TWI801617B - Non-destructive inspection methods for steel - Google Patents
Non-destructive inspection methods for steel Download PDFInfo
- Publication number
- TWI801617B TWI801617B TW108122307A TW108122307A TWI801617B TW I801617 B TWI801617 B TW I801617B TW 108122307 A TW108122307 A TW 108122307A TW 108122307 A TW108122307 A TW 108122307A TW I801617 B TWI801617 B TW I801617B
- Authority
- TW
- Taiwan
- Prior art keywords
- aforementioned
- inspection
- impedance
- inspection object
- steel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
提供一種鋼材的非破壞檢查方法,能以高精度進行檢查對象的鋼材之材料成分的良莠之檢查。本發明的一種態樣之鋼材的非破壞檢查方法包含:準備步驟,準備非破壞檢查裝置;配置步驟,以機械加工後產生應變的鋼材作為檢查對象,並以藉由線圈而激發的交流磁場會滲透至檢查對象的內部的方式配置該檢查對象;渦電流生成步驟,使檢查對象產生渦電流;頻率變更步驟,使對檢查對象的交流磁場之滲透深度連續地變化;阻抗算出步驟,算出檢查對象之每個滲透深度的阻抗比;及成分檢查步驟,藉由比較檢查對象的每個滲透深度之阻抗比、與由適當的材料成分所構成的鋼材之每個滲透深度的阻抗比,來進行檢查對象之材料成分的良莠之檢查。To provide a non-destructive inspection method for steel materials, which can inspect good and bad material components of steel materials to be inspected with high precision. A method of non-destructive inspection of steel in an aspect of the present invention includes: a preparation step of preparing a non-destructive inspection device; a configuration step of taking the steel that has been strained after machining as the inspection object, and using the AC magnetic field excited by the coil to The inspection object is arranged in such a way as to penetrate into the inspection object; the eddy current generation step causes the inspection object to generate eddy current; the frequency changing step continuously changes the penetration depth of the AC magnetic field to the inspection object; the impedance calculation step calculates the inspection object The impedance ratio of each penetration depth; and the component inspection step, by comparing the impedance ratio of each penetration depth of the object of inspection with the impedance ratio of each penetration depth of steel made of appropriate material components, to conduct inspections Good and bad inspection of the material composition of the object.
Description
發明領域 field of invention
本發明是有關於鋼材的非破壞檢查方法。 The invention relates to a non-destructive inspection method for steel materials.
發明背景 Background of the invention
一直以來,於鋼材的製造步驟,由於使用各式各樣的鋼材,因此會有就算形狀一樣但材質不同的鋼材(異材)誤混入生產線上之狀況。 Conventionally, since various steel materials are used in the manufacturing process of steel materials, there may be cases where steel materials (dissimilar materials) of different materials are mistakenly mixed into the production line even if the shape is the same.
若作業者以目視檢查如此之異材混入,不但效率不佳,也容易受作業者的能力左右,有著難以得到安定之檢查精度的問題。因此,提案有各種於製造步驟中自動地、精度優良地檢測出異材的方法。 If the operator visually inspects such foreign materials mixed in, not only is the efficiency not good, but it is also easily influenced by the operator's ability, and there is a problem that it is difficult to obtain stable inspection accuracy. Therefore, various methods for automatically and accurately detecting foreign materials in the manufacturing process have been proposed.
例如,提案有使用渦流檢查裝置的異材判定方法,能夠藉由將檢查對象的鋼材搬運至生產線上,並貫通被搬運至圓筒狀線圈之中的鋼材,來檢查鋼材是否為異材。 For example, there is a proposed method of judging a foreign material using an eddy current inspection device, which can check whether the steel material is a foreign material by transporting the steel material to be inspected to the production line and penetrating the steel material transported into the cylindrical coil.
於此種異材判定方法,自渦流檢查裝置朝圓筒狀的線圈流入脈衝電流,使渦電流流過通過線圈內的檢查對象之鋼材,再將藉著被鋼材感應之渦電流而產生的線圈之阻抗變化作為檢查信號來檢出。然後,根據檢測此檢查信號的峰值振幅與於該峰值振幅的位相是否在預定的判 定區域內,以判定檢查對象是否為異材(參考專利文獻1)。 In this kind of abnormal material determination method, a pulse current is flowed from the eddy current inspection device to the cylindrical coil, so that the eddy current flows through the steel material to be inspected in the coil, and then the coil generated by the eddy current induced by the steel material is Impedance changes are detected as inspection signals. Then, according to detecting whether the peak amplitude of the inspection signal and the phase of the peak amplitude are within a predetermined judgment within a certain area to determine whether the inspection object is a foreign material (refer to Patent Document 1).
先行技術文獻 Prior art literature
專利文獻 patent documents
專利文獻1:日本公開特許公報「特開第2012-42333號」 Patent Document 1: Japanese Laid-Open Patent Publication "JP-A-2012-42333"
發明概要 Summary of the invention
於上述的異材判定方法,是藉由將預定電流流入圓筒狀的線圈,令渦電流流過通過線圈內的鋼材,來檢測藉由此渦電流而產生之線圈的阻抗變化。 In the above-mentioned different material determination method, a predetermined current is flowed into a cylindrical coil, and an eddy current is made to flow through the steel passing through the coil, and the impedance change of the coil generated by the eddy current is detected.
但是,此異材判定方法由於並非一邊變更對鋼材的磁場的滲透深度一邊檢查,故鋼材的檢查區域狹窄,有著無法以高精度進行鋼材的材料成分之良莠檢查的問題。 However, this method of judging a different material does not inspect while changing the penetration depth of the magnetic field into the steel, so the inspection area of the steel is narrow, and there is a problem that it is impossible to inspect the good and bad of the material composition of the steel with high accuracy.
本發明的一種態樣為有鑑於上述課題而成,其目的在於提供一種鋼材的非破壞檢查方法,能夠高精度地進行檢查對象的鋼材之材料成分的良莠之檢查。 One aspect of the present invention is made in view of the above-mentioned problems, and an object of the present invention is to provide a non-destructive inspection method for steel materials capable of accurately inspecting good and bad material components of steel materials to be inspected.
為解決上述課題而成的本發明之一種態樣的鋼材的非破壞檢查方法,為包含有準備步驟、配置步驟、渦電流生成步驟、頻率變更步驟、阻抗算出步驟、成分檢查步驟之鋼材的非破壞檢查方法。於準備步驟,準備具有頻率可變電路與線圈的非破壞檢查裝置。頻率可變電路能夠變更 交流電流的頻率。線圈能夠藉由前述交流電流激發交流磁場。於配置步驟,以藉由前述線圈而激發之交流磁場會滲透至前述檢查對象之內部的方式配置檢查對象。以機械加工後之產生應變的前述鋼材作為檢查對象。於渦電流生成步驟,藉由使前述交流磁場滲透至前述檢查對象的內部,而使該檢查對象產生渦電流。 A non-destructive inspection method for steel materials according to one aspect of the present invention to solve the above-mentioned problems is a non-destructive inspection method for steel materials including a preparation step, an arrangement step, an eddy current generation step, a frequency change step, an impedance calculation step, and a component inspection step. Destroy check method. In the preparatory step, a non-destructive inspection device having a variable frequency circuit and a coil is prepared. Frequency variable circuit can change The frequency of the alternating current. The coil can excite an alternating magnetic field by the aforementioned alternating current. In the arranging step, the inspection object is arranged such that the AC magnetic field excited by the coil penetrates into the inspection object. The above-mentioned steel that has been strained after machining is used as the inspection object. In the eddy current generating step, the inspection object is caused to generate an eddy current by causing the AC magnetic field to penetrate into the inspection object.
然後,於頻率變更步驟,藉由利用前述頻率可變電路連續地變更前述交流電流的頻率,使對前述檢查對象的前述交流磁場的滲透深度連續地變化。於阻抗算出步驟,根據前述線圈兩端之間的電位差及流過前述線圈之電流值,算出前述檢查對象的每個前述滲透深度之關於阻抗的值。於成分檢查步驟,其特徵為:藉由比較在前述阻抗算出步驟算出的前述檢查對象之每個前述滲透深度的關於阻抗之值、與由適當的材料成分所構成的前述鋼材之每個前述滲透深度的關於前述阻抗之值,以進行前述檢查對象的材料成分之良莠的檢查。 Then, in the frequency changing step, by using the frequency variable circuit to continuously change the frequency of the alternating current, the penetration depth of the alternating magnetic field to the inspection object is continuously changed. In the impedance calculation step, a value related to impedance is calculated for each penetration depth of the inspection object based on the potential difference between the two ends of the coil and the current value flowing through the coil. In the composition inspection step, it is characterized in that: by comparing the value of impedance for each of the aforementioned penetration depths of the inspection object calculated in the aforementioned impedance calculation step with each of the aforementioned penetrations of the aforementioned steel material composed of an appropriate material composition The value of the depth related to the aforementioned impedance is used to check whether the material composition of the aforementioned inspection object is good or bad.
根據本發明之一種態樣,可以高精度進行檢查對象的鋼材之材料成分的良莠的檢查。 According to one aspect of the present invention, it is possible to inspect the good and bad of the material composition of the steel material to be inspected with high precision.
1:非破壞檢查裝置 1: Non-destructive inspection device
10:振盪器 10: Oscillator
11:交流電源 11: AC power supply
12:頻率可變電路 12: Frequency variable circuit
20:檢測器 20: detector
21:線圈 21: Coil
30:計測器 30: Measuring device
31:放大電路 31: Amplifying circuit
32、35:絕對值電路 32, 35: absolute value circuit
33、36:低通濾波器(LPF) 33, 36: Low-pass filter (LPF)
34:I/V轉換電路 34: I/V conversion circuit
37:控制部 37: Control Department
38:顯示器 38: Display
M:檢查對象 M: inspection object
Z0、Z1、Z2:阻抗(與阻抗相關的值) Z 0 , Z 1 , Z 2 : Impedance (values related to impedance)
γ1、γ2:阻抗比(與阻抗相關的值) γ 1 , γ 2 : Impedance ratio (value related to impedance)
A、B:線圈兩端 A, B: both ends of the coil
S1:準備步驟 S1: Preparatory steps
S2:配置步驟 S2: Configuration steps
S3:渦電流生成步驟 S3: Eddy current generation step
S4:頻率變更步驟 S4: Frequency change step
S5:阻抗算出步驟 S5: Impedance Calculation Step
S6:成分檢查步驟 S6: Ingredient inspection step
S7:告知步驟 S7: Inform step
S11:判定檢查對象之阻抗比是否在預定範圍內之步驟 S11: A step of determining whether the impedance ratio of the inspection object is within a predetermined range
S12:判定檢查對象為良品之步驟 S12: The step of judging that the inspection object is a good product
S13:判定檢查對象為不良品之步驟 S13: The step of judging that the inspection object is a defective product
S21:鑄造步驟 S21: casting step
S22:機械加工步驟 S22: Machining step
S23:熱處理步驟 S23: heat treatment step
S24:珠擊步驟 S24: Bead hitting step
S25:完工步驟 S25: Completion step
圖1為本發明之實施形態的非破壞檢查裝置之電路圖。 Fig. 1 is a circuit diagram of a non-destructive inspection device according to an embodiment of the present invention.
圖2為顯示產生於本發明之實施形態的線圈之交流磁場的示意圖。 Fig. 2 is a schematic diagram showing an AC magnetic field generated by a coil according to an embodiment of the present invention.
圖3為說明本發明的實施形態之鋼材的非破壞檢查方法之流程圖。 Fig. 3 is a flow chart illustrating a non-destructive inspection method for steel materials according to an embodiment of the present invention.
圖4為顯示本發明的實施形態之成分檢查步驟的處理之流程的流程圖。 Fig. 4 is a flow chart showing the flow of processing in the component inspection step according to the embodiment of the present invention.
圖5為顯示本發明的實施形態之製造步驟的流程之流程圖。 Fig. 5 is a flow chart showing the flow of manufacturing steps in the embodiment of the present invention.
圖6為顯示本發明的實施形態之在成分檢查步驟的檢查對象之阻抗比的圖。 Fig. 6 is a diagram showing impedance ratios of inspection objects in a component inspection step according to an embodiment of the present invention.
用以實施發明之形態 form for carrying out the invention
以下,就本發明的一種實施形態,參照圖1~圖6作說明。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 6 .
[非破壞檢查裝置] [Non-destructive inspection device]
本實施形態之非破壞檢查裝置1如圖1所示,構成為具備:振盪器10、檢測器20、與計測器30。振盪器10構成為具有:交流電源11、與頻率可變電路12。頻率可變電路12連接於交流電源11,並且為用以變更自交流電源11輸出的交流電流之頻率者。
The
檢測器20構成為具有後述的線圈21。線圈21之一端側(圖1的點A)連接於交流電源11,並被供給自交流電源11輸出的交流電流。線圈21的另一端側(圖1之點B)連接於後述的I/V轉換電路34。此檢測器20用於後述之判定檢查對象M的成分之良莠時。再者,圖1之顯示線圈21之虛線內的電路記號是表示線圈21的電性等效電路。
The
線圈21如圖2所示,為將複數根具有導電性的線材捲繞並形成為圓筒狀之物。於本實施形態,藉由將綁住複數條細導線來形成一條線之物作為線材使用,可使線圈21的共振頻率變高。再者,作為線圈21,也可使用將線材捲繞於中空之圓筒形狀的芯材之物(有芯線圈)。又,線材也可使用單一導線。
As shown in FIG. 2 , the
本實施形態的線圈21之製作方法為,首先,把編織並扭轉數百根漆包銅線之線材捲繞至樹脂製的圓筒後,將捲繞過之線材以環氧樹脂接著,並將圓筒取出而製作。
The manufacturing method of the
再者,作為線圈21的製作方法,還有以下其他方法:例如使用以熱硬化性樹脂被覆的線材並捲繞此線材後,以熱風或乾燥爐等加熱而使線材固定成保持線圈狀的形狀。如此,只要線材能保持線圈狀的形狀,其製作方法並無特別限定。
Furthermore, as a method of manufacturing the
計測器30構成為具備:放大電路31、絕對值電路32、低通濾波器(LPF)33、I/V轉換電路34、絕對值電路35、LPF36、控制部37、顯示器38。計測器30根據顯示流經線圈21的交流電流之電特性的信號,計測線圈21的阻抗變化。阻抗為表示線圈21之兩端間的電位差與流經線圈21的電流值之比的值。
The measuring
放大電路31一端側(於圖1為左側)連接於線圈21的兩端(圖1之點A及點B),並且另一端側(於圖1為右側)連接於絕對值電路32。線圈21之兩端間的電位差的信
號輸入至此放大電路31。輸入至放大電路31之信號被放大,輸入至絕對值電路32。
One end side (left side in FIG. 1 ) of the
絕對值電路32為全波整流電路。輸入至絕對值電路32的電位差信號在被全波整流後,藉由LPF33轉換為直流。以LPF33轉換的電位差信號輸入至控制部37。
The
I/V轉換電路34連接於線圈21之另一端側(圖1的點B)。顯示流經線圈21的電流之電流值的信號被輸入至I/V轉換電路34,轉換為顯示電位差之信號。然後,在藉由絕對值電路35全波整流後,藉由LPF36轉換為直流。用LPF36轉換的信號,輸入至控制部37。
The I/
圖雖未顯示,控制部37是構成為具有:微處理器、介面電路、記憶體、及使該等作動之程式等。控制部37連接至頻率可變電路12、LPF33、及LPF36。顯示線圈21的電特性的信號,亦即流經線圈21的交流電流之頻率的信號、對各頻率之電流值的信號及電位差的信號會輸入至控制部37。控制部37根據顯示線圈21的電特性之信號,運算各頻率的阻抗。
Although not shown in the figure, the
又,控制部37具有將於頻率可變電路12自動且連續地變更頻率的信號輸出的功能。於本實施形態,是在檢查對象M即鋼材配置於線圈21的內部之狀態,藉由來自控制部37的控制輸出,透過頻率可變電路12來變更頻率(參考圖2)。再者,交流電流的頻率之變更也可以手動進行。
In addition, the
又,本實施形態的控制部37,算出連續地變更之每個頻率的阻抗Z2(與阻抗相關的值),並將已算出的
阻抗Z2與未處理品的阻抗Z0之阻抗比γ2(Z2/Z0)算出。又,控制部37將良品之狀況下的每個滲透深度之阻抗Z1(與阻抗相關的值)與未處理品的阻抗Z0之阻抗比γ1(Z1/Z0)算出。然後,藉由比較檢查對象M的阻抗比γ2(與阻抗相關的值)與良品的阻抗比γ1(與阻抗相關的值),達到進行檢查對象M的材料成分之良莠的檢查之功能。
In addition, the
顯示器38為於後述之告知步驟(S7)中進行控制部37所進行的成分檢查之結果之告知者,顯示檢查對象M是否為良品。再者,檢查對象M為不良品的狀況下,也可自顯示器38輸出錯誤音。又,在已藉由控制部37所進行的成分檢查之結果來判明檢查對象M的成分的狀況下,也可將該材料成分顯示於顯示器38。
The
[渦電流的控制方法] [Control method of eddy current]
接著,就非破壞檢查裝置1的渦電流的控制方法說明。首先,自交流電源11施加交流電流於非破壞檢查裝置1之線圈21。若於線圈21施加交流電流,則如後述,藉由線圈21激發的交流磁場會滲透於配置在線圈21的內部之檢查對象M(參考圖2)。藉此,渦電流產生於檢查對象M。
Next, a method of controlling the eddy current of the
於本實施形態的非破壞檢查裝置1,控制部37可藉由朝頻率可變電路12輸出控制信號來將交流電流的頻率連續地變更。然後,藉由利用頻率可變電路12連續地變更交流電流的頻率,能夠使對檢查對象M的交流磁場之滲透深度連續地變化。進而,控制部37使對檢查對象M的交流磁場之滲透深度連續地變化,根據線圈21的兩端之
間的電位差及流過線圈21之電流值,能夠算出檢查對象M的每個上述滲透深度的阻抗Z2。此狀況下,阻抗會對應於起因於鋼材的材料成分的磁性而成為不同值。
In the
控制部37根據線圈21的兩端(圖1的點A及點B)之間的電位差與流過線圈21的電流值,算出阻抗Z2,並將已算出的阻抗Z2與未處理品之阻抗Z0的阻抗比γ2(Z2/Z0)算出。
The
在此,阻抗比γ2表示:由適當的材料成分所構成的鋼材之每個滲透深度的阻抗Z0與檢查對象M之每個滲透深度的阻抗Z2的比值。於本實施形態,如後述使良品的阻抗比γ1為1.0時,檢查對象M的阻抗比γ2只要在預定範圍內即判定為良品。 Here, the impedance ratio γ 2 represents the ratio of the impedance Z 0 per penetration depth of steel made of appropriate material components to the impedance Z 2 per penetration depth of the inspection object M. In this embodiment, when the impedance ratio γ1 of a good product is set to 1.0 as described later, it is judged as a good product if the impedance ratio γ2 of the inspection object M is within a predetermined range.
再者,也可預先就由各種材料成分所構成的鋼材,在控制部37的記憶體事先記憶合計了交流磁場的滲透深度連續地變化的狀況下之阻抗的資料,並於後述之成分檢查步驟(S6)使用此資料。
Furthermore, it is also possible to memorize in advance the data of the impedance under the condition that the penetration depth of the alternating magnetic field changes continuously in the memory of the
[非破壞檢查方法] [Non-destructive inspection method]
接著,參考顯示於圖3之流程圖,對於本實施形態的非破壞檢查裝置1所進行之鋼材的非破壞檢查方法作說明。再者,顯示於圖3之流程圖為其中一例,並非限定為此流程圖之順序。
Next, with reference to the flow chart shown in FIG. 3, the method of non-destructive inspection of steel materials performed by the
於本實施形態的鋼材的非破壞檢查方法,首先,準備檢查對象M的鋼材,並且進行準備上述之非破壞檢查裝置1的準備步驟(S1)。作為檢查對象M的鋼材,舉例
來說,預想是使用於汽車或飛機、建設機械等的構成零件(齒輪、傳動裝置等),還有彈簧或模具、工具等的鋼材。於本實施形態,是針對將以下鋼材作為檢查對象M的狀況來作說明:材質為鉻鋼(JIS規格:SCr420H),且在後述的鍛造步驟(S21)之後,在機械加工步驟(S22)中加工成齒輪的形狀之鋼材。
In the non-destructive inspection method of the steel material of this embodiment, first, the steel material of the inspection object M is prepared, and the preparatory step (S1) of preparing the above-mentioned
接著,進行配置檢查對象M的鋼材的配置步驟(S2)。具體來說,將檢查對象M的鋼材配置於圓筒狀的線圈21之內部的圓形截面中心,並使藉由線圈21激發的交流磁場成為能夠滲透至檢查對象M之內部的狀態。再者,配置方法不限於此,只要為線圈21之交流磁場會滲透至檢查對象M的內部之配置即可,除此之外也可將檢查對象M配置在對向於線圈21的位置。
Next, an arrangement step ( S2 ) of arranging the steel materials of the inspection object M is performed. Specifically, the steel material of the inspection object M is arranged at the center of the circular cross section inside the
於本實施形態,以後述的機械加工步驟(S22)之後產生應變的鋼材作為檢查對象M。此為由於若是機械加工後的鋼材,就算只是材料成分不同的異材(不良品),在良品與不良品產生的磁場之差也會變得比機械加工前的鍛造品還大,較容易發現異材。 In this embodiment, the steel material which strains generate|occur|produce after the machining process (S22) mentioned later is made into the inspection object M. This is because if it is a machined steel, even if it is just a different material (defective product) with different material components, the difference in the magnetic field between the good product and the defective product will become larger than that of the forged product before machining, and it is easier to find the different material. .
配置步驟(S2)之後,進行將渦電流產生於檢查對象M的渦電流生成步驟(S3)。具體來說,控制部37透過頻率可變電路12使交流電源11作動。若交流電源11作動,則交流磁場激發於線圈21(參考圖2)。藉由使線圈21的交流磁場滲透至檢查對象M的內部,檢查對象M的內部會產生渦電流。
After the arrangement step (S2), an eddy current generating step (S3) of generating an eddy current in the inspection object M is performed. Specifically, the
接著,進行使對檢查對象M的交流磁場的滲透深度連續地變化的頻率變更步驟(S4)。具體來說,控制部37藉由朝頻率可變電路12輸出控制信號,使自交流電源11輸出的交流電流之頻率連續地變更。藉此,對檢查對象M的交流磁場的滲透深度會連續地變化。在此狀況,關於對檢查對象M的交流磁場之滲透深度,就算將同樣的交流磁場賦予檢查對象M,也會因檢查對象M的內部之組成而產生變動。
Next, a frequency changing step ( S4 ) of continuously changing the penetration depth of the AC magnetic field into the inspection object M is performed. Specifically, the
於本實施形態,使對檢查對象M的交流磁場的滲透深度於0μm~150μm為止變化,來進行檢查對象M的材料成分之良莠的檢查(參考圖6)。再者,非破壞檢查裝置1的交流之電流值、頻率的變更範圍等之各種條件為對應於檢查對象M而適宜地設定。
In the present embodiment, the penetration depth of the AC magnetic field to the inspection object M is varied from 0 μm to 150 μm to inspect whether the material components of the inspection object M are good or bad (see FIG. 6 ). In addition, various conditions such as the alternating current value of the
頻率變更步驟(S4)之後,進行算出檢查對象M之每個滲透深度的上述阻抗比γ2之阻抗算出步驟(S5)。具體來說,控制部37根據線圈21的兩端(圖1的點A及點B)之間的電位差及流經線圈21的電流值,算出配置了檢查對象M之狀態的線圈21之阻抗Z2,並算出已算出的阻抗Z2與未處理品的阻抗Z0之阻抗比γ2(Z2/Z0)。
After the frequency change step (S4), the impedance calculation step (S5) of calculating the above-mentioned impedance ratio γ2 for each penetration depth of the inspection object M is performed. Specifically, the
在此,未處理品的阻抗Z0宜為將10個以上的未處理品之測定結果按照每個頻率加以平均,並使用其平均值。又,預先算出良品的狀況下之上述阻抗Z1,且預先算出此良品的狀況下之阻抗Z1與未處理品的阻抗Z0的阻抗比γ1(Z1/Z0)。 Here, as for the impedance Z 0 of the untreated product, it is preferable to average the measurement results of 10 or more untreated products for each frequency and use the average value. In addition, the above-mentioned impedance Z 1 in the case of a good product is calculated in advance, and the impedance ratio γ 1 (Z 1 /Z 0 ) of the impedance Z 1 in the case of a good product to the impedance Z 0 of an unprocessed product is calculated in advance.
接著,實施進行檢查對象M的材料成分之良莠的檢查之成分檢查步驟(S6)。於此成分檢查步驟(S6),藉著比較藉由上述阻抗算出步驟(S5)算出之檢查對象M之每個滲透深度的阻抗比γ2、與由適當的材料成分所構成的鋼材之每個滲透深度的阻抗比γ1,來進行檢查對象M的材料成分之良莠的檢查。再者,關於由適當的材料成分所構成的鋼材的每個滲透深度之阻抗比γ1的算出,也可在算出檢查對象M的每個滲透深度之阻抗比γ2後進行。 Next, a component inspection step ( S6 ) of inspecting good and bad material components of the inspection object M is carried out. In this composition inspection step (S6), by comparing the impedance ratio γ 2 for each penetration depth of the inspection object M calculated in the above-mentioned impedance calculation step (S5) with each steel material composed of an appropriate material composition The impedance ratio γ 1 of the penetration depth is used to inspect whether the material composition of the inspection object M is good or bad. In addition, the calculation of the impedance ratio γ1 per penetration depth of steel materials made of appropriate material components may be performed after calculating the impedance ratio γ2 per penetration depth of the inspection object M.
再者,對複數個鋼材進行材料成分之良莠的檢查時,首先,於第1次算出由適當的材料成分所構成的鋼材的每個滲透深度之阻抗比γ1,並將此值記憶於控制部37的記憶體。然後,第2次以後,只要比較於第1次算出之阻抗比γ1與檢查對象M的鋼材的每個滲透深度之阻抗比γ2,藉此來檢查檢查對象M的材料成分之良莠即可。
Furthermore, when inspecting the good and bad of the material composition of a plurality of steel materials, first, the impedance ratio γ 1 for each penetration depth of the steel materials composed of appropriate material composition is calculated for the first time, and this value is memorized in memory of the
在此,參照圖4說明成分檢查步驟的具體之處理流程。如圖4所示,於成分檢查步驟,首先,控制部37判定檢查對象M的阻抗比γ2是否在預定的範圍之內(S11)。於檢查對象M的阻抗比γ2在預定之範圍內的狀況(S11:Yes),控制部37判定檢查對象M為良品(S12)。另一方面,於檢查對象M的阻抗比γ2不在預定的範圍內的狀況(S11:No),控制部37判定檢查對象M為不良品(S13)。
Here, a specific processing flow of the component inspection step will be described with reference to FIG. 4 . As shown in FIG. 4, in the component inspection step, first, the
作為預定的範圍,舉例來說,將良品的阻抗比γ1設為1.0時,只要檢查對象M的阻抗比γ2與良品阻抗比γ1之差為小於0.01即判定為良品,並只要有0.01以上的偏 差即判定為不良品(參照圖6)。再者,預定的範圍不限於此,能夠適宜地變更。 As a predetermined range, for example, when the impedance ratio γ1 of a good product is set to 1.0, as long as the difference between the impedance ratio γ2 of the inspection object M and the impedance ratio γ1 of the good product is less than 0.01, it is determined to be a good product, and as long as there is 0.01 The above deviation is determined as a defective product (refer to FIG. 6 ). In addition, the predetermined range is not limited to this, and can be changed suitably.
接著,於成分檢查步驟(S6)之後,進行告知檢查對象M為良品或不良品的告知步驟(S7)。於此告知步驟(S7),檢查對象M是否為良品顯示於顯示器38。再者,在檢查對象M為不良品的狀況,也可自顯示器38輸出錯誤音。又,也可藉由使用預先記憶於記憶體的由各種材料成分所構成的鋼材之資料,來表示不良品的材料成分為何,或根據不良品的種類使告知的錯誤音不同。
Next, after the component inspection step (S6), a notification step (S7) of notifying whether the inspection object M is a good product or a defective product is performed. In this step ( S7 ), whether the inspection object M is good or not is displayed on the
又,於本實施形態,在告知步驟(S7)時,如圖6所示,會顯示於橫軸標出滲透深度、於縱軸標出阻抗比的圖表。於圖6所示的例子,顯示著作為鋼材以鉻鋼(JIS規格:SCr420H)為良品,以鉻鉬鋼(JIS規格:SCM420H)為不良品的狀況。相對於鉻鉬鋼中含有0.15~0.25%的鉬(Mo),鉻鋼中不含有鉬,兩者有成分上的不同。 Also, in this embodiment, at the time of the notification step (S7), as shown in FIG. 6, a graph is displayed in which the penetration depth is plotted on the horizontal axis and the impedance ratio is plotted on the vertical axis. In the example shown in FIG. 6 , it is shown that chromium steel (JIS standard: SCr420H) is a good product and chromium molybdenum steel (JIS standard: SCM420H) is a defective product as steel materials. Compared with 0.15~0.25% molybdenum (Mo) contained in chrome-molybdenum steel, chrome steel does not contain molybdenum, and the composition of the two is different.
再者,於本實施形態,雖將鉻鋼作為良品並將鉻鉬鋼作為不良品,但不限於此,良品、不良品的設定能夠適宜地變更。舉例來說,也可將普通鋼作為良品並將特殊鋼作為不良品,也可將特殊鋼作為良品並將普通鋼作為不良品。 In addition, in this embodiment, although chrome steel is set as a good product and a chromium-molybdenum steel is made into a defective product, it is not limited to this, and the setting of a good product and a defective product can be changed suitably. For example, ordinary steel may be good and special steel may be bad, or special steel may be good and ordinary steel may be bad.
具體來說,圖示著將鉻鋼之阻抗比γ1作為基準(1.000)時的鉻鉬鋼的阻抗比γ2。在此狀況,渦電流的滲透深度越深,不良品(異材)即鉻鉬鋼的阻抗比γ2與良品即鉻鋼的阻抗比γ1之差越大。也就是,能得知渦電流的反應 有差異。再者,這些鉻鉬鋼及鉻鋼是使用鍛造後機械加工成齒輪的形狀之同樣形狀之物。 Specifically, the impedance ratio γ 2 of the chromium-molybdenum steel when the impedance ratio γ 1 of the chromium steel is taken as a reference (1.000) is shown in a graph. In this case, the deeper the penetration depth of the eddy current, the greater the difference between the impedance ratio γ2 of the defective (different material) chromium-molybdenum steel and the impedance ratio γ1 of the good product (chromium steel). That is, it can be seen that there is a difference in the response of the eddy current. In addition, these chromium-molybdenum steels and chromium steels are those of the same shape that are machined into the shape of a gear after forging.
[製造步驟] [Manufacturing procedure]
接著,參考顯示於圖5之流程圖,對本實施形態的鋼材之製造步驟的流程作說明。再者,顯示於圖5之流程圖為其中一例並且不受限於此例。 Next, the flow of the manufacturing steps of the steel material of this embodiment will be described with reference to the flow chart shown in FIG. 5 . Furthermore, the flowchart shown in FIG. 5 is one example and is not limited to this example.
於本實施形態的鋼材之製造步驟,首先,在進行鑄造步驟(S21)之後,進行切削加工等的機械加工步驟(S22)。 In the manufacturing process of the steel material of this embodiment, first, after performing the casting process (S21), the machining process (S22) such as cutting is performed.
於本實施形態,是在機械加工步驟(S22)之後進行上述非破壞檢查方法。於此機械加工步驟(S22),鋼材會產生應變。如此,機械加工後的鋼材產生應變的狀態,比起鋼材不產生應變的狀態,伴隨渦電流的產生之線圈的上述阻抗變化將變大。藉此,能夠更為確實地進行異材的檢測。 In this embodiment, the above-mentioned non-destructive inspection method is performed after the machining step (S22). In this mechanical processing step (S22), the steel will be strained. In this way, in the state where the steel material is strained after machining, the change in the above-mentioned impedance of the coil due to the generation of eddy current is larger than that in the state where the steel material is not strained. Thereby, detection of a foreign material can be performed more reliably.
又,若能在機械加工步驟(S22)之後立刻由非破壞檢查方法檢測出異材,就能夠防止在此後的製造步驟中對不良品施以多餘的處理。 In addition, if the foreign material can be detected by the non-destructive inspection method immediately after the machining step (S22), it is possible to prevent unnecessary processing of defective products in the subsequent manufacturing steps.
接著,進行熱處理步驟(S23)。於此熱處理步驟(S23),對於鋼材適宜地施以例如淬火、正火等熱處理。 Next, a heat treatment step (S23) is performed. In this heat treatment step (S23), heat treatments such as quenching and normalizing are appropriately performed on the steel material.
熱處理步驟(S23)之後,進行珠擊步驟(S24)。於此珠擊步驟(S24),藉由使用珠擊裝置朝鋼材的表面投射小的球狀投射材,以進行對鋼材的表面給予改質 硬化的處理。 After the heat treatment step (S23), the bead peening step (S24) is performed. In this beading step (S24), the surface of the steel is modified by projecting small spherical projectiles toward the surface of the steel by using the bead beating device Hardened handle.
接著,進行完工步驟(S25)。於此完工步驟(S25),對於鋼材適宜地施以例如毛刷研磨、拋光、滾筒磨光等的完工處理。 Next, a finishing step (S25) is performed. In this finishing step ( S25 ), finishing treatment such as brush grinding, buffing, barrel buffing, etc. is appropriately applied to the steel material.
實施形態之效果 The effect of implementation
根據上述之本實施形態的鋼材的非破壞檢查方法,能夠藉由上述非破壞檢查裝置1於檢查對象M(鋼材)產生渦電流,以使對檢查對象M的交流磁場的滲透深度連續地變化,並藉由比較檢查對象M的每個滲透深度之阻抗比γ2的變化、與由適當的材料成分所構成的鋼材之狀況下的每個滲透深度之阻抗比γ1的變化,而不破壞檢查對象M,並以高精度進行檢查對象M的材料成分之良莠的檢查。更進一步地,藉由將機械加工後產生應變的鋼材作為檢查對象M使用,可使良品與不良品的磁性之不同顯著,更正確地實施良莠檢查。
According to the non-destructive inspection method of the steel material of the present embodiment described above, the eddy current can be generated in the inspection object M (steel material) by the
特別是由於藉著算出以由適當的材料成分所構成的鋼材作為基準之檢查對象M的每個滲透深度之阻抗比γ1,來進行檢查對象M的材料成分之良莠的檢查,因此,藉由合適地設定用於良莠判定的阻抗比的範圍,可更正確地進行檢查對象M的鋼材之材料成分的良莠之檢查。 In particular, by calculating the impedance ratio γ 1 for each penetration depth of the inspection object M based on a steel material composed of an appropriate material composition, the inspection of the material composition of the inspection object M is performed. Therefore, by By appropriately setting the range of the impedance ratio for good and bad judgment, the good and bad inspection of the material composition of the steel material of the inspection object M can be performed more accurately.
又,在成分檢查步驟(S6)之後,由於進行告知檢查對象M為良品或不良品的告知步驟(S7),因此在製造步驟中有異材混入的狀況下,作業者可以藉由視認顯示器38而立刻認知到檢查對象M之鋼材為不良品(異材)。藉
此,作業者可以迅速地除去異材,並在較早階段防止異材混入於之後的製造步驟。
In addition, after the component inspection step (S6), the notification step (S7) of notifying whether the inspection object M is a good product or a defective product is performed (S7), so when there is foreign material mixed in the manufacturing step, the operator can visually recognize the
[其他實施形態] [Other Embodiments]
於上述實施形態,雖藉由在成分檢查步驟(S6)比較由適當的材料成分所構成的鋼材的每個滲透深度的阻抗比γ1與檢查對象M之每個滲透深度的阻抗比γ2,來進行檢查對象M的材料成分之良莠的檢查,但成分檢查方法不侷限於此。只要於成分檢查步驟(S6),藉由比較良品和不良品的與阻抗有關之值,來進行檢查對象的材料成分之良莠的檢查即可。亦即,作為用於檢查對象的材料成分之良莠檢查的「與阻抗有關的值」,不限於阻抗比γ1、γ2,可以包含阻抗值、阻抗值的分布、阻抗值的最大值等。 In the above embodiment, by comparing the impedance ratio γ 1 per penetration depth of the steel material composed of an appropriate material composition with the impedance ratio γ 2 per penetration depth of the inspection object M in the component inspection step (S6), To check whether the material composition of the inspection object M is good or bad, the composition inspection method is not limited to this. In the composition inspection step ( S6 ), by comparing the impedance-related values of good and defective products, it is sufficient to check whether the composition of the material to be inspected is good or bad. In other words, the "value related to impedance" used for the inspection of good and bad material components of the inspection object is not limited to impedance ratios γ 1 and γ 2 , and may include impedance values, distribution of impedance values, maximum value of impedance values, etc. .
舉例來說,也可藉由比較檢查對象M的每個滲透深度之阻抗值的分布與由適當的材料成分所構成的鋼材之每個滲透深度的阻抗值之分布,並判定檢查對象M的每個滲透深度之阻抗值的分布是否在預定的範圍內,以進行檢查對象M的材料成分之良莠的檢查。 For example, it is also possible to determine the distribution of impedance values per penetration depth of the inspection object M by comparing the distribution of impedance values at each penetration depth of the inspection object M with the distribution of impedance values at each penetration depth of a steel material composed of an appropriate material composition. Whether the distribution of the impedance value of each penetration depth is within the predetermined range is used to check whether the material composition of the inspection object M is good or bad.
亦即,只要標出檢查對象M的每個滲透深度之阻抗值的分布圖在預定的範圍內即判定為良品,另一方面,在成為預定的範圍外的狀況下則判定為不良品。作為預定的範圍,舉例來說,對於良品的阻抗值之分布只要小於0.5%的誤差範圍即判定為良品,並且只要有0.5%以上的誤差即判定為不良品。再者,此為其中一例,可對應檢查對象M的材料成分等適宜地變更。 That is, as long as the distribution graph indicating the impedance value for each penetration depth of the inspection object M is within a predetermined range, it is judged to be a good product, and on the other hand, it is judged to be a defective product when it is out of the predetermined range. As a predetermined range, for example, if the distribution of the impedance value of a good product is less than 0.5% error range, it is judged as a good product, and as long as there is an error of more than 0.5%, it is judged as a defective product. In addition, this is an example, and it can be changed suitably according to the material composition of the inspection object M, etc. FIG.
又,也可為:只要標出檢查對象M的每個滲透深度之阻抗的分布圖在預定的面積內即判定為良品,另一方面,在成為預定的面積外之狀況下則判定為不良品。 In addition, it may be determined as a good product as long as the distribution graph indicating the impedance for each penetration depth of the inspection object M is within a predetermined area, and on the other hand, it may be judged as a defective product when it falls outside the predetermined area. .
藉由上述鋼材的非破壞檢查方法,由於不必算出上述阻抗比,可以省去控制部37的運算處理的工夫,並能夠藉由將閾值設定於合適的範圍而簡易且正確地實施良莠檢查。
According to the above non-destructive inspection method for steel materials, since it is not necessary to calculate the above-mentioned impedance ratio, it is possible to save the labor of the calculation processing of the
又,也可藉由比較檢查對象M的每個滲透深度之阻抗值的分布與由適當的材料成分所構成的鋼材之每個滲透深度的阻抗值之分布,並判定檢查對象M的每個滲透深度之阻抗的分布之最大值是否在預定的範圍內,以進行檢查對象M的材料成分之良莠的檢查。 Also, by comparing the distribution of impedance values for each penetration depth of the inspection object M with the distribution of impedance values for each penetration depth of a steel material composed of an appropriate material composition, it is also possible to determine the distribution of each penetration depth of the inspection object M. Whether the maximum value of the impedance distribution of the depth is within a predetermined range is used to check whether the material composition of the inspection object M is good or bad.
又,也可在阻抗算出步驟(S5)之前進行基準阻抗測定步驟,前述基準阻抗測定步驟是對於與檢查對象M進行相同的加工後之由適當的材料成分所構成的鋼材,測定每個滲透深度之基準阻抗比γ1(成為基準的關於阻抗的值)。然後,於成分檢查步驟(S6),也可藉由比較於基準阻抗測定步驟所測定之基準阻抗γ1的值、與藉由阻抗算出步驟(S5)所算出之檢查對象M的每個滲透深度之阻抗比γ2,以進行檢查對象M的材料成分之良莠的檢查。 In addition, a reference impedance measurement step may be performed before the impedance calculation step (S5). The reference impedance measurement step is to measure the penetration depth for each steel material composed of appropriate material components after the same processing as the inspection object M. The reference impedance ratio γ 1 (a reference impedance value). Then, in the component inspection step (S6), it is also possible to compare the value of the reference impedance γ1 measured in the reference impedance measurement step with the penetration depth of each inspection object M calculated in the impedance calculation step (S5). The impedance ratio γ 2 is used to check whether the material composition of the inspection object M is good or bad.
根據上述之鋼材的非破壞檢查方法,藉由預先測定與檢查對象M進行相同的加工後之由適當的材料成分所構成的鋼材之每個滲透深度的基準阻抗γ1,能夠就複數個鋼材接連進行材料成分的良莠檢查,並能夠迅速且高 精度地推進成分檢查步驟(S6)。 According to the above non-destructive inspection method for steel materials, by measuring in advance the reference impedance γ 1 for each penetration depth of steel materials composed of appropriate material components after the same processing as the inspection object M, it is possible to connect multiple steel materials in succession. Good and bad inspection of material components is performed, and the component inspection step (S6) can be advanced rapidly and accurately.
又,顯示於圖3之非破壞檢查方法的各步驟的流程為其中一例,能夠適宜地變更。舉例來說,也可將準備步驟(S1)與配置步驟(S2)的順序交換。 In addition, the flow of each step of the non-destructive inspection method shown in FIG. 3 is an example and can be changed as appropriate. For example, the order of the preparation step (S1) and the configuration step (S2) can also be exchanged.
又,顯示於圖5之製造步驟的流程也只為其中一例,其只要包含機械加工步驟(S22)即可適宜地變更。舉例來說,也可以進行鑄造步驟或燒結步驟來代替鍛造步驟(S21),也可沒有珠擊步驟(S24)。 Also, the flow of the manufacturing steps shown in FIG. 5 is just one example, and it can be changed as appropriate as long as it includes the machining step (S22). For example, a casting step or a sintering step may be performed instead of the forging step (S21), and the bead peening step (S24) may also be omitted.
本發明並非限定於上述各實施形態,能夠在請求項所示的範圍中做種種變更,適宜地組合分別揭示於不同實施形態的技術手段而得的實施形態也包含於本發明的技術範圍。 The present invention is not limited to the above-mentioned embodiments, and various changes can be made within the scope indicated in the claims. Embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention.
(結論) (in conclusion)
本發明之一種態樣的鋼材的非破壞檢查方法為包含有準備步驟、配置步驟、渦電流生成步驟、頻率變更步驟、阻抗算出步驟、與成分檢查步驟之鋼材的非破壞檢查方法。於準備步驟,準備具有頻率可變電路與線圈的非破壞檢查裝置。頻率可變電路能夠變更交流電流的頻率,線圈可藉由前述交流電流激發交流磁場。於配置步驟,以藉由前述線圈而激發的交流磁場會滲透至前述檢查對象的內部之方式配置該檢查對象。以機械加工後的產生應變之前述鋼材為檢查對象。於渦電流生成步驟,藉由使前述交流磁場滲透至前述檢查對象之內部,而使該檢查對象產生渦電流。 A non-destructive inspection method for steel materials according to an aspect of the present invention is a non-destructive inspection method for steel materials including a preparation step, an arrangement step, an eddy current generation step, a frequency change step, an impedance calculation step, and a composition inspection step. In the preparatory step, a non-destructive inspection device having a variable frequency circuit and a coil is prepared. The variable frequency circuit can change the frequency of the alternating current, and the coil can excite the alternating magnetic field through the aforementioned alternating current. In the arranging step, the inspection object is arranged such that the AC magnetic field excited by the coil penetrates into the inspection object. The above-mentioned steel materials that produce strain after machining are the inspection objects. In the eddy current generating step, the inspection object is caused to generate an eddy current by causing the AC magnetic field to penetrate into the inspection object.
然後,於頻率變更步驟,藉由以前述頻率可變電路連續地變更前述交流電流的頻率,使對前述檢查對象的前述交流磁場之滲透深度連續地變化。於阻抗算出步驟,根據前述線圈兩端之間的電位差及流經前述線圈的電流值,算出前述檢查對象的每個前述滲透深度之關於阻抗的值。於成分檢查步驟,其特徵為:藉由比較於前述阻抗算出步驟算出之前述檢查對象的每個前述滲透深度之關於阻抗的值、與由適當的材料成分所構成的前述鋼材之每個前述滲透深度之關於前述阻抗的值,來進行前述檢查對象的材料成分之良莠的檢查。 Then, in the frequency changing step, the penetration depth of the AC magnetic field to the inspection object is continuously changed by continuously changing the frequency of the AC current with the frequency variable circuit. In the impedance calculation step, a value related to impedance is calculated for each penetration depth of the inspection object based on the potential difference between the two ends of the coil and the current value flowing through the coil. In the component inspection step, it is characterized in that: by comparing the resistance value of each of the aforementioned penetration depths of the aforementioned inspection object calculated in the aforementioned impedance calculation step with each of the aforementioned penetrations of the aforementioned steel material composed of an appropriate material composition The value of the above-mentioned impedance according to the depth is used to check whether the material composition of the aforementioned inspection object is good or bad.
根據上述之鋼材的非破壞檢查方法,藉由以上述之非破壞檢查裝置使檢查對象產生渦電流來連續地變化對檢查對象的交流磁場的滲透深度,並比較檢查對象的每個滲透深度之關於阻抗的值的變化,與由適當的材料成分所構成的鋼材的狀況下的每個滲透深度之關於阻抗的值的變化,可以不破壞檢查對象,並以高精度進行檢查對象之材料成分的良莠之檢查。更進一步地,藉由使用於機械加工後產生應變的鋼材作為檢查對象,可以使良品與不良品之磁性的不同顯著,更正確地實施良莠檢查。 According to the above non-destructive inspection method for steel materials, the penetration depth of the alternating magnetic field to the inspection object is continuously changed by causing the inspection object to generate eddy currents with the above-mentioned non-destructive inspection device, and the relative value of each penetration depth of the inspection object is compared. Changes in the value of the impedance, and changes in the value of the impedance for each penetration depth in the case of steel made of appropriate material components, can be inspected without destroying the object, and the good quality of the material composition of the inspection object can be performed with high precision. Bad check. Furthermore, by using the steel material that has been strained after machining as the inspection object, the difference in magnetic properties between good and bad products can be marked, and good and bad inspections can be performed more accurately.
又,本發明之一種態樣的鋼材的非破壞檢查方法,於成分檢查步驟,宜比較檢查對象的每個滲透深度之關於阻抗的值的分布、與由適當的材料成分所構成的鋼材之每個滲透深度之關於阻抗的值的分布,並藉由判定檢查對象的每個滲透深度之關於前述阻抗的值的分布是否在 預定的範圍內,來進行檢查對象的材料成分之良莠的檢查。 In addition, in the method of non-destructive inspection of steel materials according to one aspect of the present invention, in the composition inspection step, it is preferable to compare the distribution of impedance values for each penetration depth of the inspection object with each steel material composed of an appropriate material composition. The distribution of the value of the impedance for each penetration depth, and by determining whether the distribution of the value of the aforementioned impedance for each penetration depth of the inspection object is in the Within the predetermined range, the inspection of the good and bad of the material composition of the inspection object is carried out.
根據上述之鋼材的非破壞檢查方法,由於藉由判定檢查對象的每個滲透深度之關於阻抗的值的分布是否在預定的範圍內,可以進行檢查對象的材料成分之良莠的檢查,因此,藉由合適地設定用於良莠判定的關於阻抗之值的範圍,可以簡易且確實地實施檢查對象的鋼材之材料成分的良莠檢查。 According to the above non-destructive inspection method for steel materials, by determining whether the distribution of impedance values for each penetration depth of the inspection object is within a predetermined range, it is possible to inspect the quality of the material composition of the inspection object. Therefore, By appropriately setting the range of the impedance value used for good or bad judgment, good or bad inspection of the material composition of the steel material to be inspected can be easily and reliably performed.
又,本發明的一種態樣之鋼材的非破壞檢查方法,於成分檢查步驟,宜藉由算出由適當的材料成分所構成的鋼材的每個滲透深度之阻抗、與檢查對象的每個滲透深度之阻抗的阻抗比,並判定阻抗比是否在預定的範圍內,來進行檢查對象的材料成分之良莠的檢查。 In addition, in the non-destructive inspection method of steel according to an aspect of the present invention, in the component inspection step, it is preferable to calculate the impedance of each penetration depth of the steel material composed of appropriate material components, and the resistance of each penetration depth of the inspection object. The impedance ratio of the impedance, and determine whether the impedance ratio is within the predetermined range, to check whether the material composition of the inspection object is good or bad.
根據上述之鋼材的非破壞檢查方法,由於是根據算出以由適當的材料成分所構成的鋼材為基準的檢查對象之每個滲透深度的阻抗比,來進行檢查對象的材料成分的良莠之檢查,因此,藉由合適地設定用於良莠判定的阻抗比的範圍,可以更正確地進行檢查對象的鋼材之材料成分的良莠檢查。 According to the above-mentioned non-destructive inspection method for steel materials, since the impedance ratio for each penetration depth of the inspection object is calculated based on the steel material composed of an appropriate material composition, the inspection of the good and bad of the material composition of the inspection object is carried out. Therefore, by appropriately setting the range of the impedance ratio for good and bad judgment, the good and bad inspection of the material composition of the steel material to be inspected can be more accurately performed.
又,本發明的一種態樣之鋼材的非破壞檢查方法宜為:於成分檢查步驟之前,進行基準阻抗測定步驟,前述基準阻抗測定步驟會對於與檢查對象進行相同的加工後之由適當的材料成分所構成的鋼材,預先測定每個滲透深度之成為基準的關於阻抗的值;並於成分檢查步驟,藉由比較於基準阻抗測定步驟所測定之成為基準的關於阻抗 的值、與於阻抗算出步驟所算出之檢查對象的每個前述滲透深度的關於阻抗的值,以進行檢查對象的材料成分之良莠之檢查。 In addition, the method of non-destructive inspection of steel according to one aspect of the present invention is preferably as follows: before the component inspection step, a reference impedance measurement step is performed. For the steel material composed of components, the value of the reference impedance for each penetration depth is measured in advance; and in the composition inspection step, by comparing with the reference impedance measured in the reference impedance measurement step The value of , and the value of the impedance for each of the aforementioned penetration depths of the inspection object calculated in the impedance calculation step are used to check whether the material composition of the inspection object is good or bad.
根據上述之鋼材的非破壞檢查方法,藉由預先測定成為基準的由適當的材料成分所構成的鋼材之每個滲透深度的關於阻抗的值,可就複數個鋼材接連地進行材料成分之良莠的檢查,可迅速且確實地推進成分檢查步驟。 According to the above-mentioned non-destructive inspection method for steel materials, by measuring in advance the resistance value for each penetration depth of a steel material composed of an appropriate material composition as a reference, it is possible to successively perform good and bad material composition for a plurality of steel materials The inspection can quickly and surely advance the component inspection step.
又,本發明的一種態樣之鋼材的非破壞檢查方法,宜於成分檢查步驟之後,進行告知檢查對象為良品或不良品的告知步驟。 In addition, the method of non-destructive inspection of steel according to one aspect of the present invention is preferably followed by the step of notifying whether the inspected object is a good product or a defective product after the component inspection step.
根據上述之鋼材的非破壞檢查方法,在製造步驟中混入不良品的狀況下,由於會在告知步驟中告知作業者檢查對象為不良品,因此作業者可以迅速地除去不良品(異材),在較早階段防止異材混入之後的製造步驟。 According to the above-mentioned non-destructive inspection method for steel materials, in the case of defective products mixed in the manufacturing process, the operator is notified in the notification step that the object of inspection is a defective product, so the operator can quickly remove the defective product (foreign material), and in the The earlier stage prevents the mixing of foreign materials into the subsequent manufacturing steps.
S1:準備步驟 S1: Preparatory steps
S2:配置步驟 S2: Configuration steps
S3:渦電流生成步驟 S3: Eddy current generation step
S4:頻率變更步驟 S4: Frequency change step
S5:阻抗算出步驟 S5: Impedance Calculation Step
S6:成分檢查步驟 S6: Ingredient inspection step
S7:告知步驟 S7: Inform step
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-192094 | 2018-10-10 | ||
JP2018192094A JP6965863B2 (en) | 2018-10-10 | 2018-10-10 | Non-destructive inspection method for steel materials |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202014701A TW202014701A (en) | 2020-04-16 |
TWI801617B true TWI801617B (en) | 2023-05-11 |
Family
ID=70164647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108122307A TWI801617B (en) | 2018-10-10 | 2019-06-26 | Non-destructive inspection methods for steel |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6965863B2 (en) |
CN (1) | CN112119302B (en) |
TW (1) | TWI801617B (en) |
WO (1) | WO2020075339A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104704351A (en) * | 2012-05-02 | 2015-06-10 | 赫瑞-瓦特大学 | Microwave cavity sensor |
CN107923878A (en) * | 2015-08-06 | 2018-04-17 | 新东工业株式会社 | The surface characteristic inspection method and surface characteristic check device of steel product |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5883252A (en) * | 1981-11-13 | 1983-05-19 | Toshiba Corp | Eddy current test equipment |
JPS6454347A (en) * | 1987-08-26 | 1989-03-01 | Honda Motor Co Ltd | Method for inspecting fiber reinforced composite layer by electromagnetic induction |
JP2003050233A (en) * | 2001-08-07 | 2003-02-21 | Marktec Corp | Eddy-current flaw detection testing method and eddy- current flaw detection testing device |
CN101354380B (en) * | 2007-07-23 | 2011-07-20 | 北京航空航天大学 | Vortex flow and electromagnetic ultrasonic combined type nondestructive detection method |
JP2011247631A (en) * | 2010-05-24 | 2011-12-08 | Jtekt Corp | Eddy current detection method and eddy current detection sensor |
JP5365938B2 (en) * | 2010-08-19 | 2013-12-11 | 新日鐵住金株式会社 | Metal material dissimilarity judgment method and apparatus |
CN201796013U (en) * | 2010-09-15 | 2011-04-13 | 淄博职业学院 | Electric eddy current metal material analysis sensor |
KR20130019872A (en) * | 2011-08-18 | 2013-02-27 | (주)디엘정보기술 | Method of non-destructive test using impedance analysis technique |
CN107709982B (en) * | 2015-06-25 | 2021-10-22 | 新东工业株式会社 | Surface property evaluation device and surface property evaluation method for steel material |
BR112017025834B1 (en) * | 2015-11-09 | 2021-04-13 | Sintokogio, Ltd | SURFACE CHARACTERISTICS ASSESSMENT METHOD |
CN106645391A (en) * | 2016-10-10 | 2017-05-10 | 南京航空航天大学 | Multi-frequency eddy current testing system and method for evaluating carbon fiber plate defect depth |
-
2018
- 2018-10-10 JP JP2018192094A patent/JP6965863B2/en active Active
-
2019
- 2019-06-03 CN CN201980032421.3A patent/CN112119302B/en active Active
- 2019-06-03 WO PCT/JP2019/021941 patent/WO2020075339A1/en active Application Filing
- 2019-06-26 TW TW108122307A patent/TWI801617B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104704351A (en) * | 2012-05-02 | 2015-06-10 | 赫瑞-瓦特大学 | Microwave cavity sensor |
CN107923878A (en) * | 2015-08-06 | 2018-04-17 | 新东工业株式会社 | The surface characteristic inspection method and surface characteristic check device of steel product |
Also Published As
Publication number | Publication date |
---|---|
CN112119302A (en) | 2020-12-22 |
WO2020075339A1 (en) | 2020-04-16 |
JP6965863B2 (en) | 2021-11-10 |
TW202014701A (en) | 2020-04-16 |
CN112119302B (en) | 2024-10-18 |
JP2020060454A (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6104161B2 (en) | Surface characteristic evaluation apparatus and surface characteristic evaluation method | |
TWI691710B (en) | Device and method for evaluating surface properties of steel members | |
TWI645188B (en) | Surface characteristics inspection method and surface characteristics inspection apparatus | |
KR102496959B1 (en) | Surface property evaluation method, surface property evaluation device, and surface property evaluation system | |
KR102503235B1 (en) | Method for evaluating the surface properties of steel | |
JP2009036682A (en) | Eddy current sensor, and device and method for inspecting depth of hardened layer | |
TWI801617B (en) | Non-destructive inspection methods for steel | |
TWI692637B (en) | Method for inspecting surface property of steel product | |
JP7180461B2 (en) | Nondestructive inspection method for steel | |
JP2011106932A (en) | Apparatus and method for detecting process-modified layer | |
JPWO2019117297A1 (en) | Rolling part inspection method and rolling part inspection apparatus | |
JP3168999U (en) | Dissimilar gear inspection system | |
JP6326660B2 (en) | Nondestructive inspection method of sintered body | |
Luu et al. | Research and application of residual stress monitor based on magneto-elastic effect | |
Fiza | Application of the Eddy Current Testing |