TWI814201B - 機台控制方法及控制系統 - Google Patents
機台控制方法及控制系統 Download PDFInfo
- Publication number
- TWI814201B TWI814201B TW111100688A TW111100688A TWI814201B TW I814201 B TWI814201 B TW I814201B TW 111100688 A TW111100688 A TW 111100688A TW 111100688 A TW111100688 A TW 111100688A TW I814201 B TWI814201 B TW I814201B
- Authority
- TW
- Taiwan
- Prior art keywords
- machine
- identification code
- panel
- database
- sensing data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000005540 biological transmission Effects 0.000 claims abstract description 22
- 238000004891 communication Methods 0.000 claims description 19
- 230000004044 response Effects 0.000 claims description 11
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 238000013473 artificial intelligence Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 238000012549 training Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06311—Scheduling, planning or task assignment for a person or group
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K17/00—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
- G06K17/0022—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisions for transferring data to distant stations, e.g. from a sensing device
- G06K17/0025—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisions for transferring data to distant stations, e.g. from a sensing device the arrangement consisting of a wireless interrogation device in combination with a device for optically marking the record carrier
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0633—Workflow analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
- G06Q10/103—Workflow collaboration or project management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Educational Administration (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- General Factory Administration (AREA)
- Control Of Transmission Device (AREA)
- Selective Calling Equipment (AREA)
Abstract
一種機台控制方法及控制系統。在將面板置入機台之後,透過機台讀取面板的識別碼。接著,透過電子裝置來執行下述步驟,包括:接收識別碼,以取得對應於識別碼的面板資訊;取得多個感測器的多個感測資料,其中這些感測器分別設置在機台的多個部件中,以感測這些部件的狀態;取得機台參數;基於面板資訊、感測資料以及機台參數,獲得預測良率結果;以及基於預測良率結果決定機台的傳送速度。
Description
本發明是有關於一種機台最佳化控制機制,且特別是有關於一種機台控制方法及控制系統。
目前面板製作過程中,雖然面板製程是在無塵環境中運算,但還是會存在各種微粒,而這些微粒不僅會造成貼膜異常,甚至有可能會造成面板成像的亮點和氣泡。因此,在進行貼片程序之前需先經過清洗與乾燥兩個過程。
由於產品往高階機種發展,有些產品的偏光板價格高,且特殊偏光片數量有限,倘如機台的良率產生異常,將會延宕交貨時程,及增加生產成本。故,目前會以人檢判片來確認機台狀態是否正常,然,此舉可能因人員誤判而導致機台狀態判斷失準。目前無其他檢驗機制及相關良率預測方法,也無立即性機台控制系統來改善良率。
本發明提供一種機台控制方法及控制系統,可獲得機台最佳化的控制機制。
本發明的機台控制方法,包括:在將面板置入機台之後,透過機台讀取面板的識別碼,並且透過電子裝置來執行下述步驟,包括:接收識別碼,以取得對應於識別碼的面板資訊;取得多個感測器的多個感測資料,其中這些感測器分別設置在機台的多個部件中,以感測這些部件的狀態;取得機台參數;基於面板資訊、感測資料以及機台參數,獲得預測良率結果;以及基於預測良率結果決定機台的傳送速度。
在本發明的一實施例中,基於面板資訊、感測資料以及機台參數,獲得預測良率結果的步驟包括:將面板資訊、感測資料以及機台參數輸入至已訓練的預測模型,以獲得預測良率結果。所述預測模型採用至少一人工智慧模型,並利用訓練資料集來進行訓練。
在本發明的一實施例中,基於預測良率結果決定機台的傳送速度的步驟包括:響應於預測良率結果為正常,回報正常通知至機台,以使機台採用預設速度作為傳送速度;以及響應於預測良率結果為異常,回報異常通知至機台,以使機台基於調降基準值來調降傳送速度。
在本發明的一實施例中,所述機台具有讀取器以讀取面板的識別碼,且讀取器具有通訊功能,以將所讀取的識別碼傳送至第一資料庫。所述機台控制方法更包括透過電子裝置執行下述步驟:自第一資料庫中接收識別碼。
在本發明的一實施例中,每一感測器具有通訊功能,以透過通訊功能傳送其對應的感測資料至第二資料庫。所述機台控制方法更包括透過電子裝置執行下述步驟:在接收到識別碼之後,根據識別碼對應的讀取時刻,自第二資料庫中取出對應於讀取時刻的感測資料。
本發明的控制系統,包括:機台,具有多個部件,其中所述多個部件分別設置有多個感測器,這些感測器分別用以感測部件的狀態,並且在將面板置入機台時,透過機台讀取面板的識別碼;以及電子裝置,包括:處理器。所述處理器經配置以:接收識別碼,以取得對應於識別碼的面板資訊;取得所述感測器的多個感測資料;取得機台參數;基於面板資訊、感測資料以及機台參數,獲得預測良率結果;以及基於預測良率結果決定機台的傳送速度。
基於上述,本揭露透過在機台的多個部件中設置感測器以取得部件的狀態,使得電子裝置利用感測器的感測資料來進行預測,並針對預測結果來動態調整機台的傳送速度。據此,可針對複雜的生產流程找出機台最佳化控制機制,進而減少異常品產出。
圖1是依照本發明一實施例的控制系統的方塊圖。請參照圖1,控制系統100包括機台110以及電子裝置120。機台110與電子裝置120可透過網路130來傳輸數據。
電子裝置120包括處理器121、儲存元件123以及通訊元件125。處理器121耦接至儲存元件123與通訊元件125。處理器121例如為中央處理單元(Central Processing Unit,CPU)、物理處理單元(Physics Processing Unit,PPU)、可程式化之微處理器(Microprocessor)、嵌入式控制晶片、數位訊號處理器(Digital Signal Processor,DSP)、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯控制器(programmable logic controller,PLC)或其他類似裝置。
儲存元件123例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合。儲存元件123包括一或多個程式碼片段,上述程式碼片段在被安裝後,會由處理器121來執行。
通訊元件125可以是採用區域網路(Local Area Network,LAN)技術、無線區域網路(Wireless LAN,WLAN)技術或行動通訊技術的晶片或電路。區域網路例為乙太網路(Ethernet)。無線區域網路例如為Wi-Fi。行動通訊技術例如為全球行動通訊系統(Global System for Mobile Communications,GSM)、第三代行動通訊技術(third-Generation,3G)、第四代行動通訊技術(fourth-Generation,4G)、第五代行動通訊技術(fifth-Generation,5G)等。
圖2是依照本發明一實施例的機台的方塊圖。請參照圖2,機台110包括入料部件201、清洗部件203、乾燥部件205、貼片部件207以及出料部件209等。機台110例如可採用載台或傳送帶等搬運機構來載送面板(待清洗物件),以將面板自入料部件201依序經過清洗部件203、乾燥部件205以及貼片部件207而搬運至出料部件209。在清洗部件203、乾燥部件205以及貼片部件207的每一個至少安裝有一個感測器,藉此來感測各部件的狀態。所述感測器可以視部件的不同來採用振動感測器、電流感測器、流量感測器、轉速感測器、風速感測器、粒子計數器等至少其一個。
例如,在清洗部件203中設置振動感測器、電流感測器、流量感測器以及轉速感測器,藉此分別針對振動、電流、水量以及轉速來進行監控而獲得對應的感測資料。在乾燥部件205中設置風速感測器與粒子計數器,以監測風速以及面板上的微粒(particle)。在貼片部件207中設置電流感測器以及粒子計數器。
另外,在入料部件201中設置一讀取器,以讀取面板上識別碼,並且通過其自身的通訊功能將讀取到的識別碼上傳至第一資料庫。而各感測器具有通訊功能,在獲得感測資料之後,可進一步通過其自身的通訊功能將感測資料傳送至第二資料庫。所述第一資料庫與第二資料庫可同時設置在同一個伺服器中,或者,述第一資料庫與第二資料庫也可以是設置在不同的資料庫中。
圖3是依照本發明一實施例的機台控制方法的流程圖。請同時參照圖1~圖3,在將面板置入機台110之後,透過機台110讀取面板的識別碼。例如,可在入料部件201中設置讀取器來讀取面板上識別碼,並且通過其自身的通訊功能將讀取到的識別碼上傳至第一資料庫。
接著,在步驟S310中,透過電子裝置120接收識別碼,以取得對應於識別碼的面板資訊。例如,電子裝置120透過通訊元件125連線至一面板資料庫,並基於識別碼來取得對應的面板資訊。例如,面板資訊包括尺寸、重量、表面粗糙度等面板相關資訊以及面板的前製程相關參數。
在步驟S315中,透過電子裝置120取得多個感測器的多個感測資料。處理器121在經由網路130接收到識別碼之後,根據識別碼對應的讀取時刻,通過通訊元件125連線至第二資料庫,以自第二資料庫中取出對應於所述讀取時刻的感測資料。在獲得感測資料之後,處理器121進一步對每一感測資料執行時域轉頻域動作,並進行特徵篩選。
在一實施例中,第一資料庫可進一步將識別碼與讀取此識別碼的機台編號建立關聯性,且第二資料庫可進一步將感測資料與感測器所設置的機台編號建立關聯性。藉此,電子裝置120在接收到識別碼時,可同時來獲得對應的機台編號。之後,處理器121便可依據機台編號來取得在第二資料庫中取出對應於所述讀取時刻的感測資料。
並且,在步驟S320中,透過電子裝置120取得機台參數。例如,處理器121可依據機台編號自機台資料庫中來獲得機台120的機台參數。例如,機台參數包括機台的製程參數。
之後,在步驟S315中,基於面板資訊、感測資料以及機台參數,透過電子裝置120獲得預測良率結果。在電子裝置120中,預先建立有已訓練的預測模型,通過將面板資訊、感測資料以及機台參數輸入至預測模型可獲得預測良率結果。在一實施例中,預測模型採用至少一人工智慧模型,並利用訓練資料集來進行訓練。所述人工智慧模型包括深度學習模型以及機器學習模型,例如包括:支援向量機(support vector machine,SVM)、線性分類器、XGboost(eXtreme Gradient Boosting)模型、卷積神經網路(convolutional neural network,CNN)模型、深度神經網路(deep neural network,DNN)等。
最後,在步驟S315中,透過電子裝置120基於預測良率結果決定機台110的傳送速度(機台110搬運面板的傳送速度)。在此,預測模型的輸出包括正常與異常兩種預測結果。例如,預測模型輸出“0”代表正常,輸出為“1”代表異常,在此僅為說明,並不以此為限。而處理器121響應於預測良率結果為正常,回報正常通知至機台110,以使機台110採用預設速度作為傳送速度。並且,處理器121響應於預測良率結果為異常,回報異常通知至機台110,以使機台110基於調降基準值來調降傳送速度。據此,可充分清洗面板。
舉例來說,響應於接收到正常通知,在尚未調降傳送速度的情況下,機台110維持當前的傳送速度(即,預設速度)。而在傳送速度已調降的情況下,響應於接收到正常通知,機台110重新採用預設速度作為傳送速度。響應於接收到異常通知,機台110會以當前的傳送速度減去調降基準值來獲得調降後的傳送速度。
綜上所述,本揭露透過在機台的多個部件中設置感測器以取得部件的狀態,使得電子裝置利用感測器的感測資料來進行良率的預測,並針對預測結果來動態調整機台的傳送速度。據此,可針對複雜的生產流程找出機台最佳化控制機制,進而減少異常品產出。
100:控制系統
110:機台
120:電子裝置
121:處理器
123:儲存元件
125:通訊元件
130:網路
201:入料部件
203:清洗部件
205:乾燥部件
207:貼片部件
209:出料部件
S305~S330:機台控制方法的步驟
圖1是依照本發明一實施例的控制系統的方塊圖。
圖2是依照本發明一實施例的機台的方塊圖。
圖3是依照本發明一實施例的機台控制方法的流程圖。
S305~S330:機台控制方法的步驟
Claims (10)
- 一種機台控制方法,包括:在將一面板置入一機台之後,透過該機台讀取該面板的一識別碼,並傳送該識別碼至一第一資料庫;透過一電子裝置來執行下述步驟:自該第一資料庫接收該識別碼,以取得對應於該識別碼的一面板資訊;取得多個感測器的多個感測資料,其中該些感測器分別設置在該機台的多個部件中,以感測該些部件的狀態;自一機台資料庫取得與該機台的機台編號對應的一機台參數;將該面板資訊、該些感測資料以及該機台參數輸入至已訓練的一預測模型,以獲得一預測良率結果;以及基於該預測良率結果決定該機台搬運該面板的一傳送速度。
- 如請求項1所述的機台控制方法,其中該預測模型採用至少一人工智慧模型,並利用一訓練資料集來進行訓練。
- 如請求項1所述的機台控制方法,其中基於該預測良率結果決定該機台搬運該面板的該傳送速度的步驟包括:響應於該預測良率結果為正常,回報一正常通知至該機台,以使該機台採用一預設速度作為該傳送速度;以及 響應於該預測良率結果為異常,回報一異常通知至該機台,以使該機台基於一調降基準值來調降該傳送速度。
- 如請求項1所述的機台控制方法,其中該機台具有一讀取器以讀取該面板的該識別碼,且該讀取器具有一通訊功能,以將所讀取的該識別碼傳送至該第一資料庫。
- 如請求項1所述的機台控制方法,其中每一該些感測器具有一通訊功能,以透過該通訊功能傳送其對應的感測資料至一第二資料庫,其中,透過該電子裝置更包括執行下述步驟:在接收到該識別碼之後,根據該識別碼對應的一讀取時刻,自該第二資料庫中取出對應於該讀取時刻的該些感測資料。
- 一種控制系統,包括:一機台,具有多個部件,其中該些部件分別設置有多個感測器,該些感測器分別用以感測該些部件的狀態,並且在將一面板置入該機台時,透過該機台讀取該面板的一識別碼,並傳送該識別碼至一第一資料庫;以及一電子裝置,包括:一處理器,該處理器經配置以:自該第一資料庫接收該識別碼,以取得對應於該識別碼的一面板資訊;取得該些感測器的多個感測資料;自一機台資料庫取得與該機台的機台編號對應的一機台 參數;將該面板資訊、該些感測資料以及該機台參數輸入至已訓練的一預測模型,以獲得一預測良率結果;以及基於該預測良率結果決定該機台搬運該面板的一傳送速度。
- 如請求項6所述的控制系統,其中該預測模型採用至少一人工智慧模型,並利用一訓練資料集來進行訓練。
- 如請求項6所述的控制系統,其中該處理器經配置以:響應於該預測良率結果為正常,回報一正常通知至該機台,以使該機台採用一預設速度作為該傳送速度;以及響應於該預測良率結果為異常,回報一異常通知至該機台,以使該機台基於一調降基準值來調降該傳送速度。
- 如請求項6所述的控制系統,其中該機台具有一讀取器以讀取該面板的該識別碼,且該讀取器具有一通訊功能,以將所讀取的該識別碼傳送至該第一資料庫。
- 如請求項6所述的控制系統,其中每一該些感測器具有一通訊功能,以透過該通訊功能傳送其對應的感測資料至一第二資料庫,其中該處理器經配置以:在接收到該識別碼之後,根據該識別碼對應的一讀取時刻, 自該第二資料庫中取出對應於該讀取時刻的該些感測資料。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111100688A TWI814201B (zh) | 2022-01-07 | 2022-01-07 | 機台控制方法及控制系統 |
CN202210517993.4A CN114897362A (zh) | 2022-01-07 | 2022-05-12 | 机台控制方法及控制系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111100688A TWI814201B (zh) | 2022-01-07 | 2022-01-07 | 機台控制方法及控制系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202328833A TW202328833A (zh) | 2023-07-16 |
TWI814201B true TWI814201B (zh) | 2023-09-01 |
Family
ID=82720934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111100688A TWI814201B (zh) | 2022-01-07 | 2022-01-07 | 機台控制方法及控制系統 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114897362A (zh) |
TW (1) | TWI814201B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113034422A (zh) * | 2019-12-06 | 2021-06-25 | 富泰华工业(深圳)有限公司 | 注塑成型产品良率的检测方法、装置及电子设备 |
TWM618987U (zh) * | 2021-05-31 | 2021-11-01 | 賴煜勲 | 運用人工智慧之趨勢圖表分析平台 |
CN113657820A (zh) * | 2021-10-21 | 2021-11-16 | 深圳市信润富联数字科技有限公司 | 产线配料方法、装置、设备及可读存储介质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI385492B (zh) * | 2008-12-16 | 2013-02-11 | Ind Tech Res Inst | 機台設備的維護分析系統及其方法 |
CN106094270A (zh) * | 2016-06-20 | 2016-11-09 | 武汉华星光电技术有限公司 | 成盒机台及成盒机台微粒控制方法 |
CN110399996A (zh) * | 2018-04-25 | 2019-11-01 | 深圳富桂精密工业有限公司 | 制程异常状态预判方法及预判系统 |
CN110083636A (zh) * | 2019-04-04 | 2019-08-02 | 深圳市华星光电技术有限公司 | 面板缺陷的检测系统及检测方法 |
-
2022
- 2022-01-07 TW TW111100688A patent/TWI814201B/zh active
- 2022-05-12 CN CN202210517993.4A patent/CN114897362A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113034422A (zh) * | 2019-12-06 | 2021-06-25 | 富泰华工业(深圳)有限公司 | 注塑成型产品良率的检测方法、装置及电子设备 |
TWM618987U (zh) * | 2021-05-31 | 2021-11-01 | 賴煜勲 | 運用人工智慧之趨勢圖表分析平台 |
CN113657820A (zh) * | 2021-10-21 | 2021-11-16 | 深圳市信润富联数字科技有限公司 | 产线配料方法、装置、设备及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
TW202328833A (zh) | 2023-07-16 |
CN114897362A (zh) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3499418B1 (en) | Information processing apparatus, identification system, setting method, and program | |
US20190362235A1 (en) | Hybrid neural network pruning | |
JP5503564B2 (ja) | 処理装置の異常判定システム及びその異常判定方法 | |
JP6831347B2 (ja) | 学習装置、学習方法および学習プログラム | |
JP2002534107A5 (zh) | ||
Ziaratban et al. | Modeling of volume and surface area of apple from their geometric characteristics and artificial neural network | |
TWI814201B (zh) | 機台控制方法及控制系統 | |
US20180300442A1 (en) | Circuit configuration optimization apparatus and machine learning device | |
RU2002127000A (ru) | Способы и устройство для оптимизации корма для домашних животных | |
US20230166919A1 (en) | Systems, methods, and computer program products for improved container transportation | |
JP2004177375A (ja) | 組合せ計量装置 | |
CN117584033A (zh) | 信息处理装置及方法、机器学习装置及方法 | |
CN114175065A (zh) | 信息处理系统 | |
CN114202095A (zh) | 关于经由制造过程制造的产品进行预测的系统和方法 | |
CN109214544A (zh) | 寿命预测及维护决策方法和装置、以及存储介质、计算机 | |
TWI726545B (zh) | 儲存空間管理方法及使用此方法的電子裝置 | |
JP6656687B1 (ja) | 学習方法、プログラム及び学習装置 | |
US10346940B2 (en) | Robot system and production system | |
TWI790077B (zh) | 基於感測資料調整休眠時間的方法及電子裝置 | |
US20240373898A1 (en) | Non-contact, closed loop feedback for dehydrator control | |
US20240176337A1 (en) | Industrial quality monitoring system with pre-trained feature extraction | |
US20240231289A1 (en) | Systems and methods for monitoring and training a manufacturing system | |
US20240074467A1 (en) | Immersion treatment tank unloading | |
CN114037379A (zh) | 一种基于大数据的电商产品用输送装置性能预估系统 | |
Rambabu et al. | Embedded Based Automated Conveyor System for Food Processing Using Arduino |