TWI805760B - 半導體電路及半導體系統 - Google Patents
半導體電路及半導體系統 Download PDFInfo
- Publication number
- TWI805760B TWI805760B TW108116654A TW108116654A TWI805760B TW I805760 B TWI805760 B TW I805760B TW 108116654 A TW108116654 A TW 108116654A TW 108116654 A TW108116654 A TW 108116654A TW I805760 B TWI805760 B TW I805760B
- Authority
- TW
- Taiwan
- Prior art keywords
- node
- circuit
- voltage
- transistor
- bandgap reference
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/468—Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/265—Current mirrors using bipolar transistors only
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Nonlinear Science (AREA)
- Control Of Electrical Variables (AREA)
- Electronic Switches (AREA)
- Amplifiers (AREA)
Abstract
本發明提供一種半導體電路及一種半導體系統。一種半導體電路包括:能隙參考電壓產生電路,包括用以放大第一節點與第二節點之間的差分電壓的運算放大器;第一起動電路,自能隙參考電壓產生電路的輸出電壓節點接收運算放大器的輸出訊號的輸入,並上拉所述第二節點;及第二起動電路,下拉輸出電壓節點。
Description
本發明是有關於一種半導體電路及一種半導體系統。
能隙參考電壓產生電路(bandgap reference voltage generation circuit)產生持續且穩定的能隙參考電壓,並將所述電壓供應給電性元件。能隙參考電壓產生電路可與積體電路(integrated circuit,IC)中的其他電性元件整合在一起。通常,能隙參考電壓產生電路在驅動開始時接收起動電源供應。為此,可同時實施連接至能隙參考電壓產生電路的特定節點以執行起動的起動電路。
用於能隙參考電壓產生電路的起動電路可以各種類型來實施,例如下拉型。舉例而言,為了在使用運算(operational,OP)放大器實施的能隙參考電壓產生電路中順利地執行起動,運算放大器的兩個輸入端子之間的電壓位準差需要足夠大。為此,可下拉與運算放大器的一個輸入端子相關聯的特定節點。
根據本發明的一個態樣,提供一種半導體電路,所述半導體電路包括:能隙參考電壓產生電路,包括用以放大第一節點與第二節點之間的差分電壓的運算放大器;第一起動電路,自所述能隙參考電壓產生電路的輸出電壓節點接收所述運算放大器的輸出訊號的輸入,並上拉所述第二節點;以及第二起動電路,下拉所述輸出電壓節點。
根據本發明的另一態樣,提供一種半導體電路,所述半導體電路包括:能隙參考電壓產生電路,包括用以放大第一節點與第二節點之間的差分電壓的運算放大器;第一起動電路,包括受起動節點的電壓位準控制以將電源供應電壓提供至所述第二節點的第一電晶體以及受所述能隙參考電壓產生電路的輸出電壓節點的電壓位準控制以將所述電源供應電壓提供至所述起動節點的第二電晶體;以及第二起動電路,包括受所述起動節點的反相電壓位準控制以將地電壓提供至所述輸出電壓節點的第三電晶體。
根據本發明的又一態樣,提供一種半導體系統,所述半導體系統包括:能隙參考電壓產生電路,包括用以放大第一節點與第二節點之間的差分電壓的運算放大器;第一起動電路,自所述能隙參考電壓產生電路的輸出電壓節點接收所述運算放大器的輸出訊號的輸入,並上拉所述第二節點;第二起動電路,下拉所述輸出電壓節點;以及一個或多個智慧財產區塊,是使用通過所述輸出電壓節點提供的電壓來驅動。
圖1是用於闡述根據本發明實施例的半導體電路的概念圖。參考圖1,根據本發明實施例的半導體電路1包括能隙參考(bandgap reference,BGR)電壓產生電路10、第一起動(SU1)電路20及第二起動(SU2)電路30。
能隙參考電壓產生電路10產生將被提供至其他電性元件的能隙參考電壓。在此實施例中,能隙參考電壓產生電路10可將所產生的能隙參考電壓經由輸出電壓節點VOUT提供至其他電性元件。此能隙參考電壓產生電路10可被實施成與其他電性元件一起整合於積體電路中。
具體而言,儘管操作溫度會發生改變,但能隙參考電壓產生電路10仍將穩定的參考電壓提供至其他電性元件。然而,在未在恰當時間內提供電源供應電壓或者操作溫度極低的環境中,不可正常地執行能隙參考電壓產生電路10的起動。為了解決此問題,可同時實施實行能隙參考電壓產生電路10的起動的起動電路。在此實施例中,起動電路包括第一起動電路20及第二起動電路30。
第一起動電路20連接至能隙參考電壓產生電路10的輸出電壓節點VOUT及節點N2。第一起動電路20通過輸出電壓節點VOUT接收能隙參考電壓產生電路10的運算放大器12(圖2)的輸出訊號,並上拉能隙參考電壓產生電路10的節點N2。在此,運算放大器12放大節點N1與節點N2之間的差分電壓以產生輸出訊號,將在稍後參考圖2對此加以闡述。
第二起動電路30連接至能隙參考電壓產生電路10的輸出電壓節點VOUT。第二起動電路30下拉能隙參考電壓產生電路10的輸出電壓節點VOUT。
在此實施例中,第一起動電路20及第二起動電路30是由單獨的區塊表示以進行概念性區分且對其運作加以闡述,但第一起動電路20及第二起動電路30可被實施為單個電路或多個電路。
現在,將參考圖2闡述半導體電路1的具體實施實例。圖2是用於闡述根據本發明實施例的半導體電路的電路圖。參考圖2,根據本發明實施例的半導體電路1包括能隙參考電壓產生電路10、第一起動電路20及第二起動電路30,如參考圖1所述。
能隙參考電壓產生電路10可包括運算放大器12、雙極接面電晶體14及雙極接面電晶體16、第一電阻器R1、一對第二電阻器R2以及電晶體MP3。能隙參考電壓產生電路10連接於被提供操作電壓的操作電壓節點VBGR與地電壓VSS之間。
雙極接面電晶體14及雙極接面電晶體16具有連接至地電壓VSS的基極及集極。可根據實施目的在N:1的比率下對雙極接面電晶體14與雙極接面電晶體16進行匹配。舉例而言,雙極接面電晶體14可具有是雙極接面電晶體16的N倍大的區。
第一電阻器R1連接於雙極接面電晶體14的射極與節點N1之間。所述一對第二電阻器R2中的第一個電阻器連接於操作電壓節點VBGR與節點N1之間,藉此與第一電阻器R1形成串聯連接。所述一對第二電阻器R2中的第二個電阻器連接於操作電壓節點VBGR與節點N2之間。
節點N1將非反相輸入提供至運算放大器12,且節點N2將反相輸入提供至運算放大器12。與運算放大器12的第一輸入對應的節點N1位於所述一對第二電阻器R2中的第一個電阻器與第一電阻器R1之間,且與運算放大器12的第二輸入對應的節點N2位於所述一對第二電阻器R2中的第二個電阻器與接面電晶體16的射極之間。
運算放大器12放大節點N1與節點N2之間的差分電壓。此外,運算放大器12將其輸出訊號輸出至節點VOUT。
能隙參考電壓產生電路10更包括電晶體MP3。電晶體MP3閘控於輸出電壓節點VOUT的電壓位準,例如受輸出電壓節點VOUT的電壓位準控制。當電晶體MP3接通時,電源供應電壓VDD可被提供至驅動電壓節點VBGR。在此實施例中,電晶體MP3可以是汲極連接至驅動電壓節點VBGR的正通道金屬氧化物半導體(positive channel metal oxide semiconductor,PMOS)電晶體。
可使用替代性電路配置來實施能隙參考電壓產生電路10。換言之,由第一起動電路20及第二起動電路30執行起動操作的能隙參考電壓產生電路10並不僅限於特定的電路配置,而是可實施為任意電路以產生能隙參考電壓,如熟習此項技術者所知。
第一起動電路20包括電晶體MP1、電晶體MP2及第三電阻器R3。電晶體MP1位於電源供應電壓VDD與節點N2之間,且閘控於起動節點SU的電壓位準,例如受起動節點SU的電壓位準控制。當電晶體MP1接通時,電源供應電壓VDD可被提供至節點N2。在此實施例中,電晶體MP1可以是汲極連接至節點N2的正通道金屬氧化物半導體電晶體。
電晶體MP2位於電源供應電壓VDD與起動節點SU之間,且閘控於輸出電壓節點VOUT的電壓位準,例如受輸出電壓節點VOUT的電壓位準控制。電晶體MP2接通時,電源供應電壓VDD可被提供至起動節點SU。在此實施例中,電晶體MP2可以是汲極連接至起動節點SU的正通道金屬氧化物半導體電晶體。
第三電阻器R3連接於起動節點SU與地電壓VSS之間。
第二起動電路30包括電晶體MN1。電晶體MN1位於輸出電壓節點VOUT與地電壓VSS之間,且閘控於起動節點SU的反相電壓位準,例如受起動節點SU的反相電壓位準控制。可包括反相器32以將起動節點SU的反相電壓提供至電晶體MN1。當電晶體MN1接通時,地電壓VSS被提供至輸出電壓節點VOUT。在此實施例中,電晶體MN1可以是汲極連接至輸出電壓節點VOUT的負通道金屬氧化物半導體(negative channel metal oxide semiconductor,NMOS)電晶體。
現在將參考圖3至圖5闡述半導體電路1的運作。圖3至圖5是用於闡釋圖2所示半導體電路1的運作的電路圖。
參考圖3,首先,在能隙參考電壓產生電路10的驅動開始時,可將第一起動電路20的電晶體MP2斷開。當電晶體MP2斷開時,接通電晶體MP1以將電源供應電壓VDD提供至節點N2。亦即,所述第一起動電路20在能隙參考電壓產生電路10的驅動開始時使用電晶體MP1來上拉節點N2。當節點N2被上拉時,節點N2與節點N1之間的差增大,且運算放大器12放大節點N1與節點N2之間的差分電壓,並將運算放大器12的輸出訊號輸出至輸出電壓節點VOUT。
此後,根據輸出電壓節點VOUT的輸出訊號接通電晶體MP2。當電晶體MP2接通時,電源供應電壓VDD被提供至起動節點SU。因此,將電晶體MP1斷開以終止操作。
接下來,參考圖4,在接通電晶體MP1之後,可接通第二起動電路30的電晶體MN1。亦即,在接通電晶體MP1且上拉節點N2之後,接通電晶體MN1以將地電壓VSS提供至輸出電壓節點VOUT。亦即,在接通電晶體MP1之後,第二起動電路30使用電晶體MN1下拉輸出電壓節點VOUT。
現在參考圖5,下拉輸出電壓節點VOUT,接通第一起動電路20的電晶體MP2。因此,電晶體MP1維持關斷狀態。如此一來,當第一起動電路20及第二起動電路30完成起動操作時,能隙參考電壓產生電路10可產生將被提供至其他電性元件的穩定的參考電壓。
若第二起動電路30根據下拉型獨立地執行起動操作,則在能隙參考電壓產生電路10的洩漏電流極大地增大的環境中,起動操作可能會失敗。舉例而言,當圖2至圖5中所說明的洩漏電流ILEAK 40大於第二起動電路30的電晶體MN1的強度時,第二起動電路30不可充分地產生運算放大器12的節點N1與節點N2之間的輸入差。這可導致能隙參考電壓產生電路10出現故障。
相比之下,在此實施例中,在驅動第二起動電路30之前,根據第一起動電路20的上拉操作增大運算放大器12的節點N1與節點N2之間的輸入差。然後,使用第二起動電路30來下拉與運算放大器12的輸出對應的輸出電壓節點VOUT。
因此,藉由同時使用上拉型的第一起動電路20及下拉型的第二起動電路30,可在能隙參考電壓產生電路10的洩漏電流極大地增大的環境中在維持高速上升特性的同時實現正常的起動操作。
圖6是用於闡釋根據本發明實施例的半導體系統2的概念圖。參考圖6,根據本發明實施例的半導體系統2包括能隙參考電壓產生電路10、第一起動電路20、第二起動電路30、以及一個或多個智慧財產(Intellectual Property,IP)區塊50及52。能隙參考電壓產生電路10可將能隙參考電壓通過輸出電壓節點VOUT提供至一個或多個智慧財產區塊50及52,所述一個或多個智慧財產區塊50及52是經由匯流排60彼此電性連接。
在此實施例中,半導體系統2可以是應用處理器(application processor,AP)。此外,一個或多個智慧財產區塊50及52可對應於安裝於應用處理器內的具有各種功能的模組。應注意,參考電壓產生電路10、第一起動電路20及第二起動電路30亦可安裝於應用處理器內。在第一起動電路20及第二起動電路30結束起動操作之後,參考電壓產生電路10可產生用於提供至一個或多個智慧財產區塊50及52的能隙參考電壓,並可將所產生的能隙參考電壓通過輸出電壓節點VOUT提供至一個或多個智慧財產區塊50及52。
第一起動電路20連接至能隙參考電壓產生電路10的輸出電壓節點VOUT及節點N2,第一起動電路20可防止無法正常地執行能隙參考電壓產生電路10的起動。第一起動電路20通過輸出電壓節點VOUT接收能隙參考電壓產生電路10內的運算放大器12的輸出訊號的輸入,並上拉能隙參考電壓產生電路10的節點N2。
第二起動電路30連接至能隙參考電壓產生電路10的輸出電壓節點VOUT,第二起動電路30可防止無法正常地執行能隙參考電壓產生電路10的起動。第二起動電路30下拉能隙參考電壓產生電路10的輸出電壓節點VOUT。
若第二起動電路30根據下拉型獨立地執行起動操作,則在能隙參考電壓產生電路10的洩漏電流極大地增大的環境中,起動操作可能會失敗。舉例而言,當圖2至圖5中所說明的洩漏電流ILEAK 40大於第二起動電路30的電晶體MN1的強度時,第二起動電路30不可充分地產生運算放大器12的節點N1與節點N2之間的輸入差。這可導致能隙參考電壓產生電路10出現故障。
相比之下,在此實施例中,在驅動第二起動電路30之前,根據第一起動電路20的上拉操作增大運算放大器12的節點N1與節點N2之間的輸入差。然後,使用第二起動電路30來下拉與運算放大器12的輸出對應的輸出電壓節點VOUT。
因此,藉由同時使用上拉型的第一起動電路20及下拉型的第二起動電路30,可在能隙參考電壓產生電路10的洩漏電流極大地增大的環境中在維持高速上升特性的同時實現正常的起動操作。在此實施例中,第一起動電路20及第二起動電路30是由單獨的區塊表示以對其操作彼此進行概念性區分,但第一起動電路20及第二起動電路30可被實施為單個電路或多個電路。
總而言之,當僅使用下拉型起動電路時,在能隙參考電壓產生電路的洩漏電流增大的環境(例如,高溫環境)中,起動操作可能會失敗。
相比之下,藉由使用上拉型起動電路及下拉起動電路兩者,實施例可提供即使在洩漏電流高的情況下仍能夠在維持高速上升特性的同時執行正常起動操作的半導體電路及半導體系統。
本文中已揭露了示例性實施例,且儘管採用特定用語,但該些用語僅在一般性說明意義上使用並加以理解,並不旨在進行限制。在一些實例中,如熟習此項技術者自申請本申請案時起應明瞭,結合特定實施例所闡述的特徵、特性及/或元件可單獨地使用或者與結合其他實施例所闡述的特徵、特性及/或元件組合使用,除非另有明確指示。因此,熟習此項技術者應理解,可在不背離隨附申請專利範圍中所闡明的本發明精神及範疇的情況下做出各種形式及細節上的改變。
1‧‧‧半導體電路
2‧‧‧半導體系統
10‧‧‧能隙參考電壓產生電路/參考電壓產生電路
12‧‧‧運算放大器
14‧‧‧雙極接面電晶體
16‧‧‧雙極接面電晶體/接面電晶體
20‧‧‧第一起動(SU1)電路
30‧‧‧第二起動(SU2)電路
32‧‧‧反相器
40、ILEAK‧‧‧洩漏電流
50、52‧‧‧智慧財產區塊
60‧‧‧匯流排
MN1、MP1、MP2、MP3‧‧‧電晶體
N1、N2‧‧‧節點
R1‧‧‧第一電阻器
R2‧‧‧第二電阻器
R3‧‧‧第三電阻器
SU‧‧‧起動節點
VBGR‧‧‧操作電壓節點/驅動電壓節點
VDD‧‧‧電源供應電壓
VOUT‧‧‧輸出電壓節點/節點
VSS‧‧‧地電壓
參考附圖詳細地闡述示例性實施例將使熟習此項技術者明瞭各個特徵,在附圖中:
圖1說明用於闡述根據本發明實施例的半導體電路的概念圖。
圖2說明用於闡述根據本發明實施例的半導體電路的電路圖。
圖3至圖5說明用於闡釋圖2所示半導體電路的運作的電路圖。
圖6說明用於闡釋根據本發明實施例的半導體系統的概念圖。
1‧‧‧半導體電路
10‧‧‧能隙參考電壓產生電路/參考電壓產生電路
20‧‧‧第一起動(SU1)電路
30‧‧‧第二起動(SU2)電路
N2‧‧‧節點
VOUT‧‧‧輸出電壓節點/節點
Claims (8)
- 一種半導體電路,包括:能隙參考電壓產生電路,包括用以放大第一節點與第二節點之間的差分電壓的運算放大器;第一起動電路,自所述能隙參考電壓產生電路的輸出電壓節點接收所述運算放大器的輸出訊號的輸入,並上拉所述第二節點;以及第二起動電路,下拉所述輸出電壓節點,其中所述第二起動電路包括受起動節點的反相電壓位準控制的第三電晶體,且當所述第三電晶體接通時,地電壓被提供至所述輸出電壓節點。
- 根據申請專利範圍第1項所述的半導體電路,其中:所述第一起動電路包括受所述起動節點的電壓位準控制的第一電晶體,且當所述第一電晶體接通時,電源供應電壓被提供至所述第二節點。
- 根據申請專利範圍第2項所述的半導體電路,其中:所述第一起動電路更包括受所述輸出電壓節點的電壓位準控制的第二電晶體,且當所述第二電晶體接通時,所述電源供應電壓被供應至所述起動節點。
- 根據申請專利範圍第3項所述的半導體電路,其中:當述第二電晶體斷開時,接通所述第一電晶體以將所述電源供應電壓提供至所述第二節點,根據輸出訊號接通所述第二電晶體,所述輸出訊號是通過所述運算放大器放大所述第一節點與所述第二節點之間的所述差分電壓而被輸出至所述輸出電壓節點,且在所述第二電晶體接通時,斷開所述第一電晶體。
- 一種半導體電路,包括:能隙參考電壓產生電路,包括放大第一節點與第二節點之間的差分電壓的運算放大器;第一起動電路,包括:第一電晶體,受起動節點的電壓位準控制以將電源供應電壓提供至所述第二節點;及第二電晶體,受所述能隙參考電壓產生電路的輸出電壓節點的電壓位準控制以將所述電源供應電壓提供至所述起動節點;以及第二起動電路,包括第三電晶體,所述第三電晶體受所述起動節點的反相電壓位準控制以將地電壓提供至所述輸出電壓節點。
- 一種半導體系統,包括:能隙參考電壓產生電路,包括用以放大第一節點與第二節點之間的差分電壓的運算放大器;第一起動電路,自所述能隙參考電壓產生電路的輸出電壓節點接收所述運算放大器的輸出訊號的輸入,並上拉所述第二節點; 第二起動電路,下拉所述輸出電壓節點;以及一個或多個智慧財產區塊,是使用通過所述輸出電壓節點提供的電壓來驅動,其中所述第二起動電路包括受起動節點的反相電壓位準控制的第三電晶體,且當所述第三電晶體接通時,地電壓被提供至所述輸出電壓節點。
- 根據申請專利範圍第6項所述的半導體系統,其中:所述第一起動電路包括受所述起動節點的電壓位準控制的第一電晶體,且當所述第一電晶體接通時,電源供應電壓被提供至所述第二節點。
- 根據申請專利範圍第7項所述的半導體系統,其中:所述第一起動電路更包括受所述輸出電壓節點的電壓位準控制的第二電晶體,且當所述第二電晶體接通時,所述電源供應電壓被提供至所述起動節點。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0082161 | 2018-07-16 | ||
KR1020180082161A KR102499482B1 (ko) | 2018-07-16 | 2018-07-16 | 반도체 회로 및 반도체 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202007071A TW202007071A (zh) | 2020-02-01 |
TWI805760B true TWI805760B (zh) | 2023-06-21 |
Family
ID=69139323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108116654A TWI805760B (zh) | 2018-07-16 | 2019-05-15 | 半導體電路及半導體系統 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10712762B2 (zh) |
KR (1) | KR102499482B1 (zh) |
TW (1) | TWI805760B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10795395B2 (en) * | 2018-11-16 | 2020-10-06 | Ememory Technology Inc. | Bandgap voltage reference circuit capable of correcting voltage distortion |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6906581B2 (en) * | 2002-04-30 | 2005-06-14 | Realtek Semiconductor Corp. | Fast start-up low-voltage bandgap voltage reference circuit |
US7253598B1 (en) * | 2005-05-16 | 2007-08-07 | National Semiconductor Corporation | Bandgap reference designs with stacked diodes, integrated current source and integrated sub-bandgap reference |
TW200827978A (en) * | 2006-12-29 | 2008-07-01 | Mediatek Inc | Bandgap reference circuits and start-up methods thereof |
TW200925823A (en) * | 2007-12-06 | 2009-06-16 | Ind Tech Res Inst | Bandgap reference circuit |
TW201124812A (en) * | 2010-01-12 | 2011-07-16 | Richtek Technology Corp | Fast start-up low-voltage bandgap reference voltage generator |
US8228053B2 (en) * | 2009-07-08 | 2012-07-24 | Dialog Semiconductor Gmbh | Startup circuit for bandgap voltage reference generators |
CN103389762A (zh) * | 2012-05-11 | 2013-11-13 | 安凯(广州)微电子技术有限公司 | 启动电路和包括启动电路的带隙基准源电路 |
US20170012609A1 (en) * | 2015-07-10 | 2017-01-12 | Sk Hynix Memory Solutions Inc. | Start-up circuit for bandgap reference |
US20170277210A1 (en) * | 2016-03-23 | 2017-09-28 | Avnera Corporation | Wide supply range precision startup current source |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3318105B2 (ja) | 1993-08-17 | 2002-08-26 | 三菱電機株式会社 | 起動回路 |
GB9423033D0 (en) | 1994-11-15 | 1995-01-04 | Sgs Thomson Microelectronics | A voltage reference circuit |
US5867013A (en) | 1997-11-20 | 1999-02-02 | Cypress Semiconductor Corporation | Startup circuit for band-gap reference circuit |
US6509726B1 (en) | 2001-07-30 | 2003-01-21 | Intel Corporation | Amplifier for a bandgap reference circuit having a built-in startup circuit |
US6784652B1 (en) | 2003-02-25 | 2004-08-31 | National Semiconductor Corporation | Startup circuit for bandgap voltage reference generator |
US7259543B2 (en) | 2005-10-05 | 2007-08-21 | Taiwan Semiconductor Manufacturing Co. | Sub-1V bandgap reference circuit |
TWI350436B (en) | 2005-10-27 | 2011-10-11 | Realtek Semiconductor Corp | Startup circuit, bandgap voltage genertor utilizing the startup circuit, and startup method thereof |
US7208929B1 (en) | 2006-04-18 | 2007-04-24 | Atmel Corporation | Power efficient startup circuit for activating a bandgap reference circuit |
US7768343B1 (en) | 2007-06-18 | 2010-08-03 | Marvell International Ltd. | Start-up circuit for bandgap reference |
KR101015523B1 (ko) * | 2008-06-17 | 2011-02-16 | 주식회사 동부하이텍 | 밴드갭 기준 전압 발생 회로 |
JP5543090B2 (ja) | 2008-08-26 | 2014-07-09 | ピーエスフォー ルクスコ エスエイアールエル | バンドギャップ電源回路およびその起動方法 |
US9030186B2 (en) | 2012-07-12 | 2015-05-12 | Freescale Semiconductor, Inc. | Bandgap reference circuit and regulator circuit with common amplifier |
US9229467B2 (en) | 2013-08-22 | 2016-01-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bandgap reference circuit and related method |
-
2018
- 2018-07-16 KR KR1020180082161A patent/KR102499482B1/ko active IP Right Grant
-
2019
- 2019-05-15 TW TW108116654A patent/TWI805760B/zh active
- 2019-06-20 US US16/447,259 patent/US10712762B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6906581B2 (en) * | 2002-04-30 | 2005-06-14 | Realtek Semiconductor Corp. | Fast start-up low-voltage bandgap voltage reference circuit |
US7253598B1 (en) * | 2005-05-16 | 2007-08-07 | National Semiconductor Corporation | Bandgap reference designs with stacked diodes, integrated current source and integrated sub-bandgap reference |
TW200827978A (en) * | 2006-12-29 | 2008-07-01 | Mediatek Inc | Bandgap reference circuits and start-up methods thereof |
TW200925823A (en) * | 2007-12-06 | 2009-06-16 | Ind Tech Res Inst | Bandgap reference circuit |
US8228053B2 (en) * | 2009-07-08 | 2012-07-24 | Dialog Semiconductor Gmbh | Startup circuit for bandgap voltage reference generators |
TW201124812A (en) * | 2010-01-12 | 2011-07-16 | Richtek Technology Corp | Fast start-up low-voltage bandgap reference voltage generator |
CN103389762A (zh) * | 2012-05-11 | 2013-11-13 | 安凯(广州)微电子技术有限公司 | 启动电路和包括启动电路的带隙基准源电路 |
US20170012609A1 (en) * | 2015-07-10 | 2017-01-12 | Sk Hynix Memory Solutions Inc. | Start-up circuit for bandgap reference |
US20170277210A1 (en) * | 2016-03-23 | 2017-09-28 | Avnera Corporation | Wide supply range precision startup current source |
Also Published As
Publication number | Publication date |
---|---|
US20200019203A1 (en) | 2020-01-16 |
TW202007071A (zh) | 2020-02-01 |
US10712762B2 (en) | 2020-07-14 |
KR102499482B1 (ko) | 2023-02-13 |
KR20200008257A (ko) | 2020-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004240943A (ja) | バンドギャップ基準回路 | |
US7589578B2 (en) | Level shift circuit and semiconductor device | |
US20080048728A1 (en) | Stable sense amplifier | |
JP2647014B2 (ja) | BiCMOS論理回路 | |
TWI805760B (zh) | 半導體電路及半導體系統 | |
JP2000242347A (ja) | 半導体集積回路のバイアス回路 | |
TWI804042B (zh) | 參考電壓產生系統及其啟動電路 | |
US7489578B2 (en) | Boosted voltage level detector in semiconductor memory device | |
JP2758893B2 (ja) | 半導体装置の定電圧発生回路 | |
EP3308240B1 (en) | Start-up circuit | |
TWI702793B (zh) | 運算放大器及其電壓驅動電路 | |
US9300276B2 (en) | Oscillation control circuit for biasing ring oscillator by bandgap reference signal and related method | |
JP2004355523A (ja) | 定電圧回路 | |
JPH07121255A (ja) | 定電流源回路 | |
JP2008243082A (ja) | 基準電圧回路 | |
KR100605591B1 (ko) | 반도체 소자의 승압전압 발생기 | |
JP4411633B2 (ja) | 遅延固定ループの電源電圧供給装置及び電源電圧供給方法 | |
JP2008017566A (ja) | 電源発生回路 | |
JP2007228095A (ja) | パワーオンリセット回路 | |
JP2854701B2 (ja) | 基準電圧発生回路 | |
JP7158218B2 (ja) | 定電流回路 | |
JP2010056910A (ja) | 電流源制御回路 | |
JP2005332364A (ja) | 定電流発生回路 | |
US8653859B2 (en) | Electronic comparison circuit | |
JP2010039648A (ja) | 基準電圧発生回路及びそれを備えた半導体素子 |