TWI866486B - Artificial intelligence (ai) desoldering device for laser removal of substrate resist layers - Google Patents
Artificial intelligence (ai) desoldering device for laser removal of substrate resist layers Download PDFInfo
- Publication number
- TWI866486B TWI866486B TW112136044A TW112136044A TWI866486B TW I866486 B TWI866486 B TW I866486B TW 112136044 A TW112136044 A TW 112136044A TW 112136044 A TW112136044 A TW 112136044A TW I866486 B TWI866486 B TW I866486B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- laser
- solder
- solder mask
- artificial intelligence
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 184
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 103
- 229910000679 solder Inorganic materials 0.000 claims abstract description 147
- 238000012545 processing Methods 0.000 claims abstract description 115
- 238000010586 diagram Methods 0.000 claims abstract description 37
- 238000012549 training Methods 0.000 claims abstract description 24
- 238000005457 optimization Methods 0.000 claims abstract description 21
- 238000003384 imaging method Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 20
- 238000010276 construction Methods 0.000 claims description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000003763 carbonization Methods 0.000 claims description 5
- 238000013135 deep learning Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 210000004556 brain Anatomy 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000005476 soldering Methods 0.000 abstract 1
- 230000007613 environmental effect Effects 0.000 description 8
- 239000000976 ink Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000012823 chemical process development Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Abstract
Description
一種基板除焊裝置,尤指一種以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置。 A substrate desoldering device, in particular an intelligent desoldering device that uses an artificial intelligence-driven laser to remove the solder mask of a substrate.
按,一般電路基板之防焊製程,通常係於印刷線路完成設置後,再以感光型防焊劑塗佈於電路基板表面形成防焊層,預烤至半固化,續利用光罩進行曝光顯影技術,使防焊層正對於線路中焊墊以外之部分固化,再將防焊層未固化之部分去除,使焊墊露出防焊層。由於曝光能量和顯影產生的必須誤差,使精度受限,和焊墊距離(pitch)無法縮小;另有直接成像技術引進,雖減免光罩成本,但是設備成本極高,技術上亦是面臨同樣問題。 According to the general solder mask process of circuit boards, after the printed circuit is set up, a photosensitive solder mask is applied to the surface of the circuit board to form a solder mask layer, which is pre-baked to semi-cured, and then the mask is used for exposure and development technology to cure the solder mask layer outside the solder pad in the circuit, and then the uncured part of the solder mask layer is removed to expose the solder mask layer on the solder pad. Due to the necessary errors caused by exposure energy and development, the accuracy is limited, and the solder pad distance (pitch) cannot be reduced; there is also the introduction of direct imaging technology, which reduces the mask cost, but the equipment cost is extremely high, and the technology also faces the same problem.
然而,電路基板及光罩會被曝光裝置的曝光部內的溫度、濕度等環境條件影響,讓電路基板及光罩上的定位標記之位置精度及曝光圖案之位置精度等產生變化,會有無法形成高精度圖案的問題,使焊墊無法正確的露出防焊層之問題產生。再者,不同焊墊位置之電路基板,皆須先製作出符合該電路基板之光罩,使電路基板之製作成本提高。此外,一般電路基板之防焊製程 常須要使用不同的油墨,使得油墨成本高昂。且,半固化之防焊硬度不足或有黏性,容易在作業中造成報廢。 However, the circuit board and the photomask will be affected by the environmental conditions such as temperature and humidity in the exposure part of the exposure device, causing the position accuracy of the positioning marks on the circuit board and the photomask and the position accuracy of the exposure pattern to change, resulting in the problem of not being able to form a high-precision pattern, and the problem of the solder pad not being able to correctly expose the solder mask. Furthermore, circuit boards with different solder pad positions must first be made with masks that match the circuit board, which increases the manufacturing cost of the circuit board. In addition, the solder mask process of general circuit boards often requires the use of different inks, making the ink cost high. Moreover, the semi-cured solder mask is not hard enough or has stickiness, which is easy to cause scrap during the operation.
是以,如何解決上述現有技術之問題與缺失,即為相關業者所亟欲研發之課題所在。 Therefore, how to solve the above problems and deficiencies of existing technologies is a topic that relevant industries are eager to research and develop.
本發明提供一種以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置,係以透過可控制能量之雷射來對安置於一雷射加工機台之至少一基板進行加工作業,每一該基板對應於一板件生產料號,並且該基板表面設置有至少一焊墊並且於該基板與該焊墊表面覆蓋一防焊層,其中該防焊層正對該基板表面處為一遮蔽部,且該防焊層正對於該焊墊處為一清除部,該以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置包括人工智慧(AI)系統、控制處理模組、攝影取像模組與雷射除焊模組。人工智慧系統包括資料庫單元、學習且訓練單元、參數優化設定單元、條件限制單元與AI模型處理單元。人工智慧(AI)系統,用以對該些基板之種類、該些基板之尺寸、該些基板之厚度、該防焊層之顏色、該防焊層之厚度與該些焊墊周圍之深度進行學習與預訓練,且根據待加工之該基板之特性來自動對全部的加工參數進行優化設定。資料庫單元,其具有該些基板之種類、該些基板之尺寸、該些基板之厚度、該防焊層之顏色、該防焊層之厚度與該些焊墊周圍之深度之相關數據資料,其中該資料庫單元透過網際網路連接至一雲端平台來線上更新相關數據資料。學習且訓練單元,其連接至該資料庫單元,該學習且訓練單元透過基板深度學習演算法且根據該資料庫單元內的相關數據資料來進行學習與預訓練。參數優化設定單元, 其連接至該資料庫單元,該參數優化設定單元用以根據該些該些基板之種類、該些基板之尺寸、該些基板之厚度、該防焊層之顏色、該防焊層之厚度與該些焊墊周圍之深度之相關數據資料來進行多個加工參數的優化設定。條件限制單元連接至該學習且訓練單元,該條件限制單元用以透過設定多個條件來限制該人工智慧(AI)系統之學習偏差。AI模型處理單元,其連接至該學習且訓練單元與該參數優化設定單元,該AI模型處理單元透過該學習且訓練單元來對一AI模型進行學習與訓練,其中該AI模型處理單元為該人工智慧系統之AI大腦。控制處理模組,其連接至該人工智慧系統之該AI模型處理單元,該控制處理模組根據AI模型處理單元所傳送之指令及相關數據來產生一第一控制指令、一第二控制指令與一第三控制指令,以對該基板進行加工作業。攝影取像模組,其連接至該控制處理模組,該攝影取像模組根據該控制處理模組所傳送之該第一控制指令來對該基板進行攝影或取像,其中該攝影取像模組讀取該基板上之該板件生產料號之快速響應矩陣圖,並且回傳至該AI模型處理單元以辨別該基板特性,且進行參數優化設定之加工前準備。雷射除焊模組,其連接至該控制處理模組,該雷射除焊模組根據該控制處理模組所傳送之該第一控制指令與一電路佈局圖來對該基板進行雷射除焊。該雷射除焊模組透過一雷射光束且根據一施工圖形來對該清除部進行剝除作業,以使該防焊層形成至少一鏤空部,其中該電路佈局圖導入該防焊層之資料,再將該防焊層之資料做成正片影像、負片影像或圖形轉檔處理,以取得該施工圖形。 The present invention provides an intelligent solder removal device for removing a solder mask layer of a substrate by laser driven by artificial intelligence. The device processes at least one substrate placed on a laser processing machine by laser with controllable energy. Each substrate corresponds to a board production material number, and at least one solder pad is provided on the surface of the substrate, and a solder mask is covered on the surface of the substrate and the solder pad, wherein the solder mask is a shielding portion facing the surface of the substrate, and the solder mask is a cleaning portion facing the solder pad. The intelligent solder removal device for removing a solder mask layer of a substrate by laser driven by artificial intelligence includes an artificial intelligence (AI) system, a control processing module, a photographic imaging module, and a laser solder removal module. The artificial intelligence system includes a database unit, a learning and training unit, a parameter optimization setting unit, a condition restriction unit and an AI model processing unit. The artificial intelligence (AI) system is used to learn and pre-train the types of the substrates, the sizes of the substrates, the thickness of the substrates, the color of the solder mask, the thickness of the solder mask and the depth around the pads, and automatically optimize all processing parameters according to the characteristics of the substrate to be processed. The database unit has relevant data on the types of the substrates, the sizes of the substrates, the thickness of the substrates, the color of the solder mask, the thickness of the solder mask and the depth around the pads, wherein the database unit is connected to a cloud platform via the Internet to update the relevant data online. A learning and training unit, which is connected to the database unit, and the learning and training unit performs learning and pre-training through a substrate deep learning algorithm and according to relevant data in the database unit. A parameter optimization setting unit, which is connected to the database unit, and the parameter optimization setting unit is used to optimize the settings of multiple processing parameters according to the relevant data of the types of the substrates, the sizes of the substrates, the thickness of the substrates, the color of the solder mask, the thickness of the solder mask, and the depth around the solder pads. A condition restriction unit is connected to the learning and training unit, and the condition restriction unit is used to limit the learning deviation of the artificial intelligence (AI) system by setting multiple conditions. The AI model processing unit is connected to the learning and training unit and the parameter optimization setting unit. The AI model processing unit learns and trains an AI model through the learning and training unit, wherein the AI model processing unit is the AI brain of the artificial intelligence system. The control processing module is connected to the AI model processing unit of the artificial intelligence system. The control processing module generates a first control instruction, a second control instruction and a third control instruction according to the instructions and related data transmitted by the AI model processing unit to perform processing operations on the substrate. A photographic imaging module is connected to the control processing module. The photographic imaging module photographs or captures the substrate according to the first control instruction transmitted by the control processing module, wherein the photographic imaging module reads the rapid response matrix of the board production material number on the substrate, and transmits it back to the AI model processing unit to identify the characteristics of the substrate and perform pre-processing preparation for parameter optimization settings. A laser desoldering module is connected to the control processing module. The laser desoldering module performs laser desoldering on the substrate according to the first control instruction transmitted by the control processing module and a circuit layout diagram. The laser desoldering module uses a laser beam and performs a stripping operation on the removal portion according to a construction drawing to form at least one hollow portion of the solder mask layer, wherein the circuit layout diagram imports the data of the solder mask layer, and then converts the data of the solder mask layer into a positive image, a negative image or a graphic conversion process to obtain the construction drawing.
在本發明之一實施例中,該人工智慧(AI)系統根據加工路徑、該施工圖形與材質所需能量大小,來預判或調整雷射光斑大小與形狀。 In one embodiment of the present invention, the artificial intelligence (AI) system predicts or adjusts the laser spot size and shape based on the processing path, the construction pattern and the energy required by the material.
在本發明之一實施例中,該人工智慧(AI)系統根據運算後的結果來透過該參數優化設定單元,對該基板之同一板面的不同區域調整不同的雷射光斑大小與不同的雷射發數。 In one embodiment of the present invention, the artificial intelligence (AI) system adjusts different laser spot sizes and different laser firing numbers for different areas of the same surface of the substrate through the parameter optimization setting unit according to the calculated results.
在本發明之一實施例中,以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置更包括對位模組。對位模組連接至該控制處理模組,該對位模組根據該控制處理模組所傳送之一第三控制指令且透過一紅外光來對待加工之該基板進行對位,以進一步調整該施工圖形之漲縮幅度,其中該紅外光用以透視防焊層,其中透過該人工智慧(AI)系統分析且排除不適合之對位點圖像,並且計算該基板之變形方向與程度。 In one embodiment of the present invention, the intelligent solder removal device for removing the solder mask layer of the substrate by laser driven by artificial intelligence further includes a positioning module. The positioning module is connected to the control processing module, and the positioning module aligns the substrate to be processed according to a third control instruction transmitted by the control processing module and through an infrared light to further adjust the increase and decrease amplitude of the construction pattern, wherein the infrared light is used to see through the solder mask layer, wherein the artificial intelligence (AI) system analyzes and excludes inappropriate positioning point images, and calculates the deformation direction and degree of the substrate.
在本發明之一實施例中,該基板之周圍四個角落分別具有一對位點。 In one embodiment of the present invention, the four corners around the substrate each have a pair of points.
在本發明之一實施例中,該基板之周圍四個角落分別具有一對位點且該基板之中央區域具有至少兩個對位點。 In one embodiment of the present invention, the four corners around the substrate each have a pair of alignment points and the central area of the substrate has at least two alignment points.
在本發明之一實施例中,在取得該施工圖形後,該控制處理模組根據該雷射除焊模組之雷射光點大小與能量來計算雷射光點的重疊面積大小後,轉譯出一雷射點陣圖。 In one embodiment of the present invention, after obtaining the construction drawing, the control processing module calculates the overlapping area size of the laser spot according to the laser spot size and energy of the laser desoldering module, and then translates it into a laser dot matrix.
在本發明之一實施例中,透過該攝影取像模組對該基板進行攝影且取出一基板加工圖片,並且比對且判斷該基板加工圖片與該電路佈局圖是否相同,如果相同,則完成基板加工作業。 In one embodiment of the present invention, the substrate is photographed by the photographic imaging module and a substrate processing picture is taken out, and the substrate processing picture is compared and judged whether it is the same as the circuit layout diagram. If they are the same, the substrate processing operation is completed.
在本發明之一實施例中,在比對且判斷該基板加工圖片與該電路佈局圖是否相同之步驟中,如果不相同,則該雷射光束針對不相同之處再對該清除部進行剝除作業。 In one embodiment of the present invention, in the step of comparing and judging whether the substrate processing image is the same as the circuit layout image, if they are not the same, the laser beam will then perform a stripping operation on the cleaning portion at the different locations.
在本發明之一實施例中,透過該電路佈局圖將該基板區分為多個待加工區域,再由該雷射光束依照一預設定規則對每一該些待加工區域之該清除部進行剝除作業。 In one embodiment of the present invention, the substrate is divided into a plurality of areas to be processed by the circuit layout diagram, and then the laser beam performs a stripping operation on the clearing portion of each of the areas to be processed according to a preset rule.
在本發明之一實施例中,該雷射光束所發射出之雷射光為毫秒級以上的高頻雷射光束。 In one embodiment of the present invention, the laser light emitted by the laser beam is a high-frequency laser beam above the millisecond level.
在本發明之一實施例中,該雷射光束之種類依據材質的特性採用二氧化碳(CO2)雷射、雅鉻(Yag)雷射、綠光雷射與紫外光的至少其中之一,以達到清除防焊又無殘留或碳化的效果。 In one embodiment of the present invention, the type of laser beam is at least one of carbon dioxide (CO2) laser, Yag laser, green laser and ultraviolet light according to the characteristics of the material, so as to achieve the effect of removing solder mask without residue or carbonization.
在本發明之一實施例中,該雷射除焊模組具有多組雷射光源來各自發出該雷射光束,其分別根據該第一控制指令與該電路佈局圖來對該基板之該清除部進行剝除作業,其中每一雷射光源所負責之區域為不同。 In one embodiment of the present invention, the laser desoldering module has multiple sets of laser light sources to emit the laser beams respectively, which respectively perform the stripping operation on the cleaning part of the substrate according to the first control instruction and the circuit layout diagram, wherein each laser light source is responsible for a different area.
綜上所述,本發明所揭露之以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置能夠達到以下功效:1.大幅縮短加工製程之步驟;2.提昇製程良率;3.具有可控制能量之雷射光束;4.提高加工製程的圖案精度;5.不同焊墊位置之電路基板,皆不再須要先製作出符合電路基板之光罩;6.不會有溫度、濕度等環境條件之影響;7.不用顯影以大幅減少廢水污染,同時節省能源;8.不限油墨,油墨成本降低; 9.採用二氧化碳(CO2)雷射、雅鉻(Yag)雷射、綠光雷射與紫外光的至少其中之一,達到清除防焊又無殘留或碳化的效果;10.解決先前技術中關於半固化之防焊硬度不足或有黏性,容易在作業中造成報廢的問題;以及11.減少環境傷害,合乎ESG標準,有助於永續發展 In summary, the intelligent solder removal device for removing the solder mask layer of the substrate by laser driven by artificial intelligence disclosed in the present invention can achieve the following effects: 1. Greatly shorten the steps of the processing process; 2. Improve the process yield; 3. Have a laser beam with controllable energy; 4. Improve the pattern accuracy of the processing process; 5. Circuit substrates with different solder pad positions no longer need to be made into masks that meet the circuit substrates in advance; 6. There will be no influence of environmental conditions such as temperature and humidity; 7. No need to develop with large Significantly reduce wastewater pollution and save energy at the same time; 8. No restrictions on inks, reducing ink costs; 9. Use at least one of carbon dioxide (CO2) laser, Yag laser, green laser and ultraviolet light to achieve the effect of removing solder mask without residue or carbonization; 10. Solve the problem of semi-cured solder mask in previous technologies that is not hard enough or sticky, which is easy to cause scrapping during operation; and 11. Reduce environmental damage, meet ESG standards, and contribute to sustainable development
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 The following detailed description is based on specific embodiments, which will make it easier to understand the purpose, technical content, features and effects of the present invention.
100:以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置 100: Intelligent desoldering device that uses artificial intelligence-driven laser to remove the solder mask of substrates
110:人工智慧(AI)系統 110: Artificial Intelligence (AI) System
111:資料庫單元 111: Database unit
112:學習且訓練單元 112: Learning and training unit
113:參數優化設定單元 113: Parameter optimization setting unit
114:條件限制單元 114: Conditional unit
115:AI模型處理單元 115: AI model processing unit
120:控制處理模組 120: Control processing module
130:攝影取像模組 130: Photography and imaging module
140、141、142、143:雷射除焊模組 140, 141, 142, 143: Laser desoldering module
150:對位模組 150: Alignment module
200:基板 200: Substrate
210:焊墊 210: Welding pad
220:防焊層 220: Solder mask
222:遮蔽部 222: Shielding part
224:清除部 224: Clearing Department
226:鏤空部 226: Hollow Section
300:雲端平台 300: Cloud Platform
ACS:智能控制指令 ACS: Intelligent Control Instructions
CS1:第一控制指令 CS1: First control instruction
CS2:第一控制指令 CS2: First control instruction
CS3:第一控制指令 CS3: First control instruction
P1、P2:對位點 P1, P2: Alignment points
NT:網際網路 NT: Internet
MT:雷射加工機台 MT: Laser processing machine
SC:螢幕 SC: Screen
L1、L2、L3、L4:雷射光束 L1, L2, L3, L4: Laser beam
TA:電路佈局圖 TA: Circuit layout diagram
DC:基板加工圖片 DC: Substrate processing pictures
RL:紅外光 RL: Infrared light
第一圖係為以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置之架構圖。 The first figure is a schematic diagram of an intelligent desoldering device that uses an artificial intelligence-driven laser to remove the solder mask layer of a substrate.
第二圖係為本發明的基板之側視圖。 The second figure is a side view of the substrate of the present invention.
第三圖係為本發明的基板覆蓋防焊層之側視圖。 The third figure is a side view of the substrate covered with solder mask of the present invention.
第四圖係為本發明的具有多個對位點的基板的第一實施例示意圖。 The fourth figure is a schematic diagram of the first embodiment of the substrate with multiple alignment points of the present invention.
第五圖係為本發明的具有多個對位點的基板的第二實施例示意圖。 The fifth figure is a schematic diagram of the second embodiment of the substrate with multiple alignment points of the present invention.
第六圖係為本發明的智能除焊裝置對基板進行加工之立體示意圖。 The sixth figure is a three-dimensional schematic diagram of the intelligent desoldering device of the present invention processing a substrate.
第七圖係為本發明的攝影取像模組對基板進行取像之示意圖。 Figure 7 is a schematic diagram of the photographic imaging module of the present invention capturing an image of a substrate.
第八圖係為本發明的將電路佈局圖與基板加工圖片進行比對之示意圖。 Figure 8 is a schematic diagram of the present invention comparing the circuit layout diagram with the substrate processing diagram.
第九圖係為本發明的轉譯出雷射點陣圖之示意圖。 Figure 9 is a schematic diagram of the translated laser dot matrix of the present invention.
第十圖係為本發明的多光源雷射對基板進行加工之示意圖。 Figure 10 is a schematic diagram of the multi-light source laser processing of a substrate of the present invention.
為能解決現有電路基板之防焊製程的諸多問題,發明人經過多年的研究及開發,據以改善現有產品的詬病,後續將詳細介紹本發明如何以一種以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置來達到最有效率的功能訴求。再者,本揭露內容為避免傳統化學製程顯影不淨,以及傳統雷射燒蝕因熱效應產生積碳殘留,必須二次加工或直接導致報廢。 In order to solve the many problems of the existing circuit substrate solder mask process, the inventor has improved the shortcomings of existing products after years of research and development. The following will introduce in detail how the invention uses an intelligent solder removal device that removes the substrate solder mask layer by laser driven by artificial intelligence to achieve the most efficient functional requirements. In addition, the disclosure content is to avoid the traditional chemical process development is not clean, and the traditional laser ablation due to thermal effects to produce carbon residues, which must be secondary processing or directly lead to scrap.
請同時參考第一圖至第三圖、第六圖與第七圖、第九圖,第一圖係為以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置之架構圖。第二圖係為本發明的基板之側視圖。第三圖係為本發明的基板覆蓋防焊層之側視圖。第六圖係為本發明的智能除焊裝置對基板進行加工之立體示意圖。第七圖係為本發明的攝影取像模組對基板進行取像之示意圖。第九圖係為本發明的轉譯出雷射點陣圖之示意圖。如第一圖所示,人工智慧驅動的雷射移除基板防焊層的智能除焊裝置100係以透過可控制能量之雷射來對一基板之全部或部分進行加工製程作業,而非只是透過人工使用雷射來進行電路基板局部或單點的優化,本發明實施例中主要透過人工智慧驅動的雷射移除基板防焊層的智能除焊裝置100來取代先前技術下繁雜流程與減少環境汙染,符合ESG標準,ESG分別是環境保護(E,Environmental)、社會責任(S,Social)以及公司治理(G,governance)的縮寫。
Please refer to Figures 1 to 3, 6, 7, and 9 simultaneously. Figure 1 is a schematic diagram of the structure of an intelligent desoldering device that uses an artificial intelligence-driven laser to remove the solder mask layer of a substrate. Figure 2 is a side view of a substrate of the present invention. Figure 3 is a side view of a substrate covered with a solder mask layer of the present invention. Figure 6 is a three-dimensional schematic diagram of the intelligent desoldering device of the present invention processing a substrate. Figure 7 is a schematic diagram of the photographic imaging module of the present invention capturing an image of a substrate. Figure 9 is a schematic diagram of the translated laser dot matrix of the present invention. As shown in the first figure, the intelligent
如圖所示,本發明之以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置100,係以透過可控制能量之雷射來對安置於一雷射加工機台MT之至少一基板200進行加工作業,每一該基板200對應於一板件生產料號,並且該基板200表面設置有至少一焊墊210並且於該基板200與該焊墊210表面覆蓋一防焊層220(例如綠漆),其中該防焊層220正對該基板200表面處為一遮蔽部
222,且該防焊層220正對於該焊墊210處為一清除部224。詳細來說,以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置100包括人工智慧(AI)系統110、控制處理模組120、攝影取像模組130與雷射除焊模組140。人工智慧系統110包括資料庫單元111、學習且訓練單元112、參數優化設定單元113、條件限制單元114與AI模型處理單元115。人工智慧(AI)系統110主要用以對該些基板200之種類、該些基板200之尺寸、該些基板200之厚度、該防焊層220之顏色、該防焊層220之厚度與該些焊墊210周圍之深度進行學習與預訓練,且根據待加工之該基板200之特性來自動對全部的加工參數進行優化設定。資料庫單元111具有該些基板200之種類、該些基板200之尺寸、該些基板200之厚度、該防焊層220之顏色、該防焊層220之厚度與該些焊墊210周圍之深度之相關數據資料,其中該資料庫單元111會一無線網路單元(圖未示)連接至網際網路NT且進一步連接至一雲端平台300來線上更新相關數據資料或基板深度學習演算法(給學習且訓練單元112使用)。
As shown in the figure, the intelligent
再者,學習且訓練單元112連接至該資料庫單元111,該學習且訓練單元112透過基板深度學習演算法且根據該資料庫單元111內的相關數據資料來進行學習與預訓練(pre-training),以辨別不同的基板特性需要哪一種加工參數的設定,以用來進行雷射除焊。參數優化設定單元113連接至該資料庫單元111,該參數優化設定單元113用以根據該些該些基板200之種類、該些基板200之尺寸、該些基板200之厚度、該防焊層220之顏色、該防焊層220之厚度與該些焊墊210周圍之深度之相關數據資料來進行多個加工參數的優化設定。條件限制單元114連接至該學習且訓練單元112,該條件限制單元114用以透過設定多個條件來限制該人工智慧(AI)系統之學習偏差或操作誤區,設計者可以依據
實際需求來將至少一條件導入至條件限制單元114。AI模型處理單元115連接至該學習且訓練單元112與該參數優化設定單元113,該AI模型處理單元115透過該學習且訓練單元112來對AI模型進行學習與訓練,其中該AI模型處理單元115為該人工智慧系統110之AI大腦,此時AI模型處理單元115已被眾多的數據資料或實務運作的大數據給預訓練完成,所以可以根據不同的基板特性來給出最佳化的設定,所以只要在任何操作前或任何製程參數的輸入,都要先經過AI模型處理單元115的分析、判斷與決策,以避免人工輸入錯誤或後端的雷射設備運作錯誤。
Furthermore, the learning and
此外,在本發明中,控制處理模組120連接至該人工智慧系統110之該AI模型處理單元115,該控制處理模組120根據AI模型處理單元115所傳送之智能控制指令ACS及相關數據來產生一第一控制指令CS1、一第二控制指令CS2與一第三控制指令CS3,以對該基板200進行加工作業。須注意的是,智能控制指令ACS包括經過AI模型處理單元115計算且優化過的多個加工參數,以及最佳施工路經與施工規則,也就是說AI模型處理單元115會指揮控制處理模組120如何去控制攝影取像模組130、雷射除焊模組140與對位模組150之一切運作。攝影取像模組130連接至該控制處理模組120,該攝影取像模組130根據該控制處理模組120所傳送之該第一控制指令CS1來對該基板200進行攝影或取像,控制處理模組120會透過攝影取像模組130對基板200進行攝影且取出基板加工圖片,其中攝影取像模組130之數量不限於一個。攝影取像模組130可以對基板200之其中一個單位或已加工區域進行攝影且取出照片,也可以對整體基板200進行攝影且取出照片,這會根據預設定規則來進行。再者,該攝影取像模組130讀取該基板200上之該板件生產料號之快速響應矩陣圖,並且回傳至該
AI模型處理單元115以辨別該基板200的特性,且進行參數優化設定之加工前準備。
In addition, in the present invention, the
雷射除焊模組140連接至該控制處理模組120,該雷射除焊模組140根據該控制處理模組120所傳送之該第一控制指令CS1與一電路佈局圖TA來對該基板200進行雷射除焊,並且透過該電路佈局圖TA將該基板200區分為多個待加工區域,再由該雷射光束依照一預設定規則對每一該些待加工區域之該清除部224進行剝除作業。上述之電路佈局圖TA係指透過電腦輔助設計(CAD,Computer-Aided Design)/電腦輔助製造系統(CAM,Computer-aided Manufactuiing)來產出,這是一個可供自動設計、初稿、與展示的圖形導向自動化系統。
The
進一步來說,在正式對基板200進行雷射除焊加工前,操作人員會導入製程參數,如油墨種類、顏色、厚度、移動面積或其它參數值,來讓人工智慧系統110的AI模型處理單元115去計算出所需的雷射光斑大小及雷射發數,以達到最佳化的效果,因為AI模型處理單元115已被眾多的數據資料或實務運作的大數據給預訓練完成,所以可以根據不同的基板特性來給出最佳化的設定。接下來,該雷射除焊模組140透過一雷射光束L1且根據一施工圖形來對基板200上的該清除部224進行剝除作業,以使該防焊層220形成至少一鏤空部226,其中該電路佈局圖TA導入該防焊層220之資料,再將該防焊層220之資料做成正片影像、負片影像或圖形轉檔處理,以取得該施工圖形,在本發明中。在取得施工圖形後,該控制處理模組120根據該雷射除焊模組140之之雷射光點大小與能量來計算雷射光點的重疊面積大小後,轉譯出一雷射點陣圖,如第九
圖所示。在第九圖中,以三種圖形的轉譯來示意,其雷射點陣圖之解析度可由設計者或操作者來進行設定。
Furthermore, before the laser desoldering process is officially performed on the
須注意的是,雷射光束L1所發射出之雷射光為毫秒級以上的高頻雷射光束(毫秒、微秒、奈秒或皮秒),雷射光束L1的種類可視材質的特性採用二氧化碳(CO2)雷射、雅鉻(Yag)雷射、綠光雷射與紫外光的至少其中之一,達到清除防焊又無殘留或碳化的效果。在本發明實施例中,例如雷射光束L1為皮秒雷射光束,皮秒雷射光束停留在基板200的時間非常短,亦即這不會去過度燒蝕或剝除掉防焊層220下的焊墊210。此外,在本發明中的人工智慧(AI)系統110會根據加工路徑、該施工圖形與材質所需能量大小,來預判或調整雷射光斑大小與形狀。再者,人工智慧(AI)系統110根據運算後的結果來透過該參數優化設定單元113,對該基板200之同一板面的不同區域調整不同的雷射光斑大小與不同的雷射發數,以達到氣化表面的目標。
It should be noted that the laser light emitted by the laser beam L1 is a high-frequency laser beam (milliseconds, microseconds, nanoseconds or picoseconds) above the millisecond level. The type of laser beam L1 can be selected according to the characteristics of the material, and at least one of carbon dioxide (CO2) laser, Yag laser, green laser and ultraviolet light is used to achieve the effect of removing solder mask without residue or carbonization. In the embodiment of the present invention, for example, the laser beam L1 is a picosecond laser beam, and the time that the picosecond laser beam stays on the
請同時參考第一圖至第五圖,第四圖係為本發明的具有多個對位點的基板的第一實施例示意圖。第五圖係為本發明的具有多個對位點的基板的第二實施例示意圖。在進行雷射加工前通常會對基板200進行平整化且對位作業,以下將進一步說明本發明如何進行對位,而基板平整化在此不贅述。在先前技術下,板件上的定位套上工作台之定位銷,只有定位功能,並沒有能力解決板件變形漲縮的問題,所以常會導致板件報廢,然而本發明能夠解決這樣的問題,將詳細說明如下。如第四圖所示,在一實施利中,基板200之周圍四個角落分別具有一對位點P1,在另一實施利中,基板200之周圍四個角落分別具有一對位點P1且該基板之中央區域具有至少兩個對位點P2,如第五圖所示。本發明之以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置100更包括對
位模組150。對位模組150連接至該控制處理模組120,該對位模組150根據該控制處理模組120所傳送之一第三控制指令CS3且透過一紅外光RL來對待加工之該基板200進行對位,以進一步調整該施工圖形之漲縮幅度。進一步來說,因為防焊層220會遮蔽住對位點P1或P2,所以利用紅外光RL穿透有機物的特性,需要先透過該紅外光RL來透視防焊層220才能精準採集到對位點P1或P2的圖像,其中可透過該人工智慧(AI)系統110來分析且排除不適合之對位點P1或P2圖像,之後再進行對位。待對位完成後,並且人工智慧(AI)系統110計算該基板200之變形方向與程度,也就是會依照實物來調整漲縮變形,接下來透過CAM(Computer Aided Manufacturing,電腦輔助製造)去產生變形後輸出的施工圖形。
Please refer to Figures 1 to 5 at the same time. Figure 4 is a schematic diagram of the first embodiment of the substrate with multiple alignment points of the present invention. Figure 5 is a schematic diagram of the second embodiment of the substrate with multiple alignment points of the present invention. Before laser processing, the
接下來,請同時參考第一圖至第八圖,第八圖係為本發明的將電路佈局圖與基板加工圖片進行比對之示意圖。在該雷射除焊模組140透過一雷射光束L1且根據一施工圖形來對基板200上的該清除部224進行剝除作業後,控制處理模組120會控制該攝影取像模組130對該基板200進行攝影且取出一基板加工圖片DC,並且比對且判斷該基板加工圖片DC與該電路佈局圖TA是否相同。在第八圖之螢幕SC上,可以看到基板加工圖片DC與電路佈局圖TA正在進行比對,如果相同,則完成基板加工作業。如果不相同,則該雷射除焊模組140會針對不相同之處再發出雷射光束L1來對該清除部224進行剝除作業。據此,由於本發明之以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置100完全沒有使用到光罩,所以不同焊墊210位置之電路基板200,皆不再須要先製作出符合電路基板之光罩。此外,以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置100完全沒有使用到曝光裝置,所以不會被曝光裝置的曝光部內的
溫度、濕度等環境條件所影響,因此不會讓電路基板及光罩上的定位標記之位置精度及曝光圖案之位置精度等產生變化。在上述之控制處理模組120、攝影取像模組130與對位模組150可視為一雷射設備。
Next, please refer to the first to eighth figures at the same time. The eighth figure is a schematic diagram of comparing the circuit layout diagram with the substrate processing picture of the present invention. After the laser
最後,請參考第一圖與第十圖,第十圖係為本發明的多光源雷射對基板進行加工之示意圖。雷射加工機台MT上具有多個雷射除焊模組141、142與143,這些都是跟第一圖之雷射除焊模組140相同,雷射除焊模組141、142與143分別都連接控制處理模組120來進行多工作業。此外,多個雷射除焊模組141、142與143係分別根據電路佈局圖TA來分別發射出雷射光束L2、L3與L4且依序對基板200上的清除部224進行燒蝕或剝除作業,其中每一雷射除焊模組之雷射光源所負責之區域為不同,這有助於進一步提高加工製程之效率。本實施例中,以三個雷射除焊模組141、142與143作為舉例說明,但實際應用上,並不以數量三個作為限制。雷射光束L2、L3與L4可以是毫秒級以上的高頻雷射光束(毫秒、微秒、奈秒或皮秒)。
Finally, please refer to the first figure and the tenth figure. The tenth figure is a schematic diagram of the multi-light source laser processing of the substrate of the present invention. The laser processing machine MT has multiple
綜上所述,本發明所揭露之基板之雷射移除防焊層製程方法能夠達到以下功效:1.大幅縮短加工製程之步驟;2.提昇製程良率;3.具有可控制能量之雷射光束;4.提高加工製程的圖案精度;5.不同焊墊位置之電路基板,皆不再須要先製作出符合電路基板之光罩;6.不會有溫度、濕度等環境條件之影響; 7.不用顯影以大幅減少廢水污染,同時節省能源;8.不限油墨,油墨成本降低;9.採用二氧化碳(CO2)雷射、雅鉻(Yag)雷射、綠光雷射與紫外光的至少其中之一,達到清除防焊又無殘留或碳化的效果;10.解決先前技術中關於半固化之防焊硬度不足或有黏性,容易在作業中造成報廢的問題;以及11.減少環境傷害,合乎ESG標準,有助於永續發展。 In summary, the laser solder mask removal process method disclosed in the present invention can achieve the following effects: 1. Greatly shorten the steps of the processing process; 2. Improve the process yield; 3. Have a laser beam with controllable energy; 4. Improve the pattern accuracy of the processing process; 5. Circuit substrates with different solder pad positions no longer need to first make a mask that meets the circuit substrate; 6. There will be no impact of environmental conditions such as temperature and humidity; 7. No need for development to greatly reduce waste water 8. No restrictions on ink, reducing ink costs; 9. Use at least one of CO2 laser, Yag laser, green laser and ultraviolet light to achieve the effect of removing solder mask without residue or carbonization; 10. Solve the problem of semi-cured solder mask being insufficient in hardness or sticky, which is easy to cause waste during operation; and 11. Reduce environmental damage, meet ESG standards, and contribute to sustainable development.
唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。 However, the above is only a preferred embodiment of the present invention and is not intended to limit the scope of implementation of the present invention. Therefore, all equivalent changes or modifications based on the features and spirit described in the scope of the present invention should be included in the scope of the patent application of the present invention.
100:以人工智慧驅動的雷射移除基板防焊層的智能除焊裝置 100: Intelligent desoldering device that uses artificial intelligence-driven laser to remove the solder mask of substrates
110:人工智慧(AI)系統 110: Artificial Intelligence (AI) System
111:資料庫單元 111: Database unit
112:學習且訓練單元 112: Learning and training unit
113:參數優化設定單元 113: Parameter optimization setting unit
114:條件限制單元 114: Conditional unit
115:AI模型處理單元 115: AI model processing unit
120:控制處理模組 120: Control processing module
130:攝影取像模組 130: Photography and imaging module
140:雷射除焊模組 140: Laser desoldering module
150:對位模組 150: Alignment module
200:基板 200: Substrate
300:雲端平台 300: Cloud Platform
ACS:智能控制指令 ACS: Intelligent Control Instructions
CS1:第一控制指令 CS1: First control instruction
CS2:第一控制指令 CS2: First control instruction
CS3:第一控制指令 CS3: First control instruction
NT:網際網路 NT: Internet
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111145460 | 2022-11-28 | ||
TW111145460 | 2022-11-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202421323A TW202421323A (en) | 2024-06-01 |
TWI866486B true TWI866486B (en) | 2024-12-11 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080083816A1 (en) | 2006-10-04 | 2008-04-10 | Leinbach Glen E | Statistical process control of solder paste stenciling using a replicated solder paste feature distributed across a printed circuit board |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080083816A1 (en) | 2006-10-04 | 2008-04-10 | Leinbach Glen E | Statistical process control of solder paste stenciling using a replicated solder paste feature distributed across a printed circuit board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090097738A1 (en) | Apparatus for inspecting solder printing | |
CN111299842B (en) | Method for high-precision laser engraving of solder mask | |
CN106647189B (en) | A kind of large area exposure method for maskless scanning photoetching | |
KR101445914B1 (en) | Method for aligning position between mask and work | |
CN102601519A (en) | Adjustment apparatus, laser machining apparatus, and adjustment method | |
CN118317521A (en) | Intelligent welding removing device and method for removing substrate welding-preventing layer by artificial intelligent driven laser | |
CN111565519B (en) | Printing non-photosensitive etching process | |
TWI866486B (en) | Artificial intelligence (ai) desoldering device for laser removal of substrate resist layers | |
WO2024114223A1 (en) | Artificial intelligence-driven intelligent solder-mask removing apparatus using laser to remove solder mask layer of substrate, and method | |
TW202421323A (en) | Artificial intelligence (ai) desoldering device for laser removal of substrate resist layers | |
US20240189932A1 (en) | Smart desoldering device and method for laser removal of substrate solder mask driven by artificial intelligence | |
JP2010079112A (en) | Method of manufacturing photomask and pattern transfer method | |
KR20130098838A (en) | Laser processing apparatus, laser processing method and computer-readable recording medium storing laser processing program | |
JPH07130634A (en) | Aligner | |
CN108062003A (en) | A kind of write-through screen printing system and method for platemaking | |
CN113686899A (en) | Method and apparatus for optical inspection and short circuit and open circuit correction of circuit board conductive pattern | |
KR101186926B1 (en) | Photolithography apparatus containing size adjustabele aperture for fabricating mask and method for fabricting phase shift mask using thereof | |
CN210348189U (en) | Direct-writing photoetching mechanism | |
US20240196544A1 (en) | Process method for laser removal of substrate solder mask | |
KR102751231B1 (en) | Manufacturing Method by Laser Cutting Process of Solder Mask on Substrate | |
JP2009251581A (en) | Mask for exposure and exposure device | |
CN1434932A (en) | Nonlinear image distortion correction in printed circuit board manufacturing | |
JP5691264B2 (en) | Exposure equipment | |
CN214688582U (en) | Half tone alignment system and oval calico printing machine | |
TWI861957B (en) | A rework method using laser to remove a marking ink on a circuit board |