TWI809941B - Capacity calculating method of battery affected by low temperature environment - Google Patents
Capacity calculating method of battery affected by low temperature environment Download PDFInfo
- Publication number
- TWI809941B TWI809941B TW111122962A TW111122962A TWI809941B TW I809941 B TWI809941 B TW I809941B TW 111122962 A TW111122962 A TW 111122962A TW 111122962 A TW111122962 A TW 111122962A TW I809941 B TWI809941 B TW I809941B
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature
- battery
- integral
- capacity
- low temperature
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000010354 integration Effects 0.000 claims abstract description 61
- 238000004364 calculation method Methods 0.000 claims description 19
- 230000004913 activation Effects 0.000 claims description 16
- 238000011084 recovery Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 238000011156 evaluation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本發明涉及一種電池容量受溫度影響的估算方法,特別是涉及一種電池容量受放電前環境低溫影響的計算方法。 The invention relates to a method for estimating battery capacity affected by temperature, in particular to a calculation method for battery capacity affected by ambient low temperature before discharge.
隨著新能源汽車的快速發展,人們對電池的容量的計算精準度的要求越來越高。由於電池的容量受到所在環境的溫度影響極大,所以必須設計一套電池容量補償機制。目前市面上的電池容量補償機制,僅有考量電池放電過程中,電池容量隨電池溫度回升而增加,來估算電池的容量。 With the rapid development of new energy vehicles, people have higher and higher requirements for the calculation accuracy of battery capacity. Since the capacity of the battery is greatly affected by the temperature of the environment, it is necessary to design a battery capacity compensation mechanism. The current battery capacity compensation mechanism on the market only considers the increase in battery capacity as the battery temperature rises during the battery discharge process to estimate the battery capacity.
然而,電池在放電前,可能長期放置在低溫環境中,造成電池內的電解液在低溫下凝結,即便電池開始進行放電後,溫度逐漸回升至常溫,仍未能隨溫度上升而活化,導致電池實際容量仍無法完全回覆至理想容量的100%。是以,現有電池容量補償機制需受到改善,需考量電池放電前的溫時因子,始能精準地計算出電池的實際容量。 However, before the battery is discharged, it may be placed in a low-temperature environment for a long time, causing the electrolyte in the battery to condense at a low temperature. The actual capacity still cannot be fully recovered to 100% of the ideal capacity. Therefore, the existing battery capacity compensation mechanism needs to be improved, and the temperature-time factor before the battery discharge needs to be considered, so as to accurately calculate the actual capacity of the battery.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種電池容量受放電前環境低溫影響的計算方法,包含以下步驟:在電池放電 前的一時間區間偵測電池的溫度;將電池的溫度對時間區間切分出的多個積分時間範圍的時間進行積分,以計算出多個積分時間範圍分別的多個溫度積分量;判斷在各積分時間範圍內的電池的溫度是否小於溫度門檻值,若是,判定此積分時間範圍的溫度積分量為低溫積分量,若否,判定此積分時間範圍的溫度積分量為回溫積分量;加總在時間區間內的所有低溫積分量,以計算出總低溫積分量;加總在時間區間內的所有回溫積分量,以計算出總回溫積分量;將總低溫積分量與總回溫積分量相減,以計算出電池在放電前的時間區間內的總溫度積分量;以及依據總溫度積分量,以估算電池放電所在環境的溫度以及在環境放置的時間,對電池的容量的影響程度,據以計算電池的實際容量。 The technical problem to be solved by the present invention is to provide a calculation method for the influence of battery capacity by the low temperature of the environment before discharge, which includes the following steps: Detect the temperature of the battery in the previous time interval; integrate the temperature of the battery with the times of multiple integration time ranges divided by the time interval to calculate the multiple temperature integrals of the multiple integration time ranges; Whether the temperature of the battery within each integration time range is lower than the temperature threshold value, if so, determine that the temperature integral in this integration time range is a low temperature integral, if not, determine that the temperature integral in this integration time range is a return temperature integral; add Sum all the low temperature integrals within the time interval to calculate the total low temperature integrals; add up all the return temperature integrals within the time interval to calculate the total return temperature integrals; combine the total low temperature integrals with the total return temperature Subtracting the integrals to calculate the total temperature integral of the battery in the time interval before discharge; and based on the total temperature integral, to estimate the temperature of the environment where the battery is discharged and the time it is placed in the environment, and the impact on the capacity of the battery Level, according to which the actual capacity of the battery is calculated.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings related to the present invention. However, the provided drawings are only for reference and description, and are not intended to limit the present invention.
S101~S119、S201~S207、S301~S307、S401~S409、S501~S505:步驟 S101~S119, S201~S207, S301~S307, S401~S409, S501~S505: steps
BAT:電池 BAT: battery
100:電池容量評估裝置 100:Battery capacity evaluation device
10:溫度偵測器 10: Temperature detector
20:處理器 20: Processor
t1~t7:時間 t1~t7: time
A12、A23、A34、A45、A56、A67:積分面積 A12, A23, A34, A45, A56, A67: integral area
Y1:線性曲線 Y1: linear curve
Y2:非線性取線 Y2: nonlinear line taking
Qmax:理想容量 Qmax: ideal capacity
PreCap:預留容量 PreCap: reserved capacity
FCC:實際容量 FCC: actual capacity
TempCap:溫度變量 TempCap: temperature variable
RsvdCap:保留容量 RsvdCap: reserved capacity
圖1為本發明實施例的電池容量受放電前環境低溫影響的計算方法依據低溫積分量以及回溫積分量來計算電池容量的步驟流程圖。 FIG. 1 is a flow chart of the steps of calculating the battery capacity according to the low temperature integral and the return temperature integral in the method for calculating the battery capacity affected by the low temperature of the environment before discharge according to an embodiment of the present invention.
圖2為本發明實施例的電池容量受放電前環境低溫影響的計算方法依據低溫積分量與低溫活化係數的乘積值以及回溫積分量與回溫活化係數的乘積值來計算電池容量的方塊圖。 Figure 2 is a block diagram of calculating the battery capacity based on the product value of the low temperature integral value and the low temperature activation coefficient and the product value of the return temperature integral value and the return temperature activation coefficient of the calculation method of the battery capacity affected by the low temperature of the environment before discharge according to the embodiment of the present invention .
圖3為本發明實施例的電池容量受放電前環境低溫影響的計算方法中計算電池容量隨放電前環境溫度變化的溫度變量的步驟流程圖。 FIG. 3 is a flow chart of steps for calculating the temperature variable of the battery capacity changing with the ambient temperature before discharge in the method for calculating the battery capacity affected by the low temperature of the environment before discharge according to an embodiment of the present invention.
圖4為本發明實施例的電池容量受放電前環境低溫影響的計算方法中計算電池容量隨放電過程中環境溫度變化的溫度變量的步驟流程圖。 4 is a flow chart of steps for calculating the temperature variable of the battery capacity as the environment temperature changes during the discharge process in the method for calculating the battery capacity affected by the ambient low temperature before discharge according to an embodiment of the present invention.
圖5為本發明實施例的電池容量受放電前環境低溫影響的計算方法依據電池的預留容量、總溫度變量以及保留容量來計算電池容量的步驟流程圖。 FIG. 5 is a flow chart of the steps of calculating the battery capacity according to the battery reserved capacity, total temperature variable and reserved capacity of the method for calculating the battery capacity affected by the ambient low temperature before discharge according to the embodiment of the present invention.
圖6為本發明實施例的考量放電前受低溫影響的電池容量評估裝置的示意圖。 FIG. 6 is a schematic diagram of a battery capacity evaluation device considering the impact of low temperature before discharge according to an embodiment of the present invention.
圖7為電池放電前的溫度對時間的積分示意圖。 FIG. 7 is a schematic diagram of the integration of temperature versus time before the battery is discharged.
圖8為本發明實施例的電池容量受放電前環境低溫影響的計算方法所建立的線性曲線與非線性曲線的示意圖。 FIG. 8 is a schematic diagram of linear curves and nonlinear curves established by the calculation method of the battery capacity affected by the ambient low temperature before discharge according to the embodiment of the present invention.
圖9為本發明實施例的電池容量受放電前環境低溫影響的計算方法所計算的電池容量的示意圖。 9 is a schematic diagram of the battery capacity calculated by the calculation method of the battery capacity affected by the ambient low temperature before discharge according to the embodiment of the present invention.
以下是通過特定的具體實施例來說明本發明的實施方式。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。 The implementation of the present invention is described below through specific specific examples. The present invention can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the concept of the present invention. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention.
請參閱圖1、圖6和圖7,其中圖1為本發明實施例的電池容量受放電前環境低溫影響的計算方法依據低溫積分量以及回溫積分量來計算電池容量的步驟流程圖;圖6為本發明實施例的考量放電前受低溫影響的電池容量評估裝置的示意圖;圖7為電池放電前的溫度對時間的積分示意圖。本發明實施例的電池容量受放電前環境低溫影響的計算方法可包含如圖1所示的步驟S101~S119,可例如由如圖6所示的電池容量評估裝置100執行,以估算電池BAT的實際容量。 Please refer to Fig. 1, Fig. 6 and Fig. 7, wherein Fig. 1 is a flow chart of calculating the battery capacity according to the low temperature integral and the return temperature integral of the calculation method of the battery capacity affected by the low temperature of the environment before discharge according to the embodiment of the present invention; 6 is a schematic diagram of a battery capacity evaluation device considering the impact of low temperature before discharge according to an embodiment of the present invention; FIG. 7 is a schematic diagram of the integral of temperature before discharge of a battery versus time. The method for calculating the battery capacity affected by the low temperature of the environment before discharge in the embodiment of the present invention may include steps S101 to S119 as shown in FIG. Actual capacity.
在步驟S101,在電池BAT放電前的一時間區間內,利用電池容量評估裝置100的溫度偵測器10偵測電池BAT的溫度。
In step S101 , the
在步驟S103,利用電池容量評估裝置100的處理器20連接溫度偵測器10,以從溫度偵測器10取得電池BAT的溫度。利用處理器20將電池BAT的溫度對上述時間區間切分出的多個積分時間範圍的時間進行積分,以計算出多個積分時間範圍分別的多個溫度積分量,以方程式表示為:
若有需要,可利用處理器20依據多個積分時間範圍內的時間以及電池BAT在不同時間的溫度,以建立如圖7所示的一曲線在一曲線圖中。此曲線圖的縱軸為電池BAT的溫度,此曲線圖的橫軸為時間,即曲線圖中的曲線為一溫度對時間積分的曲線。
If necessary, the
利用處理器20計算曲線在各積分時間範圍內覆蓋在曲線圖中的一積分面積,即為各積分時間範圍的一溫度積分量,例如計算圖7所示的第一積分時間範圍t1~t2的積分面積A12、第二積分時間範圍t2~t3的積分面積A23、第三積分時間範圍t3~t4的積分面積A34、第四積分時間範圍t4~t5的積分面積A45、第五積分時間範圍t5~t6的積分面積A56以及第六積分時間範圍t6~t7的積分面積A67,在此僅舉例說明,本發明不以此為限。
Utilize the
在步驟S105,利用處理器20判斷在各積分時間範圍內的電池BAT的溫度是否小於一溫度門檻值。若電池BAT的溫度在一積分時間範圍內小於一溫度門檻值,執行步驟S107、S111。相反地,若電池BAT的溫度在一積分時間範圍內不小於一溫度門檻值,則執行步驟S109、S113。
In step S105, the
在步驟S107,若電池BAT的溫度在一積分時間範圍內小於一溫度門檻值,判定/歸類此積分時間範圍的溫度積分量為一低溫積分量。例如,利用處理器20判定曲線圖橫軸以下的積分面積為一低溫積分面積,如圖7所示的第一積分時間範圍t1~t2的積分面積A12、第三積分時間範圍t3~t4的積分面積A34以及第五積分時間範圍t5~t6的積分面積A56的面積值為低溫積分量。
In step S107, if the temperature of the battery BAT is less than a temperature threshold within an integration time range, it is determined/classified as a low temperature integral within the integration time range. For example, using the
在步驟S109,若電池BAT的溫度在一積分時間範圍內不小於一溫度門檻值,判定/歸類此積分時間範圍的溫度積分量為一回溫積分量。例如,利用處理器20判定曲線圖橫軸以上的積分面積為一回溫積分面積,如圖7所示的第二積分時間範圍t2~t3的積分面積A23、第四積分時間範圍t4~t5的積分面積A45以及第六積分時間範圍t6~t7的積分面積A67的面積值為回溫積分量。
In step S109 , if the temperature of the battery BAT is not less than a temperature threshold within an integration time range, it is determined/classified as a warm-up temperature integral within the integration time range. For example, utilize the
在步驟S111,利用處理器20加總在一時間區間內的所有低溫積分量,以計算出一總低溫積分量。例如,利用處理器20加總如圖7所示的第一積分時間範圍t1~t2的積分面積A12的面積值、第三積分時間範圍t3~t4的積分面積A34的面積值與第五積分時間範圍t5~t6的積分面積A56的面積值,以計算出一總低溫面積值,即一總低溫積分量。
In step S111, the
在步驟S113,利用處理器20加總在一時間區間內的所有回溫積分量,以計算出一總回溫積分量。例如,利用處理器20加總如圖7所示的第二積分時間範圍t2~t3的積分面積A23的面積值、第四積分時間範圍t4~t5的積分面積A45的面積值與第六積分時間範圍t6~t7的積分面積A67的面積值,以計算出一總回溫面積值,即一總回溫積分量。
In step S113 , the
在步驟S115,將步驟S111計算的一總低溫積分量與步驟S113計算的一總回溫積分量相減,以計算出電池BAT在放電前的一時間區間內的一總溫度積分量,以下列方程式表示:F(t)=TLW-THG, 其中F(t)代表總溫度積分量,TLW代表總低溫積分量,THG代表總回溫積分量。若總溫度積分量的計算結果為負值,將會直接以0取代。 In step S115, a total low temperature integral calculated in step S111 is subtracted from a total return temperature integral calculated in step S113 to calculate a total temperature integral of the battery BAT in a time interval before discharge, as follows Equation representation: F(t)=TLW-THG, Among them, F(t) represents the total temperature integral, TLW represents the total low temperature integral, and THG represents the total return temperature integral. If the calculation result of the total temperature integral is negative, it will be directly replaced by 0.
例如,利用處理器20將如圖7所示的積分面積A12、積分面積A34以及積分面積A56的總低溫面積值,減去積分面積A23、積分面積A45以及積分面積A67的總回溫積分量,以計算出電池BAT在放電前的一總溫度積分量。
For example, using the
在步驟S117,依據總溫度積分量,以估算電池BAT放電所在環境溫度以及在環境放置的時間(即溫時因子),對電池BAT的容量的影響程度。 In step S117 , according to the total temperature integral, the influence degree of the battery BAT's capacity on the battery BAT's capacity is estimated by the ambient temperature where the battery BAT is discharged and the time it is left in the environment (ie, the temperature-time factor).
在步驟S119,依據電池BAT放電前的環境溫時因子對電池BAT的容量的影響程度,以計算電池BAT開始進行放電時的實際容量。 In step S119, the actual capacity of the battery BAT when it starts to discharge is calculated according to the degree of influence of the ambient temperature and time factors on the capacity of the battery BAT before the battery BAT is discharged.
請參閱圖1、圖2和圖6,其中圖2為本發明實施例的電池容量受放電前環境低溫影響的計算方法依據低溫積分量與低溫活化係數的乘積值以及回溫積分量與回溫活化係數的乘積值來計算電池容量的步驟流程圖。本發明實施例的電池容量受放電前環境低溫影響的計算方法可更包含如圖2所示的步驟S203與S207,若有需要,可更包含步驟S201、S205,可由圖6所示的電池容量評估裝置100在步驟S101~S113之後執行。
Please refer to Fig. 1, Fig. 2 and Fig. 6, in which Fig. 2 shows the calculation method of the battery capacity affected by the low temperature of the environment before discharge according to the embodiment of the present invention. The flow chart of the steps to calculate the battery capacity by multiplying the activation coefficient. The method for calculating the battery capacity affected by the low temperature of the environment before discharge in the embodiment of the present invention may further include steps S203 and S207 as shown in FIG. The
在步驟S201,利用處理器20依據電池BAT的(電芯的化學)特性和(老化)狀態,以設定一低溫活化係數。
In step S201, the
在步驟S203,利用處理器20依據電池BAT的(電芯的化學)特性和(老化)狀態,以設定一回溫活化係數。
In step S203 , the
在步驟S205,利用處理器20將一總低溫積分量乘以一低溫活化係數,以計算出一活化低溫積分量。
In step S205 , the
在步驟S207,利用處理器20將一總回溫積分量乘以一回溫活化係數,以計算出一活化回溫積分量。
In step S207 , the
在步驟S115,利用處理器20將一活化低溫積分量減去一活化回
溫積分量,以計算一總溫度積分量,此總溫度積分量作為在步驟S119計算電池BAT的實際容量的依據。
In step S115, the
上述步驟S205、S207和S115的計算,以下列方程式表示:F(t)=a×TLW-b×THG,其中F(t)代表總溫度積分量,a代表低溫活化係數,TLW代表總低溫積分量,b代表回溫活化係數,THG代表總回溫積分量。 The calculation of the above steps S205, S207 and S115 is expressed by the following equation: F(t)=a×TLW-b×THG, wherein F(t) represents the total temperature integral, a represents the low temperature activation coefficient, and TLW represents the total low temperature integral Amount, b represents the temperature recovery activation coefficient, THG represents the total temperature recovery integral.
請參閱圖1、圖3、圖6和圖8,其中圖3為本發明實施例的電池容量受放電前環境低溫影響的計算方法中計算電池容量隨放電前環境溫度變化的溫度變量的步驟流程圖;圖8為本發明實施例的電池容量受放電前環境低溫影響的計算方法所建立的線性曲線與非線性曲線的示意圖。 Please refer to Fig. 1, Fig. 3, Fig. 6 and Fig. 8, wherein Fig. 3 is a flow chart of the steps for calculating the temperature variable of the battery capacity with the change of the ambient temperature before discharge in the calculation method of the battery capacity affected by the low temperature of the environment before discharge according to the embodiment of the present invention Figure; Figure 8 is a schematic diagram of the linear curve and nonlinear curve established by the calculation method of the battery capacity affected by the low temperature environment before discharge according to the embodiment of the present invention.
本發明實施例的電池容量受放電前環境低溫影響的計算方法更可包含如圖3所示的步驟S301~S307,其可由如圖6所示的電池容量評估裝置100執行在圖1所示的步驟S115之後與步驟S119之前。
The method for calculating the battery capacity affected by the ambient low temperature before discharge in the embodiment of the present invention may further include steps S301 to S307 as shown in FIG. 3 , which can be executed by the battery
在步驟S301,利用處理器20依據電池BAT放電前在一時間區間內的一總溫度積分量,以計算電池BAT放電前所在的環境影響電池BAT的實際容量損失多少百分比,作為第一容量損失百分比。
In step S301, the
在步驟S303,利用處理器20將實際容量乘以第一容量損失百分比,以計算第一容量損失量。
In step S303, the
在步驟S305,利用處理器20將實際容量減去第一容量損失量,以在步驟S307計算出第一溫度變量,此第一溫度變量作為在步驟S119計算電池BAT的實際容量的依據。
In step S305, the
若有需要,可利用處理器20依據電池BAT放電前在每一時間範圍的溫度積分量,以計算在各時間範圍的電池BAT的容量損失百分比,接著可如圖8所示依據多個時間範圍分別的多個溫度積分量及其分別的多個容量
損失百分比,以建立如圖8所示的一線性曲線Y1、非線性取線Y2,或是建立曲線方程式。
If necessary, the
請參閱圖1、圖3、圖4和圖6,其中圖4為本發明實施例的電池容量受放電前環境低溫影響的計算方法中計算電池容量隨放電過程中環境溫度變化的溫度變量的步驟流程圖。本發明實施例的電池容量受放電前環境低溫影響的計算方法更可包含如圖4所示的步驟S401~S409,其可由如圖6所示的電池容量評估裝置100執行在步驟S307後、步驟S119前。
Please refer to Fig. 1, Fig. 3, Fig. 4 and Fig. 6, wherein Fig. 4 is the step of calculating the temperature variable of the battery capacity with the change of the ambient temperature during the discharge process in the calculation method of the battery capacity affected by the low temperature of the environment before discharge in the embodiment of the present invention flow chart. The method for calculating the battery capacity affected by the ambient low temperature before discharge in the embodiment of the present invention may further include steps S401 to S409 as shown in FIG. 4 , which may be performed by the battery
在步驟S401,將電池BAT進行放電。 In step S401, the battery BAT is discharged.
在步驟S403,利用處理器20計算電池BAT放電過程中,電池BAT因放電自身發熱,電池BAT的溫度隨時間逐漸上升時的溫度變量,作為第二溫度變量。電池BAT的溫度放電後的溫度變量相關技術內容在之前申請案中已明確說明,故不在此贅述。
In step S403, use the
在步驟S405,利用處理器20將步驟S307所計算出的電池BAT放電前第一溫度變量,與步驟S403所計算出的電池BAT放電後的第二溫度變量相加,以在步驟S407計算出電池BAT的放電前後的總溫度變量。
In step S405, the
在步驟S409,利用處理器20將理想容量減去總溫度變量,以在步驟S119計算出電池BAT的實際容量。
In step S409, the
步驟S301~S307、S403~S407的計算,可由以下方程式表示:TempCap=(FCC×(100%-TempHour))+(FCC×(100%-TempRise)),其中,TempCap代表總溫度變量,FCC代表電池BAT的實際容量,TempHour代表電池BAT放電前的第一溫度變量(即電池BAT放電前,例如電池BAT在低溫環境的總放置時間至放電前一秒的溫度變化,所造成的電池BAT的容量差),TempHour常溫預設100%,TempRise代表電池BAT開始放電後的第二溫度變量(即電池BAT開始放電後溫度變化,所造成的電池BAT的容量差), TempRise常溫預設100%。 The calculation of steps S301~S307, S403~S407 can be expressed by the following equation: TempCap=(FCC×(100%-TempHour))+(FCC×(100%-TempRise)), where TempCap represents the total temperature variable and FCC represents The actual capacity of the battery BAT, TempHour represents the first temperature variable before the battery BAT is discharged (that is, before the battery BAT is discharged, for example, the temperature change from the total storage time of the battery BAT in a low temperature environment to one second before discharge, the capacity of the battery BAT caused Poor), TempHour room temperature preset 100%, TempRise represents the second temperature variable after the battery BAT starts to discharge (that is, the temperature change after the battery BAT starts to discharge, resulting in the capacity difference of the battery BAT), TempRise normal temperature preset 100%.
請參閱圖1、圖4至圖6和圖9,其中圖5為本發明實施例的電池容量受放電前環境低溫影響的計算方法依據電池的預留容量、總溫度變量以及保留容量來計算電池容量的步驟流程圖;圖9為本發明實施例的電池容量受放電前環境低溫影響的計算方法所計算的電池容量的示意圖。本發明實施例的電池容量受放電前環境低溫影響的計算方法更可包含如圖5所示的步驟S501~S505,其可由如圖6所示的電池容量評估裝置100執行。
Please refer to Fig. 1, Fig. 4 to Fig. 6 and Fig. 9, wherein Fig. 5 shows the calculation method of the battery capacity affected by the low temperature of the environment before discharge according to the reserved capacity of the battery, the total temperature variable and the reserved capacity of the battery according to the embodiment of the present invention. Flow chart of the steps of capacity; FIG. 9 is a schematic diagram of the battery capacity calculated by the calculation method of the battery capacity affected by the low temperature of the environment before discharge according to the embodiment of the present invention. The method for calculating the battery capacity affected by the ambient low temperature before discharge in the embodiment of the present invention may further include steps S501 - S505 as shown in FIG. 5 , which may be executed by the battery
在步驟S501,利用處理器20可依據充電器規格、電池組充電實驗表現等其他需求,以決定電池BAT的如圖9所示的預留容量PreCap。例如,電芯規格中,飽充電壓為4.2V,但實際充電器充電電壓只能夠到達4.18V,預留容量等於或約為4.2V與4.18V間的容量差距。或例如,儘管在電池組內皆是同款電芯,但有些電芯在接近滿充時,也會出現明顯的岔壓現象,即電池組的電芯間電壓差距極大,呈現不平衡的不穩定狀態,容易使電池組的損耗增加及壽命減短,應極力避免。因此當演算法取岔壓點電壓做為滿充電壓,預留容量等於或約為岔壓點電壓與電芯規格電壓間的容量差距。
In step S501, the
在步驟S503,利用處理器20決定電池BAT的如圖9所示的保留容量RsvdCap。為盡量避免電芯放電到電壓較低的地方,讓電芯壽命衰減較快,演算法會期望將電池組的欠電壓保護(Under Voltage Protection,UVP)的電壓設得越高越好,但同時需要兼顧客戶的放電需求,所以UVP會根據客戶需求訂定,並讓保留容量取決於電芯總容量、預留容量以及客戶需求。
In step S503, the
例如,客戶對電池組的需求為200Ah,而電芯的總放電量為214Ah,根據岔壓點設定保充電壓所導致的預留容量為6.5Ah,則保留容量為7.5Ah(=214-200-6.5),而UVP電壓點則以DOD 3.5%(7.5/214)對照開路電壓與放電深度的曲線圖求得。 For example, the customer's demand for the battery pack is 200Ah, and the total discharge capacity of the battery cell is 214Ah, and the reserved capacity caused by setting the charging voltage according to the bifurcation point is 6.5Ah, then the reserved capacity is 7.5Ah (=214-200 -6.5), and the UVP voltage point is obtained by comparing the open circuit voltage and the depth of discharge with DOD 3.5% (7.5/214).
在步驟S505,利用處理器20將如圖9所示的電池BAT的理想容量Qmax減去預留容量PreCap、保留容量RsvdCap以及總溫度變量TempCap(如同步驟S407計算的總溫度變量),以計算出電池BAT的實際容量。
In step S505, the ideal capacity Qmax of the battery BAT as shown in Figure 9 is subtracted by the
步驟S505的計算,可由以下方程式表示:FCC=(Qmax-PreCap-RsvdCap)-TempCap,其中,FCC代表電池BAT的實際容量,Qmax代表電池BAT的理想容量(即依據不同電芯的特性所設計的理想容量,會隨電池老化更新),PreCap代表電池BAT的預留容量,RsvdCap代表電池BAT的保留容量,TempCap代表如前述所計算的電池BAT的總溫度變量。 The calculation of step S505 can be expressed by the following equation: FCC=(Qmax-PreCap-RsvdCap)-TempCap, wherein, FCC represents the actual capacity of the battery BAT, and Qmax represents the ideal capacity of the battery BAT (i.e. designed according to the characteristics of different batteries The ideal capacity will be updated as the battery ages), PreCap represents the reserved capacity of the battery BAT, RsvdCap represents the reserved capacity of the battery BAT, and TempCap represents the total temperature variable of the battery BAT calculated as described above.
若有需要,如圖6所示的電池容量評估裝置100還可更包含儲存元件,例如但不限於記憶體,用來儲存上述所計算出的數據。
If necessary, the battery
綜上所述,本發明提供一種電池容量受放電前環境低溫影響的計算方法,其依據電池放電前放置環境中的溫時因子,特別是考量電池長期放置在低溫環境中造成電池內的電解液凝結,電池未能隨溫度而活化的特性,所造成電池的實際容量與理想容量的容量差,以精準地計算出電池的實際容量。 To sum up, the present invention provides a calculation method for the influence of battery capacity by the low temperature of the environment before discharge, which is based on the temperature-time factor in the environment where the battery is placed before discharge, especially considering the long-term placement of the battery in a low-temperature environment that causes the electrolyte in the battery to Condensation, the characteristic that the battery does not activate with temperature, causes the difference between the actual capacity of the battery and the ideal capacity, so as to accurately calculate the actual capacity of the battery.
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred feasible embodiment of the present invention, and does not therefore limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
S101~S119:步驟 S101~S119: steps
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111122962A TWI809941B (en) | 2022-06-21 | 2022-06-21 | Capacity calculating method of battery affected by low temperature environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111122962A TWI809941B (en) | 2022-06-21 | 2022-06-21 | Capacity calculating method of battery affected by low temperature environment |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI809941B true TWI809941B (en) | 2023-07-21 |
TW202401033A TW202401033A (en) | 2024-01-01 |
Family
ID=88149680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111122962A TWI809941B (en) | 2022-06-21 | 2022-06-21 | Capacity calculating method of battery affected by low temperature environment |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI809941B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7456613B2 (en) * | 2003-09-02 | 2008-11-25 | Sony Corporation | Battery remaining capacity calculating method, battery remaining capacity calculating device, and battery remaining capacity calculating program |
US20130099727A1 (en) * | 2011-10-25 | 2013-04-25 | Honda Motor Co., Ltd. | Charge capacity parameter estimation system of electric storage device |
CN113836471A (en) * | 2020-06-23 | 2021-12-24 | 南京南瑞继保电气有限公司 | Method and system for estimating maximum dischargeable capacity of lithium ion battery |
CN114035060A (en) * | 2021-11-08 | 2022-02-11 | 珠海朗尔电气有限公司 | Method and device for obtaining and displaying residual discharge time of lithium battery system |
CN114487850A (en) * | 2022-01-25 | 2022-05-13 | 重庆标能瑞源储能技术研究院有限公司 | Power battery capacity prediction method based on real vehicle data |
-
2022
- 2022-06-21 TW TW111122962A patent/TWI809941B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7456613B2 (en) * | 2003-09-02 | 2008-11-25 | Sony Corporation | Battery remaining capacity calculating method, battery remaining capacity calculating device, and battery remaining capacity calculating program |
US20130099727A1 (en) * | 2011-10-25 | 2013-04-25 | Honda Motor Co., Ltd. | Charge capacity parameter estimation system of electric storage device |
CN113836471A (en) * | 2020-06-23 | 2021-12-24 | 南京南瑞继保电气有限公司 | Method and system for estimating maximum dischargeable capacity of lithium ion battery |
CN114035060A (en) * | 2021-11-08 | 2022-02-11 | 珠海朗尔电气有限公司 | Method and device for obtaining and displaying residual discharge time of lithium battery system |
CN114487850A (en) * | 2022-01-25 | 2022-05-13 | 重庆标能瑞源储能技术研究院有限公司 | Power battery capacity prediction method based on real vehicle data |
Also Published As
Publication number | Publication date |
---|---|
TW202401033A (en) | 2024-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7524084B2 (en) | Battery capacity determination method and device, management system, and storage medium | |
EP3550317B1 (en) | Method and device for detecting battery micro-short circuit | |
CN109664795B (en) | Battery pack passive equalization method and battery management system | |
Doerffel et al. | A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries | |
US20220283226A1 (en) | Method for estimating the temperature rise rate of a battery under pulsed heating | |
JP5058814B2 (en) | Battery state and parameter estimation system and method | |
US20180088181A1 (en) | Apparatus and method for detecting battery state of health | |
KR101972521B1 (en) | Apparatus and method for performance testing of a battery cell | |
EP3376585A1 (en) | Battery safety evaluation apparatus, battery safety evaluation method and program | |
JP6789299B2 (en) | Method of estimating discharge duration during high rate battery discharge | |
WO2017046870A1 (en) | Storage battery control device, control method, program, power storage system, electric power system | |
JP2015060761A (en) | Deterioration diagnostic system and deterioration diagnostic method of secondary battery | |
CN110678765A (en) | Apparatus and method for testing the performance of battery cells | |
CN1228540A (en) | Device and method for accurately measuring battery remaining capacity | |
JP7622363B2 (en) | Device for determining deterioration level of secondary battery | |
TWI687701B (en) | Method for determining state of charge and electronic device thereof | |
CN104698385A (en) | Cell state calculation apparatus and cell state calculation method | |
CN104237792B (en) | Battery capacity prediction method | |
JP6110771B2 (en) | Deterioration amount calculation device, deterioration amount calculation method, and program | |
JP2015184194A (en) | Method for determining battery state and system for determining battery state | |
TWI678543B (en) | Battery power estimating method and electronic device | |
JP7585633B2 (en) | Server and external terminal for secondary battery deterioration determination system, deterioration determination system | |
CN112731185A (en) | Group matching method, group matching device and group matching system of lithium ion batteries | |
TWI809941B (en) | Capacity calculating method of battery affected by low temperature environment | |
TW202401030A (en) | Estimation method of battery capacity, battery module and electrical product thereof |