TWI829962B - 判斷裝置、基板處理裝置、物品的製造方法、基板處理系統、判斷方法及電腦可讀取記錄媒體 - Google Patents
判斷裝置、基板處理裝置、物品的製造方法、基板處理系統、判斷方法及電腦可讀取記錄媒體 Download PDFInfo
- Publication number
- TWI829962B TWI829962B TW109131259A TW109131259A TWI829962B TW I829962 B TWI829962 B TW I829962B TW 109131259 A TW109131259 A TW 109131259A TW 109131259 A TW109131259 A TW 109131259A TW I829962 B TWI829962 B TW I829962B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- substrate processing
- alignment
- classification
- judgment
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 269
- 238000012545 processing Methods 0.000 title claims abstract description 165
- 238000000034 method Methods 0.000 title claims description 144
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000010801 machine learning Methods 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims description 79
- 238000004321 preservation Methods 0.000 claims description 32
- 238000012423 maintenance Methods 0.000 claims description 27
- 238000012546 transfer Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims 2
- 230000003287 optical effect Effects 0.000 description 61
- 238000005259 measurement Methods 0.000 description 35
- 238000003384 imaging method Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 16
- 238000007726 management method Methods 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 14
- 238000005286 illumination Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 238000003672 processing method Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 230000015654 memory Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7092—Signal processing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7088—Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
為了提供能夠判斷是否需要保全基板處理裝置的判斷裝置,本發明所涉及的判斷裝置針對在基板處理裝置中攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型,進行與對準失敗要因有關的分類,根據分類的結果,判斷是否需要保全基板處理裝置。
Description
本發明涉及判斷裝置、基板處理裝置、基板處理系統以及物品的製造方法。
近年來,伴隨電子機器的小型化、需求的擴大,需要使以記憶體、MPU為代表的半導體元件的微細化和生產率同時成立。
因此,在半導體元件的製造中使用的處理基板的基板處理裝置中,使基板的位置對齊的對準也需要高精度化。
在基板的對準中,大量使用透過對形成於基板上的標記的圖像進行攝像,並針對得到的圖像數據進行圖案匹配處理,求出基板的位置的手法。
日本特開2000-260699號公報公開同時抽出標記的邊緣和上述邊緣的方向,並針對每個邊緣的方向進行關注於邊緣的圖案匹配處理,從而高精度地檢測標記的曝光裝置。
以往,在基板處理裝置中基板的對準失敗時,用戶透過參照圖像數據、與圖像數據關聯的關聯數據,判斷是否需要保全裝置。
因此,根據情況來對裝置的處理進行中斷、或者在判斷中需要時間,從而導致處理量降低。
因此,本發明的目的在於提供一種能夠判斷是否需要保全基板處理裝置的判斷裝置。
本發明所涉及的判斷裝置針對在基板處理裝置中攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型,進行與對準失敗要因有關的分類,根據分類的結果,判斷是否需要保全基板處理裝置。
以下,參照附圖,詳細說明本實施方式所涉及的判斷裝置。此外,以下所示的實施方式僅表示實施的具體例,本實施方式不限定於以下的實施方式。
另外,在以下所示的實施方式中說明的特徵的全部組合並非為了解決本實施方式的課題而必需。
另外,在以下所示的附圖中,為了能夠容易地理解本實施方式,有時以與實際不同的比例尺描繪。
[第一實施方式]
在使用光刻技術來製造半導體元件、液晶顯示元件、薄膜磁頭等裝置時,使用將倍縮光罩等原版的圖案透過投影光學系統投影到晶圓等基板而轉印圖案的曝光裝置。
在曝光裝置中,伴隨電子機器的小型化、需求的擴大,需要同時改善以記憶體、MPU為代表的半導體元件的微細化和生產率。
因此,在曝光裝置中,要求使解析度、覆蓋(overlay)精度、處理量等基本性能提高。
曝光裝置的解析度與投影光學系統的數值孔徑(NA)成反比例,與在曝光中使用的光(曝光光)的波長成比例,所以投影光學系統的數值孔徑的擴大以及曝光光的短波長化在發展。
另外,伴隨半導體元件的微細化,覆蓋精度也需要提高,所以使原版和基板的相對的位置對齊的對準也需要高精度化。
另外,作為使覆蓋精度進一步改善的技術,已知透過前饋等控制半導體製程的偏差變動、經時變化等的技術。作為這樣的技術,具體而言,已知AEC (Advanced Equipment Control,先進設備控制)、APC (Advanced Process Control,先進過程控制)等。另外,已知透過機器學習來學習在檢查裝置中測量的結果,前饋給光刻裝置、塗敷顯影裝置(塗布機/顯影機)的技術。
作為在曝光裝置中對準測量失敗的要因,考慮由於基板的處理不良、範圍顯示器的像差的影響而雖然標記位於測量視野內但不清晰、或者由於標記的形成位置大幅偏移而不處於測量視野內等各種要因。
在測量視野內標記的位置大幅偏移的情況下,考慮曝光裝置接受基板時的位置偏移等由來於曝光裝置的要因、依賴於曝光裝置以外的裝置中的基板的處理程序的標記的位置變動等由來於曝光裝置以外的要因。
因此,在作為對準測量失敗的要因考慮複數個時,根據各失敗要因,保全也包含在內的處置方法也不同。
因此,在實施曝光裝置的保全時,需要進行正確的失敗要因的分類,並且進行基於這些的正確的判斷。
圖1是示出具備第一實施方式所涉及的判斷裝置的基板處理系統50的結構的框圖。
基板處理系統50具備至少一個半導體生產線1。
而且,各半導體生產線1具備:處理基板的複數個基板處理裝置10(半導體製造裝置);以及主電腦11(主控制裝置),控制複數個基板處理裝置10的動作。
作為基板處理裝置10,例如,可以舉出光刻裝置(曝光裝置、壓印裝置、帶電粒子束描繪裝置等)、成膜裝置(CVD裝置等)、加工裝置(雷射加工裝置等)、檢查裝置(覆蓋檢查裝置等)。
另外,在基板處理裝置10中,還可以包括塗敷顯影裝置(塗布機/顯影機),作為光刻處理的前處理對基板進行抗蝕劑材料(密接材料)的塗敷處理,並且作為光刻處理的後處理進行顯影處理。
此外,在曝光裝置中,透過經由原版(倍縮光罩、遮罩)對供給到基板之上的光致抗蝕劑進行曝光,在基板上的光致抗蝕劑中形成與原版的圖案對應的潛像。
在壓印裝置中,透過在使原版(模具、模版)接觸到供給到基板之上的壓印材料的狀態下使壓印材料硬化,在基板上形成圖案。
在帶電粒子束描繪裝置中,透過利用帶電粒子束向供給到基板之上的光致抗蝕劑描繪圖案,向基板上的光致抗蝕劑形成潛像。
如圖1所示,設置於各半導體生產線1的複數個基板處理裝置10分別與管理保養的管理裝置12連接。
由此,管理裝置12能夠分別管理設置於各半導體生產線1的複數個基板處理裝置10。
本實施方式所涉及的判斷裝置設置於基板處理裝置10、主電腦11以及管理裝置12中的任意裝置。
此外,在基板處理系統50中,複數個基板處理裝置10與主電腦11之間的連接、複數個基板處理裝置10與管理裝置12之間的連接可以是有線連接以及無線連接中的任意連接。
接下來,說明在基板處理系統50中各基板處理裝置10構成為曝光裝置的具體例。
圖2A是示出設置於基板處理系統50的曝光裝置10的結構的框圖。另外,圖2B是示出曝光裝置10具備的基板對準光學系統190的結構的示意圖。
曝光裝置10是被用於作為物品的半導體元件、液晶顯示元件、薄膜磁頭等裝置的製造,對基板進行圖案形成的光刻裝置。
另外,曝光裝置10以步進掃描式、或者步進重複式對基板進行曝光。
如圖2A所示,曝光裝置10具有主控制部100、光源控制部110、光源120、圖像處理部130、載台控制部140以及干涉計150。
另外,曝光裝置10具有原版對準光學系統160、原版載台171、投影光學系統180、基板對準光學系統190以及基板載台200。
原版載台171保持透過照明光學系統(未圖示)照明的原版170而移動。在原版170中,描繪應轉印到基板210的圖案。
投影光學系統180將原版170的圖案投影到基板210。基板載台200能夠保持基板210而移動。
原版對準光學系統160被用於原版170的對準。例如,原版對準光學系統160包括由蓄積型光電變換元件構成的攝像元件161、和將來自設置於原版170的標記的光引導到攝像元件161的光學系統162。
基板對準光學系統190被用於基板210的對準。在本實施方式中,基板對準光學系統190是檢測設置於基板210的標記211的離軸光學系統。
主控制部100包括CPU、記憶體等,控制曝光裝置10的各部,進行使基板210曝光的曝光處理以及與其關聯的處理。
在基板處理系統50中,主控制部100根據形成於原版170的標記的位置、形成於基板210的標記211的位置,控制基板載台200的位置。換言之,主控制部100進行原版170與基板210之間的對位、例如總體對準。
光源120包括鹵素燈等,對形成於基板210的標記211進行照明。
光源控制部110控制來自光源120的光、即用於對標記211進行照明的光的照明強度。
圖像處理部130對來自原版對準光學系統160中的攝像元件161、基板對準光學系統190中的攝像元件191A以及191B的圖像信號(檢測信號)進行圖像處理,取得標記的位置、即標記圖像。
在基板處理系統50中,圖像處理部130以及基板對準光學系統190作為測量形成於基板210的標記211的位置的測量裝置發揮功能。
干涉計150透過對設置於基板載台200的反射鏡212照射光,並檢測由反射鏡212反射的光,測量基板載台200的位置。
載台控制部140根據由干涉計150測量的基板載台200的位置,使基板載台200移動到任意的位置(驅動控制)。
在曝光裝置10中,來自未圖示的照明光學系統的光(曝光光)通過保持於原版載台171的原版170入射到投影光學系統180。
而且,原版170和基板210配置為相互在光學上共軛的位置關係,所以將原版170的圖案經由投影光學系統180在保持於基板載台200的基板210上成像而轉印。
基板對準光學系統190作為檢測形成於基板210上的標記211來生成檢測信號(在本實施方式中為圖像信號)的檢測部發揮功能。
如圖2B所示,基板對準光學系統190具備攝像元件191A以及191B、成像光學系統192A以及192B、以及半反射鏡193。另外,基板對準光學系統190具備照明光學系統194、偏振分束器195、中繼透鏡196、λ/4板197以及物鏡198。
在曝光裝置10中,將來自光源120的光經由光纖(未圖示)等,導入到基板對準光學系統190。
然後,導入到基板對準光學系統190的光如圖2B所示,經由照明光學系統194入射到偏振分束器195。
然後,透過偏振分束器195反射的光通過中繼透鏡196、λ/4板197以及物鏡198,對形成於基板210的標記211進行照明。
透過標記211反射的光通過物鏡198、λ/4板197、中繼透鏡196以及偏振分束器195,入射到半反射鏡193。
然後,入射到半反射鏡193的光在透過半反射鏡193以恰當的強度比率分割成二個光之後,分別導入到成像倍率相互不同的成像光學系統192A以及192B。
成像光學系統192A以及192B分別在攝像元件191A以及191B的攝像面上形成標記211的像。
攝像元件191A以及191B分別包括對包括標記211的區域進行攝像的攝像面,生成與在攝像面中攝像的區域對應的圖像信號。
然後,由攝像元件191A以及191B生成的圖像信號被圖像處理部130讀出。
在本實施方式中,圖像處理部130透過針對讀出的圖像信號進行作為圖像處理的圖案匹配處理,取得攝像元件191A以及191B的攝像面中的標記211的位置。
圖案匹配處理一般大致分成以下的2種類。
一個是對圖像(濃淡圖像)進行二值化並與預先準備的模版匹配,將最相關的位置作為標記211的位置的方法。
另一個是原樣地保持濃淡圖像,透過與包含濃淡資訊的模版進行相關運算,求出標記211的位置的方法。
此外,利用圖像處理部130的圖像處理不限於圖案匹配處理,只要是能夠取得標記211的位置資訊的處理,則例如也可以是邊緣檢測處理等其他處理。
另外,作為對準方式,有移動測量方式和圖像處理方式。
在移動測量方式中,一邊使基板載台200移動,一邊對設置於基板210的標記211照射光(雷射)。然後,透過並行地測量從標記211反射的光的強度的變化和基板載台200的位置,求出標記211的位置。
在圖像處理方式中,在使基板載台200靜止的狀態下對設置於基板210的標記211照射白色光。然後,透過用蓄積型光電變換元件檢測從標記211反射的光並進行圖像處理,求出標記211的位置。
另外,作為在這樣的對準方式中使用的對準光學系統,有TTL(經由透鏡(through the lens))光學系統、TTR(經由倍縮光罩(through the reticle))光學系統、離軸(off axis)光學系統。
TTL光學系統經由投影光學系統,檢測設置於基板的標記。TTR光學系統經由投影光學系統,同時檢測設置於倍縮光罩的標記和設置於基板的標記。離軸光學系統是不經由投影光學系統而在從投影光學系統的光軸離開預定的距離的位置具有光軸的專用光學系統,從專用光源照射白色光而檢測設置於基板的標記。
如上所述,設置於本實施方式所涉及的基板處理系統50的基板對準光學系統190是離軸光學系統。
在曝光裝置10中,使用取得的標記211的位置資訊,進行預對準以及精密對準這二種對準。
此處所稱的預對準是指,檢測從未圖示的基板搬送系統送入到基板載台200的基板210的位置偏移量,對基板210進行粗對位(定位)以使得能夠開始精密對準。
另外,此處所稱的精密對準是指,高精度地測量由基板載台200保持的基板210的位置,以使基板210的對位誤差成為容許範圍內的方式對基板210精密地進行對位(定位)。
在預對準中,如上所述,必須檢測從未圖示的基板搬送系統送入到基板載台200的基板210的位置偏移量。
因此,檢測標記211的基板對準光學系統190針對標記211的尺寸具有廣泛的檢測範圍(視野)。
為了根據這樣的廣泛的檢測範圍求出標記211的位置(XY坐標),多使用如上述的圖案匹配(模版匹配)處理。
在圖案匹配處理中,針對低對比度圖像、雜訊圖像、或者包括在加工基板210時發生異常的標記的圖像,標記211的檢測困難。
標記211的測量有時由於某種要因而失敗。即,在精密對準中,有時無法檢測標記211。另外,即使能夠檢測標記211,在圖像處理中由於某種要因有時也無法取得位置而失敗。
例如,可能有由於基板210的處理程序的影響而標記211不清晰的情況、由於基板對準光學系統190的像差的影響而標記211看不清的情況等。
另外,還考慮標記211的位置偏離攝像元件191A以及191B的攝像面的視野。
在攝像元件191A或者191B的攝像面的視野內得到標記211的清晰的圖像的情況下,能夠透過圖像處理正確地測量標記211的位置。
然而,在圖像的對比度變低、或者由於像差的影響在圖像中有失真的情況下,有時無法正確地測量標記211的位置。
另外,作為標記211偏離攝像元件191A以及191B的攝像面的視野的要因,考慮預對準中的誤測量、測量前的搬送處理中的位置偏移等裝置所引起的要因。
另外,作為標記211偏離攝像元件191A或者191B的攝像面的視野的要因,還考慮標記211的轉印位置變動等基板210的處理程序所引起的要因。
在標記211的測量失敗的情況下,無法正常地進行基板210的對位。
而且,在無法正常地進行基板210的對位的情況下,執行用於使對位能夠正常地進行的保全處理(保養(maintenance)處理)。
作為保全處理,例如,包括複數個標記211中的使用的標記的變更、標記的像的檢索範圍的擴大、攝像條件的變更等。
在基板210中對準處理失敗的情況下,即使之後針對基板210進行曝光處理,也無法達成充分的對準精度。
此時,通常,發生差錯而停止基板210的處理,進行用於調查和消除失敗原因的作業。
另一方面,在基板210中對準處理成功的情況下,接著進行針對基板210的曝光處理,但即使在對準處理成功的情況下,也存在在曝光處理中未達成充分的對準精度的可能性。
作為這樣的可能性中的原因之一,可以舉出由於標記211的位置的誤測量而用於針對基板210的對位的計算結果變得不正確。
例如,在對包括標記211的區域進行攝像而得到的標記圖像中,由於塵土的附著、其他攝像時的狀態影響而生成錯誤的圖像信號,從而發生標記211的位置的誤測量。
在發生標記211的位置的誤測量時,在基板210的對位的計算時會使用錯誤的值。
因此,計算出的結果,即使基板210的對位誤差收斂於容許範圍內而對準處理成功,在曝光處理時對準精度仍降低。
圖3A以及圖3B分別是示出用於判斷在曝光裝置10中是否需要保全的結構的框圖以及處理流程圖。
首先,透過設置於曝光裝置10的圖像處理手段300,進行針對基板210的圖像處理,取得標記圖像(圖像數據)(步驟S401)。
然後,在圖像處理手段300根據標記圖像判定為基板210的對位誤差成為容許範圍內而對準成功的情況下,透過設置於曝光裝置10的曝光處理手段350執行曝光處理。
另外,與執行曝光處理同時地,將關聯數據附加到標記圖像,從而圖像處理手段300在取得對準數據301之後,交接給圖像分類手段400(步驟S402)。
另外,即使在圖像處理手段300根據標記圖像判斷為基板210的對位誤差不在容許範圍內而對準失敗的情況下,同樣地在取得對準數據301之後,交接給圖像分類手段400(步驟S402)。
此外,即使在圖像處理手段300中判定為對準成功,由於誤測量實際上也有時失敗。
在這樣的情況下,也可以透過由未圖示的外部測量器測量的該基板210的覆蓋測量結果,將由於誤測量判定為成功的對準數據301再判定為失敗。
在此,關聯數據是包括與取得的標記圖像關聯的資訊的數據。例如,關聯數據可以包括確定曝光裝置10的機種、型號、硬體結構、軟體結構、設置線等構成的資訊。
另外,關聯數據可以包括確定批次、基板210、原版170、配方、環境條件、處理日期時間等構成的資訊。
另外,關聯數據可以包括確定標記測量時的曝光裝置10的各種偏置的設定、對標記211進行照明的光源120的光量、光學系統的聚焦量等照明條件等構成的資訊。
另外,關聯數據可以包括確定標記211的類別等曝光裝置10的對準時的動作條件、載台的位置資訊等構成的資訊。
另外,關聯數據可以包括確定緊接在前的對準測量結果、基板載台200吸附基板210的壓力等對準時的動作狀態等構成的資訊。
另外,交接給圖像分類手段400的對準數據301不限於上述,也可以是透過使用機器學習等的未圖示的圖像分類手段對標記圖像進行分類的結果。
如上所述,在交接給圖像分類手段400的對準數據301中,還包括由圖像處理手段300判定為對準成功或者失敗的任意的對準數據301,但不限於此。
為了提高處理量,也可以僅將由圖像處理手段300判定為對準失敗的對準數據301交接給圖像分類手段400。
另外,在步驟S401中測量的標記211的數量既可以是1個也可以是複數個,另外,交接給圖像分類手段400的對準數據301的數量既可以是1個也可以是複數個。
另外,也可以每當針對一個標記211的圖像處理結束時,依次進行針對圖像分類手段400的對準數據301的交接。另外,不限於此,也可以在針對基板210的所有標記211而圖像處理結束之後總括地進行。
接下來,圖像分類手段400將接受的對準數據301分類為與對準失敗要因有關的複數個類別的某一類別(步驟S403)。
此外,圖像分類手段400能夠透過在曝光裝置10的主控制部100、管理裝置12以及主電腦11中的至少一個中執行的軟體程式實現。
在本實施方式所涉及的判斷裝置中,作為基板處理系統50中的對準數據301的具體的分類的方法,使用如以下所示的機器學習。
作為使用機器學習的用於判斷的方法,有作成學習數據來進行機器學習的有監督學習。
而且,在有監督學習中,需要作成包括輸入數據、和作為與輸入數據對應的正解的數據的輸出數據的學習數據(教師數據)。
在本實施方式所涉及的判斷裝置中,在圖像分類手段400中,使用透過將輸入了分類的類別編號的複數個對準數據301用作學習數據305的機器學習得到的學習模型。
在此,機器學習能夠使用例如神經網路進行。神經網路是指,具有輸入層、中間層、輸出層這樣的多層的網路構造的模型。
而且,透過使用表示輸入數據和輸出數據的關係的學習數據,用反向傳播算法等算法使網路內部的隨機變數最佳化,能夠取得學習模型。
在此,說明使用神經網路來取得學習模型的例子,但不限於此,也可以使用例如支持向量機、決策樹等其他模型、算法來取得學習模型。
然後,圖像分類手段400透過對取得的學習模型輸入對準數據301,作為輸出數據輸出包括與對準數據301對應的類別編號的分類資訊302。
接下來,示出本實施方式所涉及的判斷裝置中的學習數據的具體的作成。
首先,透過使用以前針對基板210進行的對準處理的結果,將對準數據301作為輸入數據,將與向各類別編號的分類對應的分類資訊302作為輸出數據,作成學習數據305。
作為分類資訊302,能夠設定例如以下的表1所示的類別編號0至5。
[表1]
類別編號 | 分類資訊302 | |
失敗要因 | 保全方法 | |
0 | 無(對準成功) | 無 |
1 | 無法確定的要因 | 無 |
2 | 基板交接時的位置偏移 | 基板交接位置的調整 |
3 | 測量時光量的設定錯誤 | 測量時光量的調整 |
4 | 基板載台的振動 | 基板載台振動的調整 |
5 | 對準光源的劣化 | 對準光源的更換 |
: | : | : |
此外,關於如表1所示的各類別編號,可以根據對準處理過去失敗時的對準數據301、曝光裝置10自動地恢復動作的結果等手動地設置。或者,關於如表1所示的各類別編號,也可以使用機器學習等自動地設置。
如表1所示,在本實施方式所涉及的判斷裝置中,作為分類資訊302,針對每個類別編號,設置對準處理失敗的要因以及用於改善該要因的保全方法。
此外,在表1中,針對一個類別編號,確定一個要因,提示一個保全方法,但不限於此,也可以針對一個類別編號,確定複數個要因,提示複數個保全方法。
具體而言,類別編號0是不包含對準失敗要因的正常的對準數據301,與不需要保全的情況的分類對應。
另外,類別編號1的對準失敗要因無法確定、保全方法不明的情況的分類對應。
另外,類別編號2的對準失敗要因是交接基板210時的位置偏移、且保全方法是基板210的交接位置的調整的情況的分類對應。
另外,類別編號3的對準失敗要因是對準測量時的光源120的光量的設定失誤、且保全方法是對準測量時的光源120的光量的調整的情況的分類對應。
另外,類別編號4的對準失敗要因是對準測量時的基板載台200的振動、且保全方法是對準測量時的針對基板載台200的振動的調整的情況的分類對應。
另外,類別編號5的對準失敗要因是光源120的劣化、且保全方法是光源120的更換的情況的分類對應。
在這些分類中,有效地使用在對準數據301中附加的關聯數據。
此外,上述類別是一個例子,也可以設定其以外的分類的類別。
而且,為了作成作為輸出數據的分類資訊302,能夠將作為輸入數據的對準數據301透過圖像分類手段400分類為類別編號0至5,取得分類資訊302。
此外,在對準數據301複合地適合於上述類別的情況下,也可以分類為適合的程度最大的類別。
另外,不限於此,在對準數據301複合地適合於上述類別的情況下,也可以根據適合於各個類別的程度進行加權而分類。
根據上述要點,透過將對準數據301作為輸入數據,將與向各類別編號的分類對應的分類資訊302作為輸出數據,能夠作成學習數據305。
然後,透過學習附加類別編號的複數個對準數據301,能夠作成推論邏輯。
此外,在上述中,透過圖像分類手段400執行用於作成學習數據305的對準數據301的分類,但不限於此。
例如,為了作成為了得到學習模型而所需的學習數據305,還能夠由用戶確認複數個對準數據301而手動地輸入類別編號。
另外,為了提高從學習模型輸出的分類資訊302的正解率,需要針對大量的對準數據301作成學習數據305。
如圖3A所示,在顯示裝置206中,顯示為了操作曝光裝置10而所需的資訊、與曝光裝置10的動作有關的資訊等。
圖4是例示性地示出顯示於顯示裝置206的畫面900的圖。
另外,在輸入裝置205中,由用戶輸入為了操作曝光裝置10而所需的資訊、為了使顯示裝置206顯示畫面而所需的資訊等。
進而,透過使顯示裝置206顯示為了輸入分類的類別編號而所需的資訊,用戶能夠經由輸入裝置205輸入用於分類的類別編號的資訊。
另外,在未圖示的CPU中,執行使顯示裝置206顯示資訊的顯示手段800、使輸入裝置205輸入資訊的輸入手段810的處理。
另外,在未圖示的CPU中,執行判定顯示裝置206中的顯示以及輸入裝置205中的輸入可否有效化的判定手段820的處理。
另外,在記憶裝置204中,記憶未輸入類別編號的未作成數據801和已輸入類別編號的已作成數據802。
未作成數據801是在對準處理中取得的對準數據301、且是用於作成學習數據的數據。
另外,已作成數據802是關於未作成數據801附加類別編號的數據,成為輸入到圖像分類手段400的學習數據305。
在此,顯示裝置206、輸入裝置205以及記憶裝置204可以設置於曝光裝置10,不限於此,也可以設置於主電腦11以及管理裝置12等外部的資訊處理裝置。
另外,顯示手段800以及輸入手段810能夠透過在曝光裝置10的主控制部100、管理裝置12以及主電腦11中的至少1個中執行的軟體程式實現。
另外,判定手段820能夠透過在曝光裝置10的主控制部100、管理裝置12以及主電腦11中的至少1個中執行的軟體程式實現。
顯示手段800使顯示裝置206顯示為了作成學習數據305而所需的資訊。
圖5是例示性地示出學習數據305的作成畫面的圖。
如圖5所示,在畫面910中,顯示與包含於未作成數據801的數據關聯的資訊。
例如,在畫面910中,顯示由基板對準光學系統190攝像的標記211的標記圖像911。
另外,在畫面910中,顯示例如曝光裝置10的機種、曝光裝置10的設置線、曝光裝置10的照明條件、基板載台200的位置資訊等對標記211進行攝像時的關聯數據912。
另外,在畫面910中,顯示表示分類的選項、和表示是否選擇了分類的選擇狀態的分類資訊913。
關於分類資訊913的選擇狀態,能夠使用輸入裝置205來輸入選擇、非選擇。
在選擇了某個分類的狀態下按下確定按鈕914的情況下,關於顯示的未作成數據801輸入所選擇的分類的資訊。
另外,在中止按鈕915被按下的情況下,學習數據305的作成被中止。
此外,顯示手段800也可以使畫面910顯示複數個未作成數據801、複數個關聯數據912、以及複數個分類資訊913,關於複數個未作成數據801選擇分類。
輸入手段810取得從輸入裝置205輸入的分類的選擇資訊。然後,輸入手段810將分類的選擇資訊與記憶於記憶裝置204的未作成數據801關聯起來,作為已作成數據802記憶到記憶裝置204。
判定手段820根據預定的條件,判定學習數據305的作成的開始、結束。即,判定手段820判定是否開始使顯示手段800顯示用於進行顯示裝置206中的分類選擇的資訊,使輸入手段810輸入分類的選擇資訊的處理。
另外,判定手段820判定是否使顯示手段800的用於進行顯示裝置206中的分類選擇的資訊顯示、輸入手段810的分類選擇資訊的輸入處理結束。
圖像分類手段400在已作成數據802達到預定的件數的情況下,也可以將已作成數據802作為學習數據305追加地進行學習,從記憶裝置204刪除已作成數據802。
另外,也可以在記憶裝置204中,記憶未作成數據801以及已作成數據802的件數,透過輸入手段810、圖像分類手段400更新這些數據的件數。
另外,也可以在記憶裝置204中,記憶已作成數據802中的學習完的數據(追加到學習數據305的數據)以及未學習的數據(未追加到學習數據305的數據)各自的件數。而且,也可以透過輸入手段810、圖像分類手段400更新這些數據的件數。
另外,顯示手段800也可以使這些數據的件數顯示於顯示裝置206。
接下來,說明作成學習數據305的處理。
圖6是示出作成學習數據305的處理的流程圖。
在S110中,判定手段820根據開始學習數據305的作成的預定的條件,判定是否開始學習數據305的作成。
在判定手段820判定為不開始學習數據305的作成的情況下,在經過預定的期間之後,返回到S110,再次判定是否開始學習數據305的作成。
另一方面,在判定手段820判定為開始學習數據305的作成的情況下,進入到S111,開始學習數據305的作成。
然後,在S111中,在包含於未作成數據801的對準數據301中依照上述要點附加分類的類別編號的資訊。
然後,在S112中,從未作成數據801刪除附加有類別編號的對準數據301,追加到已作成數據802。
然後,在S113中,判定手段820根據結束學習數據305的作成的預定的條件,判定是否結束學習數據305的作成。
在判定手段820判定為不結束學習數據305的作成的情況下,返回到S111,接下來的未作成數據801顯示於顯示裝置206。
另一方面,在判定手段820判定為結束學習數據305的作成的情況下,結束畫面910的顯示,結束作成學習數據305的處理。
另外,顯示手段800也可以使用戶判定是否使得用於對未作成數據801進行分類的畫面顯示於顯示裝置206。
圖7是示出使學習數據305的作成畫面顯示的按鈕的例示性的圖。
按鈕901是用於使用戶判定是否使得用於對未作成數據801進行分類的畫面顯示於顯示裝置206的按鈕。
在顯示手段800使按鈕901顯示於畫面900,且由用戶按下按鈕的情況下,使得用於對未作成數據801進行分類的畫面顯示於顯示裝置206。
另外,顯示手段800也可以使表示未作成數據801的件數的訊息902與按鈕901總括顯示。
透過顯示訊息902,用戶能夠根據未作成數據801的件數,判定是否開始學習數據305的作成。
另外,透過在管理裝置12等設置於曝光裝置10的外部的裝置中設置圖像分類手段400,能夠從複數個曝光裝置10接受對準數據301,作成學習數據305。
另外,圖像分類手段400也可以在預先設定的期間或者直至件數的上限為止,保管接受的對準數據301的全部或者一部分。
進而,也可以使得能夠從一覽顯示的複數個類別選擇任意的類別,調出分類為所選擇的類別而保管的對準數據301並進行畫面顯示。
另外,也可以使得能夠合計包含於所選擇的類別的對準數據301的數量而顯示結果。
另外,也可以使得能夠用被賦予的關聯數據來區分包含於選擇的類別的對準數據301,合計來顯示結果。
然後,在步驟S403中透過圖像分類手段400分類對準數據301後,透過曝光裝置10或者管理裝置12顯示分類結果(步驟S404)。
然後,根據顯示的分類結果,用戶或者判斷裝置判斷能否保全處理303(判斷保全的必要性)(步驟S405)。
在判斷為能夠保全處理的情況下(步驟S405的“是”),手動或者自動地執行保全處理303(步驟S406)。另一方面,在判斷為不能保全處理303的情況下(步驟S405的“否”),結束保全處理的實施判斷。
此外,此處所稱的保全處理303例如如表1所示,既可以透過裝置自動地實施,也可以為了使用戶手動地實施而透過裝置顯示警告。
接下來,監視對準數據301是否被再次分類為已實施保全處理303的類別編號、即是否儘管已實施保全處理303但再次發生同樣的對準失敗(步驟S407)。
然後,在對準數據301被再次分類為已實施保全處理303的類別編號的情況下、即問題未消除的情況下(步驟S407的“否”),以將對準數據301分類為其他類別編號的方式進行追加學習(步驟S408)。
此外,該追加學習(變更分類的基準)既可以由用戶手動地執行,也可以透過裝置自動地執行。
另一方面,在預定的時間中對準數據301未被再次分類為已實施保全處理303的類別編號的情況下(步驟S407的“是”),結束保全處理的實施判斷。
如以上所述,在本實施方式所涉及的判斷裝置中,使用透過機器學習取得的學習模型,針對由曝光裝置10取得的對準數據301,進行與對準失敗要因有關的分類。然後,根據分類的對準失敗要因,判斷是否需要保全曝光裝置10。
由此,能夠得到能夠判斷是否需要保全曝光裝置10的判斷裝置。
[第二實施方式]
圖8A以及圖8B分別是示出在第二實施方式所涉及的判斷裝置中用於判斷在曝光裝置10中是否需要保全的結構的框圖以及處理流程圖。
此外,本實施方式所涉及的判斷裝置除了新設置失敗判定手段430以外,結構與第一實施方式所涉及的判斷裝置相同,所以對相同部件附加相同編號,省略說明。
首先,透過設置於曝光裝置10的圖像處理手段300,進行針對基板210的圖像處理,取得標記圖像(圖像數據)(步驟S601)。
然後,在圖像處理手段300根據標記圖像判定為基板210的對位誤差成為容許範圍內而對準成功的情況下,透過設置於曝光裝置10的曝光處理手段350執行曝光處理。
另外,與執行曝光處理同時地,將關聯數據附加到標記圖像,從而圖像處理手段300在取得對準數據301之後,交接給圖像分類手段400(步驟S602)。
另外,即使在圖像處理手段300根據標記圖像判定為基板210的對位誤差不在容許範圍內而對準失敗的情況下,也同樣地在取得對準數據301之後,交接給圖像分類手段400(步驟S602)。
此外,即使在圖像處理手段300中判定為對準成功,由於誤測量實際上也有時失敗。
在這樣的情況下,也可以透過由未圖示的外部測量器測量的該基板210的覆蓋測量結果,將由於誤測量判定為成功的對準數據301再判定為失敗。
在此,關聯數據是包括與取得的標記圖像關聯的資訊的數據。例如,關聯數據可以包括確定曝光裝置10的機種、型號、硬體結構、軟體結構、設置線等構成的資訊。
另外,關聯數據可以還包括確定批次、基板210、原版170、配方、環境條件、處理日期時間等構成的資訊。
進而,關聯數據可以包括確定標記測量時的曝光裝置10的各種偏置的設定、對標記211進行照明的光源120的光量、光學系統的聚焦量等照明條件等構成的資訊。
另外,關聯數據可以包括確定標記211的類別等曝光裝置10的對準時的動作條件、載台的位置資訊等構成的資訊。
另外,關聯數據可以包括確定緊接在前的對準測量結果、基板載台200吸附基板210的壓力等對準時的動作狀態等構成的資訊。
另外,交接給圖像分類手段400的對準數據301不限於上述,也可以是透過使用機器學習等的未圖示的圖像分類手段對標記圖像進行分類的結果。
如上所述,在交接給圖像分類手段400的對準數據301中,還包括由圖像處理手段300判定為對準成功或者失敗的任意的對準數據301,但不限於此。
為了提高處理量,也可以僅將由圖像處理手段300判定為對準失敗的對準數據301交接給圖像分類手段400。
另外,在步驟S601中測量的標記211的數量既可以是1個也可以是複數個,另外,交接給圖像分類手段400的對準數據301的數量既可以是1個也可以是複數個。
另外,也可以每當針對一個標記211的圖像處理結束時,依次進行針對圖像分類手段400的對準數據301的交接。另外,不限於此,也可以在針對基板210的所有標記211而圖像處理結束之後一併地進行。
接下來,圖像分類手段400透過將接受的對準數據301分類為與對準失敗要因有關的複數個類別的某一類別,取得分類資訊302(步驟S603)。
此外,圖像分類手段400能夠透過在曝光裝置10的主控制部100、管理裝置12以及主電腦11中的至少一個中執行的軟體程式實現。
作為分類資訊302,能夠設定例如以下的表2所示的類別編號0至5。
[表2]
類別 編號 | 分類資訊302 | |
失敗的要因 | 保全方法 | |
0 | 無(對準成功) | 無 |
1 | 無法確定的要因 | 無 |
2 | 基板交接時的位置偏移 或 依賴於基板處理程序的 標記的位置變動 | 基板交接位置的調整 或 無 |
3 | 測量時光量的設定錯誤 | 測量時光量的調整 |
4 | 基板載台的振動 或 依賴於基板處理程序 的對比度的降低 | 基板載台振動的調整 或 無 |
5 | 對準光源的劣化 | 對準光源的更換 |
: | : | : |
此外,如表2所示的各類別編號可以根據對準處理過去失敗時的對準數據301、曝光裝置10自動地恢復動作的結果等手動地設置。或者,如表2所示的各類別編號也可以使用機器學習等自動地設置。
如表2所示,在本實施方式所涉及的判斷裝置中,作為分類資訊302,針對每個類別編號,設置對準處理失敗的要因以及用於改善該要因的保全方法。
具體而言,類別編號0是不包含對準失敗要因的正常的對準數據301,與不需要保全的情況的分類對應。
另外,類別編號1與對準失敗要因無法確定、保全方法不明的情況的分類對應。
另外,類別編號2與對準失敗要因是交接基板210時的位置偏移、或者依賴於基板210的處理程序的標記211的位置變動、且在前者的情況下保全方法是基板210的交接位置的調整的情況的分類對應。
另外,類別編號3與對準失敗要因是對準測量時的光源120的光量的設定失誤、且保全方法是對準測量時的光源120的光量的調整的情況的分類對應。
另外,類別編號4與對準失敗要因是對準測量時的基板載台200的振動、或者依賴於基板210的處理程序的對比度的降低的情況的分類對應。而且,在對準失敗要因是前者的情況下,與保全方法是對準測量時的針對基板載台200的振動的調整的情況的分類對應。
另外,類別編號5與對準失敗要因是光源120的劣化、且保全方法是光源120的更換的情況的分類對應。
在這些分類中,有效地使用在對準數據301中附加的關聯數據。
此外,上述類別是一個例子,也可以設定其以外的分類的類別。
此外,在對準數據301複合地適合於上述類別的情況下,也可以分類為適合的程度最大的類別。
另外,不限於此,在對準數據301複合地適合於上述類別的情況下,也可以根據適合於各個類別的程度進行加權而分類。
在第一實施方式所涉及的判斷裝置中,如表1所示,針對一個類別編號確定一個要因,提示一個保全方法。
然而,在本實施方式所涉及的判斷裝置中,有如表2所示,針對一個類別編號確定複數個要因,針對各個要因提示保全方法的情況。
例如,在表2所示的類別編號2中,作為對準失敗要因,確定作為由來於曝光裝置10的要因的“交接基板210時的位置偏移”或者作為由來於基板處理程序的要因的“依賴於基板210的處理程序的標記211的位置變動”。
這意味著,僅根據既存的對準數據301,無法將對準失敗要因收斂為一個。
例如,考慮在包含於對準數據301的標記圖像中標記211的位置大幅偏移的情況。
此時,在曝光裝置10的圖案匹配處理中由於標記211的位置大幅偏移到無法測量的程度,而發生對準失敗。
而且,設為透過由圖像分類手段400實施的分類,根據標記211的位置大幅偏移,對準數據301被分類成類別編號2。
此時,根據在類別編號2中確定的要因,透過保全曝光裝置10能夠進行修復。
即,在由於曝光裝置10中的基板210的接受位置偏移而發生該對準失敗的情況下,透過在曝光裝置10中調整基板210的接受位置能夠進行修復。
然而,在有依賴於基板210的處理程序的標記211的位置變動、即在基板210上的偏移的位置形成標記211的情況下,需要考慮了曝光裝置10以外的裝置中的基板處理程序的調整。因此,在曝光裝置10的保全處理中無法進行修復。
在本實施方式所涉及的判斷裝置中,在如上所述透過圖像分類手段400將對準數據301分類為懷疑複數個要因的類別編號的情況下,使用失敗判定手段430。
即,圖像分類手段400將這樣分類的分類資訊302交接給失敗判定手段430,判定是否為由來於曝光裝置的要因(步驟S604)。
在此,失敗判定手段430能夠透過例如在管理裝置12中執行的軟體程式實現。
表3分別例示性地示出將在過去的預定的次數的對準處理的失敗中取得的複數個標記圖像針對每個曝光裝置分類為各類別編號的次數。
[表3]
如上所述,對準失敗要因存在在對準測量時使用的光源120的種類、標記211的形狀等對準動作條件根據曝光裝置而不同、即依賴於裝置的可能性。
因此,失敗判定手段430透過在曝光裝置之間比較如表3所示的透過過去的相互相同的次數的對準處理取得的分類資訊302,進行判定。
例如,在表3中關注於類別編號2時,可知在曝光裝置EQ2中分類的次數比其他曝光裝置顯著多。
因此,失敗判定手段430在被分類為類別編號2的對準數據301是在曝光裝置EQ2中取得的對準數據的情況下,將上述比較結果、即確定是由來於曝光裝置的要因的判定結果431回送給圖像分類手段400。
然後,圖像分類手段400根據判定結果431,從確定的複數個對準失敗要因,選擇適合的對準失敗要因,即進行進一步分類,輸出分類資訊302(步驟S605)。
即,圖像分類手段400在將在曝光裝置EQ2中取得的對準數據301分類為類別編號2時,分類為對準失敗要因是交接基板210時的位置偏移。然後,能夠分類為保全方法是基板210的交接位置的調整。
此外,也可以根據計算在各曝光裝置中分類的次數的中央值、平均值,在預定的曝光裝置中分類的次數與其的差超過閾值,進行失敗判定手段430中的判定。
另外,如果將在預定的裝置中分類的次數設為x、將在各曝光裝置中分類的次數的平均值以及標準差分別設為μ以及σ,則也可以根據檢驗統計量|x-μ|/σ超過閾值,進行失敗判定手段430中的判定。
另外,失敗判定手段430中的判定方法不限定於上述,另外,還能夠採用選擇統計異常值的手法。
另外,在本實施方式所涉及的判斷裝置中,透過比較針對在各曝光裝置中取得的相同數量的標記圖像的分類,進行失敗判定手段430中的判定,但不限於此。例如,也可以透過比較針對各曝光裝置中的相同期間內取得的標記圖像的分類,進行失敗判定手段430中的判定。
另外,也可以限定於在預定的對準模式、配方等特定的動作條件下實施的對準處理中取得的標記圖像,進行失敗判定手段430中的判定。即,也可以透過比較針對各基板處理裝置中的透過相同動作條件取得的標記圖像的分類,進行失敗判定手段430中的判定。
然後,在步驟S605中透過圖像分類手段400輸出分類資訊302後,透過裝置顯示分類結果(步驟S606)。
然後,根據顯示的分類結果,用戶或者裝置判斷能否保全處理303(步驟S607)。
在判斷為能夠保全處理303的情況下(步驟S607的“是”),手動或者自動地執行保全處理303(步驟S608)。另一方面,在判斷為不能保全處理303的情況下(步驟S607的“否”),結束保全處理的實施判斷。
此外,此處所稱的保全處理303是例如表2所示的例子,既可以透過裝置自動地實施,也可以為了使用戶手動地實施而透過裝置顯示警告。
接下來,監視對準數據301是否被再次分類為已實施保全處理303的類別編號、即是否儘管已實施保全處理303但再次發生同樣的對準失敗(步驟S609)。
然後,在對準數據301被再次分類為已實施保全處理303的類別編號的情況下、即判斷為問題未消除的情況下(步驟S609的“否”),實施以下的二個中的任意一個。
即,以透過圖像分類手段400將對準數據301分類為其他類別編號的方式進行追加學習(變更分類的基準),或者,變更步驟S604的判斷中的閾值(變更判斷的基準)(步驟S610)。
此外,步驟S610中的追加學習既可以由用戶手動地執行,也可以透過裝置自動地執行。另外,步驟S610中的閾值的變更既可以由用戶手動地執行,也可以透過裝置使用機器學習等自動地執行。
另一方面,在預定的時間中對準數據301未被再次分類為已實施保全處理303的類別編號的情況下(步驟S609的“是”),結束保全處理的實施判斷。
如以上所述,在本實施方式所涉及的判斷裝置中,使用透過機器學習取得的學習模型,針對由曝光裝置10取得的對準數據301,進行與對準失敗要因有關的分類,並且相互比較各曝光裝置10中的分類。
由此,判斷分類的對準失敗要因是否由來於曝光裝置10,據此判斷是否需要保全曝光裝置10。
由此,能夠得到能夠更高精度地判斷是否需要保全曝光裝置10的判斷裝置。
[物品的製造方法]
利用本實施方式所涉及的判斷裝置的物品的製造方法例如適合於製造裝置(半導體元件、磁記憶媒體、液晶顯示元件等)等物品。
另外,本實施方式所涉及的物品的製造方法包括:使用曝光裝置10,對塗敷有感光劑的基板進行曝光(在基板上形成圖案的)的程序;以及使用未圖示的顯影裝置使曝光的基板顯影(處理基板)的程序。
另外,本實施方式所涉及的製造方法可以包括其他公知的程序(氧化、成膜、蒸鍍、摻雜、平坦化、蝕刻、抗蝕劑剝離、切割、接合、封裝等)。
本實施方式所涉及的物品的製造方法相比於以往,在物品的性能、質量、生產率以及生產成本的至少1個中更有利。
以上,說明了優選的實施方式,但當然不限定於這些實施方式,能夠在其要旨的範圍內進行各種變形以及變更。
另外,作為基板處理裝置10的一個例子,說明了曝光裝置,但不限定於此。
例如,作為基板處理裝置10的一個例子,也可以是使用模具向基板形成壓印材料的圖案的壓印裝置。
另外,作為基板處理裝置10的一個例子,也可以是經由帶電粒子光學系統用帶電粒子束(電子束、離子束等)對基板進行描繪,向基板形成圖案的描繪裝置。
另外,基板處理裝置10可以還包括將感光媒體塗敷到基板的表面上的塗敷裝置、使形成有圖案的基板顯影的顯影裝置等、在裝置等物品的製造中實施如上述的壓印裝置等裝置實施的程序以外的程序的製造裝置。
另外,實施上述示出的實施方式的方法、程式、記錄該程式的電腦可讀取的記錄媒體也包含於本實施方式的範圍。
根據本發明,能夠提供能夠判斷是否需要保全基板處理裝置的判斷裝置。
1:半導體生產線
10:基板處理裝置
11:主電腦
12:管理裝置
50:基板處理系統
100:主控制部
110:光源控制部
120:光源
130:圖像處理部
140:載台控制部
150:干涉計
160:原版對準光學系統
161:攝像元件
162:光學系統
170:原版
171:原版載台
180:投影光學系統
190:基板對準光學系統
193:半反射鏡
194:照明光學系統
195:偏振分束器
196:中繼透鏡
197:λ/4板
198:物鏡
200:基板載台
204:記憶裝置
205:輸入裝置
206:顯示裝置
210:基板
211:標記
212:反射鏡
300:圖像處理手段
301:對準數據
303:保全處理
305:學習數據
350:曝光處理手段
400:圖像分類手段
401:動作條件及失敗要因分類
430:失敗判定手段
431:判定結果
800:顯示手段
801:未作成數據
802:已作成數據
810:輸入手段
820:判定手段
900:畫面
911:標記圖像
912:關聯數據
913:分類資訊
914:確定按鈕
915:中止按鈕
191A:攝像元件
191B:攝像元件
192A:成像光學系統
192B:成像光學系統
[圖1]是示出第一實施方式所涉及的基板處理系統的結構的框圖。
[圖2A]是示出第一實施方式所涉及的基板處理系統具備的曝光裝置的結構的框圖。
[圖2B]是示出第一實施方式所涉及的基板處理系統具備的曝光裝置中設置的基板對準光學系統的結構的示意圖。
[圖3A]是示出第一實施方式所涉及的基板處理系統具備的用於判斷在曝光裝置中是否需要保全的結構的框圖。
[圖3B]是示出第一實施方式所涉及的基板處理系統具備的判斷在曝光裝置中是否需要保全的處理的流程圖。
[圖4]是例示性地示出第一實施方式所涉及的基板處理系統中的顯示裝置中顯示的畫面的圖。
[圖5]是例示性地示出第一實施方式所涉及的基板處理系統中的學習數據的作成畫面的圖。
[圖6]是示出第一實施方式所涉及的基板處理系統中的作成學習數據的處理的流程圖。
[圖7]是例示性地示出第一實施方式所涉及的基板處理系統中的使學習數據的作成畫面顯示的按鈕的圖。
[圖8A]是示出第二實施方式所涉及的基板處理系統具備的用於判斷在曝光裝置中是否需要保全的結構的框圖。
[圖8B]是示出第二實施方式所涉及的基板處理系統具備的判斷在曝光裝置中是否需要保全的處理的流程圖。
10:曝光裝置
204:記憶裝置
205:輸入裝置
206:顯示裝置
300:圖像處理手段
301:對準數據
303:保全處理
305:學習數據
350:曝光處理手段
400:圖像分類手段
800:顯示手段
801:未作成數據
802:已作成數據
810:輸入手段
820:判定手段
Claims (28)
- 一種判斷裝置,針對包含在基板處理裝置進行了攝像的基板上的標記的圖像數據與和前述圖像數據關聯的資訊的關聯數據的對準數據,使用透過機器學習取得的學習模型,進行與對準失敗要因有關的分類,根據該分類的結果,判斷是否需要保全前述基板處理裝置。
- 如請求項1的判斷裝置,其中,前述判斷裝置,透過在複數個前述基板處理裝置之間比較前述分類,從而進行前述分類。
- 如請求項2的判斷裝置,其中,前述判斷裝置,透過前述比較,判斷前述對準失敗要因是否由來於前述基板處理裝置。
- 如請求項3的判斷裝置,其中,前述判斷裝置,透過將針對在各基板處理裝置取得的相同數量的前述圖像數據進行的分類進行比較,從而判斷前述對準失敗要因是否由來於前述基板處理裝置。
- 如請求項3的判斷裝置,其中,前述判斷裝置,透過將針對在各基板處理裝置的相同期間內取得的前述圖像數據進行的分類進行比較,從而判斷前述對準失敗要因是否由來於前述基板處理裝置。
- 如請求項3的判斷裝置,其中,前述判斷裝置,透過將針對在各基板處理裝置的利用相同動作條件取得的前述圖像數據進行的分類進行比較, 從而判斷前述對準失敗要因是否由來於前述基板處理裝置。
- 如請求項3的判斷裝置,其中,前述判斷裝置,在判斷為前述對準失敗要因由來於前述基板處理裝置時,執行針對前述基板處理裝置的保全處理。
- 如請求項7的判斷裝置,其中,前述判斷裝置,判斷在執行前述保全處理之後前述對準失敗要因是否被消除,在未被消除的情況下,變更用於判斷前述對準失敗要因是否由來於前述基板處理裝置的基準。
- 如請求項1的判斷裝置,其中,前述判斷裝置,在對前述對準數據進行了分類之後,根據與分類後的該對準失敗要因對應的保全方法,執行針對前述基板處理裝置的保全處理。
- 如請求項9的判斷裝置,其中,前述判斷裝置,判斷在執行前述保全處理之後前述對準失敗要因是否被消除,在未被消除的情況下,變更前述分類的基準。
- 如請求項1的判斷裝置,其中,前述判斷裝置,顯示前述分類的結果以及與該結果對應的保全方法的至少一方。
- 如請求項1的判斷裝置,其中,前述判斷裝置僅針對前述對準數據中的對準處理失敗 的對準數據進行前述分類。
- 如請求項1的判斷裝置,其中,前述基板處理裝置是以使用曝光光將形成於原版的圖案轉印到前述基板上的方式對前述基板進行曝光的曝光裝置。
- 一種判斷裝置,針對在複數個基板處理裝置進行了攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型,將和對準失敗要因有關的分類,透過在前述複數個基板處理裝置之間進行比較從而進行,根據該分類的結果,判斷是否需要保全前述基板處理裝置。
- 一種判斷裝置,針對在基板處理裝置進行了攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型而進行和對準失敗要因有關的分類,根據該分類的結果,判斷是否需要保全前述基板處理裝置,透過和該所分類的對準失敗要因對應的保全方法而執行對於前述基板處理裝置之保全處理。
- 一種判斷裝置,針對在基板處理裝置進行了攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型而進行和對準失敗要因有關的分類,根據該分類的結果,判斷是否需要保全前述基板處理裝置,顯示前述分類的結果及和該結果對應的保全方法中的至少一方。
- 一種判斷裝置,僅針對在基板處理裝置進行了攝像的基板上的標記的圖像數據之中對準處理失敗的圖像數據,使用透過機器學習取得的學習模型而進行和對準失敗要因有關的分類,根據該分類的結果,判斷是否需要保全前述基板處理裝置。
- 一種判斷裝置,針對在以將形成於原版的圖案使用曝光光而轉印於前述基板上的方式對前述基板進行曝光的曝光裝置進行了攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型而進行和對準失敗要因有關的分類,根據該分類的結果,判斷是否需要保全前述曝光裝置。
- 一種處理基板的基板處理裝置,具有如請求項1至18中任一項的判斷裝置。
- 一種物品的製造方法,具有使用如請求項19的基板處理裝置處理基板的程序,根據處理後的前述基板而製造物品。
- 一種基板處理系統,具備:處理基板的複數個基板處理裝置;主電腦,控制該複數個基板處理裝置的動作;以及管理裝置,管理前述複數個基板處理裝置的保養,前述管理裝置包括如請求項1至18中任一項的判斷裝置。
- 一種判斷方法,具有:針對包含在基板處理裝置進行了攝像的基板上的標記 的圖像數據與和前述圖像數據關聯的資訊的關聯數據的對準數據,使用透過機器學習取得的學習模型,進行與對準失敗要因有關的分類的程序;以及根據進行該分類的程序的結果,判斷是否需要保全前述基板處理裝置的程序。
- 一種判斷方法,具有:針對在複數個基板處理裝置進行了攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型,將和對準失敗要因有關的分類,在前述複數個基板處理裝置之間進行比較從而進行的程序;以及根據該進行分類的程序的結果,判斷是否需要保全前述基板處理裝置的程序。
- 一種判斷方法,具有:針對在基板處理裝置進行了攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型,進行和對準失敗要因有關的分類的程序;根據該進行分類的程序的結果,判斷是否需要保全前述基板處理裝置的程序;以及根據和該所分類的對準失敗要因對應的保全方法,執行對於前述基板處理裝置之保全處理的程序。
- 一種判斷方法,具有:針對在基板處理裝置進行了攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型,進行和對準失敗要因有關的分類的程序; 根據該進行分類的程序的結果,判斷是否需要保全前述基板處理裝置的程序;以及顯示前述分類的結果及和該結果對應的保全方法中的至少一方的程序。
- 一種判斷方法,具有:僅針對在基板處理裝置進行了攝像的基板上的標記的圖像數據之中對準處理失敗的圖像數據,使用透過機器學習取得的學習模型,進行和對準失敗要因有關的分類的程序;以及根據該進行分類的程序的結果,判斷是否需要保全前述基板處理裝置的程序。
- 一種判斷方法,具有:針對在以將形成於原版的圖案使用曝光光轉印於前述基板上的方式對前述基板進行曝光的曝光裝置進行了攝像的基板上的標記的圖像數據,使用透過機器學習取得的學習模型,進行和對準失敗要因有關的分類的程序;以及根據該進行分類的程序的結果,判斷是否需要保全前述曝光裝置的程序。
- 一種記錄有程式的電腦可讀取記錄媒體,該程式使電腦判斷保全的必要性,該程式使電腦執行如請求項22~27中任一項的判斷方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-174330 | 2019-09-25 | ||
JP2019174330A JP7373340B2 (ja) | 2019-09-25 | 2019-09-25 | 判断装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202113510A TW202113510A (zh) | 2021-04-01 |
TWI829962B true TWI829962B (zh) | 2024-01-21 |
Family
ID=75042556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109131259A TWI829962B (zh) | 2019-09-25 | 2020-09-11 | 判斷裝置、基板處理裝置、物品的製造方法、基板處理系統、判斷方法及電腦可讀取記錄媒體 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7373340B2 (zh) |
KR (1) | KR20210036264A (zh) |
CN (1) | CN112558435B (zh) |
TW (1) | TWI829962B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009027020A (ja) * | 2007-07-20 | 2009-02-05 | Nikon Corp | 検査装置、露光装置及び検査方法 |
TWI616730B (zh) * | 2016-02-18 | 2018-03-01 | Asml荷蘭公司 | 微影裝置、器件製造方法及相關資料處理裝置及電腦程式產品 |
TW201816670A (zh) * | 2016-10-14 | 2018-05-01 | 美商克萊譚克公司 | 用於經組態用於半導體應用之深度學習模型之診斷系統及方法 |
TW201901113A (zh) * | 2017-05-11 | 2019-01-01 | 美商克萊譚克公司 | 用於對準以不同模態所獲取之影像之以學習為基礎之方法 |
US20190094721A1 (en) * | 2017-09-28 | 2019-03-28 | Asml Netherlands B.V. | Lithographic method |
TW201921167A (zh) * | 2016-10-21 | 2019-06-01 | 荷蘭商Asml荷蘭公司 | 判定圖案化製程之校正之方法、元件製造方法、用於微影裝置之控制系統及微影裝置 |
TW201935150A (zh) * | 2018-01-30 | 2019-09-01 | 荷蘭商Asml荷蘭公司 | 量測裝置及用於判定基板格柵的方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000260699A (ja) * | 1999-03-09 | 2000-09-22 | Canon Inc | 位置検出装置及び該位置検出装置を用いた半導体露光装置 |
JP2003332209A (ja) | 2002-05-13 | 2003-11-21 | Hitachi Ltd | 半導体デバイスの製造方法並びに製造ラインの診断方法、そのシステムおよびそのプログラム |
JP2007096069A (ja) * | 2005-09-29 | 2007-04-12 | Nikon Corp | 位置合わせ方法、重ね合わせ精度計測方法、露光方法、位置合わせ装置、露光装置、及び重ね合わせ精度計測装置 |
TW200745771A (en) * | 2006-02-17 | 2007-12-16 | Nikon Corp | Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium |
JP2008141018A (ja) | 2006-12-01 | 2008-06-19 | Canon Inc | 露光装置、露光装置のプログラム及びデバイス製造方法 |
US9025136B2 (en) * | 2008-09-23 | 2015-05-05 | Applied Materials, Inc. | System and method for manufacturing three dimensional integrated circuits |
JP2014093474A (ja) | 2012-11-06 | 2014-05-19 | Canon Inc | 露光装置の復旧方法、および露光装置 |
JP7010641B2 (ja) | 2017-09-27 | 2022-01-26 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 異常診断方法および異常診断装置 |
US10656518B2 (en) | 2017-12-17 | 2020-05-19 | United Microelectronics Corp. | Automatic inline detection and wafer disposition system and method for automatic inline detection and wafer disposition |
CN109556509B (zh) * | 2018-01-04 | 2020-07-03 | 奥特斯(中国)有限公司 | 对准标记的边缘锐度评估 |
JP7366626B2 (ja) | 2019-07-31 | 2023-10-23 | キヤノン株式会社 | 判断装置 |
-
2019
- 2019-09-25 JP JP2019174330A patent/JP7373340B2/ja active Active
-
2020
- 2020-09-11 TW TW109131259A patent/TWI829962B/zh active
- 2020-09-14 KR KR1020200117417A patent/KR20210036264A/ko not_active Application Discontinuation
- 2020-09-25 CN CN202011023439.8A patent/CN112558435B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009027020A (ja) * | 2007-07-20 | 2009-02-05 | Nikon Corp | 検査装置、露光装置及び検査方法 |
TWI616730B (zh) * | 2016-02-18 | 2018-03-01 | Asml荷蘭公司 | 微影裝置、器件製造方法及相關資料處理裝置及電腦程式產品 |
TW201816670A (zh) * | 2016-10-14 | 2018-05-01 | 美商克萊譚克公司 | 用於經組態用於半導體應用之深度學習模型之診斷系統及方法 |
TW201921167A (zh) * | 2016-10-21 | 2019-06-01 | 荷蘭商Asml荷蘭公司 | 判定圖案化製程之校正之方法、元件製造方法、用於微影裝置之控制系統及微影裝置 |
TW201901113A (zh) * | 2017-05-11 | 2019-01-01 | 美商克萊譚克公司 | 用於對準以不同模態所獲取之影像之以學習為基礎之方法 |
US20190094721A1 (en) * | 2017-09-28 | 2019-03-28 | Asml Netherlands B.V. | Lithographic method |
TW201935150A (zh) * | 2018-01-30 | 2019-09-01 | 荷蘭商Asml荷蘭公司 | 量測裝置及用於判定基板格柵的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112558435A (zh) | 2021-03-26 |
JP7373340B2 (ja) | 2023-11-02 |
JP2021051200A (ja) | 2021-04-01 |
KR20210036264A (ko) | 2021-04-02 |
TW202113510A (zh) | 2021-04-01 |
CN112558435B (zh) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102334937B1 (ko) | 패터닝 프로세스용 보정 결정 방법 | |
US7728953B2 (en) | Exposure method, exposure system, and substrate processing apparatus | |
US11347153B2 (en) | Error detection and correction in lithography processing | |
US5747202A (en) | Projection exposure method | |
KR101867648B1 (ko) | 위치를 구하는 방법, 노광 방법 및 물품의 제조 방법 | |
US10996574B2 (en) | Substrate processing apparatus, article manufacturing method, substrate processing method, substrate processing system, management apparatus, and storage medium | |
TWI836116B (zh) | 判斷裝置,基板處理裝置及物品的製造方法 | |
JP6688273B2 (ja) | リソグラフィ装置、リソグラフィ方法、決定方法及び物品の製造方法 | |
TWI829962B (zh) | 判斷裝置、基板處理裝置、物品的製造方法、基板處理系統、判斷方法及電腦可讀取記錄媒體 | |
JP2016090444A (ja) | 計測装置、リソグラフィ装置、及び物品の製造方法 | |
US11886125B2 (en) | Method for inferring a local uniformity metric | |
JPH1064808A (ja) | マスクの位置合わせ方法及び投影露光方法 | |
US20220365454A1 (en) | Mark detecting apparatus, mark learning apparatus, substrate processing apparatus, mark detecting method, and manufacturing method of article | |
JPH05343282A (ja) | 半導体製造装置 | |
JP2020191379A (ja) | 情報処理装置、プログラム、基板処理装置、物品の製造方法、及び物品の製造システム | |
US7394523B2 (en) | Exposure apparatus and method of controlling exposure apparatus |