TWI802178B - 探針卡 - Google Patents
探針卡 Download PDFInfo
- Publication number
- TWI802178B TWI802178B TW110148853A TW110148853A TWI802178B TW I802178 B TWI802178 B TW I802178B TW 110148853 A TW110148853 A TW 110148853A TW 110148853 A TW110148853 A TW 110148853A TW I802178 B TWI802178 B TW I802178B
- Authority
- TW
- Taiwan
- Prior art keywords
- inorganic material
- material layer
- probe card
- flexible inorganic
- circuit board
- Prior art date
Links
Images
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Measuring Leads Or Probes (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
一種探針卡包括可撓無機材料層、金屬微結構以及電路板。可撓無機材料層具有相對的第一表面及第二表面。金屬微結構設置於第一表面上。電路板設置於第二表面上,且電路板電性連接於金屬微結構。測試訊號適於透過可撓無機材料層而導通至電路板。
Description
本揭露是有關於一種檢測裝置,且特別是有關於一種探針卡。
積體電路進行測試時,測試機台透過探針卡(probe card)接觸積體電路,並傳送測試訊號以測試其功能是否符合預期。探針卡通常包含若干個尺寸精密的探針。積體電路測試時,藉由探針接觸待測物(device under test,DUT)上尺寸微小的接觸接點,傳遞來自於測試機台的測試訊號,並配合探針卡及測試機台的控制程序,達到量測積體電路的目的。
由於探針卡上探針的針點皆根據待測物而設計,因此在目前先進半導體製程希望積體電路微小化的情況下,用於檢測微小化積體電路的探針卡的結構將隨之改變。然而,為了因應微小化積體電路的結構,上述用於檢測微小化積體電路的探針的針寬及間距將縮小,導致探針的強度不佳,容易受力而產生永久變形,嚴重影響探針卡的使用壽命及測試可靠度。
本揭露的探針卡包括可撓無機材料層、金屬微結構以及電路板。可撓無機材料層具有相對的第一表面及第二表面。金屬微結構設置於第一表面上。電路板設置於第二表面上,電路板電性連接於該金屬微結構。測試訊號適於透過金屬微結構而導通至電路板。其中,可撓無機材料層的材料的屈服強度大於500 MPa或可撓無機材料層的材料的楊氏係數大於50 GPa。
本揭露的探針卡包括可撓無機材料層、金屬微結構、電路板以及至少二導板。可撓無機材料層具有多個表面。金屬微結構設置於這些表面的至少一者,且具有連接端。電路板連接連接端。測試訊號適於透過金屬微結構而導通至電路板。各導板具有多個貫穿孔,且可撓無機材料層及金屬微結構穿過各導板的貫穿孔。可撓無機材料層的材料的屈服強度大於500 MPa或可撓無機材料層的材料的楊氏係數大於50 GPa。
基於上述,在本揭露的探針卡的設計中,由於金屬微結構設置於可撓無機材料層,且測試訊號可透過金屬微結構而導通至電路板,使得金屬微結構在測試待側物時能夠受到可撓無機材料層的支撐,讓探針具有良好的強度及彈性且不易產生形變。據此,相較於既有技術以金屬製作的探針在面臨間距及針寬縮小時,易因受力變形產生永久變形而失效,本揭露的探針卡的探針可藉由可撓無機材料層的設置,使探針仍具有良好的強度及彈性,從而能夠增加探針卡的使用壽命並提升探針卡的測試可靠度。
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
本揭露提供一種探針卡,其探針藉由可撓無機材料層而具備良好的強度。
本揭露提供一種探針卡,其探針藉由可撓無機材料層而具備良好的強度。
圖1為本揭露一實施例的探針卡的側視示意圖。圖2為圖1的探針卡的可撓無機材料層、金屬微結構以及接合層的立體示意圖。在此,須說明的是,圖中探針卡100的可撓無機材料層110、金屬微結構120、電路板130以及接合層140的尺寸、厚度等比例關係僅為示意,並不代表實際具體的結構大小及比例關係。並且,提供直角座標X-Y-Z以利於後續的構件描述。
請先參考圖1,探針卡100包括可撓無機材料層110、金屬微結構120及電路板130。本實施例的探針卡100的探針適於傳送測試訊號TS,此處,探針卡100的探針是由可撓無機材料層110及金屬微結構120所組成。在本實施例中,可撓無機材料層110的材料例如是玻璃、陶瓷或矽晶圓,但不以此為限。在本實施例中,金屬微結構120的材料為高導電性的材料。金屬微結構120的材料例如是銅、鎳、鎳鈷磷、鎳鈷、鎳錳或銠釕合金,但不以此為限。在本實施例中,電路板130包括印刷電路板或陶瓷電路板,但不以此為限制。
詳細而言,請參考圖1,在本實施例中,可撓無機材料層110具有相對的第一表面111及第二表面112。金屬微結構120設置於第一表面111上,且電路板130設置於第二表面112上,電路板130電性連接於金屬微結構120。由於金屬微結構120的材料為高導電性的材料,因此測試訊號TS適於透過金屬微結構120而導通至電路板130。
舉例而言,在本實施例中,金屬微結構120適於接觸待測物(未繪示),以對待測物(未繪示)進行測試,而待測物(未繪示)例如是積體電路或半導體晶圓上的晶粒,但不以此為限。電路板130例如是電性連接於產生測試訊號TS的測試機(未繪示),但不以此為限。也就是說,在本實施例中,探針卡100例如是由測試機(未繪示)提供測試訊號TS,經由探針卡100對一待測物(未繪示)進行測試,但不以此為限。
值得一提的是,在本實施例中,由於金屬微結構120配置於可撓無機材料層110上,使得金屬微結構120能夠受到可撓無機材料層110的支撐,讓探針卡100的探針具有良好的強度及彈性且不易產生形變。據此,相較於既有技術中僅以金屬製作的探針在面臨間距及針寬縮小時,易因受力變形產生永久變形而失效,本實施例的探針卡100的探針可藉由可撓無機材料層110的設置,使探針卡100的探針仍具有良好的強度及彈性。
一般用於製作探針的懸臂的金屬材料的屈服強度(yield strength)較低(約為70 MPa~300 MPa),因此在製作成微小懸臂式探針後,懸臂易因探針受力彎曲而導致永久變形。在本實施例中,可撓無機材料層110的材料具備足夠的屈服強度以支撐金屬微結構120。在一實施例中,可撓無機材料層110的材料的屈服強度(yield strength)例如是大於500 MPa,且可撓無機材料層110的材料的楊氏係數例如是大於50 GPa,但不以此為限。在一實施例中,可撓無機材料層110的材料的屈服強度例如是500 MPa至1200 MPa,可撓無機材料層110的材料的楊氏係數例如是50 GPa至400 GPa。並且,在結構設計上,可撓無機材料層110的厚度T1例如是介於30微米至300微米之間。在一實施例中,可撓無機材料層110的長度L1與厚度T1的比值(即L1/T1)例如是介於9至30之間,但不以此為限。
以下進一步說明本實施例的探針卡100。
請參考圖2,在本實施例中,可撓無機材料層110包括本體部113及多個指叉部114,金屬微結構120包括與多個指叉部114相對應且連接的多個金屬子結構121。多個指叉部114連接於本體部113的一側,且每一個金屬子結構121適於與相對應的指叉部114沿平行X軸的方向往本體部113延伸。
詳細而言,請參考圖1及圖2,在本實施例中,可撓無機材料層110的本體部113具有貫穿於第一表面111及第二表面112之間並連接至每一個金屬子結構121及電路板130的導通孔115,且每一個金屬子結構121設置於第一表面111及導通孔115上,亦即,每一個金屬子結構121在沿著相對應的指叉部114往本體部113延伸(沿平行X軸的方向)後,適於沿導通孔115往電路板130延伸(沿平行Y軸的方向)。據此,電路板130可透過導通孔115而電性連接於金屬子結構121。
更詳細而言,請參考圖1及圖2,在本實施例中,金屬微結構120包括多個凸出部122,每一個凸出部122設置相對應於金屬子結構121,且位在相對於第一表面111的第三表面123。詳細來說,凸出部122設置於金屬子結構121對應於可撓無機材料層110之指叉部114的一端,且凸出於第三表面123。藉此,測試訊號TS適於透過金屬子結構121並沿著導通孔115而導通至電路板130,且每一個凸出部122可適於接觸待測物的接觸接點(未繪示)。在一實施例中,每一個凸出部122的材料包括鎳磷、鎳鈷、鎳錳或銠釕合金,但不以此為限。
在此,須說明的是,在本實施例中的探針卡之製作方式例如是先以雷射改質蝕刻製程的方式將無機材料層製作為可撓無機材料層110,再以黃光製程與電鍍製程的方式將金屬微結構(包括凸出部)製作二階金屬結構於無機材料層上,以形成具有導線之探針卡,但本揭露不以此限制上述探針卡100的製作方式以及順序。
此外,請參考圖1,在本實施例中,探針卡100更包括位於可撓無機材料層110與電路板130之間的接合層140。接合層140的材料例如是ABF(Ajinomoto Build-up Film)、錫、錫合金及銀膠,但不以此為限。如此,可撓無機材料層110可透過接合層140與電路板130接合。在一實施例中,電路板130更包括接墊133。金屬微結構120可透過接合層140電性連接於電路板130的接墊133。
在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參照前述實施例,下述實施例不再重複贅述。
圖3為本揭露另一實施例的探針卡的側視示意圖。請同時參考圖1與圖3,本實施例的探針卡100A與圖1的探針卡100相似,但要注意的是,圖3電路板130A的結構具有傾斜的表面。
請參考圖3,在本實施例中,電路板130A具有相對的水平面131A及傾斜面132A。可撓無機材料層110的第二表面112藉由接合層140連接電路板130A的傾斜面132A。此處,傾斜面132A相對於水平面131A的傾斜度數例如是1.5度至6度,但不以此為限。
詳細而言,在本實施例中,可撓無機材料層110中相連於第二表面112具有相對的第一端E1及第二端E2,且金屬微結構120的凸出部122可設置對應於可撓無機材料層110的第一端E1。在此,須說明的是,在本實施例中,第一端E1至水平面131A的垂直距離D1與第二端E2至水平面131A的垂直距離D2的差值介於50微米至500微米之間,但不以此為限。
也就是說,在金屬微結構120的厚度T2遠小於可撓無機材料層110的厚度T1之情形下,上述電路板130A的傾斜式結構,可使可撓無機材料層110呈現傾斜狀(即第一端E1相較於第二端E2較接近待測物),讓可撓無機材料層110在金屬微結構120的凸出部122接觸待測物(未繪示)時,不與待測物(未繪示)產生結構干涉。
圖4為本揭露另一實施例的探針卡的側視示意圖。請同時參考圖1與圖4,本實施例的探針卡100B與圖1的探針卡100相似,但要注意的是,圖4探針卡100B更包括第一導線層150,且可撓無機材料層110B不具有導通孔115,金屬微結構120B完全的覆蓋可撓無機材料層110B之第一表面111。
請參考圖4,在本實施例中,可撓無機材料層110B具有連接於第一表面111及第二表面112之間的第一側壁116及第二側壁117,且相連於第二表面112具有相對的第一端E1及第二端E2。第一側壁116位於第二端E2且靠近電路板130,第二側壁117位於第一端E1且遠離電路板130。金屬微結構120B的凸出部122可設置對應於可撓無機材料層110B的第一端E1。
在本實施例中,探針卡100B更包括第一導線層150。第一導線層150設置於可撓無機材料層110B的第二表面112及可撓無機材料層110B的靠近電路板130的第一側壁116上,且第一導線層150連接金屬微結構120B及電路板130。具體而言,金屬微結構120B在沿著可撓無機材料層110B的第一表面111自第一端E1往第二端E2延伸(平行X軸的方向)後,適於連接第一導線層150。第一導線層150適於沿第一側壁116往電路板130延伸(平行Y軸的方向),最後再沿著可撓無機材料層110B的第二表面112延伸(平行-X軸的方向)。據此,電路板130可透過第一導線層150電性連接於金屬微結構120B。
藉此,測試訊號TS適於從金屬微結構120B經由第一導線層150而導通至電路板130,進以對待測物(未繪示)進行檢測。
圖5為本揭露另一實施例的探針卡的側視示意圖。請同時參考圖4與圖5,本實施例的探針卡100C與圖4的探針卡100B相似,但要注意的是,圖5探針卡100C以第二導線層160取代第一導線層150。
請參考圖5,在本實施例中,可撓無機材料層110B具有連接於第一表面111及第二表面112之間的第一側壁116及第二側壁117,且相連於第二表面112具有相對的第一端E1及第二端E2。第一側壁116位於第二端E2且靠近電路板130,第二側壁117位於第一端E1且遠離電路板130。金屬微結構120C的凸出部122可設置對應於可撓無機材料層110B的第一端E1。
在本實施例中,探針卡100B更包括第二導線層160。第二導線層160設置於可撓無機材料層110B的第二表面112及可撓無機材料層110B遠離電路板130的第二側壁117上,且第二導線層160連接金屬微結構120C及電路板130。具體而言,金屬微結構120C在沿著可撓無機材料層110B的第一表面111自第一端E1往第二側壁117延伸(平行-X軸的方向)後,適於連接第二導線層160。第二導線層160適於沿第二側壁117延伸(平行Y軸的方向),最後再沿著可撓無機材料層110B的第二表面112往電路板130延伸(平行X軸的方向)。據此,電路板130可透過第二導線層160電性連接於金屬微結構120C。
藉此,測試訊號TS適於從金屬微結構120C經由第二導線層160而導通至電路板130,進以對待測物(未繪示)進行檢測。
圖6為本揭露另一實施例的探針卡的側視示意圖。請同時參考圖1與圖6,本實施例的探針卡100D與圖1的探針卡100相似,兩者的差異在於:金屬微結構120D的結構,且更包括第二導線層160。
請參考圖6,在本實施例中,可撓無機材料層110具有貫穿於第一表面111及第二表面112之間的導通孔115,且具有連接於第一表面111及第二表面112之間的第一側壁116及第二側壁117。
在本實施例中,金屬微結構120D包括第一微結構121D及第二微結構122D。第一微結構121D及第二微結構122D設置於可撓無機材料層110的第一表面111上。第二導線層160設置可撓無機材料層110的第二表面112及可撓無機材料層110的遠離電路板130的第二側壁117上,且第二導線層160連接第一微結構121D及電路板130。導通孔115連接至第二微結構122D及電路板130。第一微結構121D及第二微結構122D在第一表面111的一側分別具有凸出部123D。
具體而言,在本實施例中,第一微結構121D沿著可撓無機材料層110的第一表面111往第二側壁117延伸(平行-X軸的方向)後,適於連接第二導線層160。第二導線層160適於沿第二側壁117延伸(平行Y軸的方向),最後再沿著可撓無機材料層110B的第二表面112往電路板130延伸(平行X軸的方向)。第二微結構122D在沿著可撓無機材料層110的第一表面111往導通孔115延伸(平行X軸的方向)後,適於沿著導通孔115往電路板130延伸(平行Y軸的方向)。據此,電路板130可透過第二導線層160、導通孔115而分別電性連接於金屬微結構120D的第一微結構121D及第二微結構122D。
藉此,測試訊號TS適於從金屬微結構120D分別經由導通孔115及第二導線層160而導通至電路板130,並透過第一微結構121D及第二微結構122D的凸出部123D同時接觸待測物(未繪示),進而可檢測具有較密接觸接點的待測物(未繪示)。
圖7為本揭露另一實施例的探針卡的側視示意圖。請同時參考圖6與圖7,本實施例的探針卡100E與圖6的探針卡100D相似,但要注意的是,圖7探針卡100E更包括第一導線層150,且可撓無機材料層110B不具有導通孔115。
請參考圖7,在本實施例中,可撓無機材料層110B具有相對的第一表面111及第二表面112,且具有連接於第一表面111及第二表面112之間的第一側壁116及第二側壁117。
在本實施例中,探針卡100E更包括第一導線層150,且金屬微結構120E包括第一微結構121E及第二微結構122E。第一微結構121E及第二微結構122E設置於可撓無機材料層110B的第一表面111上。第一導線層150設置於可撓無機材料層110B的第二表面112及可撓無機材料層110B的靠近電路板130的第一側壁116上,且第一導線層150連接第二微結構122E及電路板130。第二導線層160設置可撓無機材料層110B的第二表面112及可撓無機材料層110的遠離電路板130的第二側壁117上,且第二導線層160連接第一微結構121E及電路板130。第一微結構121E及第二微結構122E在第一表面111的一側分別具有凸出部123D。
具體而言,在本實施例中,第一微結構121E在沿著可撓無機材料層110B的第一表面111往第二側壁117延伸(平行-X軸的方向)後,適於連接第二導線層160。第二導線層160適於沿第二側壁117延伸(平行Y軸的方向),最後再沿著可撓無機材料層110B的第二表面112往電路板130延伸(平行X軸的方向)。第二微結構122E在沿著可撓無機材料層110B的第一表面111往第一側壁116延伸(平行X軸的方向)後,適於連接第一導線層150。第一導線層150適於沿第一側壁116往電路板130延伸(平行Y軸的方向),最後再沿著可撓無機材料層110B的第二表面112延伸(平行-X軸的方向)。據此,電路板130可透過第二導線層160、第一導線層150而分別電性連接於金屬微結構120E的第一微結構121E及第二微結構122E。
藉此,測試訊號TS適於從金屬微結構120E經由第一導線層150及第二導線層160而導通至電路板130,並透過第一微結構121E及第二微結構122E的凸出部123D同時接觸待測物(未繪示),進而可檢測具有較密接觸接點的待測物(未繪示)。
圖8A為本揭露另一實施例的探針卡的側視剖面示意圖。圖8B為圖8A的探針卡的局部放大示意圖。請同時參考圖1與圖8A,本實施例的探針卡100F與圖1的探針卡100相似,但要注意的是,圖8A之探針卡100F為垂直式探針卡,而圖1之探針卡100為懸臂式探針卡。
請參考圖8A及圖8B,在本實施例中,探針卡100F包括可撓無機材料層110F、金屬微結構120F及電路板130F。此處,探針卡100F的探針是由可撓無機材料層110F及金屬微結構120F所組成,適於傳送測試訊號TS。
詳細而言,請參考圖8B,在本實施例中,可撓無機材料層110F具有多個表面,且這些表面包括相對的上表面111F與下表面112F以及相連於上表面111F、下表面112F的第一側表面113F與第二側表面114F。金屬微結構120F設置且包覆於上表面111F、下表面112F及第二側表面114F,且具有連接端121F。電路板130F沿平行Z軸方向連接至連接端121F,且測試訊號TS適於透過金屬微結構120F導通至電路板130F。
更詳細而言,請參考圖8A及圖8B,在本實施例中,探針卡100F更包括二個導板170,且金屬微結構120F包括凸出部122F。每一個導板170具有對應於探針(即可撓無機材料層110F及金屬微結構120F)的多個貫穿孔171,且探針(即可撓無機材料層110F及金屬微結構120F)穿過每一個導板170的這些貫穿孔171。金屬微結構120F的凸出部122F位在相對於連接端121F的一端,以接觸待測物50。
此處,需說明的是,在本實施例中,二個導板170為錯位設置(圖未示出),由於二個導板170的這些貫穿孔171可供可撓無機材料層110F及金屬微結構120F穿過,配合多個導板170的錯位設置,而能夠有效固定探針並可調整探針的接觸方向。
並且,在本實施例中,可撓無機材料層110F的材料包括玻璃、陶瓷或矽晶圓,但不以此為限。在本實施例中,金屬微結構120F的材料包括銅、鎳、鎳鈷磷、鎳鈷、鎳錳或銠釕合金,但不以此為限。在本實施例中,電路板130F包括印刷電路板或陶瓷電路板,但不以此為限。在本實施例中,每一個導板170的材料不具有導電性,包括塑膠或陶瓷,但不以此為限。在本實施例中,金屬微結構120F的凸出部122F的材料包括鎳鈷磷、鎳鈷、鎳錳或銠釕合金,但不以此為限。在其他實施例中,金屬微結構120F可不包括凸出部122F,當金屬微結構120F不具有凸出部122F時,金屬微結構120F的材料包括鎳鈷、鎳錳或銠釕合金,但不以此為限。
舉例而言,在本實施例中,金屬微結構120F適於接觸待測物50,以對待測物50進行測試,而待測物50例如是積體電路或半導體晶圓上的晶粒,但不以此為限。電路板130F例如是電性連接於產生測試訊號TS的測試機(未繪示),但不以此為限。也就是說,在本實施例中,探針卡100F例如是由測試機(未繪示)提供測試訊號TS,經由探針卡100F對一待測物50進行測試,但不以此為限。
值得一提的是,在本實施例中,由於金屬微結構120F設置且包覆於可撓無機材料層110F的上表面111F、下表面112F及第二側表面114F,使得金屬微結構120F能夠受到可撓無機材料層110F的支撐,讓探針卡100F的探針具有良好的強度及彈性且不易產生形變。據此,相較於既有技術以金屬製作的探針在面臨間距及針寬縮小時,易因受力變形產生永久變形而失效,本實施例的探針卡100F的探針可藉由可撓無機材料層110F的設置,使探針卡100F的探針仍具有良好的強度及彈性。
一般用於製作探針的金屬材料的屈服強度(yield strength)較低(約為70 MPa~300 MPa),因此在製作成微小垂直式探針後,易因探針受力彎曲而導致永久變形。在本實施例中,可撓無機材料層110F的材料具備足夠的屈服強度以支撐金屬微結構120F。在一實施例中,可撓無機材料層110F的材料的屈服強度(yield strength)例如是大於500 MPa,且可撓無機材料層110F的材料的楊氏係數例如是大於50 GPa,但不以此為限。在一實施例中,可撓無機材料層110F的材料的屈服強度例如是500 MPa至1200 MPa,可撓無機材料層110F的材料的楊氏係數例如是50 GPa至400 GPa。
圖9為本揭露另一實施例的探針卡的局部放大側視剖面示意圖。請同時參考圖8B與圖9,本實施例的探針卡100G與圖8B的探針卡100F相似,但要注意的是,圖9的金屬微結構120G。
請參考圖9,在本實施例中,探針卡100G包括可撓無機材料層110F、金屬微結構120G及電路板130F。此處,探針卡100G的探針是由可撓無機材料層110F及金屬微結構120G所組成,適於傳送測試訊號TS。
詳細而言,在本實施例中,金屬微結構120G設置且包覆於可撓無機材料層110F的上表面111F、下表面112F、第一側表面113F及第二側表面114F,且具有連接端121G。電路板130F沿平行Z軸方向連接至連接端121G,且測試訊號TS適於透過金屬微結構120G而導通至電路板130F。
在本實施例中,探針卡100G更包括多個導板170,且金屬微結構120G包括凸出部122G。導板170與凸出部122G的設計與圖8B之實施例相似,於此不再贅述。
在本實施例中,由於金屬微結構120G設置且包覆於可撓無機材料層110F的上表面111F、下表面112F、第一側表面113F及第二側表面114F,使得金屬微結構120G能夠受到可撓無機材料層110F的支撐,讓探針卡100G的探針具有良好的強度及彈性且不易產生形變。
圖10為本揭露另一實施例的探針卡的局部放大側視剖面示意圖。請同時參考圖8B與圖10,本實施例的探針卡100H與圖8B的探針卡100F相似,但要注意的是,圖10的金屬微結構120H。
請參考圖10,在本實施例中,探針卡100H包括可撓無機材料層110F、金屬微結構120H及電路板130F。此處,探針卡100H的探針是由可撓無機材料層110F及金屬微結構120H所組成,適於傳送測試訊號TS。
詳細而言,在本實施例中,金屬微結構120H設置於可撓無機材料層110F的第二側表面114F,且具有連接端121H。電路板130F沿平行Z軸方向連接至連接端121H,且測試訊號TS適於透過金屬微結構120H而導通至電路板130F。
在本實施例中,探針卡100H更包括多個導板170,且金屬微結構120H包括凸出部122H。導板170與凸出部122H的設計與圖8B之實施例相似,於此不再贅述。
在本實施例中,由於金屬微結構120H設置於可撓無機材料層110F的第二側表面114F,使得金屬微結構120H能夠受到可撓無機材料層110F的支撐,讓探針卡100H的探針具有良好的強度及彈性且不易產生形變。
綜上所述,在本揭露的探針卡的設計中,由於金屬微結構設置於可撓無機材料層,且測試訊號可沿金屬微結構而導通至電路板,使得金屬微結構在測試待側物時能夠受到可撓無機材料層的支撐,讓探針具有良好的強度及彈性且不易產生形變。據此,相較於既有技術以金屬製作的探針在面臨間距及針寬縮小時,易因受力變形產生永久變形而失效,本揭露的探針卡的探針可藉由可撓無機材料層的設置,使探針仍具有良好的強度及彈性,從而能夠增加探針卡的使用壽命並提升探針卡的測試可靠度。
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。
50:待測物
100、100A、100B、100C、100D、100E、100F、100G、100H:探針卡
110、110B、110F:可撓無機材料層
111:第一表面
112:第二表面
113:本體部
114:指叉部
115:導通孔
116:第一側壁
117:第二側壁
111F:上表面
112F:下表面
113F:第一側表面
114F:第二側表面
120、120B、120C、120D、120E、120F、120G、120H:金屬微結構
121:金屬子結構
122、123D、122F、122G、122H:凸出部
123:第三表面
121D、121E:第一微結構
122D、122E:第二微結構
121F、121G、121H:連接端
130、130A、130F:電路板
131A:水平面
132A:傾斜面
133:接墊
140:接合層
150:第一導線層
160:第二導線層
170:導板
171:貫穿孔
TS:測試訊號
T1、T2:厚度
L1:長度
D1、D2:距離
E1:第一端
E2:第二端
X-Y-Z:直角座標
圖1為本揭露一實施例的探針卡的側視示意圖。
圖2為圖1的探針卡的立體示意圖。
圖3為本揭露另一實施例的探針卡的側視示意圖。
圖4為本揭露另一實施例的探針卡的側視示意圖。
圖5為本揭露另一實施例的探針卡的側視示意圖。
圖6為本揭露另一實施例的探針卡的側視示意圖。
圖7為本揭露另一實施例的探針卡的側視示意圖。
圖8A為本揭露另一實施例的探針卡的側視剖面示意圖。
圖8B為圖8A的探針卡的局部放大示意圖。
圖9為本揭露另一實施例的探針卡的局部放大側視剖面示意圖。
圖10為本揭露另一實施例的探針卡的局部放大側視剖面示意圖。
100:探針卡
110:可撓無機材料層
111:第一表面
112:第二表面
115:導通孔
120:金屬微結構
122:凸出部
123:第三表面
130:電路板
133:接墊
140:接合層
TS:測試訊號
T1:厚度
L1:長度
X-Y-Z:直角座標
Claims (17)
- 一種探針卡,包括:一可撓無機材料層,具有相對的一第一表面及一第二表面;一金屬微結構,設置於該第一表面上;以及一電路板,設置於該第二表面上,該電路板電性連接於該金屬微結構,一測試訊號適於透過該金屬微結構而導通至該電路板;其中,該可撓無機材料層的材料的屈服強度大於500MPa或該可撓無機材料層的材料的楊氏係數大於50Gpa,其中該可撓無機材料層的材料包括玻璃或陶瓷,其中該可撓無機材料層的厚度介於30微米至300微米之間。
- 如請求項1所述的探針卡,其中該可撓無機材料層包括一本體部及多個指叉部,該金屬微結構包括多個金屬子結構,該些金屬子結構相對應且連接於該些指叉部,該些指叉部連接於該本體部的一側,且各該金屬子結構適於與相對應的該指叉部沿一方向往該本體部延伸。
- 如請求項2所述的探針卡,更包括:一導通孔,位於該可撓無機材料層的該本體部並貫穿該第一表面與該第二表面,該導通孔連接至各該金屬子結構及該電路板,且各該金屬子結構設置於該第一表面及該導通孔上,該測試訊號透過該金屬微結構並沿著該導通孔而導通至該電路板。
- 如請求項2所述的探針卡,其中該金屬微結構包括多個凸出部,各該凸出部設置於相對應的該金屬子結構,且位在相對於該第一表面的一第三表面。
- 如請求項1所述的探針卡,更包括:一第一導線層,設置於該可撓無機材料層的該第二表面及該可撓無機材料層靠近該電路板的一第一側壁上,且該第一導線層連接該金屬微結構及該電路板,其中該測試訊號透過該金屬微結構並經由該第一導線層而導通至該電路板。
- 如請求項1所述的探針卡,更包括:一第二導線層,設置於該可撓無機材料層的該第二表面及該可撓無機材料層的遠離該電路板的一第二側壁上,且該第二導線層連接該金屬微結構及該電路板,其中該測試訊號透過該金屬微結構並經由該第二導線層而導通至該電路板。
- 如請求項1所述的探針卡,其中該金屬微結構包括一凸出部,該凸出部設置對應於該可撓無機材料層的一端。
- 如請求項7所述的探針卡,其中該凸出部的材料包括鎳鈷磷、鎳鈷、鎳錳或銠釕合金。
- 如請求項1所述的探針卡,其中該電路板具有相對的一水平面及一傾斜面,該可撓無機材料層的該第二表面連接該電路板的該傾斜面,該可撓無機材料層相對於該第二表面具有相對 的一第一端及一第二端,且該第一端至該水平面的垂直距離與該第二端至該水平面的垂直距離的差值介於50微米至500微米之間。
- 如請求項9所述的探針卡,其中該傾斜面相對於該水平面的傾斜度數為1.5度至6度。
- 如請求項1所述的探針卡,更包括位於該可撓無機材料層與該電路板之間的一接合層,該接合層的材料包括ABF(Ajinomoto Build-up Film)、錫、錫合金或銀膠。
- 如請求項1所述的探針卡,其中該可撓無機材料層的長度與該可撓無機材料層的厚度的比值介於9至30之間。
- 一種探針卡,包括:一可撓無機材料層,具有多個表面;一金屬微結構,設置於該些表面的至少一者,且具有一連接端;一電路板,連接該連接端,其中一測試訊號適於透過該金屬微結構而導通至該電路板;以及至少二導板,各該導板具有多個貫穿孔,且該可撓無機材料層及該金屬微結構穿過各該導板的該些貫穿孔;其中,該可撓無機材料層的材料的屈服強度大於500MPa或該可撓無機材料層的材料的楊氏係數大於50GPa,其中該可撓無機材料層的材料包括玻璃或陶瓷。
- 如請求項13所述的探針卡,其中該金屬微結構包括一凸出部,該凸出部位在相對於該連接端的一端。
- 如請求項14所述的探針卡,其中該凸出部的材料包括鎳鈷磷、鎳鈷、鎳錳或銠釕合金。
- 如請求項14所述的探針卡,其中該可撓無機材料層的該些表面包括:相對的一上表面與一下表面以及相連於該上表面與該下表面的一第一側表面與一第二側表面,該金屬微結構設置且包覆於該上表面、該下表面及該第二側表面。
- 如請求項14所述的探針卡,其中該可撓無機材料層的該些表面包括:相對的一上表面與一下表面以及相連於該上表面與該下表面的一第一側表面與一第二側表面,該金屬微結構設置且包覆於該上表面、該下表面、該第一側表面及該第二側表面。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110148853A TWI802178B (zh) | 2021-12-27 | 2021-12-27 | 探針卡 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110148853A TWI802178B (zh) | 2021-12-27 | 2021-12-27 | 探針卡 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI802178B true TWI802178B (zh) | 2023-05-11 |
TW202326144A TW202326144A (zh) | 2023-07-01 |
Family
ID=87424207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110148853A TWI802178B (zh) | 2021-12-27 | 2021-12-27 | 探針卡 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI802178B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200916791A (en) * | 2007-07-03 | 2009-04-16 | Advantest Corp | Probe, probe card and process for manufacturing probe |
US20090263710A1 (en) * | 2008-04-18 | 2009-10-22 | Fumio Kato | Aa alkaline battery |
CN108572265A (zh) * | 2017-03-14 | 2018-09-25 | 旺矽科技股份有限公司 | 微机电探针及其制造方法以及具有该微机电探针的探针头 |
TW201932845A (zh) * | 2018-01-17 | 2019-08-16 | 義大利商探針科技公司 | 懸臂式接觸探針及相應的探針頭 |
-
2021
- 2021-12-27 TW TW110148853A patent/TWI802178B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200916791A (en) * | 2007-07-03 | 2009-04-16 | Advantest Corp | Probe, probe card and process for manufacturing probe |
US20090263710A1 (en) * | 2008-04-18 | 2009-10-22 | Fumio Kato | Aa alkaline battery |
CN108572265A (zh) * | 2017-03-14 | 2018-09-25 | 旺矽科技股份有限公司 | 微机电探针及其制造方法以及具有该微机电探针的探针头 |
TW201932845A (zh) * | 2018-01-17 | 2019-08-16 | 義大利商探針科技公司 | 懸臂式接觸探針及相應的探針頭 |
US20200348337A1 (en) * | 2018-01-17 | 2020-11-05 | Technoprobe S.P.A. | Cantilever contact probe and corresponding probe head |
Also Published As
Publication number | Publication date |
---|---|
TW202326144A (zh) | 2023-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI596346B (zh) | 垂直式探針卡之探針裝置 | |
JP4323055B2 (ja) | 半導体装置試験用コンタクタ及びその製造方法 | |
US8441275B1 (en) | Electronic device test fixture | |
TWI226931B (en) | Needle assembly of probe card | |
US6771084B2 (en) | Single-sided compliant probe apparatus | |
US8004299B2 (en) | Cantilever probe structure for a probe card assembly | |
US7218131B2 (en) | Inspection probe, method for preparing the same, and method for inspecting elements | |
US20080029763A1 (en) | Transmission Circuit, Connecting Sheet, Probe Sheet, Probe Card, Semiconductor Inspection System and Method of Manufacturing Semiconductor Device | |
JPWO2007029422A1 (ja) | 半導体装置の検査装置及び電源供給ユニット | |
JP2012068256A (ja) | 膜懸垂プローブを具えるプローブヘッド | |
KR101019554B1 (ko) | 프로브 및 그의 제조방법 | |
US7688089B2 (en) | Compliant membrane thin film interposer probe for intergrated circuit device testing | |
US6511857B1 (en) | Process for manufacturing semiconductor device | |
TWI802178B (zh) | 探針卡 | |
US20030098702A1 (en) | Probe card and probe contact method | |
JP2811295B2 (ja) | 垂直型プローブカード | |
KR20100123033A (ko) | 반도체소자 테스트에 사용되는 마이크로 머시닝 기술로 제조한 메쉬 구조를 가진 테스트 소켓. | |
KR100496583B1 (ko) | 반도체 검사용 프로브카드 | |
US11959941B2 (en) | Probe card | |
JP4585111B2 (ja) | プローブカード | |
CN116359569A (zh) | 探针卡 | |
KR101260409B1 (ko) | 프로브 카드 및 반도체 디바이스 테스트 소켓 | |
US20230221351A1 (en) | Probe card and semiconductor test method using the same | |
KR200304113Y1 (ko) | 반도체 검사용 프로브 카드 | |
JP5702068B2 (ja) | 半導体検査用プローブカードおよびその製造方法 |