TWI829479B - 資訊處理程式、資訊處理裝置、及資訊處理方法 - Google Patents
資訊處理程式、資訊處理裝置、及資訊處理方法 Download PDFInfo
- Publication number
- TWI829479B TWI829479B TW111148865A TW111148865A TWI829479B TW I829479 B TWI829479 B TW I829479B TW 111148865 A TW111148865 A TW 111148865A TW 111148865 A TW111148865 A TW 111148865A TW I829479 B TWI829479 B TW I829479B
- Authority
- TW
- Taiwan
- Prior art keywords
- heavy oil
- aforementioned
- model
- cracking
- oil
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 87
- 238000003672 processing method Methods 0.000 title claims 2
- 239000000295 fuel oil Substances 0.000 claims abstract description 333
- 238000005336 cracking Methods 0.000 claims abstract description 177
- 238000006243 chemical reaction Methods 0.000 claims abstract description 166
- 239000003921 oil Substances 0.000 claims abstract description 123
- 230000015654 memory Effects 0.000 claims abstract description 20
- 230000004044 response Effects 0.000 claims abstract description 18
- 239000003054 catalyst Substances 0.000 claims description 89
- 230000000694 effects Effects 0.000 claims description 40
- 230000003197 catalytic effect Effects 0.000 claims description 16
- 230000036632 reaction speed Effects 0.000 claims description 8
- 238000012417 linear regression Methods 0.000 claims description 5
- 230000014509 gene expression Effects 0.000 claims description 4
- 238000003062 neural network model Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 77
- 238000000034 method Methods 0.000 description 19
- 239000001257 hydrogen Substances 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 13
- 238000005457 optimization Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000004364 calculation method Methods 0.000 description 11
- 238000004517 catalytic hydrocracking Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 238000004821 distillation Methods 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 150000002431 hydrogen Chemical class 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 239000013589 supplement Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000000571 coke Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000004227 thermal cracking Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MWRWFPQBGSZWNV-UHFFFAOYSA-N Dinitrosopentamethylenetetramine Chemical compound C1N2CN(N=O)CN1CN(N=O)C2 MWRWFPQBGSZWNV-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- -1 operating parameters Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/0033—Optimalisation processes, i.e. processes with adaptive control systems
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
- C10G11/187—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/36—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本發明係一種資訊處理裝置,其係預測具備有處理器(11)的重油反應狀態的資訊處理裝置(10),執行:將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入的步驟(S101);使用前述學習資料來學習響應輸入前述重油的油性狀及前述運轉參數而輸出前述重油裂化的反應狀態的第1模型的步驟(S102);及將所學習到的前述第1模型儲存在記憶部的步驟(S103)。
Description
本揭示係關於資訊處理裝置、方法、及程式。
為提供簡單預測供予線性規劃法中的目的函數的最適值的裝置的運轉條件的石化廠的運轉條件的預測方法,有模擬運轉條件、與製品收率的關係的技術。
[專利文獻1]日本特開2002-329187號公報
在習知技術中,針對關於反應速度的參數等指標值等重油的反應狀態,藉由模擬來決定,有無法預測更正確的反應狀態的問題。
本揭示之目的在提供可精度佳地預測重油裂化的反應狀態,且進行反應控制的技術。
本揭示之資訊處理裝置係具備處理器的資訊處理裝置,其係執行:將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入的步驟;使用前述學習資料來學習響應輸入前述重油的油性狀及前述運轉參數而輸出前述重油裂化的反應狀態的第1模型的步驟;及將所學習到的前述第1模型儲存在記憶部的步驟。
藉由本揭示之程式,可精度佳地預測重油裂化的反應狀態。
以下一邊參照圖面,一邊說明本揭示之實施形態。在以下說明中,對同一零件標註同一符號。該等的名稱及功能亦同。因此,不反覆關於該等的詳細說明。
<本揭示之概要>
在本揭示中係說明由進行重油的重油裂化的重油裂化裝置的運轉參數、及重油的油性狀,預測表示將重油進行了重油裂化之時的反應狀態的值的技術。
在本揭示中,重油係當將原油蒸餾時,由常壓蒸餾塔的塔底或減壓蒸餾塔的塔底被抽出的油、或相當於此的原油。在本揭示中,重油以由常壓蒸餾塔的塔底被抽出的油為例來作說明。重油的裂化反應由於為受到各種運轉參數影響的複雜反應,因此難以在實際運轉中即時將反應狀態定量化且進行控制、最適化。反應狀態若僅進行模擬,實際上在運轉中的重油裂化裝置時時刻刻發生變化,因此難以精度佳地預測。
在本揭示中,係準備學習了表示重油的反應狀態的值、與運轉參數及重油的油性狀的關係的模型。重油的反應狀態係例如關於重油的油性份的反應速度的參數、或表示平衡觸媒活性的指標值等。表示平衡觸媒活性的指標值係例如藉由分析所得的平衡觸媒的活性的值、或沉積在觸媒的金屬成分量等。
資訊處理系統1係藉由該模型,即時預測表示重油的反應狀態的值且定量化。將該表示反應狀態的值、及運轉參數,作為預先備妥之預測製品收率等的物理模型的輸入,藉此可控制反應。如上所示,亦可將重油的裂化反應最適化,有助於製品收率提升及如觸媒投入量削減的OPEX削減,藉此對煉油廠的收益提升有所貢獻。
<1.資訊處理系統1的構成>
使用圖1,說明本揭示之資訊處理系統1。本揭示之資訊處理系統1係構成為包含:資訊處理裝置10、重油裂化裝置20、使用者終端機30、及網路40。
圖2係顯示資訊處理裝置10的構成的圖。資訊處理裝置10係例如膝上型個人電腦或機架型(rack mount)或塔型等電腦、智慧型手機等。此外,資訊處理裝置10亦可藉由複數資訊處理裝置,構成為1個系統、形成為冗長化構成等。實現資訊處理裝置10所需的複數功能的分配做法係可鑑於各硬體的處理能力、資訊處理裝置10所被要求的規格等而適當決定。
資訊處理裝置10係構成為包含處理器11、記憶體12、儲存體13、通訊IF14、及輸出入IF15。
處理器11係用以執行程式所記述的命令集的硬體,藉由運算裝置、暫存器、周邊電路等所構成。
記憶體12係用以暫時記憶程式、及以程式等所處理的資料等者,例如DRAM(Dynamic Random Access Memory,動態隨機存取記憶體)等揮發性記憶體。
儲存體13係用以保存資料的記憶裝置,例如快閃記憶體、HDD(Hard Disc Drive,硬碟驅動機)、SSD(Solid State Drive,固體狀態驅動機)。
通訊IF14係為了資訊處理裝置10與外部的裝置進行通訊,用以輸出入訊號的介面。通訊IF14係藉由有線或無線而與LAN、網際網路、廣域乙太網路等網路40相連接。
輸出入IF15係作為與用以受理輸入操作的輸入裝置(例如滑鼠等指向裝置、鍵盤)、及用以提示資訊的輸出裝置(顯示器、揚聲器等)的介面來發揮功能。
重油裂化裝置20係將重油裂化為藉由預定的裂化反應而被輕質化的裂化油的裝置。裂化油係例如輕質氣體(包含LPG)、汽油、柴油等。重油裂化裝置20係藉由例如流動接觸裂化(Fluid Catalytic Cracking:FCC)、熱裂化、氫化裂化等,將重油裂化。以下說明FCC作為重油裂化裝置20。
重油裂化裝置20係具有控制反應器21及再生器22的功能、可與資訊處理裝置10將預定的資訊藉由通訊進行傳送接收的功能。
圖3係顯示重油裂化裝置20的構成例的圖。圖3之例係重油裂化裝置20藉由FCC而將重油裂化的情形。如圖3所示,重油裂化裝置20係包含:反應器21、再生器22。
反應器21係藉由使成為原料的重油接觸觸媒,使其發生裂化反應而得裂化生成物的裝置。具體而言,反應器21若被投入重油、水蒸氣、及觸媒,使該重油接觸觸媒。接著,反應器21係藉由因重油接觸到觸媒所致之裂化反應,取得將重油進行了重油裂化的裂化油。此外,反應器21係對所得的裂化油導入水蒸氣而將附著在觸媒的裂化油去除。接著,反應器21係輸出裂化油。此外,反應器21係將所使用的觸媒交至再生器22。
再生器22係將在反應器21中所被使用的觸媒再生。若觸媒被使用在重油的裂化反應,在觸媒的表面因附著焦炭(碳),觸媒會劣化。再生器22係藉由使附著在觸媒的表面的焦炭在高溫下燃燒而再生,將經再生的觸媒,以將在反應器21內的活性成為一定的方式供給至反應器21。此外,再生器22係將藉由燃燒所產生的排放氣體排出。
使用者終端機30係被使用者所操作的終端機。在此,使用者係例如操作且管理重油裂化裝置20等者。使用者終端機30係例如智慧型手機、個人電腦等。
資訊處理裝置10、重油裂化裝置20、使用者終端機30係構成為可透過網路40而相互進行通訊。
<2.資訊處理裝置10的功能構成>
圖4係顯示資訊處理裝置10的功能構成的區塊圖。如圖2所示,資訊處理裝置10係包含:通訊部110、記憶部120、及控制部130。
通訊部110係進行供資訊處理裝置10與外部的裝置進行通訊用的處理。
記憶部120係記憶資訊處理裝置10所使用的資料及程式。記憶部120係記憶學習資料DB121、模型DB122等。
學習資料DB121係保持進行學習處理時所使用的學習資料的資料庫。
學習資料係成為重油裂化對象的重油的油性狀、關於進行重油裂化的重油裂化裝置20的運轉參數、及表示藉由該運轉參數在該重油裂化裝置20中將該重油進行了重油裂化之時的反應狀態的值的實際資料之組。
重油的油性狀係關於重油的密度、金屬濃度、氮濃度等重油的油性狀的資訊。運轉參數係例如對重油裂化裝置20的重油流量、觸媒量、水蒸氣流入量、反應器21內的壓力、內部溫度、觸媒的溫度、觸媒與重油的比率等參數、再生器22內的壓力、內部溫度、觸媒的溫度等參數。
學習資料係例如若表示反應狀態的值為關於重油裂化中的重油的反應速度的參數時,採用上述運轉參數之中關於重油的裂化反應的第1參數,作為運轉參數。
例如,關於反應速度的參數係反應速度常數、頻率因子、活性化能量等。阿瑞尼斯方程式的反應速度常數係例如以下式表示。在下式中,k為反應速度常數, R為氣體常數,T為絕對溫度,E為活性化能量,A為頻率因子。
[數式1]
以下關於反應速度的參數以反應速度常數為例進行說明。
此外,學習資料係例如若表示反應狀態的值為表示平衡觸媒活性的指標值,採用上述運轉參數之中關於平衡觸媒活性的第2參數,作為運轉參數。
模型DB122係保持各種模型及模型的參數的資料庫。
模型DB122係保持重油反應狀態預測模型(以下為第1模型)。第1模型係響應輸入重油的油性狀與運轉參數,而輸出重油裂化的反應狀態的模型。
具體而言,第1模型係反應速度常數預測模型(以下為第2模型)。第2模型係響應輸入重油的油性狀、及第1參數,而輸出反應速度常數的模型。
此外,第1模型亦可為平衡觸媒活性預測模型(以下為第3模型)。第3模型係響應輸入重油的油性狀、及第2參數,而輸出表示平衡觸媒活性的指標值的模型。
第1模型~第3模型的各個係可採用機械學習模型、神經網路等任意模型。第1模型~第3模型亦可使用例如線性迴歸模型,來表示重油的油性狀、運轉參數、與重油裂化的反應狀態的關係。此外,模型DB122亦可保持第2模型與第3模型之二者。在本揭示中係以模型DB122保持第2模型與第3模型之二者的情形為例進行說明。
此外,模型DB122係保持前述以外的模型。例如,模型DB122係保持藉由輸入重油的油性狀、第1參數、藉由第2模型所求出的重油裂化的反應速度常數、第2參數、及藉由第3模型所求出的表示平衡觸媒活性的指標值,而輸出製品收率或有助於製品收率的指標值的物理模型。
控制部130係藉由資訊處理裝置10的處理器11按照程式進行處理,來發揮收訊控制部131、送訊控制部132、輸入部133、學習部134、取得部135、預測部136、決定部137、算出部138、最適化部139、輸出部140等所示之功能。
收訊控制部131係控制資訊處理裝置10由外部的裝置按照通訊協定來收訊訊號的處理。
送訊控制部132係控制資訊處理裝置10對外部的裝置按照通訊協定來送訊訊號的處理。
輸入部133係將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置20的運轉參數、及表示藉由該運轉參數在重油裂化裝置20中將該重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入。
具體而言,輸入部133係由學習資料DB121取得學習資料。
學習部134係使用所取得的學習資料,學習第2模型及第3模型。
具體而言,學習部134係在學習資料之中,使用重油的油性狀、第1參數、及反應速度常數,來學習第2模型。學習部134係例如若第2模型為線性迴歸模型,將反應速度常數作為目的變數,將重油的油性狀、及第1參數作為說明變數,來學習第2模型。
在具有無數連續沸點成分的重油的裂化反應中,並非僅其原料油成分的數量,由於複數運轉參數相互作用,因此反應控制的難度高。在實際運轉中,由於原料油性狀頻繁變化,因此並無法進行裂化反應的最適化。因此,造成製品收率降低等收益惡化。尤其,在如FCC或氫化裂化所示之具有觸媒的裂化反應中,必須加上觸媒劣化,反應控制無法正確進行而造成新觸媒過度投入等OPEX增大。
藉由學習上述第2模型,可學習伴隨原料油性狀的變化而變化的反應速度常數與運轉參數的相關。因此,藉由使用所學習到的第2模型,可精度佳地預測實際運轉中的反應速度常數。
在此,第2模型係針對重油的油性份的各個,學習第1參數、與以該第1參數進行了重油裂化之時的裂化反應的反應速度常數的相關關係。例如,學習部134係第2模型針對作為重油的油性份之相當VR(vacuum residue,真空殘渣)的油、相當VGO(vacuum gas oil,真空製氣油)的油等各個,藉由重油裂化,與其他油性份起反應,以輸出改變為汽油、焦炭、排放氣體等各個的反應速度常數的方式,學習反應速度常數與運轉參數的相關關係。
藉由學習部134如上所示學習第2模型,可在具有無數連續沸點成分的重油的裂化反應中,不僅其原料油成分的數量,亦學習複數運轉參數相互作用的相關關係。如上所示所學習到的第2模型係可精度佳地預測反應速度常數。
接著,學習部134係將所學習的第2模型儲存在模型DB122。
此外,學習部134係在學習資料之中,使用重油的油性狀、第2參數、及表示平衡觸媒活性的指標值,學習第3模型。學習部134係例如若第3模型為線性迴歸模型,將表示平衡觸媒活性的指標值作為目的變數,將重油的油性狀、及第2參數作為說明變數,來學習第3模型。
如上述之例所示,在重油裂化裝置20的反應器21及再生器22內,觸媒作循環。在反應器21所發生的觸媒劣化係可在再生器22中恢復一定程度,惟在再生器22中,觸媒劣化亦並無法完全恢復,因此為了將觸媒的活性保持為一定,除了在再生器22的恢復之外,必須供給新觸媒。但是,新觸媒的投入量係根據至此為止的經驗法則來決定。在實際運轉中,觸媒劣化速度係依所處理的重油的變更等而異。因此,難以調節為目的的觸媒活性。
藉由學習上述第3模型,可學習實際運轉中的重油的油性狀及第2參數與表示平衡觸媒活性的指標值的相關。因此,藉由使用所學習到的第3模型,可精度佳地預測實際運轉中的表示平衡觸媒活性的指標值。藉此,達成平衡觸媒活性的靜定、新觸媒投入量的最適化、平衡觸媒分析成本及勞力的刪減等效果。尤其,藉由使用所學習到的第3模型,由於不需要考慮分析所耗時間,因此若有實際運轉中的重油的油性狀及第2參數,可即時取得平衡觸媒活性。
接著,學習部134係將所學習的第3模型儲存在模型DB122。
此外,學習部134係可使用學習資料、關於重油裂化執行中的重油裂化裝置20的運轉參數亦即第3參數、被預測出的表示反應狀態的值,來再學習第1模型。學習部134係例如藉由取得分析結果的時序等,進行再學習。
具體而言,學習部134係取得學習資料、關於後述所取得之實際啟動中的重油裂化裝置20的運轉參數亦即第3參數、及藉由後述的分析所得的表示反應狀態的值,再學習各模型。例如,學習部134係由學習資料、第3參數之中的第1參數、及經分析出的反應速度常數,再學習第2模型。此外,例如,學習部134係由學習資料、第3參數之中的第2參數、及經分析出的表示平衡觸媒活性的指標值,再學習第3模型。
如上所示,學習部134係在取得分析結果的時序等再學第2模型及第3模型,藉此可即時精度更佳地求出反應速度常數或表示平衡觸媒活性的指標值。例如,為了獲得預定的平衡觸媒活性,必須調整新觸媒的投入量。為了精度佳地決定新觸媒的投入量,必須要有平衡觸媒活性的分析結果。該平衡觸媒活性的分析結果係取出觸媒之後需要時間進行分析。因此,分析結果反映在預測所使用的模擬,亦耗費時間。但是,學習部134係可在取得分析結果的時序再學習第2模型及第3模型,因此可即時精度更佳地求出反應速度或表示平衡觸媒活性的指標值,例如對觸媒變更等影響,亦可迅速追隨預測精度。
取得部135係取得關於重油裂化執行中的重油裂化裝置的運轉參數亦即第3參數、重油的油性狀、及學習完畢的第2模型及第3模型。
具體而言,取得部135係由重油裂化裝置20取得第3參數、及投入至重油裂化裝置的重油的油性狀。其中,取得部135亦可藉由從使用者終端機30進行收訊來取得第3參數及重油的油性狀。此外,取得部135係由模型DB122取得學習完畢的第2模型及第3模型。
此外,取得部135係取得反應狀態的分析結果。具體而言,取得部135係根據實際的運轉參數、裂化生成物、觸媒等,取得分析反應狀態後的結果。
預測部136係藉由將重油的油性狀、及第3參數輸入至第1模型,來預測表示反應狀態的值。
具體而言,預測部136係藉由將重油的油性狀、及第3參數之中第1參數輸入至第2模型,來預測反應速度常數。
此外,預測部136係藉由將重油的油性狀、及第3參數之中第2參數輸入至第3模型,來預測表示平衡觸媒活性的指標值。
決定部137係根據表示平衡觸媒活性的指標值,來決定投入至重油裂化裝置20的最適的新觸媒的量。
具體而言,決定部137係根據表示平衡觸媒活性的指標值,算出為了將平衡觸媒活性設為預定的值而應投入的觸媒的量。接著,決定部137係將所算出的量決定為最適的新觸媒的量。
算出部138係使用重油的油性狀、第3參數、及表示反應狀態的值,求出製品收率或有助於製品收率的指標值。
具體而言,算出部138係首先由模型DB122取得反應模型。接著,算出部138係使用重油的油性狀、第3參數的第1參數、所求出的重油裂化的反應速度常數、第3參數的第2參數、所求出的表示平衡觸媒活性的指標值、及反應模型,求出製品收率或有助於製品收率的指標值。製品收率係例如藉由重油裂化裝置20所得的裂化油的收率。此外,有助於製品收率的指標值係為求出製品收率所需之運轉參數等。該指標值係例如反應溫度、反應時間、觸媒濃度等。
最適化部139係使用所求出的製品收率或有助於製品收率的指標值、重油的油性狀、運轉參數、及表示反應狀態的值,求出實現最適製品收率的運轉參數。
具體而言,最適化部139係首先使用製品收率或有助於製品收率的指標值、重油的油性狀、第3參數的第1參數及反應速度常數、及第3參數的第2參數及表示平衡觸媒活性的指標值,求出最適製品收率。例如,最適化部139係將重油的油性狀、第3參數、所求出的反應速度、及所求出的平衡觸媒活性,輸入至用以探索最適製品收率的模型,藉此探索成為最適的製品收率。
接著,最適化部139係使用重油的油性狀、第3參數的第1參數及反應速度、第3參數的第2參數及表示平衡觸媒活性的指標值、及所求出的成為最適的製品收率,求出最適運轉參數。其中,最適化部139亦可形成為亦使用學習完畢的第2模型及第3模型來求出最適運轉參數的構成。
輸出部140係將所預測出的反應速度常數及表示平衡觸媒活性的指標值,輸出至輸出裝置等。亦可形成為所預測出的反應速度常數及表示平衡觸媒活性的指標值係藉由輸出部140,透過通訊而輸出且顯示在外部裝置的構成。
此外,輸出部140係輸出所決定出的新觸媒的量。據此,使用者由使用者終端機30等對未圖示的觸媒投入裝置等發出觸媒投入的指示,藉此新觸媒被投入至重油裂化裝置20。
此外,輸出部140係輸出所求出的製品收率或有助於製品收率的指標值。
此外,輸出部140係輸出所求出的最適運轉參數。
<3.動作>
以下一邊參照圖面,一邊說明資訊處理裝置10中的處理。
<3.1.學習處理>
圖5係顯示進行藉由資訊處理裝置10所為之學習處理的流程之一例的流程圖。資訊處理裝置10係在任意時序(例如學習處理開始訊號的收訊等)執行該處理。
在步驟S101中,輸入部133係將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置20的運轉參數、及表示藉由該運轉參數在重油裂化裝置20中將該重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入。
在步驟S102中,學習部134係使用所取得的學習資料,學習第2模型及第3模型。
在步驟S103中,學習部134係將所學習到的第2模型及第3模型儲存在模型DB122,且結束處理。
<3.2.預測處理>
圖6係顯示進行藉由資訊處理裝置10所為之預測處理的流程之一例的流程圖。資訊處理裝置10係藉由被輸入重油的油性狀、及運轉參數等,來執行該處理。
在步驟S201中,取得部135係取得關於重油裂化執行中的重油裂化裝置20的運轉參數亦即第3參數、重油的油性狀、及學習完畢的第2模型及第3模型。
在步驟S202中,預測部136係藉由將重油的油性狀、及第3參數之中第1參數,輸入至第2模型,來預測反應速度常數。
在步驟S203中,預測部136係藉由將重油的油性狀、及第3參數之中第2參數輸入至第3模型,來預測表示平衡觸媒活性的指標值。
在步驟S204中,輸出部140係將所預測出的反應速度常數及表示平衡觸媒活性的指標值,輸出至輸出裝置等。
資訊處理裝置10係可在任意時序執行預測處理,因此針對運轉中的重油裂化裝置20,可即時預測表示反應狀態的值。
<3.3.再學習處理>
圖7係顯示進行藉由資訊處理裝置10所為之再學習處理的流程之一例的流程圖。資訊處理裝置10係在任意時序(例如反應狀態的分析結果的取得、再學習處理開始訊號的收訊等)執行該處理。
在步驟S211中,取得部135係取得關於重油裂化執行中的重油裂化裝置20的運轉參數亦即第3參數、重油的油性狀、藉由分析所得的反應狀態、及學習完畢的第2模型及第3模型。
在步驟S212中,學習部134係使用學習資料、關於重油裂化執行中的重油裂化裝置20的運轉參數亦即第3參數、及經分析出的反應速度常數,來再學習第2模型。
在步驟S213中,學習部134係使用學習資料、關於重油裂化執行中的重油裂化裝置20的運轉參數亦即第3參數、及經分析出的表示平衡觸媒活性的指標值,來再學習第3模型。
在步驟S214中,學習部134係將經再學習的第2模型及第3模型儲存在模型DB122,且結束處理。
資訊處理裝置10係可在任意時序執行預測處理,因此可針對運轉中的重油裂化裝置20,即時預測表示反應狀態的值。
<3.4.製品收率算出處理>
圖8係顯示進行藉由資訊處理裝置10所為之製品收率算出處理的流程之一例的流程圖。資訊處理裝置10係藉由被輸入重油的油性狀、運轉參數等來執行該處理。其中,關於與預測處理共通的處理,係標註相同符號且省略說明。
在S304中,算出部138係使用重油的油性狀、第3參數、及表示反應狀態的值,求出製品收率或有助於製品收率的指標值。
在S305中,輸出部140係輸出所求出的製品收率或有助於製品收率的指標值,且結束處理。
<3.5.最適化處理>
圖9係顯示進行藉由資訊處理裝置10所為之最適化算出處理的流程之一例的流程圖。資訊處理裝置10係在任意時序執行該處理。其中,關於與預測處理及製品收率算出處理共通的處理,係標註相同符號且省略說明。
在S401中,最適化部139係使用製品收率或有助於製品收率的指標值、重油的油性狀、第3參數的第1參數及反應速度、及第3參數的第2參數及表示平衡觸媒活性的指標值,求出最適製品收率。
在S405中,最適化部139係使用所求出的製品收率或有助於製品收率的指標值、重油的油性狀、運轉參數、及表示反應狀態的值,求出實現所求出之成為最適的製品收率的運轉參數。
在S406中,輸出部140係輸出所求出之最適運轉參數,且結束處理。
如以上說明,藉由本揭示,將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由運轉參數在重油裂化裝置中將重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入,使用學習資料來學習響應輸入該重油的油性狀及該運轉參數而輸出重油裂化的反應狀態的第1模型,且將所學習到的第1模型儲存在記憶部,藉此可得用以精度佳地預測重油裂化的反應狀態的第1模型。
此外,藉由本揭示,取得關於重油裂化執行中的重油裂化裝置的運轉參數亦即第3參數、重油的油性狀、及學習完畢的第1模型,將重油的油性狀、及第3參數輸入至第1模型,藉此預測表示反應狀態的值,且輸出表示反應狀態的值,藉此可精度佳地預測重油裂化的反應狀態。
此外,藉由本揭示,取得響應輸入成為重油裂化的對象的重油的油性狀、及關於進行重油裂化的重油裂化裝置的運轉參數而輸出表示藉由該運轉參數在重油裂化裝置中將重油進行了重油裂化之時的反應狀態的值的第1模型,受理重油的油性狀、及運轉參數的輸入,使用重油的油性狀、運轉參數、及第1模型,求出表示反應狀態的值,且使用重油的油性狀、運轉參數、及表示反應狀態的值,求出製品收率或有助於製品收率的指標值,藉此可達成製品收率的提升,且有助於煉油廠的收益提升。
此外,藉由本揭示,使用所求出的製品收率或有助於製品收率的指標值、重油的油性狀、運轉參數、及表示反應狀態的值,求出實現最適製品收率的運轉參數,藉此可使製品收率提升。
<4.其他>
以上說明了揭示之實施形態,惟該等係可以其他各種形態實施,可進行各種省略、置換及變更來實施。該等實施形態及變形例以及進行了省略、置換及變更者係包含在申請專利範圍的技術範圍及其均等範圍。
例如,亦可將資訊處理裝置10的各功能構成為其他裝置。例如,記憶部120的各DB亦可建構為外部的資料庫。此外,亦可將資訊處理裝置10的各功能構成為其他裝置。
此外,在上述揭示中,係以重油裂化裝置20採用FCC的情形為例來作說明,惟並非為限定於此者。即使重油裂化裝置20為熱裂化及氫化裂化的情形,亦可適用本揭示的構成。在圖10及圖11中顯示重油裂化裝置20為熱裂化及氫化裂化的情形的構成例。其中,下述構成例係供說明用之一例,並非為限定熱裂化及氫化裂化中的重油裂化裝置20者。
圖10係顯示重油裂化裝置20的構成例的圖。圖10之例係重油裂化裝置20藉由熱裂化而將重油裂化的情形。如圖10所示,重油裂化裝置20係包含:蒸餾塔23、加熱爐24、及反應器25。重油裂化裝置20係具有在熱裂化中,控制蒸餾塔23、加熱爐24、及反應器25的功能、可與資訊處理裝置10藉由通訊來傳送接收預定的資訊的功能。
蒸餾塔23係收容成為原料的重油,藉由蒸餾,將重油的各成分(連輕質氣體、輕油餾份、柴油、重質成分的各成分及焦炭)按照沸點進行分離且輸出。蒸餾塔23係將在所被輸出的各成分之中亦由蒸餾塔23的底部被輸出的重油交至加熱爐24。
加熱爐24係將藉由蒸餾塔23被分離的重油加熱至熱裂化所需溫度,且輸出高溫的重油。加熱爐24係將被輸出的高溫的重油交至反應器25。
反應器25係將藉由加熱爐24而被升溫的高溫的重油進行裂化,且輸出裂化氣體及焦炭。反應器25係進行批次循環運轉或半批次循環運轉。反應器25係在反應後,進行殘留在反應器25內部的重油的排淨(purge),進行了將附著在反應器25表面的焦炭去除的去焦(decoking)之後,為備接下來的反應而予以暖機。
圖11係顯示重油裂化裝置20的構成例的圖。圖11之例係重油裂化裝置20藉由氫化裂化而將重油裂化的情形。如圖11所示,重油裂化裝置20係包含:反應器26、及氫分離槽27。重油裂化裝置20係具有在氫化裂化中,控制反應器26及氫分離槽27的功能、可與資訊處理裝置10藉由通訊來傳送接收預定的資訊的功能。
反應器26係藉由使成為原料的重油接觸觸媒及氫而使其發生裂化反應,且取得裂化生成物(連輕質氣體、輕油餾份、柴油、重質成分的各成分及焦炭或污泥成分)的裝置。具體而言,反應器26係若被投入重油、氫、及觸媒時,使該重油接觸氫及觸媒。接著,反應器26係藉由重油因接觸到氫及觸媒所致之裂化反應,取得將重油進行了重油裂化的裂化生成物。接著,反應器26係輸出裂化油。
氫分離槽27係將藉由反應器26被裂化的裂化生成物及氫(若為漿態床氫化裂化的情形,亦包含觸媒)分離。具體而言,氫分離槽27係具有:高壓氫分離槽、中壓氫分離槽、及低壓氫分離槽(若為漿態床氫化裂化的情形,亦包含觸媒分離槽),在各個槽中將裂化生成物及氫(若為漿態床氫化裂化的情形,觸媒亦分離)分離。氫分離槽27係輸出經分離的裂化生成物及氫(若為漿態床氫化裂化的情形為觸媒)。
<附記>
以下附記以上各實施形態中所說明的事項。
(附記1)一種資訊處理裝置,其係預測具備有處理器(11)的重油反應狀態的資訊處理裝置(10),其係執行:
將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入的步驟(S101);使用前述學習資料來學習響應輸入前述重油的油性狀及前述運轉參數而輸出前述重油裂化的反應狀態的第1模型的步驟(S102);及將所學習到的前述第1模型儲存在記憶部的步驟(S103)。
(附記2)如(附記1)之資訊處理裝置,其中,前述運轉參數係前述運轉參數之中關於前述重油的裂化反應的第1參數,表示前述反應狀態的值係前述重油裂化中關於前述重油的反應速度的參數,前述第1模型係響應輸入前述重油的油性狀、及前述第1參數,而輸出關於前述反應速度的參數的模型。
(附記3)如(附記1)之資訊處理裝置,其中,前述運轉參數係前述運轉參數之中關於平衡觸媒活性的第2參數,表示前述反應狀態的值係前述重油裂化中表示前述重油的平衡觸媒活性的指標值,前述第1模型係響應輸入前述重油的油性狀、及前述第2參數,輸出表示前述平衡觸媒活性的指標值的模型。
(附記4)如(附記1)至(附記3)中任一者之資訊處理裝置,其中,執行:取得關於重油裂化執行中的重油裂化裝置的運轉參數亦即第3參數、重油的油性狀、及學習完畢的第1模型的步驟(S201);藉由將前述重油的油性狀、及前述第3參數輸入至前述第1模型,來預測表示前述反應狀態的值的步驟(S202、S203);及輸出表示前述反應狀態的值的步驟(S204)。
(附記5)如(附記4)之資訊處理裝置,其中,執行:使用前述學習資料、前述第3參數、及藉由前述進行預測的步驟被預測出的表示前述反應狀態的值,再學習前述第1模型的步驟(S212、S213);及將所再學習到的前述第1模型儲存在記憶部的步驟(S214)。
(附記6)一種資訊處理裝置,其係具備處理器(11)的資訊處理裝置(10),其執行:取得第1模型的步驟,該第1模型係響應輸入成為重油裂化的對象的重油的油性狀、及關於進行重油裂化的重油裂化裝置的運轉參數而輸出表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值(S201);受理前述重油的油性狀、及前述運轉參數的輸入的步驟(S202、S203);使用前述重油的油性狀、前述運轉參數、及前述第1模型,求出表示前述反應狀態的值的步驟(S203);使用前述重油的油性狀、前述運轉參數、及表示前述反應狀態的值,求出前述製品收率或有助於前述製品收率的指標值的步驟(S304);及輸出所求出的前述製品收率或有助於前述製品收率的指標值的步驟(S305)。
(附記7)如(附記6)之資訊處理裝置,其中,前述運轉參數係前述運轉參數之中關於前述重油的裂化反應的第1參數,表示前述反應狀態的值係前述重油裂化中關於前述重油的反應速度的參數,前述第1模型係響應輸入前述重油的油性狀、及前述第1參數,輸出關於前述反應速度的參數的模型,在求出前述製品收率或有助於前述製品收率的指標值的步驟中,使用前述重油的油性狀、前述第1參數、及所求出之關於前述重油裂化的反應速度的參數,求出前述製品收率或有助於前述製品收率的指標值。
(附記8)如(附記6)之資訊處理裝置,其中,前述運轉參數係前述運轉參數之中關於平衡觸媒活性的第2參數,表示前述反應狀態的值係前述重油裂化中表示前述重油的平衡觸媒活性的指標值,前述第1模型係響應輸入前述重油的油性狀、及前述第2參數,輸出表示前述平衡觸媒活性的指標值的模型,在求出有助於前述製品收率的指標值的步驟中,使用前述重油的油性狀、前述第2參數、及所求出之表示前述平衡觸媒活性的指標值,求出有助於前述製品收率的指標值。
(附記9)如(附記8)之資訊處理裝置,其中,執行:受理前述運轉參數之中關於重油的裂化反應的第1參數的輸入的步驟(S201);及使用響應輸入前述重油的油性狀、及前述第1參數而輸出關於前述重油裂化的反應速度的參數的第2模型、前述重油的油性狀、及前述第1參數,求出關於前述反應速度的參數的步驟(S202),在前述進行取得的步驟中,取得前述重油的油性狀、前述第1模型、及前述第2模型,在求出前述製品收率或有助於前述製品收率的指標值的步驟中,使用前述重油的油性狀、前述第1參數、所求出之關於前述重油裂化的反應速度的參數、前述第2參數、及所求出之表示前述平衡觸媒活性的指標值,求出前述製品收率或有助於前述製品收率的指標值。
(附記10)如(附記9)之資訊處理裝置,其中,在前述進行取得的步驟中,取得藉由輸入前述重油的油性狀、前述第1參數、所求出之關於前述重油裂化的反應速度的參數、前述第2參數、及所求出之表示前述平衡觸媒活性的指標值,輸出前述製品收率或有助於前述製品收率的指標值的反應模型、前述重油的油性狀、前述第1模型、及前述第2模型,在求出前述製品收率或有助於前述製品收率的指標值的步驟中,使用前述重油的油性狀、前述第1參數、所求出之關於前述重油裂化的反應速度的參數、前述第2參數、所求出之表示前述平衡觸媒活性的指標值、及前述反應模型,求出前述製品收率或有助於前述製品收率的指標值。
(附記11)如(附記7)至(附記10)中任一者之資訊處理裝置,其中,執行:使用所求出之前述製品收率或有助於前述製品收率的指標值、前述重油的油性狀、前述運轉參數、及表示前述反應狀態的值,求出實現最適製品收率的運轉參數的步驟(S405)。
(附記12)如(附記1)至(附記11)中任一者之資訊處理裝置,其中,前述第1模型為線性迴歸模型或神經網路模型,在前述進行學習的步驟中,以表示前述重油的油性狀、前述運轉參數、與前述反應狀態的相關關係的方式,學習前述第1模型。
(附記13)一種方法,其係具備處理器(11)的電腦(例如資訊處理裝置10)執行以下步驟:將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入的步驟(S101);使用前述學習資料來學習響應輸入前述重油的油性狀及前述運轉參數而輸出前述重油裂化的反應狀態的第1模型的步驟(S102);及將所學習到的前述第1模型儲存在記憶部的步驟(S103)。
(附記14)一種程式,其係使具備處理器(11)的電腦(例如資訊處理裝置10)所執行的程式,其係使前述處理器執行以下步驟的程式:將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入的步驟(S101);使用前述學習資料來學習響應輸入前述重油的油性狀及前述運轉參數而輸出前述重油裂化的反應狀態的第1模型的步驟(S102);及將所學習到的前述第1模型儲存在記憶部的步驟(S103)。
1:資訊處理系統
10:資訊處理裝置
11:處理器
12:記憶體
13:儲存體
14:通訊IF
15:輸出入IF
20:重油裂化裝置
21:反應器
22:再生器
23:蒸餾塔
24:加熱爐
25:反應器
26:反應器
27:氫分離槽
30:使用者終端機
40:網路
110:通訊部
120:記憶部
121:學習資料DB
122:模型DB
130:控制部
131:收訊控制部
132:送訊控制部
133:輸入部
134:學習部
135:取得部
136:預測部
137:決定部
138:算出部
139:最適化部
140:輸出部
[圖1]係顯示資訊處理系統1的構成的區塊圖。
[圖2]係顯示資訊處理裝置10的構成的區塊圖。
[圖3]係顯示重油裂化裝置20的構成例的圖。
[圖4]係顯示資訊處理裝置10的功能構成的區塊圖。
[圖5]係顯示進行藉由資訊處理裝置10所為之學習處理的流程之一例的流程圖。
[圖6]係顯示進行藉由資訊處理裝置10所為之預測處理的流程之一例的流程圖。
[圖7]係顯示進行藉由資訊處理裝置10所為之再學習處理的流程之一例的流程圖。
[圖8]係顯示進行藉由資訊處理裝置10所為之製品收率算出處理的流程之一例的流程圖。
[圖9]係顯示進行藉由資訊處理裝置10所為之最適化處理的流程之一例的流程圖。
[圖10]係顯示重油裂化裝置20的構成例的圖。
[圖11]係顯示重油裂化裝置20的構成例的圖。
Claims (14)
- 一種資訊處理裝置,其係預測具備有處理器的重油反應狀態的資訊處理裝置,其係執行:將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入的步驟;使用前述學習資料來學習響應輸入前述重油的油性狀及前述運轉參數而可即時輸出表示前述重油裂化的反應狀態的值的第1模型的步驟;及將所學習到的前述第1模型儲存在記憶部的步驟,前述第1模型係學習前述重油的油性狀及前述運轉參數、與表示前述重油裂化的反應狀態的值的相關關係的機械學習模型。
- 如請求項1之資訊處理裝置,其中,前述運轉參數係前述運轉參數之中關於前述重油的裂化反應的第1參數,表示前述反應狀態的值係前述重油裂化中關於前述重油的反應速度的參數,前述第1模型係響應輸入前述重油的油性狀、及前述第1參數,而可即時輸出關於前述反應速度的參數的模型。
- 如請求項1之資訊處理裝置,其中,前述運轉參數係前述運轉參數之中關於平衡觸媒活性的第2參數, 表示前述反應狀態的值係前述重油裂化中表示前述重油的平衡觸媒活性的指標值,前述第1模型係響應輸入前述重油的油性狀、及前述第2參數,可即時輸出表示前述平衡觸媒活性的指標值的模型。
- 如請求項1至請求項3中任一項之資訊處理裝置,其中,執行:取得關於重油裂化執行中的重油裂化裝置的運轉參數亦即第3參數、重油的油性狀、及學習完畢的第1模型的步驟;藉由將前述重油的油性狀、及前述第3參數輸入至前述第1模型,來即時預測表示前述反應狀態的值的步驟;及輸出表示前述反應狀態的值的步驟。
- 如請求項4之資訊處理裝置,其中,執行:使用前述學習資料、前述第3參數、及藉由前述進行預測的步驟被預測出的表示前述反應狀態的值,再學習前述第1模型的步驟;及將所再學習到的前述第1模型儲存在記憶部的步驟。
- 一種資訊處理裝置,其係具備處理器的資訊處理裝置,其執行:取得第1模型的步驟,該第1模型係響應輸入成為重油裂化的對象的重油的油性狀、及關於進行重油裂化的重油 裂化裝置的運轉參數而輸出表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值;受理前述重油的油性狀、及前述運轉參數的輸入的步驟;使用前述重油的油性狀、前述運轉參數、及前述第1模型,即時求出表示前述反應狀態的值的步驟;使用前述重油的油性狀、前述運轉參數、及表示前述反應狀態的值,求出前述製品收率或有助於前述製品收率的指標值的步驟;及輸出所求出的前述製品收率或有助於前述製品收率的指標值的步驟。
- 如請求項6之資訊處理裝置,其中,前述運轉參數係前述運轉參數之中關於前述重油的裂化反應的第1參數,表示前述反應狀態的值係前述重油裂化中關於前述重油的反應速度的參數,前述第1模型係響應輸入前述重油的油性狀、及前述第1參數,即時輸出關於前述反應速度的參數的模型,在求出前述製品收率或有助於前述製品收率的指標值的步驟中,使用前述重油的油性狀、前述第1參數、及所求出之關於前述重油裂化的反應速度的參數,求出前述製品收率或有助於前述製品收率的指標值。
- 如請求項6之資訊處理裝置,其中,前述 運轉參數係前述運轉參數之中關於平衡觸媒活性的第2參數,表示前述反應狀態的值係前述重油裂化中表示前述重油的平衡觸媒活性的指標值,前述第1模型係響應輸入前述重油的油性狀、及前述第2參數,即時輸出表示前述平衡觸媒活性的指標值的模型,在求出有助於前述製品收率的指標值的步驟中,使用前述重油的油性狀、前述第2參數、及所求出之表示前述平衡觸媒活性的指標值,求出有助於前述製品收率的指標值。
- 如請求項8之資訊處理裝置,其中,執行:受理前述運轉參數之中關於重油的裂化反應的第1參數的輸入的步驟;及使用響應輸入前述重油的油性狀、及前述第1參數而輸出關於前述重油裂化的反應速度的參數的第2模型、前述重油的油性狀、及前述第1參數,即時求出關於前述反應速度的參數的步驟,在前述進行取得的步驟中,取得前述重油的油性狀、前述第1模型、及前述第2模型,在求出前述製品收率或有助於前述製品收率的指標值的步驟中,使用前述重油的油性狀、前述第1參數、所求出之關於前述重油裂化的反應速度的參數、前述第2參 數、及所求出之表示前述平衡觸媒活性的指標值,求出前述製品收率或有助於前述製品收率的指標值。
- 如請求項9之資訊處理裝置,其中,在前述進行取得的步驟中,取得藉由輸入前述重油的油性狀、前述第1參數、所求出之關於前述重油裂化的反應速度的參數、前述第2參數、及所求出之表示前述平衡觸媒活性的指標值,輸出前述製品收率或有助於前述製品收率的指標值的反應模型、前述重油的油性狀、前述第1模型、及前述第2模型,在求出前述製品收率或有助於前述製品收率的指標值的步驟中,使用前述重油的油性狀、前述第1參數、所求出之關於前述重油裂化的反應速度的參數、前述第2參數、所求出之表示前述平衡觸媒活性的指標值、及前述反應模型,求出前述製品收率或有助於前述製品收率的指標值。
- 如請求項7至請求項10中任一項之資訊處理裝置,其中,執行:使用所求出之前述製品收率或有助於前述製品收率的指標值、前述重油的油性狀、前述運轉參數、及表示前述反應狀態的值,求出實現最適製品收率的運轉參數的步驟。
- 如請求項1或請求項6之資訊處理裝置,其中,前述第1模型為線性迴歸模型或神經網路模型,在前述進行學習的步驟中,以表示前述重油的油性 狀、前述運轉參數、與表示前述反應狀態的值的相關關係的方式,學習前述第1模型。
- 一種資訊處理方法,其係具備處理器的電腦執行以下步驟:將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入的步驟;使用前述學習資料來學習響應輸入前述重油的油性狀及前述運轉參數而可即時輸出表示前述重油裂化的反應狀態的值的第1模型的步驟;及將所學習到的前述第1模型儲存在記憶部的步驟。
- 一種資訊處理程式,其係使具備處理器的電腦所執行的資訊處理程式,其係使前述處理器執行以下步驟的程式:將成為重油裂化的對象的重油的油性狀、關於進行重油裂化的重油裂化裝置的運轉參數、及表示藉由前述運轉參數在前述重油裂化裝置中將前述重油進行了重油裂化之時的反應狀態的值,作為學習資料而受理輸入的步驟;使用前述學習資料來學習響應輸入前述重油的油性狀及前述運轉參數而可即時輸出表示前述重油裂化的反應狀態的值的第1模型的步驟;及將所學習到的前述第1模型儲存在記憶部的步驟。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/JP2021/047814 | 2021-12-23 | ||
PCT/JP2021/047814 WO2023119544A1 (ja) | 2021-12-23 | 2021-12-23 | プログラム、情報処理装置、及び方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202326309A TW202326309A (zh) | 2023-07-01 |
TWI829479B true TWI829479B (zh) | 2024-01-11 |
Family
ID=86901744
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111148866A TWI827408B (zh) | 2021-12-23 | 2022-12-20 | 資訊處理程式、資訊處理裝置、及資訊處理方法 |
TW111148865A TWI829479B (zh) | 2021-12-23 | 2022-12-20 | 資訊處理程式、資訊處理裝置、及資訊處理方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111148866A TWI827408B (zh) | 2021-12-23 | 2022-12-20 | 資訊處理程式、資訊處理裝置、及資訊處理方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4428635A1 (zh) |
JP (2) | JPWO2023119544A1 (zh) |
KR (1) | KR20240125618A (zh) |
TW (2) | TWI827408B (zh) |
WO (2) | WO2023119544A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0784606A (ja) * | 1993-09-09 | 1995-03-31 | Idemitsu Kosan Co Ltd | 多段断熱反応器の最適化制御方法及びその装置 |
JP2003233402A (ja) * | 2002-02-08 | 2003-08-22 | Petroleum Energy Center | 処理条件設定装置、その方法、そのプログラムおよび処理プラント |
CN110648729A (zh) * | 2019-10-29 | 2020-01-03 | 中国石油化工股份有限公司 | 一种催化裂化模型建立方法与装置 |
CN111475957A (zh) * | 2020-04-13 | 2020-07-31 | 华东理工大学 | 一种基于装置机理的炼油过程生产计划优化方法 |
CN111863143A (zh) * | 2020-07-31 | 2020-10-30 | 中国石油化工股份有限公司 | 一种用于催化裂化动力学模型的参数估值方法及装置 |
US20200379452A1 (en) * | 2018-02-15 | 2020-12-03 | Chiyoda Corporation | Plant operating condition setting support system, learning device, and operating condition setting support device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001273474A (ja) * | 2000-01-20 | 2001-10-05 | Idemitsu Kosan Co Ltd | 分析値推定方法、およびこの方法を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体 |
JP3668405B2 (ja) * | 2000-02-25 | 2005-07-06 | 株式会社日立製作所 | ごみ焼却炉の制御方法及び装置 |
JP4828719B2 (ja) | 2001-04-27 | 2011-11-30 | 一般財団法人石油エネルギー技術センター | 石油コンビナートの運転条件の推定方法 |
JP2004008908A (ja) * | 2002-06-06 | 2004-01-15 | Mazda Motor Corp | 流体中の所定成分の濃度変化予測方法及び反応速度解析法 |
JP7015108B2 (ja) * | 2016-12-07 | 2022-02-02 | 三菱重工業株式会社 | 運用支援装置、機器運用システム、運用方法、制御方法及びプログラム |
US10915837B2 (en) * | 2017-05-25 | 2021-02-09 | Cosmo Oil Co., Ltd. | Method, server, computer-readable command, and recording medium for providing recommended operation condition for plant |
JP7376886B2 (ja) * | 2019-03-29 | 2023-11-09 | 国立研究開発法人産業技術総合研究所 | 分子反応モデリング方法 |
CN115053189A (zh) * | 2020-02-04 | 2022-09-13 | 株式会社大赛璐 | 预测装置、预测方法以及程序 |
JP7301876B2 (ja) * | 2020-06-05 | 2023-07-03 | 千代田化工建設株式会社 | 運転状態推定システム、学習装置、推定装置、状態推定器の生成方法、及び推定方法 |
CN111899793B (zh) * | 2020-06-12 | 2024-04-30 | 中国石油天然气股份有限公司 | 一种分子级装置的实时优化方法、装置、系统及存储介质 |
CN114203264B (zh) * | 2021-11-30 | 2024-05-14 | 华南理工大学 | 基于深度学习的化学反应转化率预测方法、系统及介质 |
-
2021
- 2021-12-23 JP JP2022563051A patent/JPWO2023119544A1/ja active Pending
- 2021-12-23 WO PCT/JP2021/047814 patent/WO2023119544A1/ja active Application Filing
-
2022
- 2022-08-05 JP JP2023517661A patent/JP7354477B1/ja active Active
- 2022-08-05 KR KR1020247023889A patent/KR20240125618A/ko active Search and Examination
- 2022-08-05 EP EP22910441.9A patent/EP4428635A1/en active Pending
- 2022-08-05 WO PCT/JP2022/030118 patent/WO2023119711A1/ja active Application Filing
- 2022-12-20 TW TW111148866A patent/TWI827408B/zh active
- 2022-12-20 TW TW111148865A patent/TWI829479B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0784606A (ja) * | 1993-09-09 | 1995-03-31 | Idemitsu Kosan Co Ltd | 多段断熱反応器の最適化制御方法及びその装置 |
JP2003233402A (ja) * | 2002-02-08 | 2003-08-22 | Petroleum Energy Center | 処理条件設定装置、その方法、そのプログラムおよび処理プラント |
US20200379452A1 (en) * | 2018-02-15 | 2020-12-03 | Chiyoda Corporation | Plant operating condition setting support system, learning device, and operating condition setting support device |
CN110648729A (zh) * | 2019-10-29 | 2020-01-03 | 中国石油化工股份有限公司 | 一种催化裂化模型建立方法与装置 |
CN111475957A (zh) * | 2020-04-13 | 2020-07-31 | 华东理工大学 | 一种基于装置机理的炼油过程生产计划优化方法 |
CN111863143A (zh) * | 2020-07-31 | 2020-10-30 | 中国石油化工股份有限公司 | 一种用于催化裂化动力学模型的参数估值方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
TW202326309A (zh) | 2023-07-01 |
JP7354477B1 (ja) | 2023-10-02 |
WO2023119711A1 (ja) | 2023-06-29 |
TW202407582A (zh) | 2024-02-16 |
KR20240125618A (ko) | 2024-08-19 |
EP4428635A1 (en) | 2024-09-11 |
WO2023119544A1 (ja) | 2023-06-29 |
JPWO2023119711A1 (zh) | 2023-06-29 |
JPWO2023119544A1 (zh) | 2023-06-29 |
TWI827408B (zh) | 2023-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ibrahim et al. | Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine | |
US11720072B2 (en) | Plant state operating analysis and control | |
CN110021377B (zh) | 加氢裂化催化剂的失活预测方法、装置和存储设备 | |
Sadighi et al. | Optimizing an industrial scale naphtha catalytic reforming plant using a hybrid artificial neural network and genetic algorithm technique | |
US20220220394A1 (en) | Operation state estimation system, training device, estimation device, state estimator generation method, and estimation method | |
CN104765347A (zh) | 一种渣油延迟焦化过程中收率实时预测方法 | |
TWI829479B (zh) | 資訊處理程式、資訊處理裝置、及資訊處理方法 | |
Chen et al. | A mass-temperature decoupled discretization strategy for large-scale molecular-level kinetic model | |
CN115312130A (zh) | 面向增产催化裂化高附加值产品模拟的混合建模方法 | |
JP2023094622A (ja) | プログラム、情報処理装置、及び方法 | |
CN115938502A (zh) | 一种基于分子级反应机理的化工产物特性预测方法及系统 | |
Lei et al. | Simultaneous optimization of the complex fractionator and heat exchanger network considering the constraints of variable heat removals in delayed coking units | |
JP7248823B1 (ja) | 流体状態推定システム、学習装置、学習プログラム、推定装置、及び推定プログラム | |
Ramachandran et al. | Data analysis, modeling and control performance enhancement of an industrial fluid catalytic cracking unit | |
Long et al. | Hybrid model of multimodal based on data enhancement and lumped reaction kinetics: Applying to industrial ebullated-bed residue hydrogenation unit | |
Cojocaru et al. | PARAMETERS ESTIMATION IN NEW KINETIC MODEL FOR MILD-HYDROCRACKING PROCESS | |
Mattos et al. | A framework for enhancing industrial soft sensor learning models | |
Iplik | Energy Savings for Petroleum Processing: Using Mathematical Models, Optimal Control and Diagnostics | |
Neto et al. | Hybrid model for a diesel cloud point soft-sensor | |
Thomas et al. | Steady State Analysis of a UOP SBS Fluid Catalytic Cracking Unit in Aspen HYSYS | |
CN116453612A (zh) | 汽油氢含量预测模型训练、氢含量预测方法及装置 | |
Cristea et al. | SIMULATION OF THE REACTOR-REGENERATOR-MAIN FRACTIONATOR FLUID CATALYTIC CRACKING UNIT USING ARTIFICIAL NEURAL NETWORKS. | |
Gueddar et al. | Data-Based Model Reduction for Refinery-Wide Optimization | |
CN117634279A (zh) | 基于机器学习的渣油加氢装置的收率预测方法 | |
CN116463143A (zh) | 一种产品分布预测方法及装置 |