一特定電路內之位置、多個缺陷之間之關係、經製造裝置之特定設計或功能或經製造裝置在一預期工作環境中之操作容限)影響。因此,本文中經審慎考慮,可根據本發明之實施例產生適用於一特定應用之許多經加權缺陷率模型。以此方式,本文中之特定實例僅係為了闡釋性目的而提供且不應解譯為限制性。
一經加權缺陷率模型可通常接受與使用一在線樣本分析工具(例如,一檢測工具102及/或一度量衡工具106)量測一樣本104相關聯之許多類型之輸入。
在一項實施例中,至一經加權缺陷率模型之輸入包含可與對經製造裝置之效能或壽命之經預測影響相關之缺陷之一或多個經量測特性。例如,可基於自一設計規格(例如,膜厚度;一經製造特徵件之大小、形狀、定向或位置;或類似者)之一偏差之一量測應用權重。藉由另一實例,可基於經識別缺陷類型應用權重。例如,缺陷類型可包含(但不限於)劃痕、凹坑、孔、橋接件、顆粒或設計偏差。此外,可在經加權缺陷率模型中進一步考量缺陷之嚴重性(例如,一劃痕之長度、一凹坑之深度、缺陷之經量測量值或極性)。
在另一實施例中,至一經加權缺陷率模型之輸入包含一特定缺陷與一或多個其他經識別缺陷之間之一關係。例如,可基於一特定層上之缺陷密度、跨多個層之一特定位置中之缺陷密度、空間缺陷率圖案或類似者應用權重。本文中經審慎考慮,在一些情況中,缺陷(其等係圖案或熱點之部分)可(但不需要)更有可能影響經製造裝置之可靠性且因此可相應地經加權。
在另一實施例中,至一經加權缺陷率模型之輸入包含包圍一經識別缺陷之樣本104之一部分之經量測特性。情況可係包圍一缺陷之樣本特性可指示一特定經識別缺陷是否係一經隔離缺陷或其是否係缺陷之一較大圖案之部分。例如,特性(諸如(但不限於)膜或層厚度、膜組合物、晶圓平整度、晶圓形貌、電阻率、局部應力量測或臨界尺寸量測)可指示其中額外缺陷可能發生或可尤其影響其可靠性之一熱點或空間圖案。
在另一實施例中,至一經加權缺陷率模型之輸入包含一缺陷在一樣本104之選定區域或預定義區域內之一位置。情況可係一晶粒之某些區域中之缺陷較可能或較不可能導致經製造裝置中之可靠性問題。在一般意義上,一晶粒之不同部分通常可包含適用於執行不同功能操作之不同圖案或結構。因此,一晶粒之不同部分可對特定類型之缺陷較敏感或較不敏感或在一些情況中,對任何類型之缺陷較敏感或較不敏感。此外,一晶粒之不同部分對缺陷之敏感性之差異可源自實體設計、操作特性(例如,操作期間之電流或電壓之值)及/或製造敏感性之差異。因此,可定義包含一晶粒上之一或多個位置之各種關照區域,其中各關照區域可經受不同加權條件。在一些情況中,不同經加權缺陷率模型可適用於樣本之不同關照區域。
例如,情況可係尤其當缺陷之大小係大約圖案之大小時,具有一高圖案密度之一晶粒之一部分中之一缺陷可比具有一低圖案密度之一晶粒之一部分中之一缺陷具有對可靠性之一更大影響。因此,相比於在定位於一低密度區域中時,具有一特定大小之一缺陷在定位於一高密度區域中時可被給予一相對較高權重。
藉由另一實例,情況可係一晶粒之某些部分可比一晶粒之其他部分具有更嚴格製造容限。因此,相比於在定位於具有一更寬鬆製造容限之一晶粒之一部分中時,一缺陷在定位於具有一更嚴格製造容限之一晶粒之一部分中時被給予一相對較高權重。
藉由另一實例,情況可係一樣本104上之一晶粒或某些晶粒之不同部分可以不同方式影響一裝置生產線之整體良率。例如,一些基於半導體之裝置可形成為併入不同功能性之多個晶粒以形成一完整電路之複雜裝置。以此方式,情況可係,與其他晶粒相比,對某些晶粒或其部分塗墨可對整體生產良率具有更多或更少影響,使得此等區域中之缺陷可經相應地加權。
藉由另一實例,情況可係一特定電測試方案不完全測試一晶粒之全部部分,使得此等區中之缺陷可促成其中可靠性問題未藉由電測試偵測之測試逃脫。因此,基於一特定電測試方案,相較於在一晶粒之其他部分中,在與未測試或弱測試區域相關聯之一晶粒之部分中,缺陷可被指派較高權重。此外,在一些實施例中,此等區域中之缺陷可經重度加權以便保證(或至少非常可能)對此等區域中具有缺陷之晶粒塗墨。
此外,本文中經審慎考慮,可使用各種技術識別或判定具有不同加權考量之不同關照區域。
圖4A係根據本發明之一或多項實施例之具有各種關鍵區域404 (指示為影線)及非關鍵區域406 (指示為開放)之一晶粒402之一示意圖。在一項實施例中,可將一第一組關照區域定義為包含關鍵區域404且可將一第二組關照區域定義為包含非關鍵區域406。
在一項實施例中,在一配方設定期間,在一在線樣本分析工具上定義關照區域。以此方式,可在不同關照區域中利用不同檢測或度量衡配方。在另一實施例中,基於設計資訊(諸如(但不限於)含有晶粒佈局資訊、接線對照表資料或類似者之一圖形設計系統(GDS)檔案)定義關照區域。在另一實施例中,藉由一使用者(例如,在缺陷分析軟體內)手動地提供關照區域。
現參考圖4B及圖4C,根據本發明之一或多項實施例更詳細繪示不同關照區域之不同處理。圖4B係根據本發明之一或多項實施例之圖4A中繪示之晶粒之一經堆疊缺陷圖。如圖4B中繪示,貫穿關鍵區域404及非關鍵區域406兩者識別各種在線缺陷408。圖4C係根據本發明之一或多項實施例之其中僅展示關鍵區域404 (例如,第一組關鍵區域)中之缺陷之圖4B之經堆疊缺陷圖。以此方式,可單獨考量關鍵區域404內之缺陷。
本文中經審慎考慮,可在檢測之前或之後產生包含選定關照區域中之缺陷之一經堆疊缺陷圖(諸如圖4C中繪示之經堆疊缺陷圖)。例如,在其中一或多個關照區域經設計為非關鍵使得可忽視此等關照區域內之缺陷之情況中,一在線樣本分析工具(例如,一檢測工具102及/或度量衡工具106)可基於一關照區域圖而組態以僅不針對此等關照區域中之缺陷檢測晶粒。替代地,在線樣本分析工具可經組態以針對全部區域中之缺陷檢測晶粒,但此等關照區域中之缺陷可被給予權重零,使得其等被忽視。
然而,應理解,圖4A至圖4C及相關聯描述中之兩組關照區域之實例僅係為了闡釋性目的提供且不應解譯為限制性。實情係,一特定晶粒可包含可各具有不同加權考量之任何數目個關照區域。
再次大體上參考使用一經加權缺陷率模型將權重指派至經識別缺陷之步驟308,本文中經審慎考慮,可基於至經加權缺陷率模型之輸入與對可靠性之已知、經量測、經模擬或經預測影響之間之一相關性產生權重。
在一項實施例中,一經加權缺陷率模型基於相關聯於可靠性與至經加權缺陷率模型之任何輸入之間之已知、經量測、經模擬或經預測關係之認定實況源相關性指派權重。
例如,一經加權缺陷率模型可藉由比較至與在線檢測及/或度量衡量測相關聯之模型之輸入與具有類似屬性及對可靠性之相關聯影響之一程式庫而基於可靠性問題之認定實況指示符指派權重。以此方式,可在在線缺陷檢測期間藉由檢測工具102及/或度量衡工具106量測之屬性可足以產生各種缺陷類型之一「指紋」,接著可將該指紋累積至程式庫中且連結至對經製造裝置之可靠性之已知、經量測、經模擬或經預測影響。此外,可以任何適合方式(包含(但不限於)透過具有已知可靠性問題之一或多個測試樣本之分析、模型化及/或模擬)產生程式庫。通常在2019年9月26日發表之美國專利申請案第2019/0295908號中描述製造指紋,該案之全文以引用的方式併入本文中。
藉由另一實例,一經加權缺陷率模型可基於至模型之輸入與使用一相關性引擎、一機器學習演算法或類似者產生之可靠性問題之間之相關性指派權重。可使用此項技術中已知之任何分析技術(諸如(但不限於)分類、排序、叢集化、離群點偵測、信號回應度量衡、迴歸分析、基於例項之分析(例如,最近鄰分析或類似者)、降維(例如,因數分析、特徵提取、主分量分析或類似者)監督式學習(例如,人工神經網路、支援向量機器、隨機森林或類似者)、半監督式學習(例如,生成模型或類似者)、非監督式學習(例如,向量量化或類似者)、深度學習或貝氏(Bayesian)統計)產生此等相關性。應理解,分析技術及任何相關聯標記僅係為了闡釋性目的提供且不應旨在作為限制性。本文中應認知,可以各種方式描述及/或分類分析技術。此外,可實施分析技術之組合。
通常再次參考使用一經加權缺陷率模型將權重指派至經識別缺陷之步驟308,本文中經審慎考慮,一經加權缺陷率模型可將任何數目之特定權重提供至經識別缺陷。
在一項實施例中,一經加權缺陷率指派具有沿著值之一連續區或範圍之任何值之權重。在此方面,可基於至模型之輸入與對可靠性之經量測、經模擬或經預測影響之間之特定相關性將任何加權值指派給各種缺陷。
在另一實施例中,一經加權缺陷率模型可定義具有不同權重之缺陷之兩個或更多個類別或分格。在此方面,可將經識別缺陷排序為類別或分格且相應地加權。例如,一三類別經加權缺陷率模型可包含具有增加之權重之三個類別之缺陷,諸如(但不限於)擾亂點缺陷、中間級缺陷及致命缺陷。本文中經審慎考慮,一三類別分級模型可經常提供可缺乏一所需敏感性之太少類別與可遭受分類之不足準確性或純度之太多類別之間之一適合平衡。然而,應理解,一經加權缺陷率模型可利用任何數目個類別或分格。
再次參考圖3B,根據本發明之一或多項實施例更詳細描述藉由彙總群體中之各自晶粒中之經加權缺陷而產生群體中之晶粒之缺陷率分數之步驟310。在此方面,缺陷率分數可被視為表示晶粒之經預測可靠性之一基於晶粒之分數。
在一項實施例中,產生群體中之一晶粒之一缺陷率分數包含產生與彙總來自所關注層之經加權缺陷相關聯之一數值。例如,可藉由加總在一特定晶粒之所關注層中識別之經加權缺陷而產生特定晶粒之缺陷率分數。藉由另一實例,可藉由將在一特定晶粒之所關注層中識別之經加權缺陷相乘而產生特定晶粒之缺陷率分數。以此方式,應用至缺陷之權重可對應於致命概率且缺陷率分數可對應於與特定晶粒相關聯之一經彙總致命概率。藉由另一實例,可使用經加權缺陷之一統計分析(諸如(但不限於)貝氏統計)產生一特定晶粒之缺陷率分數。藉由另一實例,可使用一機器學習或其他圖案匹配技術產生一特定晶粒之缺陷率分數。
在另一實施例中,產生群體中之一晶粒之一缺陷率分數包含產生晶粒中之經彙總經加權缺陷之一圖形(例如,視覺)表示。例如,產生群體中之一晶粒之一缺陷率分數可包含產生包含經加權缺陷之經彙總結果之一經加權經堆疊缺陷率圖。例如,使用值零加權之缺陷可不包含於一經加權經堆疊缺陷率圖中。在另一例項中,可在經堆疊缺陷率圖中(例如,使用不同色彩或類似者)單獨表示具有不同權重之缺陷。
此外,產生一缺陷率分數可包含或以其他方式併入數值及圖形表示兩者。例如,可產生其中基於缺陷率分數之值表示或繪製各晶粒之一晶粒圖(例如,圖2A中之晶粒圖206之一變動)。例如,可基於缺陷率分數之值在晶粒圖中為晶粒著色。本文中經審慎考慮,跨一樣本104之晶粒之一圖形表示可促進基於基於缺陷之缺陷率分數及電測試資料之一經組合分析之離群點判定。
再次參考圖3B,根據本發明之一或多項實施例更詳細描述基於群體中之晶粒之缺陷率分數判定該組離群點晶粒之步驟312。本文中經審慎考慮,可使用各種技術識別與一特定經加權缺陷率模型相關聯之一組離群點晶粒。
在一些實施例中,缺陷率分數提供適用於上墨決策之可靠性之一絕對預測器。在此方面,具有一特定值、值之範圍或超出缺陷率分數之一選定臨限值之值之晶粒可立即指定為離群點晶粒,使得其等可經隔離或塗墨(例如,在圖3A中之步驟306中)。例如,基於與經彙總經加權缺陷相關聯之缺陷率分數判定該組離群點晶粒可良好適合於識別可導致經製造裝置之立即或早期失效之致命缺陷。
在一項實施例中,可使用標定分級識別包含致命或高風險缺陷之晶粒。例如,可將致命或高風險缺陷分類(例如,分級)為與其他較低風險缺陷分開之一類別且使用相對高權重加權。以此方式,包含致命或高風險缺陷之晶粒可基於缺陷率分數之對應高值進行識別且標記為離群點晶粒而無關於群體中之其他晶粒之缺陷率分數之值。在另一實施例中,可基於一選定電測試方案在與樣本之未測試或部分測試區相關聯之標定關照區域中識別致命或高風險缺陷。此外,此等標定關照區域可(但不需要)經受經定製以偵測測試逃脫之一專屬或標定經加權缺陷率模型或可利用一經加權缺陷率模型。
如關於將權重指派至缺陷之步驟308描述,可基於任何數目個屬性(包含(但不限於)缺陷相關屬性(例如,樣本104上之一給定層或空間區中之缺陷大小、缺陷類型、量值、極性、缺陷數量或類似者)、度量衡相關屬性(例如,膜或層厚度、膜組合物、晶圓平整度、晶圓形貌、臨界尺寸量測、電阻率、局部應力資訊或類似者)或缺陷之間之關係(例如,已知或疑似熱點、空間缺陷圖案或類似者))識別且加權致命或高風險缺陷。
在一些實施例中,缺陷率分數提供可靠性之一相對預測器使得離群點晶粒可基於一群體內之晶粒之缺陷率分數之一比較或分析而判定。例如,可將群體內之晶粒之缺陷率分數彼此比較且可基於缺陷率分數判定一離群點截止臨限值。
在一項實施例中,基於群體中之晶粒之缺陷率分數判定該組離群點晶粒之步驟312包含產生其中對群體中之晶粒之缺陷率分數之值進行排序且繪製(例如,從最差至最佳)之一離群點圖表(例如,一I-PAT離群點圖表或IOC)。以此方式,一IOC圖表可係一柏拉圖(Pareto)圖表之一形式。例如,圖5係根據本發明之一或多項實施例之一I-PAT離群點圖表500。在圖5之IOC中,將一群體中之晶粒沿著x軸自最差至最佳排序且沿著y軸繪製晶粒之缺陷率分數之值。如圖5中繪示,一IOC圖表可提供跨群體之缺陷率分數之分佈之一圖形指示符且可用於判定群體中之哪些晶粒具有相對於群體中之其他晶粒可被視為離群點之缺陷率分數之值使得可識別且隔離離群點晶粒(例如,在步驟306中)。
可使用各種技術基於IOC圖表判定群體中之一組一或多個離群點晶粒。在一項實施例中,可將IOC圖表以圖形提供至一使用者使得使用者可手動判定群體中之哪些晶粒係離群點。例如,使用圖5中之IOC圖表,一使用者可選擇在一經視覺判定臨限值(例如,一缺陷率限制)之左側之晶粒作為離群點晶粒。
然而,應理解,不需要以圖形表示或產生一IOC圖表。實情係,判定離群點晶粒之程序可基於一群體中之晶粒之缺陷率分數之一數學、統計或算法分析。在另一實施例中,晶粒可具有高於一經統計定義臨限值(例如,一平均值或類似者)之一缺陷率分數值。
在一些實施例中,將離群點晶粒與群體分離之截止限制可係基於經濟或良率考量。本文中經審慎考慮,製造線可針對任何原因而為與對來自一群體之晶粒塗墨相關聯之敏感良率損耗且可歸因於不準確可靠性預測而對與對其他可靠晶粒塗墨相關聯之誤宰尤其敏感。因此,基於經濟或良率考量之靜態或動態截止限制可平衡具有高可靠性標準之競爭目標(例如,十億分之幾可靠性標準)與經濟或良率度量。
在一項實施例中,在步驟312中選擇晶粒作為離群點經受基於經濟或良率考量之一上限。例如,在用於基於與一特定經加權缺陷率模型相關聯之缺陷率分數判定一組離群點晶粒之任何技術之應用識別比上限更潛在地不可靠之晶粒之情況中,識別為離群點晶粒之晶粒之實際數目可由上限封端。
在另一實施例中,在步驟312中選擇晶粒作為離群點包含在運行時間之前基於晶粒之一選定群體(例如,一訓練群體)定義一全域缺陷率限制,其中全域缺陷率限制表示基於訓練群體之缺陷率分數之一截止值或臨限值。例如,可藉由以下各者產生目標缺陷率限制:基於根據一選定經加權缺陷率模型彙總經加權缺陷而產生訓練群體中之晶粒之缺陷率分數;基於訓練群體中之晶粒之缺陷率分數判定訓練群體之離群點晶粒;及將全域缺陷率限制定義為將訓練群體之離群點晶粒與訓練群體之剩餘部分分離之缺陷率分數之一截止值。以此方式,可藉由將圖3B中繪示之步驟308至312應用至一訓練群體而產生靜態全域缺陷率限制。
可接著以一致方式將此全域缺陷率限制應用至晶粒之未來群體。另外,訓練群體可係(但不需要)大於在運行時間期間考量之晶粒之群體。在訓練群體大於運行時間群體之情況中,經產生全域缺陷率限制可係基於一統計上有意義資料集且可提供可應用至未來群體之可靠限制。
在另一實施例中,在步驟312中選擇晶粒作為離群點包含基於一訓練群體之一靜態全域缺陷率限制及基於在運行時間期間分析之個別群體之動態缺陷率限制兩者。圖6係繪示根據本發明之一或多項實施例之用於基於具有靜態缺陷率限制及動態缺陷率限制兩者之在線缺陷偵測進行可靠性判定之一方法600之一方塊圖。本文中經審慎考慮,基於一訓練群體之一目標缺陷率限制可可靠地移除許多最高有效離群點晶粒且可促進離群點晶粒基於動態限制(基於運行時間期間之各群體)之一更敏感且準確識別。特定言之,移除具有靜態全域缺陷率限制之最高有效離群點晶粒可更容易識別群體中之更細微離群點。
在一項實施例中,方法600包含判定一靜態全域缺陷率限制之一步驟602。例如,可藉由以下各者判定靜態全域缺陷率限制:產生一訓練群體之檢測資料;基於根據一選定經加權缺陷率模型彙總經加權缺陷而產生訓練群體之缺陷率分數;基於訓練群體中之晶粒之缺陷率分數判定訓練群體之離群點晶粒;及將靜態全域缺陷率限制定義為將訓練群體之離群點晶粒與訓練群體之剩餘部分分離之缺陷率分數之一截止值。以此方式,可藉由(但不需要藉由)將圖3B中繪示之步驟308至312應用至一訓練群體而產生靜態全域缺陷率限制。藉由另一實例,可基於經濟或良率考量或限制判定靜態全域缺陷率限制。例如,一靜態全域缺陷率限制可包含對一選定百分比之最有缺陷晶粒(例如,一群體中之1%最有缺陷晶粒)塗墨。此外,靜態全域缺陷率限制可係基於總產量或淨產量。以此方式,靜態全域缺陷率限制可包含或排除未通過電測試且因此將以其他方式塗墨之晶粒。例如,應用至總產量之一靜態全域缺陷率限制可包含:產生一訓練群體之缺陷率分數;識別將1%最有缺陷晶粒與群體之剩餘部分分離之缺陷率分數之一值;及使用缺陷率分數之此值作為靜態全域缺陷率限制以識別待針對未來群體塗墨之離群點晶粒。藉由另一實例,應用至淨產量之一靜態全域缺陷率限制可包含:產生一訓練群體之缺陷率分數;自群體移除未通過電測試之晶粒;識別將此經減少群體中之1%最有缺陷晶粒與此群體之剩餘部分分離之缺陷率分數之一值;及使用缺陷率分數之此值作為靜態全域缺陷率限制以識別針對未來群體塗墨之離群點晶粒。
在另一實施例中,方法600包含將靜態全域缺陷率限制應用至運行時間群體之一步驟604。在另一實施例中,方法600包含自一運行時間群體識別一第一組離群點晶粒作為運行時間群體中未通過靜態全域缺陷率限制之晶粒之一步驟606。以此方式,可在不判定運行時間群體中之晶粒之缺陷率分數之情況下識別第一組離群點晶粒。
在另一實施例中,方法600包含產生運行時間群體中通過靜態全域缺陷率限制之晶粒之檢測資料之一步驟608。在另一實施例中,方法600包含基於來自運行時間群體中通過靜態全域缺陷率限制之晶粒之檢測資料判定一動態缺陷率限制之一步驟610。以此方式,可藉由(但不需要藉由)將圖3B中繪示之步驟308至312應用至運行時間群體中通過靜態全域缺陷率限制之部分而產生靜態缺陷率限制。
在另一實施例中,方法600包含將動態缺陷率限制應用至運行時間群體中通過靜態全域缺陷率限制之晶粒之一步驟612。在另一實施例中,方法600包含識別未通過動態缺陷率限制之一第二組離群點晶粒之一步驟614。在另一實施例中,方法600包含使第一及第二組離群點晶粒隔離(例如,上墨)之一步驟616。第一及第二組離群點晶粒可接著經受進一步測試及/或自一分佈供應移除。此外,可針對任何數目個運行時間群體重複圖6中之步驟604至616。
本文中經另外審慎考慮,可使用相同或不同經加權缺陷率模型執行判定靜態及動態缺陷率限制之步驟(例如,圖6中之步驟602及步驟610)。在一項實施例中,將一共同經加權缺陷率模型應用至一訓練群體以判定靜態缺陷率限制(例如,步驟602)且亦至運行時間群體以判定動態缺陷率限制兩者。以此方式,可以相同方式加權訓練群體及運行時間群體兩者中之缺陷。在另一實施例中,將單獨經加權缺陷率模型應用至一訓練群體及一運行時間群體或不同運行時間群體之間。例如,一特定加權方案(諸如(但不限於)經設計以識別致命缺陷之一加權方案)可用於透過一全域缺陷率限制識別缺陷。隨後,可應用一或多個不同加權方案以識別運行時間群體中之更細微離群點。在另一例項中,可透過來自一或多個先前運行時間群體之回饋更新用於一當前運行時間群體中之經加權缺陷率模型。
再次參考圖3B中之步驟312,在另一實施例中,基於群體中之晶粒之缺陷率分數判定該組離群點晶粒包含基於缺陷率分數識別缺陷之空間訊符,其中基於與具有跨越多個晶粒之空間缺陷率圖案之其他晶粒之接近性識別該組離群點晶粒之至少一些離群點晶粒。換言之,判定該組離群點晶粒可包含缺陷導引G-PAT技術。此外,在一些實施例中,空間缺陷訊符之一分析可包含跨一樣本104之晶粒之缺陷率分數以及額外可靠性判定(諸如(但不限於)電測試結果(例如,藉由一電測試工具108產生))。
圖7包含繪示根據本發明之一或多項實施例之G-PAT分析之一般原理之晶粒圖。特定言之,圖7包含一第一樣本104a之一第一晶粒圖702a及一第二樣本104b之一第二晶粒圖702b,其中將未通過晶粒繪示為影線且將可接受晶粒繪示為開放。例如,在一傳統G-PAT分析中,陰影未通過晶粒可係未通過一電測試之晶粒。
一G-PAT分析之一導引原理係在未通過晶粒(例如,未通過一電測試之晶粒)之一叢集中之假設良好晶粒(例如,通過一電測試之晶粒)仍可具有比樣本104上之其他假設良好晶粒統計上更高之早期失效之一概率。此一晶粒被視為「一不良鄰域中之良好晶粒」 (GDBN)且可被識別為一G-PAT分析中之一離群點。例如,第一樣本104a上且在插圖706中繪示之晶粒704a係由其他假設良好晶粒包圍之一假設良好晶粒,而第二樣本104b上且在插圖708中繪示之晶粒704b係由未通過晶粒包圍之一假設良好晶粒。因此,一G-PAT分析可將晶粒704b識別為待塗墨之一離群點晶粒。
本文中經審慎考慮,G-PAT度量衡可由在線缺陷資料(諸如(但不限於)如貫穿本發明描述之缺陷率分數)導引。
例如,一G-PAT分析中之一未通過晶粒之定義可延伸至通過一電測試但具有高於一選定臨限值之一缺陷率分數之一電測試。例如,如本文中先前描述,I-PAT方法論可用於識別可測試區域或不可測試區域兩者中之可導致實際或經預測操作失效之致命缺陷。在另一例項中,一G-PAT分析中之一有缺陷晶粒可包含基於任何選定經加權缺陷率模型識別為離群點之晶粒(例如,如上文關於圖3B之步驟308至312描述)。
藉由另一實例,一G-PAT分析中之一未通過晶粒之概念不需要為二元。實情係,一晶粒之缺陷率分數可表示可包含於空間G-PAT分析中之可靠性之一非二元指示符。
藉由另一實例,缺陷率資料可限制或約束易受透過一G-PAT分析塗墨之晶粒之範疇。例如,若一晶粒鄰近選定數目個未通過晶粒(例如,2個或更多個未通過晶粒),則一典型G-PAT分析可對該晶粒塗墨。然而,此類型之分析高度易受誤差(例如,誤宰或漏檢)且可不適用於需要嚴格可靠性標準之應用。例如,在一樣本104包含跨多個晶粒延伸之一劃痕之情況中,情況可係在劃痕訊符之一中心或更嚴重部分中之若干晶粒未通過電測試且經識別為未通過晶粒。然而,一典型G-PAT分析可未能跨整個劃痕訊符識別晶粒(例如,漏檢)且可進一步對接近未通過晶粒但不在劃痕訊符內之晶粒錯誤地塗墨且因此不可能為了與經刮擦晶粒相同之原因(例如,誤宰)而未通過。
在一些實施例中,缺陷或失效晶粒之一空間圖案(考量本文中提供之未通過晶粒之更廣定義)可約束離群點晶粒之識別。例如,代替對接近選定數目個未通過晶粒之全部晶粒塗墨,僅可將與缺陷之空間圖案相關聯之晶粒視為離群點晶粒。繼續上文之一劃痕訊符之實例,本發明之實施例可基於晶粒是否係一空間缺陷訊符之一部分而非僅考量鄰近未通過晶粒之一數目而將晶粒識別為離群點。
圖3C係繪示根據本發明之一或多項實施例之與基於群體中之晶粒之缺陷率分數判定該組離群點晶粒相關聯之步驟(或子步驟)之一流程圖,其包含基於缺陷率分數識別缺陷之空間訊符作為一缺陷導引G-PAT度量衡之部分(例如,方法300之步驟312)。圖3C與圖3B共用若干步驟(或子步驟),使得與圖3B相關聯之描述亦可適用於圖3C。
在一項實施例中,步驟312包含基於經加權缺陷或一樣本104上之複數個晶粒之缺陷分數之至少一者識別樣本104上之一或多個空間缺陷訊符之一步驟314。在另一實施例中,步驟312包含將一或多個空間缺陷訊符內之晶粒分類為該組離群點晶粒之部分之一步驟316。
本文中經審慎考慮,可以多個方式執行識別空間缺陷訊符之步驟314。
在一項實施例中,至少部分自(例如,在步驟310中產生之)缺陷率分數識別一空間缺陷訊符。例如,可產生其中一晶粒之彩色或其他可識別特性表示該晶粒之缺陷率分數之一晶粒圖。以此方式,可使用晶粒級解析度識別空間缺陷訊符。
在另一實施例中,至少部分自經加權缺陷(例如,在步驟308中加權之缺陷)之空間分佈識別一空間缺陷訊符。以此方式,可基於跨樣本104之缺陷之特定分佈使用子晶粒解析度識別空間缺陷訊符。例如,可產生包含來自各種所關注層之經堆疊經加權缺陷之一晶粒圖以提供跨樣本之缺陷之一圖形表示。例如,可使用不同色彩、符號或其他經區分特性表示具有不同權重之缺陷。在另一例項中,可在晶粒圖中提供具有至少一特定權重之全部缺陷。此外,使用經加權缺陷容許強調具有影響可靠性之一更高可能性之缺陷且濾除擾亂點缺陷(例如,其等可經加權至零以將其等自進一步分析排除)。
在另一實施例中,一空間缺陷訊符至少部分憑藉未通過晶粒之位置識別。如本文中先前描述,未通過晶粒可包含未通過(例如,藉由一電測試工具108執行之)一或多個電測試之晶粒、識別為在晶粒之可測試或以其他方式不可測試區域中之致命缺陷之晶粒或兩者之一組合。
此外,本文中經審慎考慮,可以在本發明之精神及範疇內之各種方式識別空間缺陷訊符。此外,可使用統計或基於影像之辨識技術之任何組合識別空間缺陷訊符。
在一項實施例中,包含未通過晶粒、缺陷率分數及經加權缺陷之位置(例如,未加權至零且經分類為擾亂點缺陷之缺陷之位置)之任何組合之一晶粒圖可作為一影像經提供至一基於影像之空間訊符辨識演算法。此外,一基於影像之空間訊符演算法可包含此項技術中已知之任何類型之空間訊符辨識演算法,包含(但不限於)基於規則之技術、圖案匹配技術或機器學習技術。例如,基於規則之技術可識別缺陷叢集(例如,在樣本上之一特定區內之缺陷)或沿著一經定義訊符(例如,一線、一弧、一環或類似者)定位之缺陷。藉由另一實例,圖案匹配技術可分析已知缺陷率訊符(例如,螺旋、弧、切割線訊符或類似者)之缺陷分佈。此外,在一些實施例中,特定層資訊可用於促進空間缺陷訊符之圖案識別。例如,情況可係某些層具有為與該層相關聯之製造步驟所共有之已知晶圓級訊符。作為一圖解,螺旋形或彎曲缺陷訊符可為其中利用化學機械平坦化(CMP)或旋塗膜沈積之層所共有。以此方式,用於空間缺陷訊符辨識之技術可因樣本層而變動。
在另一實施例中,使用統計離群點偵測演算法識別空間缺陷訊符。在另一實施例中,至少部分透過使用者輸入或使用者導引輸入識別空間缺陷訊符。例如,可將一晶粒圖呈現給一使用者用於識別可使用使用者介面116輸入之空間圖案。藉由另一實例,將經演算法識別空間圖案之結果呈現給一使用者以用於檢視及/或修改。
現參考圖8A至圖9C,根據本發明之一或多項實施例更詳細描述缺陷導引G-PAT。
圖8A至圖8B概念上繪示使用缺陷以改良藉由未通過電測試識別之一傳統基於G-PAT方法論之未通過晶粒。圖8A係根據本發明之一或多項實施例之使用一獨立G-PAT技術識別離群點晶粒之一示意性圖解。圖8A包含具有跨樣本104分佈之許多晶粒804之一樣本104之一第一俯視圖802,其中未通過電測試之晶粒經識別為未通過晶粒806且使用一閉合(實心) 「X」繪示。圖8A進一步包含其中接近未通過晶粒806之使用一開放「X」標記之晶粒藉由一單獨G-PAT技術識別為離群點晶粒810且經塗墨之樣本104之一第二俯視圖808。在此模擬中,傳統G-PAT將鄰近未通過晶粒806之全部晶粒識別為離群點晶粒810。
圖8B係根據本發明之一或多項實施例之使用一缺陷導引G-PAT技術識別離群點晶粒之一示意性圖解。圖8B包含樣本104之一第二俯視圖812,其類似於圖8A中之第一俯視圖802但進一步包含經加權缺陷814之一疊對以及與樣本104上之四個劃痕相關聯之空間缺陷訊符816之一疊對。在一項實施例中,識別與劃痕相關聯之空間缺陷訊符816。例如,可基於未通過晶粒806之一空間圖案、經加權缺陷814之一空間圖案或基於缺陷率分數識別之離群點晶粒之一空間圖案之任何組合識別空間缺陷訊符816。
圖8B進一步包含樣本104之一第二俯視圖818,其中使用一開放「X」標記使用缺陷導引G-PAT識別之離群點晶粒810。在圖8B中,未通過晶粒806與相關聯於可至少部分藉由經加權缺陷814及/或相關聯缺陷率分數識別之跨樣本104之彎曲劃痕之較大空間缺陷訊符816相關聯。以此方式,該組離群點晶粒810可包含可更精確地與相關聯於空間缺陷訊符816之根本原因(例如,劃痕)相關之晶粒。例如,圖8B繪示與在圖8A之傳統G-PAT方法論中未識別之一共同劃痕路徑相關聯之兩組未通過晶粒806之間之離群點晶粒810之一群組820之識別。以此方式,缺陷導引G-PAT藉由識別具有可能可靠性問題之晶粒而減少漏檢。藉由另一實例,該組離群點晶粒810不包含徑向定位於劃痕之空間缺陷訊符816之間之晶粒822 (圖8A中展示),此係因為此等晶粒可能不受劃痕影響。鑑於此等晶粒在圖8A中經識別為離群點晶粒810,故圖8B之缺陷導引方法減少誤宰。
圖9A至圖9C繪示根據本發明之一或多項實施例之缺陷導引G-PAT方法論在三個例示性晶粒上之實驗實施方案。圖9A至圖9C包含包含跨一樣本104上之晶粒910之經加權缺陷908 (例如,基於一經加權缺陷率模型被視為非擾亂點缺陷之缺陷)之晶粒圖902、904、906。各種晶粒級資訊亦可包含於一晶粒圖中。例如,將未通過一電測試之電測試未通過晶粒912繪示為自左下方至右上方之實心對角影線。藉由另一實例,將僅基於G-PAT技術至電測試未通過晶粒912之應用識別之傳統G-PAT離群點晶粒914繪示為水平影線。藉由另一實例,將基於藉由經加權缺陷908導引之G-PAT方法論識別之缺陷導引G-PAT離群點晶粒916繪示為虛線影線。另外,雖然未展示,但晶粒圖(諸如圖9A至圖9C中繪示之晶粒圖)可包含缺陷率分數。例如,晶粒可基於缺陷率分數而著色、加影線或以其他方式指定。
在一項實施例中,將晶粒圖(諸如(但不限於)圖9A至圖9C中繪示之晶粒圖)提供為用於偵測空間缺陷訊符之輸入。以此方式,空間缺陷訊符可識別與共同根本原因相關聯之缺陷群組,該等共同根本原因可接著用於導引一G-PAT方法論以判定與此等空間缺陷訊符相關聯之離群點晶粒。例如,空間缺陷訊符可(但不需要)與電測試資料(例如,電測試未通過晶粒912)組合以識別可通過電測試但可具有比群體中之其他晶粒更高之早期失效(例如,具有潛伏缺陷)之一可能性之離群點晶粒。
如圖9A至圖9C中繪示,僅基於電測試未通過晶粒912之傳統G-PAT技術可通常未能擷取與空間缺陷訊符相關聯之重大風險晶粒。例如,傳統G-PAT離群點晶粒914適當地包含與很大程度上由未通過晶粒806包圍或在邊緣附近之缺陷叢集918相關聯之一些晶粒。然而,傳統G-PAT技術通常未能擷取缺陷叢集918之完整範圍。此外,尤其當劃痕圖案在一對角線方向上橫跨晶粒時,傳統G-PAT技術通常未能擷取沿著跨越多個晶粒之長線性或彎曲劃痕圖案920定位之晶粒。相比之下,此等晶粒係使用如本文中揭示之一缺陷導引方法擷取且包含於該組缺陷導引G-PAT離群點晶粒916中。
相比之下,此等晶粒藉由缺陷導引G-PAT方法更可靠地擷取且包含於缺陷導引G-PAT離群點晶粒916中。本文中應注意,圖9A至圖9C中之缺陷導引G-PAT離群點晶粒916僅繪示未藉由傳統G-PAT技術識別為傳統G-PAT離群點晶粒914之離群點晶粒以便清楚地區分缺陷導引方法之優點。雖然在圖9A至圖9C中未展示,但缺陷導引G-PAT離群點晶粒916亦可包含至少一些(但不必全部)傳統G-PAT離群點晶粒914,如通常關於圖8A及圖8B描述。
現大體上參考圖3A及圖3B,本文中已揭示用於基於經加權缺陷識別一組離群點晶粒之多個技術(例如,方法300之步驟304)。亦應理解,本文中提供之特定實例及圖解僅係為了闡釋性目的提供且不應解譯為限制本發明。
本文中經進一步審慎考慮,不同技術可具有與任何數目個因素(包含對特定缺陷之敏感性、產量或運算要求)相關之不同優點及缺陷。
在一項實施例中,方法300可包含使用多個不同技術反覆步驟304,其中各反覆提供一組不同候選離群點晶粒。接著,方法300可進一步包含基於候選組識別一輸出組離群點晶粒之一步驟。在此方面,可使用一集成方法產生輸出組離群點晶粒以利用不同方法之各種強度。此外,一集成方法可提供離群點晶粒之選擇中之更大可信度,此可同時藉由以下各者減少漏檢:透過不同技術擷取廣泛多種缺陷類型及級別而減少漏檢;藉由限制與任一技術相關聯之誤宰之影響而整體上減少誤宰;及藉由準確地識別高風險晶粒而整體上改良生產線之可靠性。
此外,可使用各種方法基於候選組產生輸出組離群點晶粒。例如,若在選定數目個(例如,兩個或更多個、三個或更多個或類似者)候選組離群點晶粒中識別一特定晶粒,則可將該特定晶粒分類於輸出組離群點晶粒中。使用運用多個技術識別一特定晶粒之此方法可增加分類之可信度。類似地,藉由一個(或相對低數目個)技術識別之一晶粒可具有相對較低風險。藉由另一實例,可在一最終判定中加權各種技術自身(及相關聯候選組缺陷)。例如,在特定技術良好適用於識別特定缺陷類型(例如,致命缺陷、劃痕缺陷或類似者)之情況中,藉由該技術識別之晶粒可被給予一更高權重以促進此等缺陷類型之準確偵測。
本文中描述之標的物有時繪示其他組件內含有或與其他組件連接之不同組件。應理解,此等所描繪之架構僅僅係例示性,且事實上可實施達成相同功能性之許多其他架構。在一概念意義上,用以達成相同功能性之組件之任何配置有效「相關聯」使得達成所要功能性。因此,在本文中組合以達成一特定功能性之任何兩個組件可被視為彼此「相關聯」使得達成所要功能性而不考慮架構或中間組件。同樣地,如此相關聯之任何兩個組件亦可被視為彼此「連接」或「耦合」以達成所要功能性,且能夠如此相關聯之任何兩個組件亦可被視為彼此「可耦合」以達成所要功能性。可耦合之特定實例包含(但不限於)可實體互動及/或實體互動組件及/或可無線互動及/或無線互動組件及/或可邏輯互動及/或邏輯互動組件。
據信本發明及許多其伴隨優點將藉由前述描述理解,且將明白,可對組件之形式、構造及配置做出多種改變而不脫離所揭示之標的物或不犧牲全部其材料優點。所描述之形式僅僅係解釋性,且以下發明申請專利範圍之意圖係涵蓋且包含此等改變。此外,應理解,本發明由隨附發明申請專利範圍界定。
100:可靠性控制系統
102:檢測工具
104:樣本
104a:第一樣本
104b:第二樣本
106:度量衡工具
108:電測試工具/預燒前電測試工具/預燒後電測試工具
110:控制器
112:處理器
114:記憶體
116:使用者介面
202:缺陷
204:層
206:經堆疊晶粒圖
208a:第一晶粒
208b:第二晶粒
210:臨限值
212:曲線圖
300:方法
302:步驟
304:步驟
306:步驟
308:步驟
310:步驟
312:步驟
314:步驟
316:步驟
402:晶粒
404:關鍵區域
406:非關鍵區域
408:在線缺陷
500:先進在線零件平均測試(I-PAT)離群點圖表
602:步驟
604:步驟
606:步驟
608:步驟
610:步驟
612:步驟
614:步驟
616:步驟
702a:第一晶粒圖
702b:第二晶粒圖
704a:晶粒
704b:晶粒
706:插圖
708:插圖
802:第一俯視圖
804:晶粒
806:未通過晶粒
808:第二俯視圖
810:離群點晶粒
812:第二俯視圖
814:經加權缺陷
816:空間缺陷訊符
818:第二俯視圖
820:群組
822:晶粒
902:晶粒圖
904:晶粒圖
906:晶粒圖
908:經加權缺陷
910:晶粒
912:電測試未通過晶粒
914:傳統地理零件平均測試(G-PAT)離群點晶粒
916:缺陷導引地理零件平均測試(G-PAT)離群點晶粒
918:缺陷叢集
920:長線或彎曲劃痕圖案
熟習此項技術者藉由參考附圖可更佳理解本發明之多個優點,其中:
圖1係根據本發明之一或多項實施例之一可靠性控制系統之一方塊圖。
圖2A係根據本發明之一或多項實施例之一樣本之多個層中之缺陷之彙總之一概念圖解。
圖2B係繪示根據本發明之一或多項實施例之基於一群體中之缺陷之總數之一缺陷直方圖之一曲線圖。
圖3A係繪示根據本發明之一或多項實施例之在用於基於在線缺陷偵測進行可靠性判定之一方法中執行之步驟之一流程圖。
圖3B係繪示根據本發明之一或多項實施例之與使用一經加權缺陷率模型識別群體中之一組離群點晶粒相關聯之步驟之一流程圖。
圖3C係繪示根據本發明之一或多項實施例之與基於群體中之晶粒之缺陷率分數判定該組離群點晶粒相關聯之步驟之一流程圖,其包含基於缺陷率分數識別缺陷之空間訊符作為一缺陷導引G-PAT方法論之部分。
圖4A係根據本發明之一或多項實施例之具有各種關鍵區域及非關鍵區域之一晶粒之一示意圖。
圖4B係根據本發明之一或多項實施例之圖4A中繪示之晶粒之一經堆疊缺陷圖。
圖4C係根據本發明之一或多項實施例之其中僅展示關鍵區域中之缺陷之圖4B之經堆疊缺陷圖。
圖5係根據本發明之一或多項實施例之一I-PAT離群點圖表。
圖6係繪示根據本發明之一或多項實施例之用於基於具有靜態缺陷率限制及動態缺陷率限制兩者之在線缺陷偵測進行可靠性判定之一方法之一方塊圖。
圖7包含繪示根據本發明之一或多項實施例之G-PAT分析之一般原理之晶粒圖。
圖8A係根據本發明之一或多項實施例之使用一獨立G-PAT技術識別離群點晶粒之一示意性圖解。
圖8B係根據本發明之一或多項實施例之使用一缺陷導引G-PAT技術識別離群點晶粒之一示意性圖解。
圖9A至圖9C繪示根據本發明之一或多項實施例之缺陷導引G-PAT方法論在三個例示性晶粒上之三個實驗實施方案。
100:可靠性控制系統
102:檢測工具
104:樣本
106:度量衡工具
108:電測試工具/預燒前電測試工具/預燒後電測試工具
110:控制器
112:處理器
114:記憶體
116:使用者介面
Claims (31)
- 一種檢測系統,其包括:一控制器,其通信地耦合至一或多個在線樣本分析工具,該控制器包含一或多個處理器,該一或多個處理器經組態以執行程式指令,從而引起該一或多個處理器:基於自該一或多個在線樣本分析工具之至少一者接收之資料識別一晶粒群體中之缺陷;使用一經加權缺陷率模型將權重指派至該等經識別缺陷,其中該經加權缺陷率模型將指示該等經識別缺陷對該等晶粒之可靠性之經預測影響之權重指派至該等經識別缺陷;藉由彙總該群體中之該等各自晶粒中之該等經加權缺陷而產生該群體中之該等晶粒之缺陷率分數;及基於該群體中之該等晶粒之該等缺陷率分數而判定一組離群點晶粒,其中將該組離群點晶粒之至少一些離群點晶粒與該群體隔離。
- 如請求項1之檢測系統,其中該一或多個在線樣本分析工具包括:一檢測工具或一度量衡工具之至少一者。
- 如請求項1之檢測系統,其中將該組離群點晶粒之至少一些離群點晶粒與該群體隔離包括:自一分佈供應移除該等經隔離晶粒。
- 如請求項1之檢測系統,其中將該組離群點晶粒之至少一些離群點晶粒與該群體隔離包括:使該等經隔離晶粒經受一或多個效能測試。
- 如請求項1之檢測系統,其中將該組離群點晶粒之至少一些離群點晶粒與該群體隔離包括:將該組離群點晶粒之至少該等缺陷率分數提供至一使用者以供檢視。
- 如請求項5之檢測系統,其中將該等離群點晶粒之至少一些離群點晶粒與該群體隔離進一步包括:將該群體之一剩餘部分之該等缺陷率分數提供至該使用者以供檢視。
- 如請求項1之檢測系統,其中該群體包括:一樣本中之晶粒、一批次中之多個樣本中之晶粒或多個批次中之多個樣本中之晶粒之至少一者。
- 如請求項1之檢測系統,其中使用該經加權缺陷率模型將權重指派至該等經識別缺陷包括:使用一經加權缺陷率模型基於該等經識別缺陷之一或多個經量測特性將權重指派至該等經識別缺陷。
- 如請求項8之檢測系統,其中該等經識別缺陷之該一或多個經量測特性包括:與一設計規格、缺陷類型、缺陷類別或缺陷嚴重性之偏差之至少一者。
- 如請求項1之檢測系統,其中使用一經加權缺陷率模型將權重指派至該等經識別缺陷包括:使用一經加權缺陷率模型基於一特定缺陷與一或多個額外經識別缺陷之間之關係將權重指派至該等經識別缺陷。
- 如請求項10之檢測系統,其中該特定缺陷與該一或多個額外經識別缺陷之間之該等關係包括:一特定層上之缺陷密度、跨多個層之一特定位置中之缺陷密度或空間缺陷率圖案之至少一者。
- 如請求項1之檢測系統,其中使用一經加權缺陷率模型將權重指派至該等經識別缺陷包括:使用一經加權缺陷率模型基於包圍該等經識別缺陷之一或多個層之經量測特性將權重指派至該等經識別缺陷。
- 如請求項12之檢測系統,其中包圍該等經識別缺陷之一或多個層之該等經量測特性包括: 包圍該等經識別缺陷之一或多個圖案化特徵之層厚度、層組合物、層平整度、層形貌(topography)、層電阻率、局部應力量測或臨界尺寸量測之至少一者。
- 如請求項1之檢測系統,其中使用一經加權缺陷率模型將權重指派至該等經識別缺陷包括:使用一經加權缺陷率模型基於一或多個經定義關照區域中之位置將權重指派至該等經識別缺陷。
- 如請求項14之檢測系統,其中該一或多個關照區域之至少一者包括:未由一電測試工具測試之一或多個測試逃脫區域,其中該經加權缺陷率模型將相對高權重指派至該一或多個測試逃脫區域中之缺陷以促進該一或多個測試逃脫區域中之缺陷之識別。
- 如請求項1之檢測系統,其中使用一經加權缺陷率模型將權重指派至該等經識別缺陷包括:使用一經加權缺陷率模型基於可靠性問題之認定實況(ground truth)指示符透過缺陷屬性之一庫(library)或一機器學習技術之至少一者將權重指派至該等經識別缺陷。
- 如請求項1之檢測系統,其中使用一經加權缺陷率模型將權重指派至該等經識別缺陷包括: 將該等經識別缺陷分類為一選定數目個經加權類別。
- 如請求項17之檢測系統,其中該選定數目個經加權類別包含三個經加權類別。
- 如請求項17之檢測系統,其中該等經加權類別之至少一者包含經預測引起立即失效或早期失效之至少一者之致命缺陷。
- 如請求項17之檢測系統,其中該等經加權類別之至少一者包含經加權至零之擾亂點(nuisance)缺陷。
- 如請求項1之檢測系統,其中基於該群體中之該等晶粒之該等缺陷率分數判定一組離群點晶粒包括:基於該等缺陷率分數對該群體中之該等晶粒排序;及基於該等經排序缺陷率分數判定將該組離群點晶粒與該群體之一剩餘部分分離之該缺陷率分數之一截止值。
- 如請求項21之檢測系統,其中基於該等經排序晶粒判定將該組離群點晶粒與該群體之一剩餘部分分離之該缺陷率分數之一截止值包括:產生繪製該等經排序缺陷率分數之一離群點圖表;及基於該離群點圖表判定將該組離群點晶粒與該群體之一剩餘部分分離之該缺陷率分數之該截止值。
- 如請求項1之檢測系統,其中基於該群體中之該等晶粒之該等缺陷率分數判定一組離群點晶粒包括:將該群體中具有高於一選定臨限值之一缺陷率分數之晶粒分類成該組離群點晶粒。
- 如請求項23之檢測系統,其中基於該群體中之該等晶粒之該等缺陷率分數判定該組離群點晶粒進一步包括:基於一上限限制該組離群點晶粒中之晶粒之數目,其中該上限係基於一經濟限制或一良率限制之至少一者而判定。
- 如請求項1之檢測系統,其中基於該群體中之該等晶粒之該等缺陷率分數判定一組離群點晶粒包括:基於晶粒之一訓練群體定義一全域缺陷率限制;及將該群體中具有高於該全域缺陷率限制之一缺陷率分數之晶粒分類成該組離群點晶粒。
- 如請求項25之檢測系統,其進一步包括:基於通過該全域缺陷率限制之晶粒之該群體定義一動態缺陷率限制;及將該群體中具有高於該動態缺陷率限制之一缺陷率分數之晶粒進一步分類成該組離群點晶粒。
- 如請求項1之檢測系統,其中基於該群體中之該等晶粒之該等缺陷率 分數判定一組離群點晶粒包括:產生包含該等經加權缺陷或與該群體之一樣本中之該等晶粒相關聯之該等缺陷率分數之至少一者之一晶粒圖;基於該等經加權缺陷或與該樣本中之該等晶粒相關聯之該等缺陷率分數之該至少一者識別該樣本上之一或多個空間缺陷訊符(signature);及將該一或多個空間缺陷訊符內之缺陷分類於該組離群點晶粒中。
- 如請求項27之檢測系統,其中該晶粒圖進一步包含未通過一電測試之未通過晶粒,其中識別該樣本上之一或多個空間缺陷訊符包括:至少部分基於該等未通過晶粒識別該樣本上之一或多個空間缺陷訊符。
- 如請求項1之檢測系統,其中該群體包括:通過一電測試之晶粒。
- 如請求項1之檢測系統,其中該系統進一步包括:該一或多個樣本分析工具之至少一者。
- 一種檢測方法,其包括:基於自一或多個在線樣本分析工具接收之檢測資料識別一晶粒群體中之缺陷;使用一經加權缺陷率模型將權重指派至該等經識別缺陷,其中該 經加權缺陷率模型將指示該等經識別缺陷對該等晶粒之可靠性之經預測影響之權重指派至該等經識別缺陷;藉由彙總該群體中之該等各自晶粒中之該等經加權缺陷而產生該群體中之該等晶粒之缺陷率分數;及基於該群體中之該等晶粒之該等缺陷率分數而判定一組離群點晶粒,其中將該組離群點晶粒之至少一些離群點晶粒與該群體隔離。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062959984P | 2020-01-12 | 2020-01-12 | |
US62/959,984 | 2020-01-12 | ||
US17/101,856 US11293970B2 (en) | 2020-01-12 | 2020-11-23 | Advanced in-line part average testing |
US17/101,856 | 2020-11-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202135190A TW202135190A (zh) | 2021-09-16 |
TWI836175B true TWI836175B (zh) | 2024-03-21 |
Family
ID=76760448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110100354A TWI836175B (zh) | 2020-01-12 | 2021-01-06 | 先進在線零件平均測試 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11293970B2 (zh) |
JP (1) | JP7460775B2 (zh) |
KR (1) | KR102684459B1 (zh) |
CN (1) | CN114930511A (zh) |
DE (1) | DE112021000600T5 (zh) |
IL (1) | IL294468A (zh) |
TW (1) | TWI836175B (zh) |
WO (1) | WO2021142400A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11681903B2 (en) | 2019-10-31 | 2023-06-20 | Micron Technology, Inc. | Spike detection in memristor crossbar array implementations of spiking neural networks |
US11668797B2 (en) | 2019-12-18 | 2023-06-06 | Micron Technology, Inc. | Intelligent radar electronic control units in autonomous vehicles |
US11754625B2 (en) * | 2020-01-30 | 2023-09-12 | Kla Corporation | System and method for identifying latent reliability defects in semiconductor devices |
US11947359B2 (en) * | 2020-02-14 | 2024-04-02 | Micron Technology, Inc. | Intelligent lidar sensors for autonomous vehicles |
US11656274B2 (en) | 2021-02-15 | 2023-05-23 | Kla Corporation | Systems and methods for evaluating the reliability of semiconductor die packages |
US11614480B2 (en) * | 2021-06-08 | 2023-03-28 | Kla Corporation | System and method for Z-PAT defect-guided statistical outlier detection of semiconductor reliability failures |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060267577A1 (en) * | 2005-05-02 | 2006-11-30 | Nir Erez | Augmenting semiconductor's devices quality and reliability |
US20080270088A1 (en) * | 2007-04-30 | 2008-10-30 | International Business Machines Corporation | Method and system for causal modeling and outlier detection |
US8042073B1 (en) * | 2007-11-28 | 2011-10-18 | Marvell International Ltd. | Sorted data outlier identification |
TW201732305A (zh) * | 2016-01-11 | 2017-09-16 | 克萊譚克公司 | 以影像為基礎之樣本程序控制 |
TW201917417A (zh) * | 2017-10-26 | 2019-05-01 | 中國大陸商深圳幀觀德芯科技有限公司 | 能夠進行雜訊操控的輻射檢測器 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5414716A (en) * | 1993-09-22 | 1995-05-09 | Mitsubishi Electronic Research Laboratories, Inc. | Weighting system for testing of circuits utilizing determination of undetected faults |
US6265232B1 (en) * | 1998-08-21 | 2001-07-24 | Micron Technology, Inc. | Yield based, in-line defect sampling method |
US6367040B1 (en) * | 1999-01-11 | 2002-04-02 | Siemens Aktiengesellschaft | System and method for determining yield impact for semiconductor devices |
JP3734392B2 (ja) * | 1999-10-29 | 2006-01-11 | 松下電器産業株式会社 | 半導体集積回路の故障検査方法及びレイアウト方法 |
JP2013055092A (ja) * | 2011-09-01 | 2013-03-21 | Renesas Electronics Corp | スクリーニング方法、スクリーニング装置およびプログラム |
JP3833982B2 (ja) * | 2002-10-03 | 2006-10-18 | 株式会社東芝 | テストパターン選択装置、テストパターン選択方法、及びテストパターン選択プログラム |
US6947806B2 (en) * | 2003-09-04 | 2005-09-20 | Promos Technologies Inc. | System and method for effective yield loss analysis for semiconductor wafers |
JP3940718B2 (ja) * | 2003-10-30 | 2007-07-04 | 株式会社東芝 | 試験装置、良否判定基準設定装置、試験方法及び試験プログラム |
US7023230B1 (en) * | 2003-11-03 | 2006-04-04 | Lsi Logic Corporation | Method for testing IDD at multiple voltages |
US7308669B2 (en) * | 2005-05-18 | 2007-12-11 | International Business Machines Corporation | Use of redundant routes to increase the yield and reliability of a VLSI layout |
KR100909474B1 (ko) * | 2005-08-10 | 2009-07-28 | 삼성전자주식회사 | 웨이퍼 결함지수를 사용하여 국부성 불량 모드를 갖는결함성 반도체 웨이퍼의 검출 방법들 및 이에 사용되는장비들 |
US7570796B2 (en) * | 2005-11-18 | 2009-08-04 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
JP2008145226A (ja) * | 2006-12-08 | 2008-06-26 | Olympus Corp | 欠陥検査装置及び欠陥検査方法 |
WO2008081227A1 (en) * | 2007-01-05 | 2008-07-10 | Freescale Semiconductor, Inc. | Method and apparatus for designing an integrated circuit |
JP5022174B2 (ja) | 2007-10-22 | 2012-09-12 | 株式会社日立製作所 | 欠陥分類方法及びその装置 |
JP4881332B2 (ja) * | 2008-02-15 | 2012-02-22 | 株式会社東芝 | 半導体集積回路のテスト品質評価装置、および半導体集積回路のテスト品質評価方法 |
JP5853738B2 (ja) | 2012-02-03 | 2016-02-09 | Jfeスチール株式会社 | 表面欠陥検査方法および表面欠陥検査装置 |
US10192303B2 (en) * | 2012-11-12 | 2019-01-29 | Kla Tencor Corporation | Method and system for mixed mode wafer inspection |
US9390494B2 (en) * | 2012-12-13 | 2016-07-12 | Kla-Tencor Corporation | Delta die intensity map measurement |
US9098891B2 (en) * | 2013-04-08 | 2015-08-04 | Kla-Tencor Corp. | Adaptive sampling for semiconductor inspection recipe creation, defect review, and metrology |
TWI483216B (zh) * | 2013-08-16 | 2015-05-01 | Nat Univ Tsing Hua | 晶圓圖之分析系統及其分析方法 |
US9767548B2 (en) * | 2015-04-24 | 2017-09-19 | Kla-Tencor Corp. | Outlier detection on pattern of interest image populations |
US10330727B2 (en) * | 2016-09-15 | 2019-06-25 | Samsung Electronics Co., Ltd. | Importance sampling method for multiple failure regions |
US10451563B2 (en) * | 2017-02-21 | 2019-10-22 | Kla-Tencor Corporation | Inspection of photomasks by comparing two photomasks |
US10761128B2 (en) * | 2017-03-23 | 2020-09-01 | Kla-Tencor Corporation | Methods and systems for inline parts average testing and latent reliability defect detection |
US10867877B2 (en) * | 2018-03-20 | 2020-12-15 | Kla Corporation | Targeted recall of semiconductor devices based on manufacturing data |
-
2020
- 2020-11-23 US US17/101,856 patent/US11293970B2/en active Active
-
2021
- 2021-01-06 TW TW110100354A patent/TWI836175B/zh active
- 2021-01-11 KR KR1020227024897A patent/KR102684459B1/ko active IP Right Grant
- 2021-01-11 IL IL294468A patent/IL294468A/en unknown
- 2021-01-11 DE DE112021000600.2T patent/DE112021000600T5/de active Pending
- 2021-01-11 WO PCT/US2021/012875 patent/WO2021142400A1/en active Application Filing
- 2021-01-11 CN CN202180008085.6A patent/CN114930511A/zh active Pending
- 2021-01-11 JP JP2022542353A patent/JP7460775B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060267577A1 (en) * | 2005-05-02 | 2006-11-30 | Nir Erez | Augmenting semiconductor's devices quality and reliability |
US20080270088A1 (en) * | 2007-04-30 | 2008-10-30 | International Business Machines Corporation | Method and system for causal modeling and outlier detection |
US8042073B1 (en) * | 2007-11-28 | 2011-10-18 | Marvell International Ltd. | Sorted data outlier identification |
TW201732305A (zh) * | 2016-01-11 | 2017-09-16 | 克萊譚克公司 | 以影像為基礎之樣本程序控制 |
TW201917417A (zh) * | 2017-10-26 | 2019-05-01 | 中國大陸商深圳幀觀德芯科技有限公司 | 能夠進行雜訊操控的輻射檢測器 |
Also Published As
Publication number | Publication date |
---|---|
JP7460775B2 (ja) | 2024-04-02 |
JP2023509787A (ja) | 2023-03-09 |
US20210215753A1 (en) | 2021-07-15 |
IL294468A (en) | 2022-09-01 |
KR20220127834A (ko) | 2022-09-20 |
US11293970B2 (en) | 2022-04-05 |
WO2021142400A1 (en) | 2021-07-15 |
CN114930511A (zh) | 2022-08-19 |
TW202135190A (zh) | 2021-09-16 |
DE112021000600T5 (de) | 2022-12-08 |
KR102684459B1 (ko) | 2024-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI836175B (zh) | 先進在線零件平均測試 | |
US7760929B2 (en) | Grouping systematic defects with feedback from electrical inspection | |
JP5460662B2 (ja) | 領域決定装置、観察装置または検査装置、領域決定方法および領域決定方法を用いた観察方法または検査方法 | |
US8194968B2 (en) | Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions | |
KR102386536B1 (ko) | 시편 상의 관심 패턴의 하나 이상의 특성의 결정 | |
JP4997069B2 (ja) | 不良検出方法及び不良検出装置 | |
JP2001326263A (ja) | ウェーハー表面の構造欠陥を査定する方法 | |
TWI617816B (zh) | 晶圓的可適性電性測試 | |
CN114092387A (zh) | 生成可用于检查半导体样本的训练数据 | |
CN111125985B (zh) | 系统故障定位系统和方法 | |
TWI663667B (zh) | 用於在檢查物件時自我調整取樣的方法和其系統 | |
CN114930513A (zh) | 用于识别半导体装置中的潜在可靠性缺陷的系统及方法 | |
US11899065B2 (en) | System and method to weight defects with co-located modeled faults | |
JP4146655B2 (ja) | 欠陥源候補抽出プログラム | |
US20240281953A1 (en) | Adaptive spatial pattern recognition for defect detection | |
US20240241498A1 (en) | Module for predicting semiconductor physical defects and method thereof | |
JP5241302B2 (ja) | 特性分布解析方法および装置、基板分類方法および装置、上記特性分布解析方法または基板分類方法をコンピュータに実行させるためのプログラム、並びに上記プログラムを記録したコンピュータ読み取り可能な記録媒体 | |
CN118043951A (zh) | 用于经由缺陷及电性测试数据的相关性自动诊断及监测半导体缺陷裸片筛选性能的系统 | |
JP2007049020A (ja) | 欠陥分布分類方法および欠陥分布分類装置 |