[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI857058B - 分析物濃度感測器系統及判定來自分析物計量器中之熱敏電阻溫度感測器之環境溫度量測之適宜性之方法 - Google Patents

分析物濃度感測器系統及判定來自分析物計量器中之熱敏電阻溫度感測器之環境溫度量測之適宜性之方法 Download PDF

Info

Publication number
TWI857058B
TWI857058B TW109116624A TW109116624A TWI857058B TW I857058 B TWI857058 B TW I857058B TW 109116624 A TW109116624 A TW 109116624A TW 109116624 A TW109116624 A TW 109116624A TW I857058 B TWI857058 B TW I857058B
Authority
TW
Taiwan
Prior art keywords
ambient temperature
temperature
estimated
controller
determining
Prior art date
Application number
TW109116624A
Other languages
English (en)
Other versions
TW202102848A (zh
Inventor
伯恩 埃佛里特 哈利森
Original Assignee
瑞士商安晟信公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商安晟信公司 filed Critical 瑞士商安晟信公司
Publication of TW202102848A publication Critical patent/TW202102848A/zh
Application granted granted Critical
Publication of TWI857058B publication Critical patent/TWI857058B/zh

Links

Abstract

本發明揭示分析物濃度感測器系統,其選擇溫度用於輸入至分析物濃度估計演算法。該分析物濃度估計演算法係由分析測試感測器中之試樣之分析物計量器來執行。基於熱敏電阻之溫度感測器經組態以量測溫度。經由溫度估計演算法來獲得估計溫度。判定該估計溫度與該量測溫度之間之差。基於該估計溫度、該量測溫度及該估計溫度與該量測溫度之間之絕對差來選擇該估計溫度或該量測溫度中之一者。另外,可基於該估計溫度、該量測溫度及該估計溫度與該量測溫度之間之該絕對差來判定該測試感測器中之故障。

Description

分析物濃度感測器系統及判定來自分析物計量器中之熱敏電阻溫度感測器之環境溫度量測之適宜性之方法
本發明概言之係關於分析物濃度(例如血糖)生物感測器,且更具體而言係關於在提供來自分析物濃度判定程序中之估計溫度或量測溫度之溫度值時檢測測試感測器故障之系統。
對體液中之分析物之定量判定對某些生理學病狀之診斷及維護非常重要。舉例而言,糖尿病患者(PWD)經常檢查其體液中之葡萄糖含量。該等測試之結果可用於調節其膳食中所攝入之葡萄糖及/或判定是否需要投與胰島素或其他藥物。PWD通常使用量測裝置(例如血糖計)來計算來自PWD之流體試樣中之葡萄糖濃度,其中將流體試樣收集於由量測裝置接納之測試感測器上。不能採取校正動作可對該患者具有嚴重醫學影響。
監測PWD之血糖含量之一種方法係使用可攜式測試裝置。該等裝置之可攜式性質使得使用者能夠便利地在任一位置處測試其血糖含量。一類裝置利用電化學測試感測器來分析血樣。使用者採用柳葉刀來獲得血樣以施加至測試感測器中之儲槽中。電化學測試感測器通常包含電極,在與計量器配接時,該等電極電量測血樣反應以判定分析物濃度。使 用者由此必須攜載特殊計量裝置以分析血樣。
通常,計量器將輸入信號(例如閘控電流分析信號)施加至測試感測器之電極。傳統測試感測器及計量器通常使用葡萄糖濃度估計演算法來判定來自血樣之所量測電流輸出與該等輸出之相關預定分析物濃度值之間的相關性。該等預定值係由實驗室儀器(例如YSI實驗室儀器)所判定。
任一電流分析血糖監測(BGM)系統之測試感測器中所採用之化學反應受溫度影響。量測溫度值由此係該等系統之葡萄糖估計演算法中之重要輸入。在已知系統中,藉由基於熱敏電阻之溫度感測器來量測溫度。溫度感測器之熱敏電阻通常位於計量器內。因計量器之熱質量,熱敏電阻不能對環境溫度之變化作出即時反應且由此溫度量測可發生失真。在將BGM計量器自一個環境移動至另一環境時,計量器需要一定時間段來與其新環境達成平衡,且在此期間熱敏電阻值將不能準確地反映實際溫度。在閘控電流分析計量器中所採用之複雜葡萄糖估計演算法中,溫度包含於各種補償方程式中之許多項中,且由此在基於熱敏電阻之溫度值不正確時,可出現錯誤結果。
來自熱敏電阻之溫度估計由此具有計量器尚未平衡至其環境之風險,從而產生用於演算法之錯誤溫度值。此產生不準確葡萄糖讀數之風險。不平衡環境之一種解決方案係使用基於非衍生自熱敏電阻之其他參數之估計溫度。然而,使用估計溫度會產生來自損壞之感測器之另一風險,該損壞之感測器可產生錯誤溫度估計。因此,除失衡計量器外,估計溫度與熱敏電阻之間之較大差可指示損壞之感測器。在損壞之感測器之情形下,正確反應會報告錯誤代碼。然而,若未檢測到損壞之感測器,則計 量器可嘗試使用來自損壞之感測器之溫度量測值來計算葡萄糖,從而可能產生不準確葡萄糖讀數。
因此,需要解決由僅依賴於基於熱敏電阻之溫度量測之失衡計量器引起之不準確葡萄糖結果風險的過程。亦需要可比較估計溫度與量測溫度以提供關於計量器是否適當平衡之資訊之系統。亦需要即使在檢測到失衡時亦容許使用來自溫度估計演算法之估計溫度來判定分析物濃度之系統。亦需要可比較估計溫度與量測溫度以提供關於測試感測器是否損壞之資訊之系統。
根據一實例,揭示用於量測使用者流體試樣之分析物之分析物濃度感測器系統。感測器系統包含可操作以連接至容納流體試樣之測試感測器之生物感測器介面。基於熱敏電阻之溫度感測器經組態以量測溫度。控制器耦合至生物感測器介面及溫度感測器。控制器可操作以生成輸入至生物感測器介面之信號且讀取來自生物感測器介面之輸出信號。控制器判定來自溫度感測器之量測溫度。控制器執行溫度估計演算法以判定估計溫度。控制器判定估計溫度與量測溫度之間之差。控制器基於估計溫度、量測溫度及估計溫度與量測溫度之間之差來選擇估計溫度或量測溫度中之一者。控制器將所選估計溫度或量測溫度作為溫度輸入提供至分析物濃度判定演算法。
另一實例係用以判定來自分析物計量器中之熱敏電阻溫度感測器之溫度量測之適宜性之方法,該分析物計量器包含可操作以連接至容納流體試樣之測試感測器之生物感測器介面及控制器。在連接至含有流體試樣之測試感測器時,生成至該介面之輸入信號。判定來自測試感測器 之輸出信號。判定來自之基於熱敏電阻之溫度感測器量測溫度。經由控制器自溫度估計演算法來判定估計溫度。經由控制器來判定估計溫度與量測溫度之間之差。經由控制器基於估計溫度、量測溫度及估計溫度與量測溫度之間之差來選擇估計溫度或量測溫度中之一者。將所選估計溫度或量測溫度作為溫度輸入提供至分析物濃度判定演算法。
另一實例係用於量測使用者流體試樣之分析物之分析物濃度感測器系統。感測器系統包含可操作以連接至容納流體試樣之測試感測器之生物感測器介面。該系統包含經組態以量測溫度之基於熱敏電阻之溫度感測器。該系統包含耦合至生物感測器介面及溫度感測器之控制器。控制器可操作以生成輸入至生物感測器介面之信號且讀取來自生物感測器介面之輸出信號。控制器可操作以判定來自溫度感測器之量測溫度且執行溫度估計演算法以判定估計溫度。控制器判定估計溫度與量測溫度之間之絕對差。控制器基於估計溫度、量測溫度及估計溫度與量測溫度之間之絕對差來判定測試感測器之故障。
另一實例係用以判定連接至分析物計量器之測試感測器之故障之方法。分析物計量器包含可操作以連接至容納流體試樣之測試感測器之生物感測器介面及控制器。在連接至含有流體試樣之測試感測器時,生成至該介面之輸入信號。判定來自測試感測器之輸出信號。判定來自基於熱敏電阻之溫度感測器之量測溫度。經由控制器自溫度估計演算法來判定估計溫度。經由控制器來判定估計溫度與量測溫度之間之絕對差。基於估計溫度、量測溫度及估計溫度與量測溫度之間之絕對差來判定測試感測器之故障。
熟習此項技術者根據參照圖式詳述闡述之各個實施例將明 瞭本發明之其他態樣,該等圖式之簡單說明提供於下文中。
100:生物感測器系統
102:量測裝置
104:測試感測器
106:基底
108:儲槽
110:通道
112:開口
114:試樣介面
116:電路
118:感測器介面
120:顯示器
122:處理器
124:信號生成器
126:溫度感測器
128:儲存媒體
130:分析物濃度估計演算法
132:溫度選擇常式
134:溫度估計演算法
300:第一區域
302:線
304:線
310:區域
312:區域
314:線
316:線
320:區域
322:區域
610:主要脈衝
612:主要脈衝
614:主要脈衝
616:主要脈衝
618:主要脈衝
620:主要脈衝
630:脈衝
632:脈衝
634:脈衝
636:脈衝
640:輸入信號
圖1係根據一實施例用於判定來自流體試樣之分析物濃度之實例性生物感測器系統之方塊圖;圖2A-2B係根據一實施例經執行以選擇擬用於分析物濃度估計演算法中之溫度值之常式之流程圖,該分析物濃度估計演算法係由圖1中之生物感測器來執行;圖3係圖2A-2B之常式之反應之狀態圖,其展示使用量測溫度、使用估計溫度或返回錯誤訊息之狀態;圖4係溫度估計演算法之一實例之參數表;圖5A係溫度估計演算法之輸出與由基於熱敏電阻之感測器所量測溫度之對比的匯總表;圖5B係以下各項之準確度之匯總表:使用藉由基於熱敏電阻之感測器量測之溫度之分析物濃度估計演算法的輸出;及用於使用平衡態計量器實施之研究之溫度估計演算法之輸出;圖6係用於溫度估計演算法之實例性輸入信號序列之圖形;圖7A係使用來自使用計量器在廣範圍平衡狀態中實施之測試之量測溫度之分析物濃度估計演算法之輸出誤差的繪圖;圖7B係使用來自使用計量器在廣範圍平衡狀態中實施之測試之估計溫度之分析物濃度估計演算法之輸出誤差的繪圖;且圖8係使用來自使用計量器在廣範圍平衡狀態中實施之測試之所選溫度(估計溫度或量測溫度)之分析物濃度估計演算法之輸出誤差 的繪圖;且圖9係使用計量器在三個平衡狀態(冷、熱及平衡)中實施之測試之分析物濃度估計演算法之輸出準確度的匯總表,其比較了使用以下各項所計算之結果:藉由基於熱敏電阻之感測器量測之溫度;利用演算法使用來自測試感測器之信號估計之溫度;及藉由基於熱敏電阻與估計溫度之間之差之邏輯所選擇的溫度。
儘管易於對本發明作出各種修改及替代形式,但以實例方式在圖式中展示且將在本文中詳細闡述其具體實施例。然而,應理解,本發明並不意欲限於所揭示之特定形式。而是,本發明將涵蓋歸屬於由隨附申請專利範圍界定之本發明精神及範圍內之所有修改、等效內容及替代方案。
相關申請案之交叉參考
本申請案主張2019年5月21日提出申請之美國臨時專利申請案第62/850,841號之優先權及權益,該美國臨時專利申請案之全部內容以引用方式併入本文中。
本發明係關於一種分析物濃度量測系統,其採用溫度平衡邏輯使用非熱敏電阻信號來估計環境溫度。比較估計溫度與自熱敏電阻所量測溫度之間之差與界定臨限值以判定擬實施之三個動作中之一者。三個動作包含:1)在假設計量器係平衡的且測試感測器信號有效下使用熱敏電阻信號來正常計算分析物濃度;2)在假設計量器不與環境條件平衡且估計溫度將產生較準確結果下使用估計溫度來計算分析物濃度;或3)在假設測試感測器受損且信號無效下報告錯誤。
支配三個可能動作之邏輯如下。在估計溫度及熱敏電阻量測溫度充分一致時,假設兩個結果準確,且使用熱敏電阻量測溫度來計算分析物濃度,此乃因其在正常情形下產生最可靠值。在觀察到熱敏電阻與估計溫度之間差異較大時,存在兩種可能解釋:1)熱敏電阻量測溫度不準確,此乃因計量器不與環境環境平衡;或2)估計溫度不準確,此乃因用於計算感測器之感測器信號不正確(因損壞之感測器或測試期間之試樣擾動)。基於理解上述兩種可能情景中之每一者中熱敏電阻量測溫度與估計溫度之間之可能關係,判定報告校正結果抑或錯誤訊息。因大部分葡萄糖濃度測試發生於室溫下,故在熱敏電阻量測溫度處於極值下但估計溫度正常時,失衡係最可能之解釋,且使用估計溫度來計算分析物濃度。在來自熱敏電阻之溫度讀數正常但估計溫度係極值時,較為可能的是,來自測試感測器之信號輸出波形係異常的且應報告錯誤。
圖1繪示生物感測器系統100之示意圖示,該生物感測器系統判定生物流體之試樣中之分析物濃度。生物感測器系統100包含量測裝置102及測試感測器104,其可實施於任一分析儀器(包含臺式裝置、可攜式或手持式裝置或諸如此類)中。量測裝置102及測試感測器104可適於實施電化學感測器系統、光學感測器系統、其組合或諸如此類。生物感測器系統100使用葡萄糖估計演算法自輸出信號來判定分析物濃度,該葡萄糖估計演算法使用溫度輸入來校正其溫度輸出。溫度選擇常式判定使用自熱敏電阻感測器量測之溫度、估計溫度抑或返回錯誤訊息。如所解釋,藉由向分析物濃度估計演算法提供更準確溫度輸入,該常式改良了生物感測器系統100判定試樣之分析物濃度之量測性能。
生物感測器系統100可用於判定分析物濃度,包含葡萄 糖、脂質特徵(例如膽固醇、三甘油酯、LDL及HDL)、微白蛋白、血紅蛋白A1C、果糖、乳酸鹽或膽紅素之濃度。預計亦可判定其他分析物濃度。亦預計可判定一種以上分析物。分析物可位於(例如)全血試樣、血清試樣、血漿試樣、其他體液(如同尿)及非體液中。因此,分析物濃度估計演算法之一實例係由生物感測器系統100執行之葡萄糖濃度估計演算法。如本申請案內所使用,術語「濃度」係指分析物濃度、活性(例如酶及電解質)、效價(例如抗體)或任一用於量測期望分析物之其他量測濃度。儘管展示特定構形,但生物感測器系統100可具有其他構形(包含具有其他組件者)。
測試感測器104具有基底106,該基底形成有儲槽108及具有開口112之通道110。儲槽108及通道110可由具有通氣口之蓋子覆蓋。儲槽108界定部分封閉之體積。儲槽108可含有有助於保留液體試樣之組合物,例如水可溶脹性聚合物或多孔聚合物基質。試劑可沈積於儲槽108及/或通道110中。試劑可包含一或多種酶、黏合劑、媒介及類似物質。試劑可包含用於光學系統之化學指示劑。測試感測器104亦可具有毗鄰儲槽108佈置之試樣介面114。試樣介面114可部分地或完全環繞儲槽108。測試感測器104可具有其他構形。
在光學感測器系統中,試樣介面114具有用於觀看試樣之光學入口或孔口。光學入口可由基本上透明之材料覆蓋。試樣介面可在儲槽108之相對側上具有光學入口。
在電化學系統中,試樣介面114具有連接至工作電極及相對電極之導體。電極可實質上位於相同平面或不同平面中。電極可佈置於基底106中形成儲槽108之表面上。電極可延伸或突出至儲槽108中。介電 層可部分地覆蓋導體及/或電極。試樣介面114可具有其他電極及導體。
量測裝置102包含連接至感測器介面118及顯示器120之電路116。電路116包含連接至信號生成器124、溫度感測器126及儲存媒體128之處理器122。在此實例中,溫度感測器126藉由將電信號提供至熱敏電阻且讀取來自熱敏電阻之輸出信號(其與環境溫度成正比)來進行操作。
信號生成器124因應於處理器122將電輸入信號提供至感測器介面118。在光學系統中,可使用電輸入信號來操作或控制感測器介面118中之檢測器及光源。在電化學系統中,可藉由感測器介面118將電輸入信號傳輸至試樣介面114以將電輸入信號施加至生物流體之試樣。電輸入信號可為電位或電流且可為恆定的、可變的或其組合,例如在DC信號偏移下施加AC信號時。可以單一脈衝或多個脈衝、序列或循環之形式來施加電輸入信號,例如閘控電流分析信號。信號生成器124亦可作為生成器-記錄器來記錄來自感測器介面之輸出信號。
溫度感測器126基於感測器126中之熱敏電阻之輸出信號來判定測試感測器104之儲槽中試樣的溫度。如下文所解釋,可藉由自非溫度信號(例如輸出信號或信號、時間、信號間比率及諸如此類)進行計算來估計試樣溫度。假設估計溫度與所量測環境溫度或實施生物感測器系統之裝置之溫度相同或類似。可使用另一溫度感測裝置來量測溫度。
儲存媒體128可為磁、光學或半導體記憶體、另一儲存裝置或諸如此類。儲存媒體128可為固定記憶體裝置、可抽換式記憶體裝置(例如遠程存取式記憶卡)或諸如此類。
處理器122使用電腦可讀軟體代碼及儲存媒體128中所儲存之資料來實施分析物分析及資料處理。處理器122可因應於測試感測器 104在感測器介面118處之存在、將試樣施加至測試感測器104、因應於使用者輸入或諸如此類而開始分析物分析。處理器122引導信號生成器124向感測器介面118提供一或多種電輸入信號。處理器122接收與來自溫度感測器126之試樣溫度有關之輸出信號。處理器122接收來自感測器介面118之一或多種輸出信號。輸出信號係因應於試樣中之分析物之反應所生成。可使用光學系統、電化學系統或諸如此類來生成輸出信號。處理器122使用如先前所論述之葡萄糖估計演算法來判定來自輸出信號之補償分析物濃度。可將分析物分析結果輸出至顯示器120且可儲存於儲存媒體128中。
分析物濃度與輸出信號之間之相關性方程式可以圖形方式、以數學方式、以其組合方式或以類似方式來表示。相關性方程式可包含一或多個指數函數。相關性方程式可由程式編號(PNA)表、另一查找表或儲存於儲存媒體128中之類似形式來表示。常數及加權係數亦可儲存於儲存媒體128中。關於實施分析物分析之說明書可由儲存於儲存媒體128中之電腦可讀軟體代碼提供。該代碼可為目標代碼或任一闡述或控制本文所闡述之功能性之其他代碼。來自分析物分析之資料可經受一或多種資料處理,包含在處理器122中判定衰減速率、K常數、比率、功能及諸如此類。在此實例中,儲存媒體128儲存分析物濃度估計演算法130,該分析物濃度估計演算法判定來自輸入(例如來自感測器介面118之信號)之分析物濃度。儲存媒體亦儲存溫度選擇常式132,該溫度選擇常式判定擬輸入至分析物濃度估計演算法130之溫度值。儲存媒體128亦儲存溫度估計演算法134,該溫度估計演算法用於判定用於溫度選擇常式132之估計溫度值。
在電化學系統中,感測器介面118具有與測試感測器104之試樣介面114中之導體連接或電通信之觸點。感測器介面118經由該等觸點將來自信號生成器124之電輸入信號傳輸至試樣介面114中之導體。感測器介面118亦經由該等觸點將來自試樣之輸出信號傳輸至處理器122及/或信號生成器124。
在光吸收及光生成光學系統中,感測器介面118包含收集及量測光之檢測器。該檢測器接收自液體感測器穿過試樣介面114中之光學入口之光。在光吸收光學系統中,感測器介面118亦包含光源,例如雷射、發光二極體或諸如此類。入射光束可具有經選擇用於由反應產物吸收之波長。感測器介面118引導來自光源之入射光束穿過試樣介面114中之光學入口。檢測器可相對於光學入口以一定角度(例如45°)進行定位以接收自試樣反射回之光。檢測器可毗鄰試樣相對於光源之另一側上之光學入口定位以接收傳輸穿過試樣之光。檢測器可定位於另一位置中以接收反射及/或傳輸光。
顯示器120可為類比或數位顯示器。顯示器120可包含LCD、LED、OLED、真空螢光或其他適於展示數值讀數之顯示器。可使用其他顯示器。顯示器120與處理器122電通信。顯示器120可與量測裝置102分離,例如在與處理器122無線通信時。或者,可自量測裝置102去除顯示器120,例如在量測裝置102與遠程計算裝置、投藥幫浦及諸如此類電通信時。
在使用中,藉由將用於分析之液體試樣引入開口112中來將該液體轉移至儲槽108中。液體試樣流經通道110,從而填充儲槽108且同時排出先前所含空氣。液體試樣與沈積於通道110及/或儲槽108中之試 劑發生化學反應。
測試感測器104毗鄰量測裝置102佈置。毗鄰包含試樣介面114與感測器介面118電及/或光學通信之位置。電通信包含在感測器介面118中之觸點與試樣介面114中之導體之間轉移輸入及/或輸出信號。光學通信包含在試樣介面114中之光學入口與感測器介面118中之檢測器之間轉移光。光學通信亦包含在試樣介面114中之光學入口與感測器介面118中之光源之間轉移光。
處理器122接收來自溫度感測器126之量測溫度。處理器122引導信號生成器124向感測器介面118提供輸入信號。在光學系統中,感測器介面118因應於輸入信號來操作檢測器及光源。在電化學系統中,感測器介面118經由試樣介面114向試樣提供輸入信號。處理器122接收因應於如先前所論述試樣中之分析物之氧化還原反應而生成之輸出信號。
處理器122經由此實例中之分析物濃度估計演算法130來判定試樣之分析物濃度。分析物濃度估計演算法130之輸入之一係溫度,使用該溫度來校正感測器輸出信號中之溫度差效應。
此實例中之處理器122可操作以執行溫度選擇常式132,從而選擇用於分析物濃度估計演算法130之溫度。處理器122亦執行溫度估計演算法134,該溫度估計演算法能夠足夠準確地估計環境溫度,該環境溫度可可靠地檢測失衡且由分析物濃度估計演算法130使用來計算準確結果。溫度選擇常式132亦包含用以判定何時估計溫度與藉由溫度感測器126之熱敏電阻所量測溫度之間之較大差異係由損壞之感測器而非失衡引起的邏輯,從而容許在顯示器120上顯示錯誤代碼,而非顯示來自利用損壞之溫度感測器之溫度輸出執行分析物濃度估計演算法130之不正確結 果。或者,錯誤代碼可係指錯誤指數編號或顯示於顯示器120上及/或記錄於記憶體中之實際訊息。
圖2A-2B係展示圖1中之溫度選擇常式132之流程圖,該溫度選擇常式判定擬輸入至實例性生物感測器系統100中之分析物濃度估計演算法130中之溫度值。常式132係在控制器(例如圖1中之處理器122)上執行。儘管在熱敏電阻移位3℃以上時較佳使用估計溫度,但不可能確切知曉此情形何時已實際上發生。可用於溫度選擇常式132之唯一資訊係熱敏電阻與估計溫度之間之差。圖2A-2B中之溫度選擇常式132由此遵循某一溫度補償邏輯來判定使用估計溫度、來自熱敏電阻之溫度抑或返回錯誤訊息。
常式132首先量測所有測試信號(200)。此包含將來自信號生成器124之輸入信號施加至測試感測器104中之電極。處理器122讀取來自生物感測器介面118之輸出信號。測試信號量測步驟亦包含藉由處理器122讀取來自圖1中之溫度感測器126之信號且判定量測環境溫度(T)。處理器122基於自生物感測器介面118讀取之輸出信號及溫度估計演算法134所需之其他輸入來估計環境溫度(T Est)(202)。處理器122然後判定估計環境溫度與由溫度感測器126量測之溫度之間之差(T Est Residual)的絕對值(204)。
處理器122然後判定估計環境溫度與由溫度感測器126量測之溫度之間之差的絕對值是否超過最大容許溫度補償值(MaxComp)(206)。若該差超過最大容許溫度補償值,則處理器122報告測試感測器104之錯誤代碼(208)。在此實例中,估計溫度與自感測器126量測之溫度之間之最大變化為22℃,但可使用其他值(例如介於15℃至25℃之間)。此 一較大差指示,系統100不可能處於真正失衡中且由此可更安全地報告關於測試感測器104發生故障之錯誤代碼。
若該差低於最大容許溫度補償值,則處理器122判定來自溫度感測器126之量測溫度及估計溫度是否皆在室溫範圍內(210)。在此實例中,室溫範圍介於17.5℃與27.5℃之間(例如22.5±5℃),但可使用其他範圍值。舉例而言,室溫範圍可端視預期典型使用環境而具有不同定義。因此,室溫範圍之高溫可介於25℃與30℃之間且低溫可介於13℃與20℃之間。若估計溫度及量測溫度二者位於室溫範圍之外且在相反方向上,則處理器122報告測試感測器104之錯誤代碼(208)。
若溫度及估計溫度二者皆在室溫範圍內,處理器122判定量測溫度是否在室溫範圍內且判定量測溫度與估計溫度之間之差是否大於殘差限制臨限值(212)。若量測溫度在室溫範圍內但該差大於殘差限制臨限值,則處理器122報告測試感測器104之錯誤代碼(208)。在此實例中,殘差限制臨限值為10℃,且高於10℃之差指示損壞之測試感測器,從而報告錯誤代碼。端視系統,殘差限制臨限值之範圍可介於7℃與15℃之間。
若該差小於殘差限制臨限值,則處理器122判定溫度及估計溫度二者是否皆大於室溫範圍之最高溫度,且判定估計溫度與量測溫度之間之差是否大於極限殘差限制臨限值(214)。若滿足該等條件,則處理器122報告測試感測器104之錯誤代碼(208)。在此實例中,室溫範圍之最高溫度為27.5℃且極限殘差限制臨限值為12℃。
若不滿足該等條件,則處理器122判定量測溫度及估計溫度二者是否皆小於室溫範圍之最低溫度,且判定量測溫度與估計溫度之間 之差是否大於極限殘差限制臨限值(216)。在此實例中,兩個步驟214及216中之室溫範圍之最低溫度為17.5℃且極限殘差限制臨限值為12℃。端視系統,兩個步驟214及216中之極限殘差限制臨限值之範圍可介於7℃與15℃之間。若滿足該等條件,則處理器122報告測試感測器104之錯誤代碼(208)。在此實例中,極限殘差限制臨限值略寬於殘差限制臨限值,此乃因估計溫度在極限條件中之可靠性可稍差。然而,在一些實例中,同一值可用於該等臨限值二者。
若不滿足上述條件,則處理器122判定:a)是否量測溫度小於溫度範圍之最低溫度且估計溫度大於或等於低經調整溫度值;或b)是否量測溫度大於室溫範圍之最高溫度且估計溫度小於或等於高經調整溫度值(218)。此步驟判定是否由熱敏電阻量測之溫度處於極值下而估計溫度處於室溫下,此組合與自熱或冷環境最新提供之失衡計量器一致。在計量器失衡時,少量熱量轉移進出感測器,從而導致在熱計量器中測試之感測器之預期溫度上移且在冷計量器中測試之感測器之預期溫度下移。在此實例中,高及低經調整溫度值高於室溫範圍之高溫及低溫2.5℃,由此低經調整溫度值為15℃且高經調整溫度值為30℃。若不滿足該等條件,則處理器122使用來自溫度感測器126之溫度作為輸入至分析物濃度估計演算法130之溫度(220)。
若滿足步驟218中之條件,則處理器122比較量測溫度與估計溫度之間之絕對差與平衡臨限值(222)。在此實例中,平衡臨限值為6℃。可端視溫度估計演算法之準確度及假陰性結果與假陽性結果之間之期望風險平衡來調節實例性6℃臨限平衡值。臨限平衡值可介於3℃與10℃之間。若該差大於平衡臨限值,則處理器122使用估計溫度作為輸入至分 析物濃度估計演算法130之溫度(224)。若絕對差小於平衡臨限值,則處理器122使用來自溫度感測器126之溫度作為輸入至分析物濃度估計演算法130之溫度(222)。
圖3係展示估計溫度與來自溫度感測器之量測溫度間之相關性及由此之不同邏輯狀態的圖形。第一區域300代表使用量測溫度作為輸入至分析物濃度估計演算法130之溫度之情形。兩個區域310及312代表使用估計溫度作為輸入至分析物濃度估計演算法130之溫度之情形。區域310及312以線302及304為界,該等線代表室溫範圍之邊界。區域310及312進一步以線314及316為界,該等線代表平衡邊界之下界。兩個其他區域320及322代表返回錯誤訊息以指示溫度感測器126已損壞之情形。
在此實例中,藉由溫度估計演算法134來判定估計溫度。溫度估計演算法134係衍生自輸入變量之多元迴歸分析。可藉由基於特定測試感測器之不同參數以及其他量測信號實施多元迴歸來開發此一演算法。在此實例中,開發可使用在葡萄糖測試期間自測試感測器生成之電信號來準確估計環境溫度(1.5℃標準偏差)之多元迴歸方程式。
使用自在多種條件中所測試適當平衡計量器之電流輪廓之大型資料庫獲取之訓練資料集來開發具有來自圖4表格中所展示參數之不同項的方程式。使用38,367個實驗室研究讀數及12,796個內部臨床研究讀數之集來評價此溫度估計演算法之準確度,該等讀數係自使用平衡計量器測試之正常填充之感測器所獲得。由溫度感測器量測所溫度及實例性溫度估計演算法之輸出間之對比之匯總統計學包含於圖5A中所展示的表格中。圖5B展示利用熱敏電阻及估計溫度使用平衡計量器計算之葡萄糖結果之誤差百分比之匯總統計學表格。儘管溫度估計演算法係準確的,但在 計量器平衡且熱敏電阻正確時使用此估計將導致性能變得略差。
在此實例中,用於估計溫度(以℃表示)之方程式包含多個基於圖4中參數之項及常數。溫度估計值計算為該等項及常數之總和。在主要葡萄糖工作電極處之6個電位脈衝(M脈衝)及帶狀測試室前面之裸「G」電極處之4個電位脈衝(G脈衝)期間量測信號。在測試結束時,將單一高電位脈衝施加至G電極以量測與血容比相關之信號(H脈衝)。此電位輸入信號序列模式圖解說明於圖6中。圖6展示6個主要脈衝610、612、614、616、618及620之系列。圖6展示裸G電極處之4個脈衝630、632、634及636。圖6亦展示用以量測與血容比相關之信號之輸入信號640。
將在6個M脈衝中之一者期間量測之電流信號指定為MxArray(y),其中x係脈衝編號(1-6)且y係該脈衝內之量測編號。該條例同樣可用於4個G脈衝(亦即GxArray(y))。在單一H脈衝期間量測4個信號:HArray(y)。各參數列示於圖4中所展示之表格中。估計方程式中之每一項係係數與自一或多個量測電流值構建之指數參數之乘積。
當然,可使用其他過程來判定溫度估計,例如藉由人工神經網路使用適當機器學習演算法。在此實例中,溫度估計演算法134在表示寬範圍之溫度、葡萄糖濃度及血球比容含量之研究中提供準確結果。
使用儲存於冷或溫熱溫度下之計量器實施三個研究且然後在室溫(約22℃)下測試。對於失衡計量器而言,使用不正確熱敏電阻值計算之結果不準確,尤其在計量器冷於測試環境時。然而,使用估計溫度計算之結果在所有情形下皆係準確的。成功地識別計量器何時失衡且然後使用估計溫度代替量測溫度來計算葡萄糖由此係高度合意的。圖7A係使用來自使用計量器在廣範圍平衡狀態中實施之測試之量測溫度之分析物濃度 估計演算法之輸出誤差的繪圖。圖7B係使用來自使用計量器在廣範圍平衡狀態中實施之測試之估計溫度之分析物濃度估計演算法之輸出誤差的繪圖。圖8係使用來自使用計量器在廣範圍平衡狀態中實施之測試之所選溫度(估計溫度或量測溫度)之分析物濃度估計演算法之輸出誤差的繪圖。在圖7A-7B及8中,「*」符號代表來自熱計量器之輸出,「o」符號代表來自平衡計量器之輸出,且「x」符號代表來自冷計量器之輸出。
圖7A-7B展示,在計量器實際上失衡時,使用估計溫度計算之葡萄糖結果之準確性遠大於使用熱敏電阻計算之葡萄糖結果。圖8展示,演算法邏輯可良好地運行且在發生嚴重失衡時正確地切換至估計溫度,從而防止圖7A中所看到之嚴重不準確結果。
應用失衡邏輯可顯著改良在自冷或熱環境提供之後不能達到平衡之計量器之性能,而維持平衡計量器之性能。圖9展示來自平衡計量器、冷計量器及熱計量器之研究結果之匯總資料之表格,該等結果與量測溫度、來自實例性估計溫度演算法之估計溫度及圖2A-2B中之溫度選擇常式132相關。
如上文所解釋,除失衡計量器外,溫度選擇常式132亦可判定損壞之測試感測器且由此避免將來自損壞之測試感測器之資料用於分析物濃度。已使用損壞之或擾動測試感測器實施許多研究。該等損壞之測試感測器產生異常電流信號,此可影響溫度估計之準確度。溫度選擇常式132由此判定估計溫度與量測溫度之間之差異是否大於臨限值且其可能係由估計溫度而非量測溫度之錯誤所致,從而指示來自測試感測器之錯誤。因此,使用該差異作為測試感測器故障之錯誤檢測工具。
此邏輯顯著改良了實際上不平衡之計量器之性能,且亦改 良已發生測試感測器損壞時之錯誤檢測成功率並維持測試感測器正常時之電流性能。
如本申請案中所使用,術語「組件」、「模組」、「系統」或諸如此類通常係指電腦相關實體(硬體(例如電路)、硬體及軟體之組合、軟體)或與具有一或多種特定功能性之操作機器相關之實體。舉例而言,組件可為(但不限於)在處理器(例如數位信號處理器)上運行之程序、處理器、對象、可執行文件、執行線程、程式及/或電腦。以闡釋方式,運行於控制器上之應用以及控制器二者皆可為組件。一或多個組件可駐留在程序及/或執行線程內,且組件可位於一個電腦上及/或分佈於兩個或更多個電腦之間。另外,「裝置」可以以下形式呈現:具有特殊設計之硬體;藉由執行其上使得硬體能夠實施特定功能之軟體而特殊化之一般化硬體;儲存於電腦可讀媒體上之軟體;或其組合。
儘管已針對一或多項實施方案闡釋及闡述了本發明,但熟習此項技術者在閱讀及理解本說明書及隨附圖式之後將想到或知曉等效更改及修改。另外,儘管可能已針對數種實施方案中之僅一者揭示了本發明之特定特徵,但此特徵可與其他實施方案之一或多個其他特徵組合,如對於任一既定或特定應用可能為合意的及有利的。
100:生物感測器系統
102:量測裝置
104:測試感測器
106:基底
108:儲槽
110:通道
112:開口
114:試樣介面
116:電路
118:感測器介面
120:顯示器
122:處理器
124:信號生成器
126:溫度感測器
128:儲存媒體
130:分析物濃度估計演算法
132:溫度選擇常式
134:溫度估計演算法

Claims (13)

  1. 一種分析物濃度感測器系統,其用於量測使用者之流體試樣之分析物,該分析物濃度感測器系統包括:生物感測器介面,其可操作以連接至容納該流體試樣之測試感測器;基於熱敏電阻之溫度感測器,其經組態為量測環境溫度;控制器,其耦合至該生物感測器介面及該基於熱敏電阻之溫度感測器,該控制器可操作以:生成至該生物感測器介面之輸入信號;讀取來自該生物感測器介面之輸出信號;判定來自該基於熱敏電阻之溫度感測器之量測環境溫度;基於來自該生物感測器介面之輸出信號使用多元迴歸分析判定估計環境溫度;判定該估計環境溫度與該量測環境溫度之間之絕對差;及當該絕對差小於最大容許溫度補償值,基於該估計環境溫度、該量測環境溫度及該估計環境溫度與該量測環境溫度之間之該絕對差,自該估計環境溫度或該量測環境溫度之一者中選擇環境溫度;基於來自該生物感測器介面之輸出信號以及該環境溫度來判定分析物濃度;及若該估計環境溫度與該量測環境溫度之間之該絕對差大於該最大容許溫度補償值,則報告該測試感測器之錯誤代碼。
  2. 如請求項1之分析物濃度感測器系統,其中該分析物係葡萄糖且該流體試樣係血液。
  3. 如請求項1之分析物濃度感測器系統,其中該輸入信號係複數閘控電流分析脈衝,且其中判定該分析物濃度包含在該生物感測器介面之電極上,基於藉由該複數閘控電流分析脈衝產生之第一輸出脈衝及最後輸出脈衝之比率的項目。
  4. 如請求項1之分析物濃度感測器系統,其中判定該分析物濃度包含藉由該多元迴歸分析判定之輸入變量。
  5. 如請求項1之分析物濃度感測器系統,其中若該估計環境溫度及該量測環境溫度在室溫範圍內,則選擇該量測環境溫度。
  6. 如請求項5之分析物濃度感測器系統,其中該室溫範圍包含介於25℃與30℃之間之高溫及介於13℃與20℃之間之低溫。
  7. 如請求項1之分析物濃度感測器系統,其中若該量測環境溫度在室溫範圍之外,但該估計環境溫度小於該室溫範圍之經調整高溫且大於該室溫範圍之經調整低溫並且該估計環境溫度與該量測環境溫度之間之該絕對值差大於平衡臨限值,則選擇該估計環境溫度。
  8. 如請求項7之分析物濃度感測器系統,其中該室溫範圍包含介於25℃ 與30℃之間之高溫及介於13℃與20℃之間之低溫,且其中該經調整高溫介於27℃與34℃之間且該經調整低溫介於11℃與18℃之間且該平衡臨限值介於3℃與10℃之間。
  9. 如請求項1之分析物濃度感測器系統,其中若該量測環境溫度及該估計環境溫度位於室溫範圍之外且在相反方向上,則該控制器係操作以報告該測試感測器之第二錯誤代碼。
  10. 如請求項1之分析物濃度感測器系統,其中若該量測環境溫度在室溫範圍內且該估計環境溫度與該量測環境溫度之間之差大於殘差限制臨限值,則該控制器係操作以報告該測試感測器之第三錯誤代碼。
  11. 如請求項10之分析物濃度感測器系統,其中若該量測環境溫度及該估計環境溫度高於該室溫範圍之最大溫度且該估計環境溫度與該量測環境溫度之間之差大於極限殘差限制臨限值,則該控制器係操作以報告該測試感測器之第四錯誤代碼。
  12. 如請求項10之分析物濃度感測器系統,其中若該量測環境溫度及該估計環境溫度低於該室溫範圍之最小溫度且該量測環境溫度與該估計環境溫度之間之差大於極限殘差限制臨限值,則該控制器係操作以報告該測試感測器之第五錯誤代碼。
  13. 一種判定來自分析物計量器中之熱敏電阻溫度感測器之環境溫度量 測之適宜性之方法,該分析物計量器包含可操作以連接至容納流體試樣之測試感測器之生物感測器介面及控制器,該方法包括:在連接至含有該流體試樣之該測試感測器時,生成至該生物感測器介面之輸入信號;判定來自該測試感測器之輸出信號;判定來自基於熱敏電阻之溫度感測器之量測環境溫度;基於來自該生物感測器介面之輸出信號使用多元迴歸分析經由該控制器來判定估計環境溫度;經由該控制器來判定該估計環境溫度與該量測環境溫度之間之絕對差;當該絕對差小於最大容許溫度補償值,基於該估計環境溫度、該量測環境溫度及該估計環境溫度與該量測環境溫度之間之該絕對差,經由該控制器自該估計環境溫度或該量測環境溫度之一者中選擇環境溫度;基於來自該生物感測器介面之輸出信號以及該環境溫度來判定分析物濃度;及若該估計環境溫度與該量測環境溫度之間之該絕對差大於該最大容許溫度補償值,則報告該測試感測器之錯誤代碼。
TW109116624A 2019-05-21 2020-05-20 分析物濃度感測器系統及判定來自分析物計量器中之熱敏電阻溫度感測器之環境溫度量測之適宜性之方法 TWI857058B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962850841P 2019-05-21 2019-05-21
US62/850,841 2019-05-21

Publications (2)

Publication Number Publication Date
TW202102848A TW202102848A (zh) 2021-01-16
TWI857058B true TWI857058B (zh) 2024-10-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203942A1 (en) 2008-11-28 2011-08-25 Motonori Uchiyama Sensor chip, biosensor system, method for measuring temperature of biological sample, method for measuring temperature of blood sample, and method for measuring concentration of analyte in blood sample

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203942A1 (en) 2008-11-28 2011-08-25 Motonori Uchiyama Sensor chip, biosensor system, method for measuring temperature of biological sample, method for measuring temperature of blood sample, and method for measuring concentration of analyte in blood sample

Similar Documents

Publication Publication Date Title
JP6448504B2 (ja) 勾配ベース補正
US10921278B2 (en) Slope-based compensation including secondary output signals
JP5738770B2 (ja) 信号調整を持つバイオセンサシステム
TWI431273B (zh) 生物感測器用之異常輸出偵測系統
JP2011506966A5 (zh)
JP2012511160A5 (zh)
JP2024088663A (ja) 補償システムおよび分析物バイオセンサ内のサーミスタ感知の方法
JP2013528289A5 (zh)
TWI857058B (zh) 分析物濃度感測器系統及判定來自分析物計量器中之熱敏電阻溫度感測器之環境溫度量測之適宜性之方法
EP3224608B1 (en) Verifying operation of a meter