[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI853236B - Acoustic output/input device - Google Patents

Acoustic output/input device Download PDF

Info

Publication number
TWI853236B
TWI853236B TW111115560A TW111115560A TWI853236B TW I853236 B TWI853236 B TW I853236B TW 111115560 A TW111115560 A TW 111115560A TW 111115560 A TW111115560 A TW 111115560A TW I853236 B TWI853236 B TW I853236B
Authority
TW
Taiwan
Prior art keywords
vibration
sound
microphone
bone conduction
mechanical vibration
Prior art date
Application number
TW111115560A
Other languages
Chinese (zh)
Other versions
TW202242847A (en
Inventor
鄭金波
廖風雲
齊心
Original Assignee
大陸商深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2021/090298 external-priority patent/WO2022226792A1/en
Priority claimed from CN202110460677.3A external-priority patent/CN115250395A/en
Priority claimed from CN202110462049.9A external-priority patent/CN115250392A/en
Application filed by 大陸商深圳市韶音科技有限公司 filed Critical 大陸商深圳市韶音科技有限公司
Publication of TW202242847A publication Critical patent/TW202242847A/en
Application granted granted Critical
Publication of TWI853236B publication Critical patent/TWI853236B/en

Links

Landscapes

  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

The present disclosure may disclose an acoustic input/output device, including: a speaker element, configured to transmit sound waves by generating a first mechanic vibration; and a microphoe, configured to receive a second mechanic viobration generated when the voice source provides voice signals. The microphone may respectively generate a first signal and a second signal under the action of the first mechanical vibration and the second mechanical vibration, wherein within a certain frequency range, The ratio of the first mechanical vibration to the first signal is greater than the ratio of the second mechanical vibration to the second signal.

Description

聲學輸入輸出設備Acoustic Input Output Devices

本申請案涉及聲學領域,特別涉及一種聲學輸入輸出設備。 This application relates to the field of acoustics, and in particular to an acoustic input and output device.

本申請案主張於2021年4月27日提交之申請號為PCT/CN2021/090298的國際專利申請案的優先權、2021年4月27日提交之申請號為202110460677.3的中國專利申請案的優先權和2021年4月27日提交之申請號為202110462049.9的中國專利申請案的優先權,其全部內容通過引用的方式併入本文。 This application claims priority to the international patent application number PCT/CN2021/090298 filed on April 27, 2021, the Chinese patent application number 202110460677.3 filed on April 27, 2021, and the Chinese patent application number 202110462049.9 filed on April 27, 2021, all of which are incorporated herein by reference.

揚聲器元件藉由產生機械振動來傳遞聲音。麥克風通過拾取使用者說話時的皮膚等位置的振動,接收到使用者說話的語音信號。當揚聲器元件和麥克風同時工作時,揚聲器元件的機械振動會傳遞到麥克風,使得麥克風接收到揚聲器元件的振動信號產生回聲,降低麥克風產生的聲音信號的品質,影響使用者的使用體驗。 The speaker element transmits sound by generating mechanical vibration. The microphone receives the user's voice signal by picking up the vibration of the user's skin and other parts when speaking. When the speaker element and the microphone work at the same time, the mechanical vibration of the speaker element will be transmitted to the microphone, causing the microphone to receive the vibration signal of the speaker element and generate an echo, reducing the quality of the sound signal generated by the microphone and affecting the user's experience.

本發明提供了一種聲學輸入輸出設備,能夠降低揚聲器元件對麥克風的影響,減小麥克風產生的回聲信號強度,提高麥克風採集的語音信號的品質。 The present invention provides an acoustic input and output device that can reduce the impact of speaker elements on the microphone, reduce the echo signal strength generated by the microphone, and improve the quality of the voice signal collected by the microphone.

本發明的目的在於提供一種聲學輸入輸出設備,目的是降低揚聲 器元件對骨傳導麥克風振動的影響,減小骨傳導麥克風產生的回聲信號的強度,提高骨傳導麥克風拾取聲音信號的品質。 The purpose of the present invention is to provide an acoustic input and output device, the purpose of which is to reduce the influence of the speaker element on the vibration of the bone conduction microphone, reduce the intensity of the echo signal generated by the bone conduction microphone, and improve the quality of the sound signal picked up by the bone conduction microphone.

為了達到上述發明的目的,本發明提供的技術方案如下:一種聲學輸入輸出設備,包括:揚聲器元件,用於藉由產生第一機械振動來傳遞聲波;以及麥克風,用於接收在語音信號源提供語音信號時所產生的第二機械振動,麥克風在第一機械振動和第二機械振動的作用下分別產生第一信號和第二信號,其中,在一定頻率範圍內,第一機械振動的強度與第一信號的強度的比值大於第二機械振動的強度與第二信號的強度的比值。 In order to achieve the purpose of the above invention, the technical solution provided by the present invention is as follows: an acoustic input and output device, comprising: a speaker element, used to transmit sound waves by generating a first mechanical vibration; and a microphone, used to receive a second mechanical vibration generated when a voice signal source provides a voice signal, the microphone generates a first signal and a second signal respectively under the action of the first mechanical vibration and the second mechanical vibration, wherein, within a certain frequency range, the ratio of the intensity of the first mechanical vibration to the intensity of the first signal is greater than the ratio of the intensity of the second mechanical vibration to the intensity of the second signal.

在一些實施例中,揚聲器元件為骨傳導揚聲器元件,骨傳導揚聲器元件包括殼體和與殼體連接的用於產生第一機械振動的振動元件,麥克風與殼體直接或間接連接。 In some embodiments, the speaker element is a bone conduction speaker element, which includes a housing and a vibration element connected to the housing for generating a first mechanical vibration, and the microphone is directly or indirectly connected to the housing.

在一些實施例中,聲學輸入輸出設備還包括減振結構,麥克風通過減振結構與揚聲器元件連接,減振結構包括彈性模量小於第一閾值的減振材料。 In some embodiments, the acoustic input-output device further includes a vibration-damping structure, the microphone is connected to the speaker element through the vibration-damping structure, and the vibration-damping structure includes a vibration-damping material having an elastic modulus less than the first threshold value.

在一些實施例中,麥克風的表面的第一部分用於傳導第二機械振動,麥克風的表面的第二部分外設置有減振結構並通過減振結構與揚聲器元件連接。 In some embodiments, the first portion of the surface of the microphone is used to conduct the second mechanical vibration, and the second portion of the surface of the microphone is provided with a vibration-damping structure and is connected to the speaker element through the vibration-damping structure.

在一些實施例中,麥克風的表面的第一部分設置有傳振層,傳振層的材料的彈性模量大於第二閾值。 In some embodiments, a first portion of the surface of the microphone is provided with a vibration-transmitting layer, and the elastic modulus of the material of the vibration-transmitting layer is greater than the second threshold value.

在一些實施例中,揚聲器元件包括殼體和振動元件,殼體與振動元件之間具有第一連接,麥克風與殼體之間具有第二連接,第一連接包括第一減振結構,第二連接包括第二減振結構。 In some embodiments, the speaker element includes a housing and a vibration element, the housing and the vibration element have a first connection, the microphone and the housing have a second connection, the first connection includes a first vibration-damping structure, and the second connection includes a second vibration-damping structure.

在一些實施例中,揚聲器元件包括第一振膜和第二振膜,第一振膜和第二振膜的振動方向相反;揚聲器元件包括殼體,殼體包括第一腔體和第二 腔體,第一振膜和第二振膜分別位於第一腔體和第二腔體中;第一腔體的側壁開設有第一透聲孔和第二透聲孔,第二腔體的側壁開設有第三透聲孔和第四透聲孔,第一透聲孔發出的聲音相位與第三透聲孔發出的聲音相位相同,第二透聲孔發出的聲音相位與第四透聲孔發出的聲音相位相同。 In some embodiments, the speaker element includes a first diaphragm and a second diaphragm, and the first diaphragm and the second diaphragm vibrate in opposite directions; the speaker element includes a housing, and the housing includes a first cavity and a second cavity, and the first diaphragm and the second diaphragm are located in the first cavity and the second cavity respectively; the side wall of the first cavity is provided with a first sound-transmitting hole and a second sound-transmitting hole, and the side wall of the second cavity is provided with a third sound-transmitting hole and a fourth sound-transmitting hole, and the phase of the sound emitted by the first sound-transmitting hole is the same as the phase of the sound emitted by the third sound-transmitting hole, and the phase of the sound emitted by the second sound-transmitting hole is the same as the phase of the sound emitted by the fourth sound-transmitting hole.

在一些實施例中,第一透聲孔和第三透聲孔設置在殼體的同一側壁上,第二透聲孔和第四透聲孔設置在殼體的同一側壁上,第一透聲孔和第二透聲孔設置在殼體的不相鄰的側壁上,第三透聲孔和第四透聲孔設置在殼體的不相鄰的側壁上。 In some embodiments, the first sound-transmitting hole and the third sound-transmitting hole are arranged on the same side wall of the shell, the second sound-transmitting hole and the fourth sound-transmitting hole are arranged on the same side wall of the shell, the first sound-transmitting hole and the second sound-transmitting hole are arranged on non-adjacent side walls of the shell, and the third sound-transmitting hole and the fourth sound-transmitting hole are arranged on non-adjacent side walls of the shell.

在一些實施例中,揚聲器元件進一步包括用於形成磁場的第一磁路元件和第二磁路元件,第一磁路元件用於使第一振膜產生振動,第二磁路元件用於使第二振膜產生振動;第一腔體和第二腔體連通,第一磁路元件和第二磁路元件直接或間接連接。 In some embodiments, the speaker element further includes a first magnetic circuit element and a second magnetic circuit element for forming a magnetic field, the first magnetic circuit element is used to vibrate the first diaphragm, and the second magnetic circuit element is used to vibrate the second diaphragm; the first cavity and the second cavity are connected, and the first magnetic circuit element and the second magnetic circuit element are directly or indirectly connected.

本發明一個或多個實施例還提供一種聲學輸入輸出設備,包括揚聲器元件,用於藉由產生第一機械振動來傳遞聲波;以及麥克風,用於接收在語音信號源提供語音信號時所產生的第二機械振動,麥克風在第一機械振動和第二機械振動的作用下分別產生第一信號和第二信號;麥克風的振動方向與第一機械振動的方向形成的第一夾角在設定的角度範圍內,使得在一定頻率範圍內,第一機械振動的強度與第一信號的強度的比值大於第二機械振動的強度與第二信號的強度的比值。 One or more embodiments of the present invention also provide an acoustic input-output device, including a speaker element for transmitting sound waves by generating a first mechanical vibration; and a microphone for receiving a second mechanical vibration generated when a voice signal source provides a voice signal, the microphone generates a first signal and a second signal respectively under the action of the first mechanical vibration and the second mechanical vibration; the first angle formed by the vibration direction of the microphone and the direction of the first mechanical vibration is within a set angle range, so that within a certain frequency range, the ratio of the intensity of the first mechanical vibration to the intensity of the first signal is greater than the ratio of the intensity of the second mechanical vibration to the intensity of the second signal.

100:聲學輸入輸出設備 100:Acoustic input and output equipment

110:揚聲器元件 110: Speaker components

120:麥克風元件 120: Microphone component

130:固定元件 130:Fixed element

200:聲學輸入輸出設備 200:Acoustic input and output equipment

210:耳機芯 210: Earphone core

231:耳掛 231: Ear hook

232:耳機殼體 232: Headphone housing

233:電路外殼 233:Circuit enclosure

234:後掛 234:Hanging at the back

236:保護套管 236: Protective sleeve

237:外殼保護器 237: Shell protector

260:控制電路 260: Control circuit

270:電池 270:Battery

2321:接觸表面 2321:Contact surface

300:聲學輸入輸出設備 300:Acoustic input and output equipment

310:揚聲器元件 310: Speaker components

320:骨傳導麥克風 320: Bone conduction microphone

330:固定元件 330:Fixed element

340:使用者臉部 340: User's face

350:殼體 350: Shell

360:語音信號源 360: Voice signal source

370:第一彈性連接 370: First elastic connection

380:回聲信號源 380: Echo signal source

390:第二彈性連接 390: Second elastic connection

520:骨傳導麥克風 520: Bone conduction microphone

560:語音信號源 560: Voice signal source

570:第一彈性連接 570: First flexible connection

580:回聲信號源 580:Echo signal source

590:第二彈性連接 590: Second flexible connection

620:骨傳導麥克風 620: Bone conduction microphone

660:語音信號源 660: Voice signal source

680:回聲信號源 680: Echo signal source

810:第一信號的強度曲線 810: Strength curve of the first signal

820:第二信號的強度曲線 820: Intensity curve of the second signal

910:第一信號的強度曲線 910: Strength curve of the first signal

920:第二信號的強度曲線 920: Intensity curve of the second signal

1000:聲學輸入輸出設備 1000:Acoustic input and output equipment

1010:揚聲器元件 1010: Speaker components

1020:骨傳導麥克風 1020: Bone conduction microphone

1021:第一部分 1021: Part 1

1022:第二部分 1022: Part 2

1023:傳振層 1023: Vibration layer

1040:使用者臉部 1040: User's face

1050:殼體 1050: Shell

1100:減振結構 1100:Vibration-damping structure

1200:聲學輸入輸出設備 1200:Acoustic input and output equipment

1210:揚聲器元件 1210: Speaker components

1211:振動元件 1211: Vibration element

1213:傳振片 1213: Transmission film

1215:磁路元件 1215: Magnetic circuit components

1217:線圈 1217: Coil

1220:骨傳導麥克風 1220: Bone conduction microphone

1250:殼體 1250: Shell

1300:聲學輸入輸出設備 1300:Acoustic input and output equipment

1311:振動元件 1311: Vibration element

1313:振膜 1313: Diaphragm

1315:磁路元件 1315: Magnetic circuit components

1317:線圈 1317: Coil

1320:骨傳導麥克風 1320: Bone conduction microphone

1350:殼體 1350: Shell

1351:第一透聲孔 1351: First sound hole

1352:第二透聲孔 1352: Second sound hole

1400:聲學輸入輸出設備 1400:Acoustic input and output equipment

1410:揚聲器元件 1410: Speaker components

1411:第一振動元件 1411: First vibration element

1412:第二振動元件 1412: Second vibration element

1413:第一振膜 1413: First diaphragm

1414:第二振膜 1414: Second diaphragm

1415:第一磁路元件 1415: First magnetic circuit element

1416:第二磁路元件 1416: Second magnetic circuit element

1417:第一線圈 1417: First coil

1418:第二線圈 1418: Second coil

1450:殼體 1450: Shell

1451:第一透聲孔 1451: First sound hole

1452:第二透聲孔 1452: Second sound hole

1453:第三透聲孔 1453: The third sound hole

1454:第四透聲孔 1454: The fourth sound hole

1455:第一腔體 1455: First cavity

1456:第二腔體 1456: Second cavity

1500:聲學輸入輸出設備 1500:Acoustic input and output equipment

1510:揚聲器元件 1510: Speaker components

1511:第一振動元件 1511: First vibration element

1512:第二振動元件 1512: Second vibration element

1513:第一振膜 1513: First diaphragm

1514:第二振膜 1514: Second diaphragm

1515:第一磁路元件 1515: First magnetic circuit element

1516:第二磁路元件 1516: Second magnetic circuit element

1517:第一線圈 1517: First coil

1518:第二線圈 1518: Second coil

1550:殼體 1550: Shell

1551:第一透聲孔 1551: First sound hole

1552:第二透聲孔 1552: Second sound hole

1553:第三透聲孔 1553: The third sound hole

1554:第四透聲孔 1554: The fourth sound hole

1555:第一腔體 1555: First cavity

1556:第二腔體 1556: Second cavity

1600:聲學輸入輸出設備 1600:Acoustic input and output equipment

1610:揚聲器元件 1610: Speaker components

1620:骨傳導麥克風 1620: Bone conduction microphone

1630:固定元件 1630:Fixed element

1631:耳罩 1631:Earmuffs

1632:頭帶 1632:Headband

1700:聲學輸入輸出設備 1700:Acoustic input and output equipment

1710:揚聲器元件 1710: Speaker components

1720:骨傳導麥克風 1720: Bone conduction microphone

1730:固定元件 1730:Fixed element

1731:耳罩 1731:Earmuffs

1732:頭帶 1732:Headband

1800:聲學輸入輸出設備 1800:Acoustic input and output equipment

1810:揚聲器元件 1810: Speaker components

1820:骨傳導麥克風 1820: Bone conduction microphone

1830:固定元件 1830:Fixed elements

1831:耳罩 1831:Earmuffs

1832:頭帶 1832:Headband

1833:海綿套 1833: Sponge bag

1840:使用者臉部 1840: User's face

1850:殼體 1850: Shell

1900:聲學輸入輸出設備 1900:Acoustic input and output devices

1910:揚聲器元件 1910: Speaker components

1920:骨傳導麥克風 1920: Bone conduction microphone

1930:固定元件 1930:Fixing elements

1932:眼鏡框 1932: Eyeglass frames

1933:眼鏡腿 1933: Spectacle Legs

1934:鏡腿主體 1934:Mirror Legs Main Body

1935:鼻樑架 1935: Nose bridge

本發明將以示例性實施例的方式進一步說明,這些示例性實施例將通過附圖進行詳細描述。這些實施例並非限制性的,在這些實施例中,相同的元件符號表示類似的結構,其中: [圖1]係根據本發明一些實施例所示的聲學輸入輸出設備的結構模組圖;[圖2A]和[圖2B]係根據本發明一些實施例所示的聲學輸入輸出設備的結構示意圖;[圖3]係根據本發明一些實施例所示的聲學輸入輸出設備的部分結構的截面示意圖;[圖4]係根據本發明一些實施例所示的聲學輸入輸出設備的振動傳遞的簡易示意圖;[圖5]係根據本發明一些實施例所示的聲學輸入輸出設備的又一機械振動傳遞模型的示意圖;[圖6]係根據本發明一些實施例所示的聲學輸入輸出設備的振動傳遞的另一結構示意圖;[圖7]係根據本發明一些實施例所示的二軸麥克風計算產生電信號的示意圖;[圖8]係根據本發明一些實施例所示的第二信號和第一信號的強度曲線圖;[圖9]係根據本發明一些實施例所示的第二信號和第一信號的又一強度曲線圖;[圖10]係根據本發明一些實施例所示的骨傳導麥克風與減振結構連接的截面示意圖;[圖11]係根據本發明一些實施例所示的有減振結構的聲學輸入輸出設備的截面示意圖;[圖12]係根據本發明一些實施例所示的聲學輸入輸出設備的截面示意圖; [圖13]係根據本發明一些實施例所示的聲學輸入輸出設備的截面示意圖;[圖14]係根據本發明一些實施例所示的具有兩個氣傳導揚聲器元件的聲學輸入輸出設備的截面示意圖;[圖15]係根據本發明一些實施例所示的具有兩個氣傳導揚聲器元件的聲學輸入輸出設備的又一截面示意圖;[圖16]係根據本發明一些實施例所示的頭戴式耳機的結構示意圖;[圖17]係根據本發明一些實施例所示的單耳頭戴式耳機的結構示意圖;[圖18]係根據本發明一些實施例所示的雙耳頭戴式耳機的截面示意圖;[圖19]係根據本發明一些實施例所示的一種眼鏡的結構示意圖。 The present invention will be further explained in the form of exemplary embodiments, which will be described in detail through the accompanying drawings. These embodiments are not restrictive. In these embodiments, the same component symbols represent similar structures, wherein: [Figure 1] is a structural module diagram of an acoustic input-output device according to some embodiments of the present invention; [Figure 2A] and [Figure 2B] are structural schematic diagrams of an acoustic input-output device according to some embodiments of the present invention; [Figure 3] is a cross-sectional schematic diagram of a partial structure of an acoustic input-output device according to some embodiments of the present invention; [Figure 4] is a simple schematic diagram of vibration transmission of an acoustic input-output device according to some embodiments of the present invention. FIG. 5 is a schematic diagram of another mechanical vibration transmission model of the acoustic input-output device shown in some embodiments of the present invention; FIG. 6 is another structural schematic diagram of the vibration transmission of the acoustic input-output device shown in some embodiments of the present invention; FIG. 7 is a schematic diagram of the calculation and generation of electrical signals by a two-axis microphone shown in some embodiments of the present invention; FIG. 8 is a strength curve diagram of the second signal and the first signal shown in some embodiments of the present invention; FIG. 9 is another strength curve diagram of the second signal and the first signal shown in some embodiments of the present invention. [Figure 10] is a cross-sectional schematic diagram of a bone conduction microphone connected to a vibration reduction structure according to some embodiments of the present invention; [Figure 11] is a cross-sectional schematic diagram of an acoustic input-output device with a vibration reduction structure according to some embodiments of the present invention; [Figure 12] is a cross-sectional schematic diagram of an acoustic input-output device according to some embodiments of the present invention; [Figure 13] is a cross-sectional schematic diagram of an acoustic input-output device according to some embodiments of the present invention; [Figure 14] is a cross-sectional schematic diagram of an acoustic input-output device with two air conduction speaker elements according to some embodiments of the present invention. [Figure 15] is another cross-sectional schematic diagram of an acoustic input-output device having two air conduction speaker elements according to some embodiments of the present invention; [Figure 16] is a structural schematic diagram of a headset according to some embodiments of the present invention; [Figure 17] is a structural schematic diagram of a single-ear headset according to some embodiments of the present invention; [Figure 18] is a cross-sectional schematic diagram of a binaural headset according to some embodiments of the present invention; [Figure 19] is a structural schematic diagram of a pair of glasses according to some embodiments of the present invention.

為了更清楚地說明本發明的實施例的技術方案,下面將對實施例描述中所需要使用的附圖作簡單的介紹。顯而易見地,下面描述中的附圖僅僅是本發明的一些示例或實施例,對於所屬技術領域中具有通常知識者來講,在不付出進步性努力的前提下,還可以根據這些附圖將本發明應用於其他類似情景。應當理解,給出這些示例性實施例僅僅是為了使所屬技術領域中具有通常知識者能夠更好地理解進而實現本發明,而並非以任何方式限制本發明的範圍。除非從語言環境中顯而易見或另做說明,圖式中相同的元件符號代表相同結構或操作。 In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the drawings required for the description of the embodiments. Obviously, the drawings described below are only some examples or embodiments of the present invention. For those with ordinary knowledge in the relevant technical field, the present invention can also be applied to other similar scenarios based on these drawings without making progressive efforts. It should be understood that these exemplary embodiments are only provided to enable those with ordinary knowledge in the relevant technical field to better understand and implement the present invention, and do not limit the scope of the present invention in any way. Unless it is obvious from the language environment or otherwise explained, the same component symbols in the drawings represent the same structure or operation.

如說明書和申請專利範圍中所示,除非上下文明確提示例外情形,“一”、“一個”、“一種”和/或“該”等詞並非特指單數,也可包括複數。一般說 來,術語“包括”與“包含”僅提示包括已明確標識的步驟和元素,而這些步驟和元素不構成一個排它性的羅列,方法或者設備也可能包含其他的步驟或元素。術語“基於”是“至少部分地基於”。術語“一個實施例”表示“至少一個實施例”;術語“另一實施例”表示“至少一個另外的實施例”。其他術語的相關定義將在下文描述中給出。以下,不失一般性,在描述本發明中骨傳導相關技術時,將採用“骨傳導麥克風”、“骨傳導麥克風元件”、“骨傳導揚聲器”、“骨傳導揚聲器元件”或“骨傳導耳機”的描述。在描述本發明中氣傳導相關技術時,將採用“氣傳導麥克風”、“氣傳導麥克風元件”、“氣傳導揚聲器”、“氣傳導揚聲器元件”或“氣傳導耳機”的描述。該描述僅僅為骨傳導應用的一種形式,對於所屬技術領域中具有通常知識者來說,“設備”或“耳機”也可用其他同類詞語代替,比如“播放機”、“助聽器”等。事實上,本發明中的各種實現方式可以很方便地應用到其它非揚聲器類的設備上。例如,對於本領域的專業人員來說,在瞭解設備的基本原理後,可能在不背離這一原理的情況下,對實施設備的具體方式與步驟進行形式和細節上的各種修正和改變,特別地,在設備中加入環境聲音拾取和處理功能,使該設備實現助聽器的功能。例如,骨傳導麥克風等傳聲器可以拾取使用者/佩戴者周圍環境的聲音,在一定的演算法下,將聲音處理後(或者產生的電信號)傳送至揚聲器元件部分。即,骨傳導麥克風可以經過一定的修改,加入拾取環境聲音的功能,並經過一定的信號處理後通過揚聲器元件部分將聲音傳遞給使用者/佩戴者,從而實現助聽器的功能。作為舉例,這裡所說的演算法可以包括雜訊消除、自動增益控制、聲音回饋抑制、寬動態範圍壓縮、主動環境識別、主動抗噪、定向處理、耳鳴處理、多通道寬動態範圍壓縮、主動嘯叫抑制、音量控制等一種或多種的組合。 As shown in the specification and patent application, unless the context clearly indicates an exception, the words "a", "an", "a kind" and/or "the" do not refer to the singular, but also include the plural. Generally speaking, the terms "include" and "comprise" only indicate the inclusion of the steps and elements that have been clearly identified, and these steps and elements do not constitute an exclusive list. The method or apparatus may also include other steps or elements. The term "based on" means "based at least in part on". The term "an embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one other embodiment". The relevant definitions of other terms will be given in the following description. Hereinafter, without loss of generality, when describing the bone conduction related technologies in the present invention, the descriptions of "bone conduction microphone", "bone conduction microphone element", "bone conduction speaker", "bone conduction speaker element" or "bone conduction earphone" will be adopted. When describing the air conduction related technologies in the present invention, the descriptions of "air conduction microphone", "air conduction microphone element", "air conduction speaker", "air conduction speaker element" or "air conduction earphone" will be adopted. This description is only one form of bone conduction application. For those with ordinary knowledge in the relevant technical field, "device" or "earphone" can also be replaced by other similar words, such as "player", "hearing aid", etc. In fact, various implementation methods in the present invention can be easily applied to other non-speaker devices. For example, for professionals in this field, after understanding the basic principle of the device, they may make various modifications and changes in form and details to the specific methods and steps of implementing the device without deviating from this principle. In particular, the device may be equipped with the function of picking up and processing ambient sound so that the device can realize the function of a hearing aid. For example, microphones such as bone conduction microphones can pick up the sound of the user/wearer's surrounding environment, and transmit the processed sound (or generated electrical signal) to the speaker component under a certain algorithm. That is, the bone conduction microphone can be modified to add the function of picking up ambient sound, and after certain signal processing, the sound can be transmitted to the user/wearer through the speaker component, thereby realizing the function of a hearing aid. For example, the algorithms mentioned here may include one or a combination of noise cancellation, automatic gain control, sound feedback suppression, wide dynamic range compression, active environmental recognition, active noise reduction, directional processing, tinnitus processing, multi-channel wide dynamic range compression, active howl suppression, volume control, etc.

圖1是根據本發明一些實施例所示的聲學輸入輸出設備的結構模組圖。如圖1所示,聲學輸入輸出設備100可以包括揚聲器元件110、麥克風元件 120和固定元件130。 FIG1 is a structural module diagram of an acoustic input-output device according to some embodiments of the present invention. As shown in FIG1 , the acoustic input-output device 100 may include a speaker element 110, a microphone element 120, and a fixing element 130.

揚聲器元件110可以用於將含有聲音資訊的信號轉化為聲信號(也可以稱為語音信號)。例如,揚聲器元件110可以響應於接收含有聲音資訊的信號,產生機械振動以傳遞聲波(即聲信號)。為了方便描述,揚聲器元件110產生的機械振動可以稱為第一機械振動。在一些實施例中,揚聲器元件可以包括振動元件和/或與振動元件連接的傳振元件(例如,聲學輸入輸出設備100的至少部分的殼體,傳振片)。揚聲器元件110產生第一機械振動時伴隨著能量的轉換,揚聲器元件110可以實現含有聲音資訊的信號向機械振動轉換。轉換的過程中可能包含多種不同類型能量的共存和轉換。例如,電信號(即含有聲音資訊的信號)通過揚聲器元件110的振動元件中的換能裝置可以直接轉換成第一機械振動,通過揚聲器元件110的傳振元件傳導第一機械振動以傳遞聲波。再例如,聲音資訊可以包含在光信號中,一種特定的換能裝置可以實現由光信號轉換為振動信號的過程。其它可以在換能裝置工作過程中共存和轉換的能量類型包括熱能、磁場能等。換能裝置的能量轉換方式可以包括動圈式、靜電式、壓電式、動鐵式、氣動式、電磁式等。 The speaker element 110 can be used to convert a signal containing sound information into an acoustic signal (also referred to as a voice signal). For example, the speaker element 110 can generate mechanical vibrations to transmit sound waves (i.e., acoustic signals) in response to receiving a signal containing sound information. For the convenience of description, the mechanical vibrations generated by the speaker element 110 can be referred to as first mechanical vibrations. In some embodiments, the speaker element can include a vibration element and/or a vibration transmission element connected to the vibration element (e.g., at least a portion of the housing of the acoustic input/output device 100, a vibration transmission sheet). When the speaker element 110 generates the first mechanical vibration, it is accompanied by energy conversion, and the speaker element 110 can realize the conversion of the signal containing sound information into mechanical vibrations. The conversion process may include the coexistence and conversion of multiple different types of energy. For example, an electrical signal (i.e., a signal containing sound information) can be directly converted into a first mechanical vibration through the transducer in the vibration element of the speaker element 110, and the first mechanical vibration is transmitted through the vibration element of the speaker element 110 to transmit the sound wave. For another example, the sound information can be contained in an optical signal, and a specific transducer can realize the process of converting the optical signal into a vibration signal. Other types of energy that can coexist and convert during the operation of the transducer include thermal energy, magnetic field energy, etc. The energy conversion method of the transducer can include dynamic, electrostatic, piezoelectric, moving iron, pneumatic, electromagnetic, etc.

揚聲器元件110可以包括氣傳導揚聲器元件和/或骨傳導揚聲器元件。在一些實施例中,揚聲器元件110可以包括振動元件和殼體。在一些實施例中,當揚聲器元件110為骨傳導揚聲器元件時,揚聲器元件110的殼體可以用於與使用者身體某個部位(例如,臉部)接觸並將振動元件產生的第一機械振動傳遞經由骨骼傳遞到聽覺神經,使使用者聽到聲音,且作為聲學輸入輸出設備100的至少部分外殼容納振動元件和麥克風元件120。在一些實施例,當揚聲器元件110為氣傳導揚聲器元件時,振動元件可以通過推動空氣振動改變空氣密度,從而使使用者聽到聲音,殼體可以作為聲學輸入輸出設備100的至少部分外殼容納振動元件和麥克風元件120。在一些實施例中,揚聲器元件110且麥克風元件120 可以位於不同的殼體內。 The speaker element 110 may include an air conduction speaker element and/or a bone conduction speaker element. In some embodiments, the speaker element 110 may include a vibration element and a housing. In some embodiments, when the speaker element 110 is a bone conduction speaker element, the housing of the speaker element 110 may be used to contact a certain part of the user's body (e.g., face) and transmit the first mechanical vibration generated by the vibration element to the auditory nerve via the bones, so that the user can hear the sound, and as at least part of the housing of the acoustic input-output device 100, the vibration element and the microphone element 120 are accommodated. In some embodiments, when the speaker element 110 is an air conduction speaker element, the vibration element can change the air density by pushing the air to vibrate, so that the user can hear the sound, and the housing can accommodate the vibration element and the microphone element 120 as at least part of the outer shell of the acoustic input and output device 100. In some embodiments, the speaker element 110 and the microphone element 120 can be located in different housings.

振動元件可以將聲音信號轉換為機械振動信號並由此產生第一機械振動。在一些實施例中,振動元件(即,換能裝置)可以包括磁路元件。磁路元件可以提供磁場。磁場可以用於將含有聲音資訊的信號轉化為機械振動信號。在一些實施例中,聲音資訊可以包括具有特定資料格式的視頻、音訊檔或者可以通過特定途徑轉化為聲音的資料或檔。含有聲音資訊的信號可以來自於聲學輸入輸出設備100本身的存儲元件,也可以來自於聲學輸入輸出設備100以外的資訊產生、存儲或者傳遞系統。含有聲音資訊的信號可以包括電信號、光信號、磁信號、機械信號等一種或多種的組合。含有聲音資訊的信號可以來自一個信號源或多個信號源。多個信號源可以相關也可以不相關。在一些實施例中,聲學輸入輸出設備100可以通過多種不同的方式獲取含有聲音資訊的信號,信號的獲取可以是有線的或無線的,可以是即時或延時的。例如,聲學輸入輸出設備100可以通過有線或者無線的方式接收含有聲音資訊的電信號,也可以直接從存儲介質上獲取資料,產生聲音信號。又例如,聲學輸入輸出設備100中可以包括具有聲音採集功能的元件(例如,氣傳導麥克風元件),通過拾取環境中的聲音,將聲音的機械振動轉換成電信號,通過放大器處理後獲得滿足特定要求的電信號。在一些實施例中,有線連接可以包括金屬電纜、光學電纜或者金屬和光學的混合電纜,例如,同軸電纜、通信電纜、軟性電纜、螺旋電纜、非金屬護皮電纜、金屬護皮電纜、多芯電纜、雙絞線電纜、帶狀電纜、遮罩電纜、電信電纜、雙股電纜、平行雙芯導線、雙絞線等一種或多種的組合。以上描述的例子僅作為方便說明之用,有線連接的媒介還可以是其它類型,例如,其它電信號或光信號等的傳輸載體。 The vibration element can convert the sound signal into a mechanical vibration signal and thereby generate a first mechanical vibration. In some embodiments, the vibration element (i.e., the transducer) may include a magnetic circuit element. The magnetic circuit element may provide a magnetic field. The magnetic field may be used to convert a signal containing sound information into a mechanical vibration signal. In some embodiments, the sound information may include a video or audio file having a specific data format or data or a file that can be converted into sound through a specific path. The signal containing the sound information may come from the storage element of the acoustic input/output device 100 itself, or may come from an information generation, storage or transmission system outside the acoustic input/output device 100. The signal containing the sound information may include one or more combinations of electrical signals, optical signals, magnetic signals, mechanical signals, etc. The signal containing sound information may come from one signal source or multiple signal sources. Multiple signal sources may be related or unrelated. In some embodiments, the acoustic input-output device 100 may obtain the signal containing sound information in a variety of different ways, and the acquisition of the signal may be wired or wireless, and may be instant or delayed. For example, the acoustic input-output device 100 may receive an electrical signal containing sound information in a wired or wireless manner, or may directly obtain data from a storage medium to generate a sound signal. For another example, the acoustic input-output device 100 may include an element with a sound collection function (e.g., an air conduction microphone element), which converts the mechanical vibration of the sound into an electrical signal by picking up the sound in the environment, and obtains the electrical signal that meets specific requirements after being processed by an amplifier. In some embodiments, the wired connection may include metal cables, optical cables, or hybrid cables of metal and optical, such as coaxial cables, communication cables, flexible cables, spiral cables, non-metallic sheathed cables, metal sheathed cables, multi-core cables, twisted pair cables, ribbon cables, shielded cables, telecommunication cables, twin-strand cables, parallel twin-core wires, twisted pair cables, and the like, or a combination of the above. The examples described above are for convenience of explanation only, and the medium of the wired connection may also be other types, such as transmission carriers of other electrical signals or optical signals.

無線連接可以包括無線電通信、自由空間光通信、聲通訊、和電磁感應等。其中無線電通訊可以包括IEEE802.11系列標準、IEEE802.15系列標準 (例如藍牙技術和蜂窩技術等)、第一代行動通信技術、第二代行動通信技術(例如FDMA、TDMA、SDMA、CDMA、和SSMA等)、通用分組無線服務技術、第三代行動通信技術(例如CDMA2000、WCDMA、TD-SCDMA、和WiMAX等)、第四代行動通信技術(例如TD-LTE和FDD-LTE等)、衛星通信(例如GPS技術等)、近場通信(NFC)和其它運行在ISM頻段(例如2.4GHz等)的技術;自由空間光通信可以包括可見光、紅外線訊號等;聲通訊可以包括聲波、超聲波訊號等;電磁感應可以包括近場通訊技術等。以上描述的例子僅作為方便說明之用,無線連接的媒介還可以是其它類型,例如,Z-wave技術、其它收費的民用無線電頻段和軍用無線電頻段等。例如,作為本技術的一些應用場景,聲學輸入輸出設備100可以通過藍牙技術從其他聲學輸入輸出設備獲取含有聲音資訊的信號。 Wireless connections may include radio communications, free space optical communications, acoustic communications, and electromagnetic induction, among others. Radio communications may include IEEE802.11 series standards, IEEE802.15 series standards (such as Bluetooth technology and cellular technology, etc.), first generation mobile communication technology, second generation mobile communication technology (such as FDMA, TDMA, SDMA, CDMA, and SSMA, etc.), general packet radio service technology, third generation mobile communication technology (such as CDMA2000, WCDMA, TD-SCDMA, and WiMAX, etc.), fourth generation mobile communication technology (such as TD-LTE and FDD-LTE, etc.), satellite communication (such as GPS technology, etc.), near field communication (NFC) and other technologies running in the ISM band (such as 2.4GHz, etc.); free space optical communication may include visible light, infrared signals, etc.; acoustic communication may include sound waves, ultrasonic signals, etc.; electromagnetic induction may include near field communication technology, etc. The examples described above are only for the convenience of explanation. The wireless connection medium can also be other types, such as Z-wave technology, other paid civilian radio frequency bands and military radio frequency bands, etc. For example, as some application scenarios of this technology, the acoustic input and output device 100 can obtain signals containing sound information from other acoustic input and output devices through Bluetooth technology.

麥克風元件120可以用於拾取聲信號(也可稱為語音信號)並將聲信號轉換為含有聲音資訊的信號(例如,電信號)。例如,麥克風元件120拾取語音信號源提供語音信號時產生的機械振動並將其轉換為電信號。為了方便描述,使用者提供語音信號時所產生的機械振動可以稱為第二機械振動。在一些實施例中,麥克風元件120可以包括一個或多個麥克風。在一些實施例中,基於麥克風的工作原理可以將麥克風分為骨傳導麥克風和/或氣傳導麥克風。為了方便描述,在本發明一個或多個實施例中,將以骨傳導麥克風為例進行說明。需要說明的是,本發明一個或多個實施例中的骨傳導麥克風也可以替換為氣傳導麥克風。 The microphone element 120 can be used to pick up an acoustic signal (also referred to as a voice signal) and convert the acoustic signal into a signal containing sound information (e.g., an electrical signal). For example, the microphone element 120 picks up the mechanical vibration generated when the voice signal source provides a voice signal and converts it into an electrical signal. For the convenience of description, the mechanical vibration generated when the user provides a voice signal can be referred to as a second mechanical vibration. In some embodiments, the microphone element 120 can include one or more microphones. In some embodiments, the microphone can be divided into a bone conduction microphone and/or an air conduction microphone based on the working principle of the microphone. For the convenience of description, in one or more embodiments of the present invention, a bone conduction microphone will be used as an example for explanation. It should be noted that the bone conduction microphone in one or more embodiments of the present invention can also be replaced by an air conduction microphone.

骨傳導麥克風可以用於採集使用者的骨骼、皮膚等組織傳導的任何可被骨傳導麥克風感知的機械振動(例如,第一機械振動和第二機械振動),接收的機械振動會引起骨傳導麥克風120的內部元件(例如,麥克風振膜)產生對應的機械振動(例如,第三機械振動和第四機械振動),並將其轉化成含有語音資訊的電信號(例如,第一信號和第二信號),第一信號可以理解為骨傳導麥 克風產生的回聲信號;第二信號可以理解為骨傳導麥克風產生的語音信號。氣傳導麥克風可以採集空氣傳導的機械振動(即聲波),並將機械振動轉化為含有聲音資訊的信號(例如,電信號)。例如,若揚聲器元件110包括氣傳導揚聲器,則氣傳導麥克風可以接收氣傳導揚聲器傳遞的回聲信號(通過氣傳導傳遞)。又例如,若揚聲器元件110包括骨傳導揚聲器,則氣傳導麥克風可以同時接收骨傳導揚聲器傳遞的機械振動且骨傳導揚聲器通過氣傳導途徑傳遞的回聲信號。在一些實施例中,麥克風元件120可以包括麥克風振膜和其他電子元件,語音信號源的機械振動傳遞至麥克風振膜之後會引起麥克風振膜產生對應的機械振動,電子元件可以將機械振動信號轉換為含有語音資訊的信號(例如,電信號)。在一些實施例中,麥克風元件120可以包括但不限於帶狀麥克風、微機電系統(MEMS)麥克風、動態麥克風、壓電麥克風、電容式麥克風、碳素麥克風、類比麥克風、數位麥克風等,或其任意組合。再例如,骨傳導麥克風可以包括全向麥克風、單向麥克風、雙向麥克風、心形麥克風等,或其任意組合。 The bone conduction microphone can be used to collect any mechanical vibrations (e.g., first mechanical vibrations and second mechanical vibrations) conducted by the user's bones, skin, and other tissues that can be sensed by the bone conduction microphone. The received mechanical vibrations will cause the internal components of the bone conduction microphone 120 (e.g., microphone diaphragm) to generate corresponding mechanical vibrations (e.g., third mechanical vibrations and fourth mechanical vibrations), and convert them into electrical signals containing voice information (e.g., first signals and second signals). The first signal can be understood as an echo signal generated by the bone conduction microphone; the second signal can be understood as a voice signal generated by the bone conduction microphone. The air conduction microphone can collect mechanical vibrations (i.e., sound waves) conducted by air and convert the mechanical vibrations into signals containing sound information (e.g., electrical signals). For example, if the speaker element 110 includes an air conduction speaker, the air conduction microphone can receive the echo signal transmitted by the air conduction speaker (transmitted by air conduction). For another example, if the speaker element 110 includes a bone conduction speaker, the air conduction microphone can simultaneously receive the mechanical vibration transmitted by the bone conduction speaker and the echo signal transmitted by the bone conduction speaker through the air conduction pathway. In some embodiments, the microphone element 120 can include a microphone diaphragm and other electronic components. After the mechanical vibration of the voice signal source is transmitted to the microphone diaphragm, it will cause the microphone diaphragm to generate corresponding mechanical vibrations. The electronic components can convert the mechanical vibration signal into a signal containing voice information (e.g., an electrical signal). In some embodiments, the microphone element 120 may include but is not limited to a ribbon microphone, a micro-electromechanical system (MEMS) microphone, a dynamic microphone, a piezoelectric microphone, a capacitive microphone, a carbon microphone, an analog microphone, a digital microphone, etc., or any combination thereof. For another example, the bone conduction microphone may include an omnidirectional microphone, a unidirectional microphone, a bidirectional microphone, a cardioid microphone, etc., or any combination thereof.

在一些實施例中,當揚聲器元件110和麥克風元件120同時工作時,麥克風元件120可以感知揚聲器元件110產生的第一機械振動和語音信號源產生的第二機械振動。回應於第一機械振動,麥克風元件120可以產生第三機械振動並將第三機械振動轉化為第一信號。回應於第二機械振動,麥克風元件120可以產生第四機械振動並將第四機械振動轉化為第二信號。在一些實施例中,可以將揚聲器元件110稱為回聲信號源。在一些實施例中,當揚聲器元件110和麥克風元件120同時工作時,在一定頻率範圍內,第一機械振動的強度與第一信號的強度的比值大於第二機械振動的強度與第二信號的強度的比值。頻率範圍可以包括200Hz~10kHz、或200Hz~5000Hz、或200Hz~2000Hz、或200Hz~1000Hz等。 In some embodiments, when the speaker element 110 and the microphone element 120 work simultaneously, the microphone element 120 can sense the first mechanical vibration generated by the speaker element 110 and the second mechanical vibration generated by the voice signal source. In response to the first mechanical vibration, the microphone element 120 can generate a third mechanical vibration and convert the third mechanical vibration into a first signal. In response to the second mechanical vibration, the microphone element 120 can generate a fourth mechanical vibration and convert the fourth mechanical vibration into a second signal. In some embodiments, the speaker element 110 can be referred to as an echo signal source. In some embodiments, when the speaker element 110 and the microphone element 120 work simultaneously, within a certain frequency range, the ratio of the intensity of the first mechanical vibration to the intensity of the first signal is greater than the ratio of the intensity of the second mechanical vibration to the intensity of the second signal. The frequency range may include 200Hz~10kHz, or 200Hz~5000Hz, or 200Hz~2000Hz, or 200Hz~1000Hz, etc.

固定元件130可以對揚聲器元件110和麥克風元件120起到支撐作用。在一些實施例中,固定元件130可以包括弧形的彈性部件,能夠形成向弧形 中部回彈的力,以便能夠與人體頭骨穩定接觸。在一些實施例中,固定元件130可以包括一個或多個連接件。一個或多個連接件可以連接揚聲器元件110和/或麥克風元件120。在一些實施例中,固定元件130可以實現雙耳式佩戴。例如,固定元件130兩端可以分別與兩組揚聲器元件110固定連接。當使用者佩戴聲學輸入輸出設備100時,固定元件130可以將兩組揚聲器元件110分別固定在使用者的左、右耳朵附近。在一些實施例中,固定元件130也可以實現單耳式佩戴。例如,固定元件130可以僅與一組揚聲器元件110固定連接。當使用者佩戴聲學輸入輸出設備100時,固定元件130可以將揚聲器元件110固定在使用者一側的耳朵附近。在一些實施例中,固定元件130可以是眼鏡(例如,墨鏡、擴增實境眼鏡、虛擬實境眼鏡)、頭盔、發帶等中的一個或多個的任意組合,在此不作限定。 The fixing element 130 can support the speaker element 110 and the microphone element 120. In some embodiments, the fixing element 130 can include an arc-shaped elastic component that can form a force that rebounds toward the middle of the arc so as to be in stable contact with the human skull. In some embodiments, the fixing element 130 can include one or more connectors. One or more connectors can connect the speaker element 110 and/or the microphone element 120. In some embodiments, the fixing element 130 can be worn in both ears. For example, the two ends of the fixing element 130 can be fixedly connected to two sets of speaker elements 110 respectively. When the user wears the acoustic input and output device 100, the fixing element 130 can fix the two sets of speaker elements 110 near the left and right ears of the user respectively. In some embodiments, the fixing element 130 can also be worn in a single ear. For example, the fixing element 130 can be fixedly connected to only one set of speaker elements 110. When the user wears the acoustic input and output device 100, the fixing element 130 can fix the speaker element 110 near one side of the user's ear. In some embodiments, the fixing element 130 can be any combination of one or more of glasses (e.g., sunglasses, augmented reality glasses, virtual reality glasses), a helmet, a headband, etc., which is not limited here.

以上對聲學輸入輸出設備結構的描述僅僅是具體的示例,不應被視為是唯一可行的實施方案。顯然,對於本領域的專業人員來說,在瞭解聲學輸入輸出設備100的基本原理後,可能在不背離這一原理的情況下,對實施聲學輸入輸出設備100的具體方式與步驟進行形式和細節上的各種修正和改變,但是這些修正和改變仍在以上描述的範圍之內。例如,聲學輸入輸出設備100可以包括一個或多個處理器,處理器可以執行一個或多個聲音信號處理演算法。聲音信號處理演算法可以對聲音信號進行修正或強化。例如對聲音信號進行降噪、聲音回饋抑制、寬動態範圍壓縮、自動增益控制、主動環境識別、主動抗噪、定向處理、耳鳴處理、多通道寬動態範圍壓縮、主動嘯叫抑制、音量控制,或其它類似的,或以上任意組合的處理,這些修正和改變仍在本發明的申請專利範圍保護範圍之內。又例如,聲學輸入輸出設備100可以包括一個或多個感測器,例如溫度感測器、濕度感測器、速度感測器、位移感測器等。該感測器可以採集使用者資訊或環境資訊。 The above description of the structure of the acoustic input and output device is only a specific example and should not be regarded as the only feasible implementation scheme. Obviously, for professionals in this field, after understanding the basic principle of the acoustic input and output device 100, it is possible to make various modifications and changes in form and details to the specific methods and steps of implementing the acoustic input and output device 100 without deviating from this principle, but these modifications and changes are still within the scope of the above description. For example, the acoustic input and output device 100 may include one or more processors, and the processors may execute one or more sound signal processing algorithms. The sound signal processing algorithm can modify or enhance the sound signal. For example, the sound signal is subjected to noise reduction, sound feedback suppression, wide dynamic range compression, automatic gain control, active environmental recognition, active anti-noise, directional processing, tinnitus processing, multi-channel wide dynamic range compression, active howling suppression, volume control, or other similar or any combination of the above processing, and these modifications and changes are still within the scope of protection of the patent application of the present invention. For another example, the acoustic input and output device 100 may include one or more sensors, such as a temperature sensor, a humidity sensor, a speed sensor, a displacement sensor, etc. The sensor may collect user information or environmental information.

圖2A和圖2B是本發明一些實施例所示的聲學輸入輸出設備的結 構示意圖。結合圖2A和圖2B所示,在一些實施例中,聲學輸入輸出設備200可以為一種耳夾式耳機,耳夾式耳機可以包括耳機芯210、固定元件230、控制電路240和電池270。耳機芯210可以包括揚聲器元件(圖中未示出)和麥克風元件(圖中未示出)。固定元件可以包括耳掛231、耳機殼體232、電路外殼233和後掛234。耳機殼體232和電路外殼233可分別設置在耳掛231的兩端,後掛234可進一步設置在電路外殼233的離耳掛231較遠一端。耳機殼體232可以用來容納不同的耳機芯。電路外殼233可用於容納控制電路260和電池270。後掛234的兩端可分別連接到相應的電路外殼233上。耳掛231可以是指使用者佩戴聲學輸入輸出設備200時,將耳夾式耳機懸掛在使用者耳朵上的結構,並將耳機殼體232和耳機芯210固定在相對於使用者耳朵的預定位置。 FIG. 2A and FIG. 2B are schematic diagrams of the structure of the acoustic input-output device shown in some embodiments of the present invention. In combination with FIG. 2A and FIG. 2B, in some embodiments, the acoustic input-output device 200 may be an ear clip-type earphone, and the ear clip-type earphone may include an earphone core 210, a fixing element 230, a control circuit 240, and a battery 270. The earphone core 210 may include a speaker element (not shown in the figure) and a microphone element (not shown in the figure). The fixing element may include an ear hook 231, an earphone housing 232, a circuit housing 233, and a back hook 234. The earphone housing 232 and the circuit housing 233 can be respectively arranged at the two ends of the ear hook 231, and the back hook 234 can be further arranged at the end of the circuit housing 233 farther from the ear hook 231. The earphone housing 232 can be used to accommodate different earphone cores. The circuit housing 233 can be used to accommodate the control circuit 260 and the battery 270. The two ends of the back hook 234 can be respectively connected to the corresponding circuit housing 233. The ear hook 231 can refer to a structure for hanging the ear clip-type earphone on the user's ear when the user wears the acoustic input and output device 200, and fixing the earphone housing 232 and the earphone core 210 at a predetermined position relative to the user's ear.

在一些實施例中,耳掛231可以包括彈性金屬線。彈性金屬絲可以被配置為使耳掛231保持與使用者耳朵相匹配的形狀,並且具有一定的彈性,使使用者佩戴耳夾式耳機時,可根據使用者的耳朵形狀和頭部形狀發生一定的彈性變形,以適應不同耳形和頭部形狀的使用者。在一些實施例中,彈性金屬線可由具有良好變形恢復能力的記憶合金製成。即使耳掛231因外力而變形,當外力被去除時,它也可能恢復到原來的形狀,從而延長了耳夾式耳機的使用壽命。在一些實施例中,彈性金屬線也可以由非記憶合金製成。可以在彈性金屬線中提供導線,以便在耳機芯210和其它部件(例如控制電路260、電池270等)之間建立電連接,以便於為耳機芯210提供電源和資料傳輸。在一些實施例中,耳鉤231還可包括保護套管236和與保護套管236一體形成的外殼保護器237。 In some embodiments, the ear hook 231 may include an elastic metal wire. The elastic metal wire may be configured to keep the ear hook 231 in a shape that matches the user's ear and has a certain elasticity, so that when the user wears the ear clip earphone, it may undergo a certain elastic deformation according to the user's ear shape and head shape to adapt to users with different ear shapes and head shapes. In some embodiments, the elastic metal wire may be made of a memory alloy with good deformation recovery ability. Even if the ear hook 231 is deformed by an external force, it may return to its original shape when the external force is removed, thereby extending the service life of the ear clip earphone. In some embodiments, the elastic metal wire may also be made of a non-memory alloy. Conductive wires may be provided in the elastic metal wire to establish electrical connections between the earphone core 210 and other components (such as the control circuit 260, the battery 270, etc.) to provide power and data transmission for the earphone core 210. In some embodiments, the ear hook 231 may also include a protective sleeve 236 and a housing protector 237 formed integrally with the protective sleeve 236.

在一些實施例中,耳機殼體232可配置為容納耳機芯210。耳機芯210可以包括一個或多個揚聲器元件和/或一個或多個麥克風元件。一個或多個揚聲器元件可以包括骨傳導揚聲器元件、氣傳導揚聲器元件等。一個或多個麥克風元件可以包括骨傳導麥克風元件、氣傳導麥克風元件等。關於揚聲器元件和麥克 風元件的結構和設置可以參考本發明其他地方的描述,例如,圖3-15及其詳細描述。耳機芯210和耳機殼體232的數量可以是兩個,它們可以分別對應於使用者的左耳和右耳。 In some embodiments, the earphone housing 232 may be configured to accommodate the earphone core 210. The earphone core 210 may include one or more speaker elements and/or one or more microphone elements. The one or more speaker elements may include a bone conduction speaker element, an air conduction speaker element, etc. The one or more microphone elements may include a bone conduction microphone element, an air conduction microphone element, etc. The structure and arrangement of the speaker element and the microphone element may refer to the description elsewhere in the present invention, for example, Figures 3-15 and their detailed description. The number of earphone cores 210 and earphone housings 232 may be two, which may correspond to the left ear and the right ear of the user, respectively.

在一些實施例中,耳掛231和耳機殼體232可以單獨成型,並進一步組裝在一起,而不是直接將兩者一起成型。 In some embodiments, the ear hook 231 and the earphone housing 232 can be formed separately and further assembled together, rather than directly forming the two together.

在一些實施例中,耳機殼體232可設置有接觸表面2321。接觸表面2321可以與使用者的皮膚接觸。在使用耳夾式耳機時,由耳機芯210的一個或多個骨傳導揚聲器產生的聲波可以通過接觸表面2321轉移到耳機外殼232之外(例如,轉移到使用者的耳膜)。在一些實施例中,接觸表面2321的材料和厚度可能會影響骨傳導聲波向使用者的傳播,從而影響音質。例如,如果接觸表面2321材料彈性較大,骨傳導聲波在低頻範圍的傳輸可能優於骨傳導聲波在高頻範圍的傳輸。相反地,如果接觸表面2321材料彈性較小,骨傳導聲波在高頻範圍的傳輸可能比在低頻範圍的骨傳導聲波的傳輸要好。需要說明的是,本實施中的耳機殼體232與本發明其他實施例中的殼體均用於指代聲學輸入輸出設備200與使用者接觸的部件。 In some embodiments, the earphone housing 232 may be provided with a contact surface 2321. The contact surface 2321 may be in contact with the user's skin. When using the ear clip earphone, the sound waves generated by one or more bone conduction speakers of the earphone core 210 may be transferred to the outside of the earphone housing 232 (for example, to the user's eardrum) through the contact surface 2321. In some embodiments, the material and thickness of the contact surface 2321 may affect the propagation of the bone-conducted sound waves to the user, thereby affecting the sound quality. For example, if the material of the contact surface 2321 is more elastic, the transmission of bone-conducted sound waves in the low-frequency range may be better than the transmission of bone-conducted sound waves in the high-frequency range. On the contrary, if the contact surface 2321 material has less elasticity, the transmission of bone-conducted sound waves in the high-frequency range may be better than the transmission of bone-conducted sound waves in the low-frequency range. It should be noted that the earphone housing 232 in this embodiment and the housing in other embodiments of the present invention are used to refer to the parts of the acoustic input and output device 200 that contact the user.

圖3是本發明一些實施例所示的聲學輸入輸出設備的部分結構的截面示意圖。如圖3所示,在一些實施例中,聲學輸入輸出設備300可以包括揚聲器元件310,揚聲器元件310可以用於藉由產生第一機械振動來傳遞聲波;且骨傳導麥克風320,骨傳導麥克風320可以用於接收在語音信號源提供語音信號時所產生的第二機械振動。在一些實施例中,聲學輸入輸出設備300還可以包括固定元件330,如圖3所示,固定元件330與揚聲器元件310固定連接,當使用者佩戴聲學輸入輸出設備300時,將揚聲器元件310且骨傳導麥克風320與使用者臉部340保持接觸。在一些實施例中,當骨傳導麥克風320和揚聲器元件310同時工作時,骨傳導麥克風320可以接收第一機械振動和第二機械振動,在第一機械振動和第 二機械振動的作用下分別產生第三機械振動和第四機械振動,並且將第三機械振動和第四機械振動分別轉化為第一信號和第二信號。在一些實施例中,在一定頻率範圍內,第一機械振動的強度與第一信號的強度的比值大於第二機械振動的強度與第二信號的強度的比值。如本文中所述,第三機械振動也可以稱為骨傳導麥克風320接收到的第一機械振動,即骨傳導麥克風320接收到的回聲信號;第四機械振動也可以稱為骨傳導麥克風320接收到的第二機械振動,即骨傳導麥克風320接收到的語音信號。在一些實施例中,頻率範圍可以包括200Hz~10kHz。在一些實施例中,頻率範圍可以包括200Hz~9000Hz。在一些實施例中,頻率範圍可以包括200Hz~8000Hz。在一些實施例中,頻率範圍可以包括200Hz~6000Hz。在一些實施例中,頻率範圍可以包括200Hz~5000Hz。 FIG3 is a cross-sectional schematic diagram of a partial structure of an acoustic input-output device shown in some embodiments of the present invention. As shown in FIG3 , in some embodiments, the acoustic input-output device 300 may include a speaker element 310, which can be used to transmit sound waves by generating a first mechanical vibration; and a bone conduction microphone 320, which can be used to receive a second mechanical vibration generated when a voice signal source provides a voice signal. In some embodiments, the acoustic input-output device 300 may also include a fixing element 330, as shown in FIG3 , the fixing element 330 is fixedly connected to the speaker element 310, and when the user wears the acoustic input-output device 300, the speaker element 310 and the bone conduction microphone 320 are kept in contact with the user's face 340. In some embodiments, when the bone conduction microphone 320 and the speaker element 310 work simultaneously, the bone conduction microphone 320 can receive the first mechanical vibration and the second mechanical vibration, respectively generate the third mechanical vibration and the fourth mechanical vibration under the action of the first mechanical vibration and the second mechanical vibration, and respectively convert the third mechanical vibration and the fourth mechanical vibration into the first signal and the second signal. In some embodiments, within a certain frequency range, the ratio of the intensity of the first mechanical vibration to the intensity of the first signal is greater than the ratio of the intensity of the second mechanical vibration to the intensity of the second signal. As described herein, the third mechanical vibration may also be referred to as the first mechanical vibration received by the bone conduction microphone 320, i.e., the echo signal received by the bone conduction microphone 320; the fourth mechanical vibration may also be referred to as the second mechanical vibration received by the bone conduction microphone 320, i.e., the voice signal received by the bone conduction microphone 320. In some embodiments, the frequency range may include 200Hz~10kHz. In some embodiments, the frequency range may include 200Hz~9000Hz. In some embodiments, the frequency range may include 200Hz~8000Hz. In some embodiments, the frequency range may include 200Hz~6000Hz. In some embodiments, the frequency range may include 200Hz~5000Hz.

揚聲器元件310可以藉由產生第一機械振動來傳遞聲波,使得使用者聽到聲音。揚聲器元件310傳遞聲波的方式包括氣傳導和骨傳導。其中,通過氣傳導傳遞聲波對應的是氣傳導揚聲器元件,氣傳導揚聲器元件以波的形式通過空氣傳播著聲波,聲波經由使用者的鼓膜-聽小骨-耳蝸傳遞至聽覺神經,以使使用者能夠聽到聲音。而通過骨傳導傳遞聲波對應的是骨傳導揚聲器元件,骨傳導揚聲器元件通過與使用者臉部340接觸(例如,骨傳導揚聲器元件的殼體350與使用者臉部340接觸)將機械振動傳遞給使用者臉部340皮膚、骨骼並通過骨骼傳遞至聽覺神經,使使用者能夠聽到聲音。而無論是骨傳導揚聲器元件還是氣傳導揚聲器元件,骨傳導麥克風320會與揚聲器元件310直接或間接連接。具體的,當揚聲器元件310為骨傳導揚聲器元件時,殼體350為骨傳導揚聲器元件的傳振元件之一,骨傳導揚聲器元件中的振動元件需要與殼體350直接或間接連接以便將振動傳遞至使用者皮膚、骨骼。骨傳導麥克風320需要與殼體350直接或間接連接,以便採集使用者說話時產生的振動。在骨傳導揚聲器傳遞聲波時會引起殼體350的機械振動,殼體350又會將機械振動傳遞給骨傳導麥克風320,骨傳導麥 克風320接收到機械振動之後會產生對應的第三機械振動並且會基於第三機械振動產生含有聲音資訊的第一信號。當揚聲器元件310為氣傳導揚聲器元件時,殼體350為用於容納氣傳導揚聲器元件且骨傳導麥克風320,相當於聲學輸入輸出設備300的外殼,氣傳導揚聲器元件中的振動元件可以與殼體350直接或間接連接以固定氣傳導揚聲器元件。綜上所述,骨傳導麥克風320需要與殼體350直接或連接,以便採集使用者說話時產生的振動。在氣傳導揚聲器傳遞聲波時會引起殼體350的機械振動,殼體350又會將機械振動傳遞給骨傳導麥克風320,骨傳導麥克風320接收到機械振動之後會產生對應的第三機械振動並且會基於第三機械振動產生含有聲音資訊的第一信號。 The speaker element 310 can transmit sound waves by generating a first mechanical vibration, so that the user can hear the sound. The speaker element 310 transmits sound waves in two ways: air conduction and bone conduction. Among them, the air conduction speaker element corresponds to the air conduction speaker element, which transmits the sound waves through the air in the form of waves. The sound waves are transmitted to the auditory nerve through the user's eardrum-ossicles-ear coccyx, so that the user can hear the sound. The bone conduction speaker element corresponds to the sound wave transmitted by bone conduction. The bone conduction speaker element transmits mechanical vibration to the skin and bones of the user's face 340 by contacting the user's face 340 (for example, the housing 350 of the bone conduction speaker element contacts the user's face 340) and transmits it to the auditory nerve through the bones, so that the user can hear the sound. Whether it is a bone conduction speaker element or an air conduction speaker element, the bone conduction microphone 320 is directly or indirectly connected to the speaker element 310. Specifically, when the speaker element 310 is a bone conduction speaker element, the housing 350 is one of the vibration elements of the bone conduction speaker element. The vibration element in the bone conduction speaker element needs to be directly or indirectly connected to the housing 350 to transmit the vibration to the user's skin and bones. The bone conduction microphone 320 needs to be directly or indirectly connected to the housing 350 to collect the vibration generated when the user speaks. When the bone conduction speaker transmits sound waves, the housing 350 will be caused to vibrate mechanically, and the housing 350 will transmit the mechanical vibration to the bone conduction microphone 320. After receiving the mechanical vibration, the bone conduction microphone 320 will generate a corresponding third mechanical vibration and generate a first signal containing sound information based on the third mechanical vibration. When the speaker element 310 is an air conduction speaker element, the housing 350 is used to accommodate the air conduction speaker element and the bone conduction microphone 320, which is equivalent to the outer shell of the acoustic input and output device 300. The vibration element in the air conduction speaker element can be directly or indirectly connected to the housing 350 to fix the air conduction speaker element. In summary, the bone conduction microphone 320 needs to be directly or connected to the housing 350 in order to collect the vibrations generated when the user speaks. When the air conduction speaker transmits sound waves, it will cause mechanical vibrations in the housing 350, and the housing 350 will transmit the mechanical vibrations to the bone conduction microphone 320. After receiving the mechanical vibrations, the bone conduction microphone 320 will generate a corresponding third mechanical vibration and generate a first signal containing sound information based on the third mechanical vibration.

因此,揚聲器元件310產生的第一機械振動至少有一部分會傳遞到骨傳導麥克風320引起骨傳導麥克風320產生第三機械振動。而除了由揚聲器元件310傳遞的第一機械振動之外,骨傳導麥克風320可以與使用者臉部340皮膚接觸接收到使用者說話時產生的第二機械振動(例如,皮膚和骨骼的振動),引起骨傳導麥克風320產生第四機械振動。 Therefore, at least a portion of the first mechanical vibration generated by the speaker element 310 will be transmitted to the bone conduction microphone 320, causing the bone conduction microphone 320 to generate a third mechanical vibration. In addition to the first mechanical vibration transmitted by the speaker element 310, the bone conduction microphone 320 can be in contact with the skin of the user's face 340 to receive the second mechanical vibration (for example, vibration of the skin and bones) generated when the user speaks, causing the bone conduction microphone 320 to generate a fourth mechanical vibration.

當骨傳導麥克風320和揚聲器元件310同時工作時,例如骨傳導麥克風320在接收語音信號(例如,通過拾取人說話時皮膚等位置的振動,接收到人說話的語音信號)同時揚聲器元件310通過振動傳遞語音信號(例如,音樂),骨傳導麥克風320會同時接收到第一機械振動且第二機械振動。骨傳導麥克風320的麥克風振膜(圖中未示出)會產生分別對應於第一機械振動且第二機械振動的第三機械振動和第四機械振動,並且會將第三機械振動和第四機械振動分別轉化為第一信號和第二信號。當麥克風振膜回應於拾取到的第一機械振動產生第三機械振動時,骨傳導麥克風320會接收到除第二機械振動傳遞的語音資訊以外的第一機械振動所傳遞的語音資訊,從而會影響麥克風拾取的聲音信號的品質。為了方便描述,可以將第一機械振動所傳遞的信號稱為回聲信號(或者次 語音信號),而產生且傳遞第一機械振動的部件(例如,揚聲器元件310、殼體350)可以稱為回聲信號源(或者次語音信號源)。而第二機械振動可以稱為語音信號(或者主語音信號),產生且傳遞第二機械振動的部件(例如,使用者的聲帶、鼻腔、嘴部等)可以稱為語音信號源(或稱為主語音信號源)。圖3示出了語音信號源、回聲信號源且骨傳導麥克風的振動方向,其中,箭頭A所指的方向為第一機械振動的方向,也即回聲信號源的振動方向;箭頭B所指的方向為骨傳導麥克風的振動方向,即為第三機械振動和第四機械振動的方向;箭頭C所指的方向為第二機械振動的方向,也即語音信號源的振動方向。 When the bone conduction microphone 320 and the speaker element 310 work simultaneously, for example, the bone conduction microphone 320 receives a voice signal (for example, by picking up the vibration of the skin or other parts of the body when the person is speaking, the voice signal of the person speaking) and the speaker element 310 transmits the voice signal (for example, music) through vibration, the bone conduction microphone 320 will receive the first mechanical vibration and the second mechanical vibration at the same time. The microphone diaphragm (not shown in the figure) of the bone conduction microphone 320 will generate a third mechanical vibration and a fourth mechanical vibration corresponding to the first mechanical vibration and the second mechanical vibration respectively, and will convert the third mechanical vibration and the fourth mechanical vibration into the first signal and the second signal respectively. When the microphone diaphragm generates the third mechanical vibration in response to the first mechanical vibration picked up, the bone conduction microphone 320 will receive the voice information transmitted by the first mechanical vibration in addition to the voice information transmitted by the second mechanical vibration, thereby affecting the quality of the sound signal picked up by the microphone. For the convenience of description, the signal transmitted by the first mechanical vibration can be called an echo signal (or a secondary voice signal), and the component that generates and transmits the first mechanical vibration (for example, the speaker element 310, the housing 350) can be called an echo signal source (or a secondary voice signal source). The second mechanical vibration can be called a voice signal (or a main voice signal), and the component that generates and transmits the second mechanical vibration (for example, the user's vocal cords, nasal cavity, mouth, etc.) can be called a voice signal source (or a main voice signal source). Figure 3 shows the vibration direction of the voice signal source, the echo signal source, and the bone conduction microphone, where the direction indicated by arrow A is the direction of the first mechanical vibration, that is, the vibration direction of the echo signal source; the direction indicated by arrow B is the vibration direction of the bone conduction microphone, that is, the direction of the third mechanical vibration and the fourth mechanical vibration; the direction indicated by arrow C is the direction of the second mechanical vibration, that is, the vibration direction of the voice signal source.

基於上述原因,需要通過對聲學輸入輸出設備300進行一些設計來降低骨傳導麥克風320產生的回聲信號的強度(即第一信號的強度)。進一步的,在降低骨傳導麥克風320產生的回聲信號強度的同時,可以提高骨傳導麥克風320產生的語音信號的強度(即第二信號的強度),實現降低第一信號的強度與提高第二信號的強度的目的,使得第一機械振動的強度與第一信號的強度的比值大於第二機械振動的強度與第二信號的強度的比值,提高骨傳導麥克風產生的聲音信號的品質。 Based on the above reasons, it is necessary to reduce the intensity of the echo signal generated by the bone conduction microphone 320 (i.e., the intensity of the first signal) by designing the acoustic input and output device 300. Furthermore, while reducing the intensity of the echo signal generated by the bone conduction microphone 320, the intensity of the voice signal generated by the bone conduction microphone 320 (i.e., the intensity of the second signal) can be increased, thereby achieving the purpose of reducing the intensity of the first signal and increasing the intensity of the second signal, so that the ratio of the intensity of the first mechanical vibration to the intensity of the first signal is greater than the ratio of the intensity of the second mechanical vibration to the intensity of the second signal, thereby improving the quality of the sound signal generated by the bone conduction microphone.

圖4是本發明一些實施例所示的聲學輸入輸出設備的振動傳遞的示意圖。結合圖3和圖4所示,當聲學輸入輸出設備300中的骨傳導麥克風320和揚聲器元件310同時工作時,聲學輸入輸出設備300的機械振動傳遞模型可以等效為圖4所示的模型。具體的,語音信號源360(例如,使用者骨骼或聲帶)的機械振動(即第二機械振動)的強度為L1;回聲信號源380(例如,揚聲器元件310)的機械振動(即第一機械振動)的強度為L2;骨傳導麥克風320與語音信號源360之間可以為第一彈性連接370,第一彈性連接370的彈性係數為k1;骨傳導麥克風320與回聲信號源380之間可以為第二彈性連接390,第二彈性連接390的彈性係數k2;骨傳導麥克風320的質量為m。其中,語音信號源360與骨傳導麥克風320 之間的第一彈性連接370可以包括骨傳導麥克風320與使用者臉部340的接觸部件(例如,傳振層、金屬片、部分的殼體350等)、使用者的皮膚等。骨傳導麥克風320和回聲信號源380之間的第二彈性連接390屬於聲學輸入輸出設備300的一部分。例如,骨傳導麥克風320和回聲信號源380可以同時與殼體350物理連接,則第二彈性連接390可以包括殼體350。又例如,骨傳導麥克風320和回聲信號源380可以分別通過連接件與殼體350物理連接,則第二彈性連接390可以包括殼體350且連接件。在圖4所示的實施例中,可以假設語音信號源360的振動方向與骨傳導麥克風320的振動方向平行,回聲信號源380的振動方向與骨傳導麥克風320的振動方向平行,骨傳導麥克風可以最大程度地接收語音信號源360的振動且回聲信號源380的振動。其中,骨傳導麥克風320的振動方向可以理解為麥克風振膜振動的方向。 Fig. 4 is a schematic diagram of the vibration transmission of the acoustic input-output device shown in some embodiments of the present invention. Combining Fig. 3 and Fig. 4, when the bone conduction microphone 320 and the speaker element 310 in the acoustic input-output device 300 work simultaneously, the mechanical vibration transmission model of the acoustic input-output device 300 can be equivalent to the model shown in Fig. 4. Specifically, the intensity of the mechanical vibration (i.e., the second mechanical vibration) of the voice signal source 360 (e.g., the user's bones or vocal cords) is L1; the intensity of the mechanical vibration (i.e., the first mechanical vibration) of the echo signal source 380 (e.g., the speaker element 310) is L2; there may be a first elastic connection 370 between the bone conduction microphone 320 and the voice signal source 360, and the elastic coefficient of the first elastic connection 370 is k1; there may be a second elastic connection 390 between the bone conduction microphone 320 and the echo signal source 380, and the elastic coefficient of the second elastic connection 390 is k2; the mass of the bone conduction microphone 320 is m. The first elastic connection 370 between the voice signal source 360 and the bone conduction microphone 320 may include the contact parts between the bone conduction microphone 320 and the user's face 340 (e.g., a vibration transmission layer, a metal sheet, a part of the housing 350, etc.), the user's skin, etc. The second elastic connection 390 between the bone conduction microphone 320 and the echo signal source 380 is part of the acoustic input and output device 300. For example, the bone conduction microphone 320 and the echo signal source 380 may be physically connected to the housing 350 at the same time, and the second elastic connection 390 may include the housing 350. For another example, the bone conduction microphone 320 and the echo signal source 380 can be physically connected to the housing 350 through a connector, respectively, and the second elastic connection 390 can include the housing 350 and the connector. In the embodiment shown in FIG4 , it can be assumed that the vibration direction of the voice signal source 360 is parallel to the vibration direction of the bone conduction microphone 320, and the vibration direction of the echo signal source 380 is parallel to the vibration direction of the bone conduction microphone 320, and the bone conduction microphone can receive the vibration of the voice signal source 360 and the vibration of the echo signal source 380 to the greatest extent. Among them, the vibration direction of the bone conduction microphone 320 can be understood as the vibration direction of the microphone diaphragm.

根據圖4,可以得到骨傳導麥克風320接收到的機械振動的強度L為:

Figure 111115560-A0305-02-0019-1
According to FIG4 , the strength L of the mechanical vibration received by the bone conduction microphone 320 can be obtained as:
Figure 111115560-A0305-02-0019-1

其中,L1為骨傳導麥克風320接收到的第二機械振動的強度(即第四機械振動強度),L2為接收到的第一機械振動的強度(即第三機械振動強度),m為骨傳導麥克風320的質量。ω為信號的角頻率,信號包括語音信號和/或回聲信號。

Figure 111115560-A0305-02-0019-2
可以表示L1(即第二機械振動)對L的影響;
Figure 111115560-A0305-02-0019-3
可以表示L2(即第一機械振動)對L的影響。 Wherein, L1 is the intensity of the second mechanical vibration received by the bone conduction microphone 320 (i.e., the fourth mechanical vibration intensity), L2 is the intensity of the first mechanical vibration received (i.e., the third mechanical vibration intensity), and m is the mass of the bone conduction microphone 320. ω is the angular frequency of the signal, and the signal includes a voice signal and/or an echo signal.
Figure 111115560-A0305-02-0019-2
It can express the influence of L1 (i.e. the second mechanical vibration) on L;
Figure 111115560-A0305-02-0019-3
The influence of L2 (i.e. the first mechanical vibration) on L can be represented.

由此可以得知,第一彈性連接370的彈性係數k1越大,語音信號源360的振動強度L1對骨傳導麥克風320接收到的機械振動的強度L影響越大;第二彈性連接390的彈性係數k2越小,回聲信號源380的振動強度L2對骨傳導麥克風320接收到的機械振動的強度L影響越小,骨傳導麥克風320接收的回聲信號越小。 It can be seen that the larger the elastic coefficient k1 of the first elastic connection 370, the greater the influence of the vibration intensity L1 of the voice signal source 360 on the intensity L of the mechanical vibration received by the bone conduction microphone 320; the smaller the elastic coefficient k2 of the second elastic connection 390, the smaller the influence of the vibration intensity L2 of the echo signal source 380 on the intensity L of the mechanical vibration received by the bone conduction microphone 320, and the smaller the echo signal received by the bone conduction microphone 320.

基於公式(1)可以得知,要減小骨傳導麥克風320接收到的回聲信號,可以從多個方面對聲學輸入輸出設備進行設計,例如,盡可能增大L1和/或k1,盡可能減小L2和/或k2,以增大L1對L的影響,減小L2對L的影響,從而提高骨傳導麥克風產生的聲音信號的品質。 Based on formula (1), it can be known that in order to reduce the echo signal received by the bone conduction microphone 320, the acoustic input and output device can be designed from multiple aspects, for example, L1 and/or k1 can be increased as much as possible, and L2 and/or k2 can be reduced as much as possible to increase the influence of L1 on L and reduce the influence of L2 on L, thereby improving the quality of the sound signal generated by the bone conduction microphone.

圖5是本發明一些實施例所示的聲學輸入輸出設備的又一機械振動傳遞模型的示意圖。如圖5所示,在一些實施例中,骨傳導麥克風520可以為單軸骨傳導麥克風,單軸骨傳導麥克風的麥克風振膜僅可以在一個方向上產生振動,即麥克風振膜僅可以將該方向上的機械振動轉化為與電信號(例如,第一信號)。例如,以圖5為例,骨傳導麥克風520的振動方向為上下方向,當機械振動的方向與骨傳導麥克風520的振動方向平行時(即同為上下方向),麥克風振膜可以最大程度地將接收到的機械振動轉化為電信號(例如,第一信號和第二信號)。這裡的最大程度地將接收到的機械振動轉化為電信號可以理解為除開受阻力等影響造成的損耗(例如,機械振動經由第一彈性連接570、第二彈性連接590傳遞時會損耗一部分)之外的所有機械振動幾乎都可以被麥克風振膜接收到並轉化為電信號。當機械振動的方向與骨傳導麥克風520的振動方向垂直(即為左右方向)時,接收到的機械振動只有少部分能夠被麥克風振膜轉化為電信號,因此電信號的強度最小,也就是說,當骨傳導麥克風520的振動方向與機械振動的方向垂直時,骨傳導麥克風520產生的電信號的強度最小,產生的聲音信號的強度最小。 FIG5 is a schematic diagram of another mechanical vibration transmission model of an acoustic input/output device shown in some embodiments of the present invention. As shown in FIG5 , in some embodiments, the bone conduction microphone 520 may be a uniaxial bone conduction microphone, and the microphone diaphragm of the uniaxial bone conduction microphone can only vibrate in one direction, that is, the microphone diaphragm can only convert the mechanical vibration in this direction into an electrical signal (e.g., a first signal). For example, taking FIG5 as an example, the vibration direction of the bone conduction microphone 520 is the up-and-down direction. When the direction of the mechanical vibration is parallel to the vibration direction of the bone conduction microphone 520 (i.e., both are in the up-and-down direction), the microphone diaphragm can convert the received mechanical vibration into an electrical signal (e.g., a first signal and a second signal) to the greatest extent. Here, converting the received mechanical vibration into an electrical signal to the greatest extent can be understood as that almost all mechanical vibrations except for the loss caused by resistance and the like (for example, a part of the mechanical vibration will be lost when it is transmitted through the first elastic connection 570 and the second elastic connection 590) can be received by the microphone diaphragm and converted into electrical signals. When the direction of the mechanical vibration is perpendicular to the vibration direction of the bone conduction microphone 520 (i.e., the left-right direction), only a small part of the received mechanical vibration can be converted into an electrical signal by the microphone diaphragm, so the intensity of the electrical signal is minimal. In other words, when the vibration direction of the bone conduction microphone 520 is perpendicular to the direction of the mechanical vibration, the intensity of the electrical signal generated by the bone conduction microphone 520 is minimal, and the intensity of the generated sound signal is minimal.

基於上述原理,在一些實施例中,可以對骨傳導麥克風520的安裝位置進行設計,使得骨傳導麥克風520的振動方向與回聲信號源580(例如,圖3所示的揚聲器元件310)的振動方向(即第一機械振動方向)在一定角度範圍內,以減小骨傳導麥克風520產生的第一信號的強度,即減小骨傳導麥克風520產生的回聲信號的強度。進一步的,在一些實施例中,使得骨傳導麥克風520的振動 方向與語音信號源560(例如,圖3所示的使用者臉部340)的振動方向在一定角度範圍內,以增大骨傳導麥克風520產生的第二信號的強度,即增大骨傳導麥克風520產生的語音信號的強度。 Based on the above principle, in some embodiments, the installation position of the bone conduction microphone 520 can be designed so that the vibration direction of the bone conduction microphone 520 and the vibration direction of the echo signal source 580 (for example, the speaker element 310 shown in Figure 3) (i.e., the first mechanical vibration direction) are within a certain angle range, so as to reduce the intensity of the first signal generated by the bone conduction microphone 520, that is, reduce the intensity of the echo signal generated by the bone conduction microphone 520. Furthermore, in some embodiments, the vibration direction of the bone conduction microphone 520 and the vibration direction of the voice signal source 560 (for example, the user's face 340 shown in FIG. 3 ) are within a certain angle range to increase the strength of the second signal generated by the bone conduction microphone 520, that is, to increase the strength of the voice signal generated by the bone conduction microphone 520.

圖6是本發明一些實施例所示的聲學輸入輸出設備的振動傳遞的另一結構示意圖。如圖6所示,在一些實施例中,骨傳導麥克風620的振動方向與回聲信號源680(例如,圖3所示的揚聲器元件310)的振動方向形成的夾角可以為第一夾角α。在一些實施例中,第一夾角α可以在20度~90度的角度範圍內。在一些實施例中,第一夾角α可以在45度~90度的角度範圍內。在一些實施例中,第一夾角α可以在60度~90度的角度範圍內。在一些實施例中,第一夾角α可以在75度~90度的角度範圍內。在一些實施例中,第一夾角α可以為90度。在本實施例中,在20度~90度範圍內,第一夾角α的角度越大,表明麥克風振膜的振動方向與回聲信號源680的振動方向越接近垂直,則麥克風振膜轉化的第一信號的強度越小,當第一夾角α為90度時,麥克風振膜轉化的第一信號的強度最小,即骨傳導麥克風620產生的回聲信號的強度最小。 FIG6 is another structural schematic diagram of the vibration transmission of the acoustic input-output device shown in some embodiments of the present invention. As shown in FIG6, in some embodiments, the angle formed by the vibration direction of the bone conduction microphone 620 and the vibration direction of the echo signal source 680 (for example, the speaker element 310 shown in FIG3) can be a first angle α. In some embodiments, the first angle α can be in the angle range of 20 degrees to 90 degrees. In some embodiments, the first angle α can be in the angle range of 45 degrees to 90 degrees. In some embodiments, the first angle α can be in the angle range of 60 degrees to 90 degrees. In some embodiments, the first angle α can be in the angle range of 75 degrees to 90 degrees. In some embodiments, the first angle α can be 90 degrees. In this embodiment, within the range of 20 degrees to 90 degrees, the larger the first angle α is, the closer the vibration direction of the microphone diaphragm is to the vibration direction of the echo signal source 680, and the smaller the intensity of the first signal converted by the microphone diaphragm. When the first angle α is 90 degrees, the intensity of the first signal converted by the microphone diaphragm is the smallest, that is, the intensity of the echo signal generated by the bone conduction microphone 620 is the smallest.

在一些實施例中,根據公式(1)可以得知,語音信號源660的振動強度L1對骨傳導麥克風620接收到的機械振動的強度L影响越大,即骨傳導麥克風620接收到的語音信號源660的振動強度L1越大,也就相當於減小了回聲信號源680的振動強度L2對骨傳導麥克風620接收到的機械振動的強度L的影響。在一些實施例中,為了增大語音信號源660的振動強度L1對骨傳導麥克風620產生的聲音信號L的影響,可以設計骨傳導麥克風620的振動方向與語音信號源660的振動方向之間的夾角在一定範圍內。其中,骨傳導麥克風620的振動方向與語音信號源660的振動方向之間的夾角可以為第二夾角β。在一些實施例中,第二夾角β可以在0度85度的角度範圍內。在一些實施例中,第二夾角β可以在0度~75度的角度範圍內。在一些實施例中,第二夾角β可以在0度~60度的角度範圍內。在一 些實施例中,第二夾角β可以在0度~45度的角度範圍內。在一些實施例中,第二夾角β可以在0度~30度的角度範圍內。在一些實施例中,第二夾角β可以在0度~15度的角度範圍內。在一些實施例中,第二夾角β可以在0度~5度的角度範圍內。在一些實施例中,第二夾角β可以為0度,即骨傳導麥克風620的振動方向與語音信號源660的振動方向平行。在本實施例中,在0度~90度範圍內,第二夾角β的角度越小,表明麥克風振膜的振動方向與語音信號源660的振動方向越接近平行,由麥克風振膜轉化的第二信號的強度越大,當第二夾角β為0度時,麥克風振膜轉化的第一信號的強度最大,此時骨傳導麥克風620產生的第二信號的強度最大,即產生的語音信號強度最大。如本文所述,兩個方向之間的夾角指的是兩個方向所在的直線相交形成的最小正角。 In some embodiments, according to formula (1), the greater the influence of the vibration intensity L1 of the voice signal source 660 on the intensity L of the mechanical vibration received by the bone conduction microphone 620, that is, the greater the vibration intensity L1 of the voice signal source 660 received by the bone conduction microphone 620, the smaller the influence of the vibration intensity L2 of the echo signal source 680 on the intensity L of the mechanical vibration received by the bone conduction microphone 620. In some embodiments, in order to increase the influence of the vibration intensity L1 of the voice signal source 660 on the sound signal L generated by the bone conduction microphone 620, the angle between the vibration direction of the bone conduction microphone 620 and the vibration direction of the voice signal source 660 can be designed to be within a certain range. The angle between the vibration direction of the bone conduction microphone 620 and the vibration direction of the voice signal source 660 may be a second angle β. In some embodiments, the second angle β may be in the angle range of 0 to 85 degrees. In some embodiments, the second angle β may be in the angle range of 0 to 75 degrees. In some embodiments, the second angle β may be in the angle range of 0 to 60 degrees. In some embodiments, the second angle β may be in the angle range of 0 to 45 degrees. In some embodiments, the second angle β may be in the angle range of 0 to 30 degrees. In some embodiments, the second angle β may be in the angle range of 0 to 15 degrees. In some embodiments, the second angle β may be in the angle range of 0 to 5 degrees. In some embodiments, the second angle β can be 0 degrees, that is, the vibration direction of the bone conduction microphone 620 is parallel to the vibration direction of the voice signal source 660. In this embodiment, within the range of 0 degrees to 90 degrees, the smaller the second angle β is, the closer the vibration direction of the microphone diaphragm is to the vibration direction of the voice signal source 660, and the greater the intensity of the second signal converted by the microphone diaphragm. When the second angle β is 0 degrees, the intensity of the first signal converted by the microphone diaphragm is the largest, and at this time, the intensity of the second signal generated by the bone conduction microphone 620 is the largest, that is, the intensity of the generated voice signal is the largest. As described herein, the angle between two directions refers to the smallest positive angle formed by the intersection of the straight lines in the two directions.

需要說明的是,將第一夾角α控制在設定的角度範圍的方案與將第二夾角β控制在設定的角度範圍的方案可以結合。在一些實施例中,可以將第一夾角α設置為90度,第二夾角β設置為30度。在一些實施例中,可以將第一夾角α設置為90度,第二夾角β設置為45度。在一些實施例中,可以將第一夾角α設置為90度,第二夾角β設置為60度。在一些實施例中,可以將第一夾角α設置為45度,第二夾角β設置為30度。在一些實施例中,可以將第一夾角α設置為90度,第二夾角β設置為15度。當第一夾角α設置為90度,第二夾角β設置為0度時,圖6與圖5相同。在該實施例中,骨傳導麥克風620可以最大程度地將接收到語音信號源660的振動轉化為第二信號,並且產生的第一信號的強度最小,提高骨傳導麥克風620產生的聲音信號的品質。 It should be noted that the scheme of controlling the first angle α within a set angle range can be combined with the scheme of controlling the second angle β within a set angle range. In some embodiments, the first angle α can be set to 90 degrees, and the second angle β can be set to 30 degrees. In some embodiments, the first angle α can be set to 90 degrees, and the second angle β can be set to 45 degrees. In some embodiments, the first angle α can be set to 90 degrees, and the second angle β can be set to 60 degrees. In some embodiments, the first angle α can be set to 45 degrees, and the second angle β can be set to 30 degrees. In some embodiments, the first angle α can be set to 90 degrees, and the second angle β can be set to 15 degrees. When the first angle α is set to 90 degrees and the second angle β is set to 0 degrees, FIG. 6 is the same as FIG. 5. In this embodiment, the bone conduction microphone 620 can convert the vibration received from the voice signal source 660 into the second signal to the greatest extent, and the intensity of the generated first signal is minimized, thereby improving the quality of the sound signal generated by the bone conduction microphone 620.

圖8是本發明一些實施例所示的第二信號和第一信號的強度曲線圖。圖8示出了骨傳導麥克風基於圖4中的回聲信號源380產生的機械振動(即第一機械振動)且基於語音信號源360產生的機械振動(即第二機械振動)轉化的第一信號的強度曲線810和第二信號的強度曲線820,其中橫軸為頻率,縱軸為聲 音強度。在一些實施例中,圖8所示的第一信號和第二信號強度曲線圖是在第一夾角α為0度,第二夾角β也為0度的情況下獲取的。結合圖3、圖4和圖8可以得知,在大約0~500Hz的頻率範圍內,骨傳導麥克風320產生的第一信號的強度小於第二信號的強度。而當頻率超過500Hz之後,例如,在500Hz~10000Hz的頻率範圍內,骨傳導麥克風320產生的第一信號的強度均大於第二信號的強度,骨傳導麥克風320產生的回聲較大。因此可以通過設計骨傳導麥克風320與揚聲器元件310的安裝位置進行設計,減小骨傳導麥克風320產生的回聲信號的強度。 FIG8 is a graph of the intensity of the second signal and the first signal shown in some embodiments of the present invention. FIG8 shows an intensity curve 810 of the first signal and an intensity curve 820 of the second signal converted by the bone conduction microphone based on the mechanical vibration (i.e., the first mechanical vibration) generated by the echo signal source 380 in FIG4 and based on the mechanical vibration (i.e., the second mechanical vibration) generated by the voice signal source 360, wherein the horizontal axis is the frequency and the vertical axis is the sound intensity. In some embodiments, the intensity curves of the first signal and the second signal shown in FIG8 are obtained when the first angle α is 0 degrees and the second angle β is also 0 degrees. Combining Figures 3, 4 and 8, it can be seen that within the frequency range of about 0 to 500 Hz, the intensity of the first signal generated by the bone conduction microphone 320 is less than the intensity of the second signal. When the frequency exceeds 500 Hz, for example, within the frequency range of 500 Hz to 10000 Hz, the intensity of the first signal generated by the bone conduction microphone 320 is greater than the intensity of the second signal, and the echo generated by the bone conduction microphone 320 is larger. Therefore, the intensity of the echo signal generated by the bone conduction microphone 320 can be reduced by designing the installation position of the bone conduction microphone 320 and the speaker element 310.

例如,圖9是本發明一些實施例所示的第一信號和第二信號的又一強度曲線圖。如圖9所示,在本實施例中,對骨傳導麥克風620且回聲信號源680(例如,圖3所示的揚聲器元件310)的位置進行一定設計,使得第一夾角α為90度,第二夾角β為60度。由第一信號的強度曲線810和第一信號的強度曲線910且第二信號的強度曲線820和第二信號的強度曲線920可以得知,經過上述設計(即對第一夾角α和第二夾角β進行調整),骨傳導麥克風620產生的第一信號的強度明顯降低(如圖9所示)。與此同時,上述設計對於骨傳導麥克風620產生的第二信號強度的削弱很小或者幾乎可以忽略不計,骨傳導麥克風620產生的第一信號的強度減小的強度明顯小於第一信號的強度減小的強度,使得第一機械振動的強度與第一信號的強度的比值大於第二機械振動的強度與第二信號的強度的比值。在一些實施例中,採用上述設計之後,在0~800Hz的頻率範圍內,骨傳導麥克風620產生的第一信號的強度較小,相較於圖8而言,在更廣泛的低頻率範圍內,骨傳導麥克風620產生的第一信號的強度較小,即骨傳導麥克風620產生的回聲信號強度更小,從而能夠使使用者聽到更清晰的語音信號,有效提高聲音品質,有效提高使用者體驗。 For example, FIG9 is another intensity curve diagram of the first signal and the second signal shown in some embodiments of the present invention. As shown in FIG9, in this embodiment, the positions of the bone conduction microphone 620 and the echo signal source 680 (for example, the speaker element 310 shown in FIG3) are designed so that the first angle α is 90 degrees and the second angle β is 60 degrees. It can be seen from the intensity curve 810 of the first signal and the intensity curve 910 of the first signal and the intensity curve 820 of the second signal and the intensity curve 920 of the second signal that after the above design (i.e., adjusting the first angle α and the second angle β), the intensity of the first signal generated by the bone conduction microphone 620 is significantly reduced (as shown in FIG9). At the same time, the above design has a small or almost negligible effect on the attenuation of the second signal intensity generated by the bone conduction microphone 620. The intensity of the first signal generated by the bone conduction microphone 620 is significantly less than the intensity of the first signal, so that the ratio of the intensity of the first mechanical vibration to the intensity of the first signal is greater than the ratio of the intensity of the second mechanical vibration to the intensity of the second signal. In some embodiments, after adopting the above design, within the frequency range of 0-800 Hz, the intensity of the first signal generated by the bone conduction microphone 620 is smaller. Compared with FIG. 8 , within a wider low-frequency range, the intensity of the first signal generated by the bone conduction microphone 620 is smaller, that is, the intensity of the echo signal generated by the bone conduction microphone 620 is smaller, so that the user can hear a clearer voice signal, effectively improve the sound quality, and effectively improve the user experience.

在一些實施例中,經過對骨傳導麥克風620且回聲信號源680(例如,揚聲器元件310)的位置進行一定設計之後,使得第二信號的強度減小的幅 度明顯小於第一信號的強度減小的幅度,進而使得第二信號的強度與第一信號的強度之比可以大於閾值,提高了語音信號在骨傳導麥克風620產生的聲音信號中的占比,使得語音信號更清晰,使用者體驗更佳。在一些實施例中,第二信號的強度與第一信號的強度之比可以大於1/4。在一些實施例中,第二信號的強度與第一信號的強度之比可以大於1/3。在一些實施例中,第二信號的強度與第一信號的強度之比可以大於1/2。在一些實施例中,第二信號的強度與第一信號的強度之比可以大於2/3。 In some embodiments, after the positions of the bone conduction microphone 620 and the echo signal source 680 (e.g., the speaker element 310) are designed in a certain manner, the amplitude of the reduction of the intensity of the second signal is significantly smaller than the amplitude of the reduction of the intensity of the first signal, so that the ratio of the intensity of the second signal to the intensity of the first signal can be greater than the threshold, thereby increasing the proportion of the voice signal in the sound signal generated by the bone conduction microphone 620, making the voice signal clearer and the user experience better. In some embodiments, the ratio of the intensity of the second signal to the intensity of the first signal can be greater than 1/4. In some embodiments, the ratio of the intensity of the second signal to the intensity of the first signal can be greater than 1/3. In some embodiments, the ratio of the intensity of the second signal to the intensity of the first signal can be greater than 1/2. In some embodiments, the ratio of the strength of the second signal to the strength of the first signal may be greater than 2/3.

需要說明的是,前述一個或多個實施例中描述的通過調整第一夾角和第二夾角增大麥克風元件(例如,圖3所示的麥克風元件320)接收到的語音信號的強度,減小回聲信號的強度的方案還可以適用於氣傳導麥克風。 It should be noted that the solution described in one or more of the above embodiments of increasing the strength of the voice signal received by the microphone element (e.g., the microphone element 320 shown in FIG. 3 ) and reducing the strength of the echo signal by adjusting the first and second angles can also be applied to air conduction microphones.

在一些實施例中,單軸骨傳導麥克風僅作為示例進行說明。除此之外,骨傳導麥克風(例如,圖3所示的骨傳導麥克風320)還可以為其他類型的麥克風,例如,骨傳導麥克風320可以為二軸麥克風、三軸麥克風、振動感測器、加速度計等。 In some embodiments, a uniaxial bone conduction microphone is only used as an example for illustration. In addition, the bone conduction microphone (e.g., the bone conduction microphone 320 shown in FIG. 3 ) may also be other types of microphones, for example, the bone conduction microphone 320 may be a two-axis microphone, a three-axis microphone, a vibration sensor, an accelerometer, etc.

繼續參考圖3和圖4,在一些實施例中,骨傳導麥克風320可以為二軸麥克風,即骨傳導麥克風320可以將接收的兩個方向上的機械振動轉化為電信號。例如,圖7是根據本發明一些實施例所示的二軸麥克風計算產生電信號的示意圖。在一些實施例中,兩個方向可以具有一定夾角(即第三夾角)。第三夾角的角度範圍為0度至90度。如圖7所示,兩個方向表示為X軸方向和Y軸方向,且X軸垂直於Y軸。回聲信號源380與骨傳導麥克風X軸之間的夾角為α(e),語音信號源360與骨傳導麥克風X軸的夾角為β(s),回聲信號源380產生的回聲信號(即第一機械振動)為e(t),語音信號源360產生的語音信號(即第二機械振動)為s(t),則回聲信號源380和語音信號源360在骨傳導麥克風X軸上的振動分量為:x(t)=e(t)cos(α(e))+s(t)cos(β(s)), (2) Continuing to refer to FIG. 3 and FIG. 4, in some embodiments, the bone conduction microphone 320 can be a two-axis microphone, that is, the bone conduction microphone 320 can convert the received mechanical vibrations in two directions into electrical signals. For example, FIG. 7 is a schematic diagram of the two-axis microphone calculation and generation of electrical signals according to some embodiments of the present invention. In some embodiments, the two directions can have a certain angle (i.e., a third angle). The angle range of the third angle is 0 degrees to 90 degrees. As shown in FIG. 7, the two directions are represented as the X-axis direction and the Y-axis direction, and the X-axis is perpendicular to the Y-axis. The angle between the echo signal source 380 and the X-axis of the bone conduction microphone is α(e), the angle between the voice signal source 360 and the X-axis of the bone conduction microphone is β(s), the echo signal (i.e., the first mechanical vibration) generated by the echo signal source 380 is e(t), and the voice signal (i.e., the second mechanical vibration) generated by the voice signal source 360 is s(t), then the vibration components of the echo signal source 380 and the voice signal source 360 on the X-axis of the bone conduction microphone are: x ( t )=e(t)cos(α(e))+s(t)cos(β(s)), (2)

回聲信號源380和語音信號源360在骨傳導麥克風Y軸上的振動分量為:y(t)=e(t)sin(α(e))+s(t)sin(β(s)), (3) The vibration components of the echo signal source 380 and the voice signal source 360 on the Y axis of the bone conduction microphone are: y ( t ) = e (t) sin (α (e)) + s (t) sin (β (s)), (3)

可以通過對回聲信號源380和語音信號源360在骨傳導麥克風X軸上的振動分量x(t)且回聲信號源380和語音信號源360在骨傳導麥克風Y軸上的振動分量y(t)加權以消除骨傳導麥克風320的回聲信號,則骨傳導麥克風320的總聲音信號為:out(t)=x(t)sin(α(e))-y(t)cos(α(e))=s(t)sin(α(e)-β(s)), (4) The echo signal of the bone conduction microphone 320 can be eliminated by weighting the vibration component x(t) of the echo signal source 380 and the voice signal source 360 on the X-axis of the bone conduction microphone and the vibration component y(t) of the echo signal source 380 and the voice signal source 360 on the Y-axis of the bone conduction microphone. Then, the total sound signal of the bone conduction microphone 320 is: out ( t ) = x ( t )sin(α(e))-y(t)cos(α(e))=s(t)sin(α(e)-β(s)), (4)

其中,回聲信號源380和語音信號源360在骨傳導麥克風X軸上的振動分量x(t)對應的加權係數為sin(α(e)),回聲信號源380和語音信號源360在骨傳導麥克風Y軸上的振動分量y(t),對應的加權係數為-cos(α(e))。在一些實施例中,回聲信號源380與骨傳導麥克風X軸之間的夾角為α(e)可以在聲學輸入輸出設備裝配的時候獲取。在一些實施例中,α(e)可以通過以下過程獲取,包括可以判斷骨傳導麥克風320的當前信號是否具有語音信號s(t);在當前信號沒有語音信號s(t)時,通過以下公式(5)-(7)求得α(e)的大小。 The weighting coefficient corresponding to the vibration component x(t) of the echo signal source 380 and the voice signal source 360 on the X-axis of the bone conduction microphone is sin(α(e)), and the weighting coefficient corresponding to the vibration component y(t) of the echo signal source 380 and the voice signal source 360 on the Y-axis of the bone conduction microphone is -cos(α(e)). In some embodiments, the angle α(e) between the echo signal source 380 and the X-axis of the bone conduction microphone can be obtained when the acoustic input and output device is assembled. In some embodiments, α(e) can be obtained through the following process, including determining whether the current signal of the bone conduction microphone 320 has a voice signal s(t); when the current signal does not have a voice signal s(t), the size of α(e) is obtained by the following formulas (5)-(7).

x(t)=e(t)cos(α(e)), (5) x ( t )=e(t)cos(α(e)), (5)

y(t)=e(t)sin(α(e)), (6) y ( t )=e(t)sin(α(e)), (6)

根據公式(5)且(6),可以得到:

Figure 111115560-A0305-02-0025-4
According to formula (5) and (6), we can get:
Figure 111115560-A0305-02-0025-4

在一些實施例中,可以對x(t)且y(t)進行加權後,根據公式(7)求得α(e)。在一些實施例中,在根據公式(7)求解α(e),可以對α(e)在時間上取平滑得到較穩定的α(e)估計。 In some embodiments, x(t) and y(t) can be weighted and α(e) can be obtained according to formula (7). In some embodiments, after solving α(e) according to formula (7), α(e) can be smoothed in time to obtain a more stable α(e) estimate.

在一些實施例中,骨傳導麥克風320還可以為三軸麥克風。例如, 麥克風可以具有X軸、Y軸和Z軸,三軸麥克風產生的聲音信號可以基於語音信號s(t)和回聲信號e(t)在骨傳導麥克風的X軸、Y軸和Z軸上的分量加權計算得到。由於三軸麥克風計算產生聲音信號的原理與二軸麥克風類似,此處不再贅述。 In some embodiments, the bone conduction microphone 320 may also be a three-axis microphone. For example, the microphone may have an X-axis, a Y-axis, and a Z-axis, and the sound signal generated by the three-axis microphone may be calculated based on the weighted components of the speech signal s(t) and the echo signal e(t) on the X-axis, Y-axis, and Z-axis of the bone conduction microphone. Since the principle of calculating and generating the sound signal by the three-axis microphone is similar to that of the two-axis microphone, it will not be elaborated here.

在一些實施例中,回聲信號源380的振動方向可能不是一個單一的方向,例如,回聲信號源380的振動方向可能是沿圓弧軌跡進行擴散。在這種情況下,回聲信號源380產生的振動中不與骨傳導麥克風320的振動方向垂直的振動可以被骨傳導麥克風320接收到並轉化為第一信號,即產生回聲信號。因此,在一些實施例中,可以對揚聲器元件310且骨傳導麥克風320進行設計,使得骨傳導麥克風320與揚聲器元件310(例如,殼體350)之間的位置相對固定,以減小骨傳導麥克風320接收到的回聲信號源380傳遞的振動。 In some embodiments, the vibration direction of the echo signal source 380 may not be a single direction. For example, the vibration direction of the echo signal source 380 may be diffused along a circular arc trajectory. In this case, the vibration generated by the echo signal source 380 that is not perpendicular to the vibration direction of the bone conduction microphone 320 can be received by the bone conduction microphone 320 and converted into a first signal, that is, an echo signal is generated. Therefore, in some embodiments, the speaker element 310 and the bone conduction microphone 320 can be designed so that the position between the bone conduction microphone 320 and the speaker element 310 (for example, the housing 350) is relatively fixed to reduce the vibration transmitted by the echo signal source 380 received by the bone conduction microphone 320.

在一些實施例中,除了通過設計第一夾角α且第二夾角β之外,還可以通過改變第一彈性連接370的彈性係數k1和第二彈性連接390的彈性係數k2來實現減小回聲的目的。 In some embodiments, in addition to designing the first angle α and the second angle β, the purpose of reducing echo can also be achieved by changing the elastic coefficient k1 of the first elastic connection 370 and the elastic coefficient k2 of the second elastic connection 390.

在一些實施例中,可以通過減小骨傳導麥克風320與回聲信號源380之間的第二彈性連接390的彈性強度k2來減小骨傳導麥克風320接收到的第一機械振動(即第三機械振動)的強度。 In some embodiments, the strength of the first mechanical vibration (i.e., the third mechanical vibration) received by the bone conduction microphone 320 can be reduced by reducing the elastic strength k2 of the second elastic connection 390 between the bone conduction microphone 320 and the echo signal source 380.

圖10是本發明一些實施例所示的骨傳導麥克風與減振結構連接的截面示意圖,圖11是本發明一些實施例所示的有減振結構的聲學輸入輸出設備的截面示意圖。結合圖10和圖11所示,聲學輸入輸出設備1000可以包括骨傳導麥克風1020且揚聲器元件1010。骨傳導麥克風1020且揚聲器元件1010可以放置於同一殼體內。在一些實施例中,聲學輸入輸出設備1000還可以包括減振結構1100,骨傳導麥克風1020可以通過減振結構1100與揚聲器元件1010連接。當骨傳導麥克風1020且揚聲器元件1010同時工作時,揚聲器元件1010可以通過第一機械振動傳遞語音信號(聲波),骨傳導麥克風1020可以接收或傳遞語音信號源提 供語音信號時產生的第二機械振動以拾取語音信號。揚聲器元件1010的第一機械振動可以通過減振結構1100傳遞給骨傳導麥克風1020,則骨傳導麥克風1020在第一機械振動和第二機械振動的作用下可以產生第三機械振動和第四機械振動。減振結構1100可以減小骨傳導麥克風1020接收到的揚聲器元件1010(回聲信號源)的第一機械振動的強度,進而減小骨傳導麥克風1020產生的第一信號的強度。 FIG. 10 is a cross-sectional schematic diagram of a bone conduction microphone connected to a vibration reduction structure shown in some embodiments of the present invention, and FIG. 11 is a cross-sectional schematic diagram of an acoustic input-output device with a vibration reduction structure shown in some embodiments of the present invention. In combination with FIG. 10 and FIG. 11, the acoustic input-output device 1000 may include a bone conduction microphone 1020 and a speaker element 1010. The bone conduction microphone 1020 and the speaker element 1010 may be placed in the same housing. In some embodiments, the acoustic input-output device 1000 may also include a vibration reduction structure 1100, and the bone conduction microphone 1020 may be connected to the speaker element 1010 through the vibration reduction structure 1100. When the bone conduction microphone 1020 and the speaker element 1010 work simultaneously, the speaker element 1010 can transmit a voice signal (sound wave) through a first mechanical vibration, and the bone conduction microphone 1020 can receive or transmit a second mechanical vibration generated when a voice signal source provides a voice signal to pick up the voice signal. The first mechanical vibration of the speaker element 1010 can be transmitted to the bone conduction microphone 1020 through the vibration reduction structure 1100, and the bone conduction microphone 1020 can generate a third mechanical vibration and a fourth mechanical vibration under the action of the first mechanical vibration and the second mechanical vibration. The vibration reduction structure 1100 can reduce the intensity of the first mechanical vibration of the speaker element 1010 (echo signal source) received by the bone conduction microphone 1020, thereby reducing the intensity of the first signal generated by the bone conduction microphone 1020.

減振結構1100可以是指具有一定彈性的結構,通過其彈性來減小從回聲信號源1080傳遞的機械振動的強度。在一些實施例中,減振結構1100可以為彈性構件,以減小傳遞的機械振動強度。減振結構1100的彈性可以由減振結構的材料、厚度、結構等多方面決定。 The vibration-damping structure 1100 may refer to a structure with a certain elasticity, which reduces the intensity of the mechanical vibration transmitted from the echo signal source 1080 through its elasticity. In some embodiments, the vibration-damping structure 1100 may be an elastic component to reduce the intensity of the transmitted mechanical vibration. The elasticity of the vibration-damping structure 1100 may be determined by the material, thickness, structure, etc. of the vibration-damping structure.

在一些實施例中,減振結構1100可以由彈性模量小於第一閾值的減振材料製作而成。在一些實施例中,第一閾值可以為5000MPa。在一些實施例中,第一閾值可以為4000MPa。在一些實施例中,第一閾值可以為3000MPa。在一些實施例中,減振材料的彈性模量可以在0.01MPa~1000MPa範圍內。在一些實施例中,減振材料的彈性模量可以在0.015MPa~2500MPa範圍內。在一些實施例中,減振材料的彈性模量可以在0.02MPa~2000MPa範圍內。在一些實施例中,減振材料的彈性模量可以在0.025MPa~1500MPa範圍內。在一些實施例中,減振材料的彈性模量可以在0.03MPa~1000MPa範圍內。在一些實施例中,減振材料可以包括但不限於泡棉、塑膠(例如,但不限於高分子聚乙烯、吹塑尼龍、工程塑料等)、橡膠、矽膠等。在一些實施例中,減振材料可以為泡棉。 In some embodiments, the vibration-damping structure 1100 may be made of a vibration-damping material having an elastic modulus less than a first threshold. In some embodiments, the first threshold may be 5000 MPa. In some embodiments, the first threshold may be 4000 MPa. In some embodiments, the first threshold may be 3000 MPa. In some embodiments, the elastic modulus of the vibration-damping material may be in the range of 0.01 MPa to 1000 MPa. In some embodiments, the elastic modulus of the vibration-damping material may be in the range of 0.015 MPa to 2500 MPa. In some embodiments, the elastic modulus of the vibration-damping material may be in the range of 0.02 MPa to 2000 MPa. In some embodiments, the elastic modulus of the vibration-damping material may be in the range of 0.025MPa to 1500MPa. In some embodiments, the elastic modulus of the vibration-damping material may be in the range of 0.03MPa to 1000MPa. In some embodiments, the vibration-damping material may include but is not limited to foam, plastic (for example, but not limited to high molecular weight polyethylene, blown nylon, engineering plastics, etc.), rubber, silicone, etc. In some embodiments, the vibration-damping material may be foam.

在一些實施例中,減振結構1100可以具有一定厚度。參照圖10所示,減振結構1100的厚度可以理解為在X軸方向、Y軸方向或Z軸方向中的任意一個方向上的尺寸。在一些實施例中,減振結構1100的厚度可以在0.5mm~5mm範圍內。在一些實施例中,減振結構1100的厚度可以在1mm~4.5mm範圍內。在一 些實施例中,減振結構1100的厚度可以在1.5mm~4mm範圍內。在一些實施例中,減振結構1100的厚度可以在2mm~3.5mm範圍內。在一些實施例中,減振結構1100的厚度可以在2mm~3mm範圍內。 In some embodiments, the vibration-damping structure 1100 may have a certain thickness. Referring to FIG. 10 , the thickness of the vibration-damping structure 1100 may be understood as the dimension in any one of the X-axis direction, the Y-axis direction, or the Z-axis direction. In some embodiments, the thickness of the vibration-damping structure 1100 may be in the range of 0.5 mm to 5 mm. In some embodiments, the thickness of the vibration-damping structure 1100 may be in the range of 1 mm to 4.5 mm. In some embodiments, the thickness of the vibration-damping structure 1100 may be in the range of 1.5 mm to 4 mm. In some embodiments, the thickness of the vibration-damping structure 1100 may be in the range of 2 mm to 3.5 mm. In some embodiments, the thickness of the vibration-damping structure 1100 may be in the range of 2 mm to 3 mm.

在一些實施例中,減振結構1100的彈性可以是通過其結構上的設計來提供的。例如,減振結構1100可以是彈性結構體,即使製作減振結構1100的材料的剛度較高,也可以通過其結構來提供彈性。在一些實施例中,減振結構1100可以包括但不限於類似彈簧的結構、環狀或者類似環狀的結構等。 In some embodiments, the elasticity of the vibration-damping structure 1100 can be provided by a design on its structure. For example, the vibration-damping structure 1100 can be an elastic structure, and even if the rigidity of the material used to make the vibration-damping structure 1100 is relatively high, elasticity can be provided by its structure. In some embodiments, the vibration-damping structure 1100 can include but is not limited to a spring-like structure, a ring-shaped or ring-like structure, etc.

在一些實施例中,骨傳導麥克風1020的表面可以包括第一部分1021和第二部分1022,其中,第一部分1021可以用於與使用者臉部1040接觸以傳導語音信號源提供的第二機械振動,第二部分1022可以用於與聲學輸入輸出設備1000的其他部件連接(例如,與揚聲器元件1010連接),第二部分1022可以設置有減振結構1100,然後通過減振結構1100與揚聲器元件1010進行連接。在本實施例中,設置在揚聲器元件1010與骨傳導麥克風1020之間的減振結構1100具有一定彈性,可以減小揚聲器元件1010傳遞的第一機械振動,降低骨傳導麥克風1020接收到的第一機械振動的強度,使得骨傳導麥克風1020產生的回聲信號更小。進一步的,之所以不在第一部分1021設置減振結構1100是因為骨傳導麥克風1020表面的第一部分1021是與使用者臉部1040進行接觸以傳導第二機械振動的。例如,第一部分1021可以是靠近麥克風振膜的一側,第二機械振動表示的是語音信號源提供的語音信號,因此要儘量保證第二機械振動不被削弱。具體的,結合圖10和圖11所示,減振結構1100可以包圍骨傳導麥克風1020表面的第二部分1022,並將第一部分1021空出以便第一部分1021能夠與使用者臉部1040直接接觸。 In some embodiments, the surface of the bone conduction microphone 1020 may include a first portion 1021 and a second portion 1022, wherein the first portion 1021 may be used to contact the user's face 1040 to conduct the second mechanical vibration provided by the voice signal source, and the second portion 1022 may be used to connect with other components of the acoustic input and output device 1000 (for example, connected with the speaker element 1010), and the second portion 1022 may be provided with a vibration-damping structure 1100 and then connected to the speaker element 1010 through the vibration-damping structure 1100. In this embodiment, the vibration reduction structure 1100 disposed between the speaker element 1010 and the bone conduction microphone 1020 has a certain elasticity, which can reduce the first mechanical vibration transmitted by the speaker element 1010, reduce the intensity of the first mechanical vibration received by the bone conduction microphone 1020, and make the echo signal generated by the bone conduction microphone 1020 smaller. Furthermore, the vibration reduction structure 1100 is not disposed on the first portion 1021 because the first portion 1021 of the surface of the bone conduction microphone 1020 is in contact with the user's face 1040 to conduct the second mechanical vibration. For example, the first part 1021 may be a side close to the microphone diaphragm, and the second mechanical vibration represents the voice signal provided by the voice signal source, so it is necessary to ensure that the second mechanical vibration is not weakened as much as possible. Specifically, in combination with Figures 10 and 11, the vibration reduction structure 1100 may surround the second part 1022 of the surface of the bone conduction microphone 1020, and leave the first part 1021 empty so that the first part 1021 can directly contact the user's face 1040.

在一些實施例中,減振結構1100可以通過粘膠連接在骨傳導麥克風表面的第二部分1022。在一些實施例中,減振結構1100還可以通過焊接、卡接、 鉚接、螺紋連接(例如,通過螺釘、螺絲、螺杆、螺栓等部件進行連接)、卡箍連接、銷連接、楔鍵連接、一體成型的方式與骨傳導麥克風1020固定。 In some embodiments, the vibration-damping structure 1100 can be connected to the second portion 1022 of the surface of the bone conduction microphone by adhesive. In some embodiments, the vibration-damping structure 1100 can also be fixed to the bone conduction microphone 1020 by welding, clamping, riveting, threaded connection (for example, connected by components such as screws, screws, screw rods, bolts, etc.), clamp connection, pin connection, wedge key connection, or integral molding.

在一些實施例中,骨傳導麥克風1020的表面的第一部分1021可以設置有傳振層1023。由於骨傳導麥克風1020剛度較大,如果第一部分1021直接與使用者臉部1040接觸的話可能讓使用者感覺到不適,會降低使用者體驗,在第一部分1021設置傳振層1023之後,與使用者接觸時觸感更良好,能夠有效提高使用者使用體驗。 In some embodiments, the first part 1021 of the surface of the bone conduction microphone 1020 may be provided with a vibration transmission layer 1023. Since the bone conduction microphone 1020 is relatively rigid, if the first part 1021 directly contacts the user's face 1040, the user may feel uncomfortable, which will reduce the user experience. After the first part 1021 is provided with the vibration transmission layer 1023, the touch is better when in contact with the user, which can effectively improve the user experience.

在一些實施例中,傳振層1023需要保持一定的彈性,既能夠減少第二機械振動在傳導過程中的損失,也可以保證使用者帶上聲學輸入輸出設備1000之後觸感良好。在一些實施例中,如果傳振層1023的材料的彈性模量過小,那麼說明傳振層1023的材料的彈性較小,會減弱第二機械振動的強度。因此,在一些實施例中,製作傳振層1023的材料的彈性模量可以大於第二閾值。在一些實施例中,第二閾值可以為0.01Mpa。在一些實施例中,第二閾值可以為0.015Mpa。在一些實施例中,第二閾值可以為0.02Mpa。在一些實施例中,第二閾值可以為0.025Mpa。在一些實施例中,第二閾值可以為0.03Mpa。在一些實施例中,傳振層1023的彈性模量可以在0.03MPa~3000MPa範圍內。在一些實施例中,傳振層1023的彈性模量可以在5MPa~2000MPa範圍內。在一些實施例中,傳振層1023的彈性模量可以在10MPa~1500MPa範圍內。在一些實施例中,傳振層1023的彈性模量可以在10MPa~1000MPa範圍內。在一些實施例中,製作傳振層1023的材料可以為矽膠(矽膠的彈性模量為10Mpa)、橡膠或塑膠(塑膠的彈性模量為1000Mpa)。 In some embodiments, the vibration transmission layer 1023 needs to maintain a certain elasticity, which can not only reduce the loss of the second mechanical vibration in the conduction process, but also ensure that the user has a good touch after wearing the acoustic input and output device 1000. In some embodiments, if the elastic modulus of the material of the vibration transmission layer 1023 is too small, it means that the elasticity of the material of the vibration transmission layer 1023 is relatively small, which will weaken the intensity of the second mechanical vibration. Therefore, in some embodiments, the elastic modulus of the material used to make the vibration transmission layer 1023 can be greater than the second threshold. In some embodiments, the second threshold can be 0.01Mpa. In some embodiments, the second threshold can be 0.015Mpa. In some embodiments, the second threshold can be 0.02Mpa. In some embodiments, the second threshold value may be 0.025 MPa. In some embodiments, the second threshold value may be 0.03 MPa. In some embodiments, the elastic modulus of the vibration transmission layer 1023 may be in the range of 0.03 MPa to 3000 MPa. In some embodiments, the elastic modulus of the vibration transmission layer 1023 may be in the range of 5 MPa to 2000 MPa. In some embodiments, the elastic modulus of the vibration transmission layer 1023 may be in the range of 10 MPa to 1500 MPa. In some embodiments, the elastic modulus of the vibration transmission layer 1023 may be in the range of 10 MPa to 1000 MPa. In some embodiments, the material used to make the vibration transmission layer 1023 can be silicone (the elastic modulus of silicone is 10Mpa), rubber or plastic (the elastic modulus of plastic is 1000Mpa).

在一些實施例中,可以通過降低傳振層1023的厚度來減小第二機械振動在傳導過程中的損耗,當傳振層1023厚度較薄時,即使製作傳振層1023的材料的彈性模量較小,第二機械振動的強度也不會大幅度地被損耗。在一些實施 例中,傳振層1023的厚度可以小於30mm。在一些實施例中,傳振層1023的厚度可以小於25mm。在一些實施例中,傳振層1023的厚度可以小於20mm。在一些實施例中,傳振層1023的厚度可以小於15mm。在一些實施例中,傳振層1023的厚度可以小於10mm。在一些實施例中,傳振層1023的厚度可以小於5mm。在一些實施例中,可以採用厚度為5mm的橡膠或矽膠製作成傳振層1023,保證良好觸感的同時還能夠保證骨傳導麥克風1020接收到的第二機械振動的強度。 In some embodiments, the loss of the second mechanical vibration during the conduction process can be reduced by reducing the thickness of the vibration transmission layer 1023. When the thickness of the vibration transmission layer 1023 is thin, even if the elastic modulus of the material making the vibration transmission layer 1023 is small, the strength of the second mechanical vibration will not be greatly lost. In some embodiments, the thickness of the vibration transmission layer 1023 can be less than 30 mm. In some embodiments, the thickness of the vibration transmission layer 1023 can be less than 25 mm. In some embodiments, the thickness of the vibration transmission layer 1023 can be less than 20 mm. In some embodiments, the thickness of the vibration transmission layer 1023 can be less than 15 mm. In some embodiments, the thickness of the vibration transmission layer 1023 can be less than 10 mm. In some embodiments, the thickness of the vibration transmission layer 1023 may be less than 5 mm. In some embodiments, the vibration transmission layer 1023 may be made of rubber or silicone with a thickness of 5 mm, which can ensure a good touch while also ensuring the strength of the second mechanical vibration received by the bone conduction microphone 1020.

需要說明的是,以上對於描述的關於的聲學輸入輸出設備1000的實施例既適用於骨傳導揚聲器元件,也適用於氣傳導揚聲器元件。例如,當為骨傳導揚聲器元件時,殼體1050可以為骨傳導揚聲器元件的一部分,骨傳導麥克風1020可以通過減振結構1100與骨傳導揚聲器元件的殼體進行連接。當為氣傳導揚聲器元件時,氣傳導揚聲器元件與骨傳導麥克風1020可以均與殼體連接(例如,振膜與殼體連接,骨傳導麥克風1020與殼體連接),骨傳導麥克風1020與殼體之間還設置有減振結構。 It should be noted that the above-described embodiment of the acoustic input/output device 1000 is applicable to both bone conduction speaker elements and air conduction speaker elements. For example, in the case of a bone conduction speaker element, the housing 1050 may be a part of the bone conduction speaker element, and the bone conduction microphone 1020 may be connected to the housing of the bone conduction speaker element via the vibration-damping structure 1100. When it is an air conduction speaker element, the air conduction speaker element and the bone conduction microphone 1020 can both be connected to the housing (for example, the diaphragm is connected to the housing, and the bone conduction microphone 1020 is connected to the housing), and a vibration reduction structure is also provided between the bone conduction microphone 1020 and the housing.

在一些實施例中,可以通過增大聲學輸入輸出設備1000與使用者接觸部分受到的夾緊力來提高骨傳導麥克風接收到的第二機械振動(即第四機械振動)的強度。可以理解的是,當聲學輸入輸出設備1000與使用者接觸部分(例如,使用者臉部1040)接觸越緊密,第二機械振動在傳遞過程中損耗越少,但如果聲學輸入輸出設備1000與使用者接觸部分受到的夾緊力較大,則使用者會感覺到疼痛,使用體驗較差。因此,需要將夾緊力控制在一定範圍內。在一些實施例中,當揚聲器元件1010為氣傳導揚聲器元件時,即聲學輸入輸出設備1000通過氣傳導揚聲器元件向使用者傳遞聲音信號,並通過骨傳導麥克風1020接收使用者的語音信號,在這種情況下,夾緊力可以設置在0.001N~0.3N範圍內。在一些實施例中,夾緊力可以設置在0.0025N~0.25N範圍內。在一些實施例中,夾緊力可以設置在0.005N~0.15N範圍內。在一些實施例中,夾緊力可以設置在 0.0075N~0.1N範圍內。在一些實施例中,夾緊力可以設置在0.01N~0.05N範圍內。在一些實施例中,由於骨傳導揚聲器元件是通過將振動元件產生的機械振動傳遞經由殼體傳遞給使用者臉部使使用者聽到聲音,因此當揚聲器元件1010為骨傳導揚聲器元件時,夾緊力有所不同。例如,當聲學輸入輸出設備1000的揚聲器元件1010包括骨傳導揚聲器元件時,如果夾緊力過小,骨傳導揚聲器元件傳遞給使用者的機械振動的強度也會過小,即聲學輸入輸出設備1000傳遞給使用者的聲音的音量偏小。因此,為了保證使用者接收到的機械振動的強度,在一些實施例中,當聲學輸入輸出設備1000的揚聲器元件1010包括骨傳導揚聲器元件時,需要將夾緊力設置在一定範圍內。在一些實施例中,夾緊力可以設置在0.01N~2.5N範圍內。在一些實施例中,夾緊力可以設置在0.025N~2N範圍內。在一些實施例中,夾緊力可以設置在0.05N~1.5N範圍內。在一些實施例中,夾緊力可以設置在0.075N~1N範圍內。在一些實施例中,夾緊力可以設置在0.1N~0.5N範圍內。 In some embodiments, the intensity of the second mechanical vibration (i.e., the fourth mechanical vibration) received by the bone conduction microphone can be increased by increasing the clamping force between the acoustic input and output device 1000 and the user's contact part. It can be understood that the closer the acoustic input and output device 1000 is in contact with the user's contact part (e.g., the user's face 1040), the less the second mechanical vibration is lost during the transmission process. However, if the clamping force between the acoustic input and output device 1000 and the user's contact part is large, the user will feel pain and the user experience will be poor. Therefore, the clamping force needs to be controlled within a certain range. In some embodiments, when the speaker element 1010 is an air conduction speaker element, that is, the acoustic input output device 1000 transmits sound signals to the user through the air conduction speaker element and receives the user's voice signals through the bone conduction microphone 1020, in this case, the clamping force can be set within the range of 0.001N~0.3N. In some embodiments, the clamping force can be set within the range of 0.0025N~0.25N. In some embodiments, the clamping force can be set within the range of 0.005N~0.15N. In some embodiments, the clamping force can be set within the range of 0.0075N~0.1N. In some embodiments, the clamping force can be set within the range of 0.01N to 0.05N. In some embodiments, since the bone conduction speaker element transmits the mechanical vibration generated by the vibration element to the user's face through the housing so that the user can hear the sound, the clamping force is different when the speaker element 1010 is a bone conduction speaker element. For example, when the speaker element 1010 of the acoustic input-output device 1000 includes a bone conduction speaker element, if the clamping force is too small, the intensity of the mechanical vibration transmitted to the user by the bone conduction speaker element will also be too small, that is, the volume of the sound transmitted to the user by the acoustic input-output device 1000 is too small. Therefore, in order to ensure the intensity of the mechanical vibration received by the user, in some embodiments, when the speaker element 1010 of the acoustic input and output device 1000 includes a bone conduction speaker element, the clamping force needs to be set within a certain range. In some embodiments, the clamping force can be set within the range of 0.01N~2.5N. In some embodiments, the clamping force can be set within the range of 0.025N~2N. In some embodiments, the clamping force can be set within the range of 0.05N~1.5N. In some embodiments, the clamping force can be set within the range of 0.075N~1N. In some embodiments, the clamping force can be set within the range of 0.1N~0.5N.

在一些實施例中,揚聲器元件1010與骨傳導麥克風1020之間可以是直接連接,例如,骨傳導麥克風1020直接與揚聲器元件1010的殼體1050(骨傳導揚聲器元件的殼體)連接且容納在殼體1050內。在一些實施例中,骨傳導麥克風與揚聲器元件可以是間接連接。 In some embodiments, the speaker element 1010 and the bone conduction microphone 1020 may be directly connected, for example, the bone conduction microphone 1020 is directly connected to the housing 1050 (housing of the bone conduction speaker element) of the speaker element 1010 and is accommodated in the housing 1050. In some embodiments, the bone conduction microphone and the speaker element may be indirectly connected.

圖12是本發明一些實施例所示的聲學輸入輸出設備的截面示意圖。在一些實施例中,聲學輸入輸出設備1200包括揚聲器元件1210和骨傳導麥克風1220。揚聲器元件1210為骨傳導揚聲器元件。揚聲器元件1210可以包括殼體1250和與殼體1250連接的用於在傳遞聲波中產生第一機械振動的振動元件1211。骨傳導麥克風1220與殼體1250連接。如圖12所示,振動元件1211可以包括傳振片1213、磁路元件1215和線圈1217(或音圈)。磁路元件1215可以用於形成磁場,線圈1217可以在該磁場中發生機械振動從而引起傳振片1213的振動。具體的,當線圈1217中通入信號電流時,線圈1217處於磁路元件1215形成的磁場中, 受到安培力的作用產生機械振動。線圈1217的振動會驅動傳振片1213產生機械振動。並且傳振片1213的機械轉動可以進一步轉遞給殼體1250,然後通過殼體1250與使用者接觸使使用者聽到聲音。 FIG. 12 is a schematic cross-sectional view of an acoustic input-output device shown in some embodiments of the present invention. In some embodiments, the acoustic input-output device 1200 includes a speaker element 1210 and a bone conduction microphone 1220. The speaker element 1210 is a bone conduction speaker element. The speaker element 1210 may include a housing 1250 and a vibration element 1211 connected to the housing 1250 for generating a first mechanical vibration in transmitting sound waves. The bone conduction microphone 1220 is connected to the housing 1250. As shown in FIG. 12, the vibration element 1211 may include a vibration plate 1213, a magnetic circuit element 1215, and a coil 1217 (or a voice coil). The magnetic circuit element 1215 can be used to form a magnetic field, and the coil 1217 can generate mechanical vibration in the magnetic field to cause the vibration of the vibration plate 1213. Specifically, when the signal current is passed through the coil 1217, the coil 1217 is in the magnetic field formed by the magnetic circuit element 1215, and is subjected to the Ampere force to generate mechanical vibration. The vibration of the coil 1217 drives the vibration plate 1213 to generate mechanical vibration. And the mechanical rotation of the vibration plate 1213 can be further transmitted to the housing 1250, and then contact with the user through the housing 1250 so that the user can hear the sound.

在一些實施例中,骨傳導麥克風1220可以設置在殼體1250的內壁上的任意位置,例如,設置在圖12所示的殼體1250下側的內壁與左側的內壁連接處。又例如,設置在殼體1250下側的內壁,不與左側或右側的內壁接觸。聲學輸入輸出設備1200可以與前述一個或多個實施例結合,例如,在圖12所示的骨傳導麥克風1220與殼體1250之間設置減振結構,減小骨傳導麥克風1220接收到的第一機械振動的強度。 In some embodiments, the bone conduction microphone 1220 can be disposed at any position on the inner wall of the housing 1250, for example, disposed at the junction of the inner wall on the lower side and the inner wall on the left side of the housing 1250 shown in FIG. 12. For another example, it is disposed on the inner wall on the lower side of the housing 1250 and does not contact the inner wall on the left or right side. The acoustic input-output device 1200 can be combined with one or more of the aforementioned embodiments, for example, a vibration reduction structure is disposed between the bone conduction microphone 1220 and the housing 1250 shown in FIG. 12 to reduce the intensity of the first mechanical vibration received by the bone conduction microphone 1220.

圖13是本發明一些實施例所示的聲學輸入輸出設備的截面示意圖。聲學輸入輸出設備1300包括揚聲器元件1310和骨傳導麥克風1320。在一些實施例中,揚聲器元件1310為氣傳導揚聲器元件,揚聲器元件1310可以包括殼體1350且振動元件1311。振動元件1311可以包括振膜1313、磁路元件1315和線圈1317。磁路元件1315可以用於形成磁場,線圈1317可以在該磁場中發生機械振動從而引起振膜1313的振動。殼體1350與振動元件1311之間具有第一連接。第一連接可以包括第一減振結構。 FIG13 is a schematic cross-sectional view of an acoustic input-output device shown in some embodiments of the present invention. The acoustic input-output device 1300 includes a speaker element 1310 and a bone conduction microphone 1320. In some embodiments, the speaker element 1310 is an air conduction speaker element, and the speaker element 1310 may include a housing 1350 and a vibration element 1311. The vibration element 1311 may include a diaphragm 1313, a magnetic circuit element 1315, and a coil 1317. The magnetic circuit element 1315 may be used to form a magnetic field, and the coil 1317 may generate mechanical vibrations in the magnetic field to cause vibrations of the diaphragm 1313. There is a first connection between the housing 1350 and the vibration element 1311. The first connection may include a first vibration reduction structure.

氣傳導揚聲器元件在工作時,振膜1313會產生機械振動,並且由於振膜1313和殼體1350直接連接(如圖13所示),因此振膜1313振動時會引起殼體1350機械振動。與圖12所示的骨傳導揚聲器元件不同的是,氣傳導揚聲器元件不需要依靠殼體1350的振動傳遞聲波,而是依靠開設在殼體上的若干透聲孔(例如,第一透聲孔1351和第二透聲孔1352)將聲波傳遞給使用者。因此,可以在振動元件1311和殼體1350之間設置第一減振結構以減少殼體1350的機械振動,從而減小骨傳導麥克風1320接收到的殼體1350傳遞的機械振動的強度。 When the air conduction speaker element is working, the diaphragm 1313 will generate mechanical vibrations, and because the diaphragm 1313 and the housing 1350 are directly connected (as shown in FIG13 ), the vibration of the diaphragm 1313 will cause mechanical vibrations of the housing 1350. Unlike the bone conduction speaker element shown in FIG12 , the air conduction speaker element does not need to rely on the vibration of the housing 1350 to transmit sound waves, but relies on a plurality of sound-transmitting holes (e.g., the first sound-transmitting hole 1351 and the second sound-transmitting hole 1352) opened on the housing to transmit sound waves to the user. Therefore, a first vibration reduction structure may be provided between the vibration element 1311 and the housing 1350 to reduce the mechanical vibration of the housing 1350, thereby reducing the intensity of the mechanical vibration transmitted by the housing 1350 and received by the bone conduction microphone 1320.

在一些實施例中,第一減振結構可以與前述實施例中的減振結構 1100的設置方式相同或者相似,例如,可以採用與減振結構1100相同的厚度,相同的材料、相同的結構製作第一減振結構。在一些實施例中,第一減振結構可以與減振結構1100不同。例如,第一減振結構可以是具有一定彈性的條狀構件或片狀構件。條狀構件或片狀構件的兩端分別連接振膜1313和殼體1350,以降低振膜1313傳遞給殼體1350的機械振動的強度。第一減振結構還可以是環狀構件。環狀構件的中部與振膜連接,環狀構件的外側與殼體1350連接,同樣能夠降低振膜1313傳遞給殼體1350的機械振動的強度。 In some embodiments, the first vibration-damping structure may be arranged in the same or similar manner as the vibration-damping structure 1100 in the aforementioned embodiment. For example, the first vibration-damping structure may be made of the same thickness, the same material, and the same structure as the vibration-damping structure 1100. In some embodiments, the first vibration-damping structure may be different from the vibration-damping structure 1100. For example, the first vibration-damping structure may be a strip-shaped component or a sheet-shaped component with a certain elasticity. The two ends of the strip-shaped component or the sheet-shaped component are respectively connected to the diaphragm 1313 and the housing 1350 to reduce the intensity of the mechanical vibration transmitted from the diaphragm 1313 to the housing 1350. The first vibration-damping structure may also be a ring-shaped component. The middle part of the annular component is connected to the diaphragm, and the outer side of the annular component is connected to the housing 1350, which can also reduce the intensity of the mechanical vibration transmitted from the diaphragm 1313 to the housing 1350.

繼續參考圖13,在一些實施例中,殼體1350與骨傳導麥克風1320之間可以包括第二連接。第二連接可以包括第二減振結構。通過第二減振結構可以減小經由殼體1350傳遞至骨傳導麥克風1320的機械振動(即第三機械振動)的強度。 Continuing with reference to FIG. 13 , in some embodiments, a second connection may be included between the housing 1350 and the bone conduction microphone 1320. The second connection may include a second vibration damping structure. The second vibration damping structure may reduce the intensity of the mechanical vibration (i.e., the third mechanical vibration) transmitted from the housing 1350 to the bone conduction microphone 1320.

在一些實施例中,骨傳導麥克風1320與揚聲器元件1310可以分別設置在聲學輸入輸出設備的不同區域,然後在骨傳導麥克風1320與揚聲器元件1310的殼體1350之間設置第二減振結構。在一些實施例中,骨傳導麥克風1320可以單獨設置在聲學輸入輸出設備的其他區域,然後通過第二減振結構與殼體1350進行連接。以在圖17所示的實施例為例,聲學輸入輸出設備1700為單耳頭戴式耳機,骨傳導麥克風1720和揚聲器元件1710分別設置於固定元件1730兩側的兩個耳罩1731中,然後通過固定元件1730進行連接。在圖17所示的實施例中,第二連接包括固定元件1730且設置在固定元件1730兩側的耳罩1731,可以在固定元件1730、耳罩1731上設置第二減振結構。例如,在固定元件1730外套設一層減振材料作為第二減振結構。又例如,在圖18所示的實施例中,聲學輸入輸出設備1800為雙耳頭戴式耳機,耳罩1831上設置有海綿套1833,骨傳導麥克風1820設置在海綿套1833內,通過海綿套1833與揚聲器元件1810的殼體1850連接。在該實施例中,海綿套1833可以相當於第二減振結構,減小傳遞至骨傳導麥克風1820的第 一機械振動的強度。關於第二減振結構具體描述可以參見本發明其他實施例(如圖17、圖18和圖19的實施例),此處不再贅述。 In some embodiments, the bone conduction microphone 1320 and the speaker element 1310 can be respectively arranged in different areas of the acoustic input and output device, and then a second vibration-damping structure is arranged between the bone conduction microphone 1320 and the housing 1350 of the speaker element 1310. In some embodiments, the bone conduction microphone 1320 can be arranged separately in other areas of the acoustic input and output device, and then connected to the housing 1350 through the second vibration-damping structure. Taking the embodiment shown in FIG17 as an example, the acoustic input and output device 1700 is a single-ear headset, and the bone conduction microphone 1720 and the speaker element 1710 are respectively disposed in two earmuffs 1731 on both sides of the fixing element 1730, and then connected through the fixing element 1730. In the embodiment shown in FIG17, the second connection includes the fixing element 1730 and the earmuffs 1731 disposed on both sides of the fixing element 1730, and the second vibration-damping structure can be disposed on the fixing element 1730 and the earmuffs 1731. For example, a layer of vibration-damping material is disposed on the outer surface of the fixing element 1730 as the second vibration-damping structure. For another example, in the embodiment shown in FIG18, the acoustic input and output device 1800 is a binaural headset, a sponge sleeve 1833 is provided on the earmuff 1831, and the bone conduction microphone 1820 is provided in the sponge sleeve 1833, and is connected to the housing 1850 of the speaker element 1810 through the sponge sleeve 1833. In this embodiment, the sponge sleeve 1833 can be equivalent to the second vibration reduction structure, which reduces the intensity of the first mechanical vibration transmitted to the bone conduction microphone 1820. For the specific description of the second vibration reduction structure, please refer to other embodiments of the present invention (such as the embodiments of FIG17, FIG18 and FIG19), which will not be repeated here.

上述關於第二減振結構的實施例不僅適用於氣傳導揚聲器元件,也適用於骨傳導揚聲器元件。例如,圖17、圖18所示實施例中的揚聲器元件可以替換為圖12所示的骨傳導揚聲器元件。以圖17為例,骨傳導揚聲器元件和骨傳導麥克風1720分別設置於兩個耳罩1731內,在固定元件1730上仍然可以套設一層減振材料作為第二減振結構。 The above-mentioned embodiment of the second vibration-damping structure is applicable not only to air conduction speaker elements, but also to bone conduction speaker elements. For example, the speaker elements in the embodiments shown in FIG. 17 and FIG. 18 can be replaced by the bone conduction speaker elements shown in FIG. 12. Taking FIG. 17 as an example, the bone conduction speaker element and the bone conduction microphone 1720 are respectively arranged in two earmuffs 1731, and a layer of vibration-damping material can still be set on the fixing element 1730 as the second vibration-damping structure.

需要說明的是,當骨傳導麥克風如圖13所示設置在殼體內部,骨傳導麥克風與殼體直接連接時,第二減振結構與前述實施例中的減振結構相同,更多描述可以參見圖10和圖11相關內容,此處不再贅述。 It should be noted that when the bone conduction microphone is disposed inside the housing as shown in FIG13 and the bone conduction microphone is directly connected to the housing, the second vibration reduction structure is the same as the vibration reduction structure in the aforementioned embodiment. For more description, please refer to the relevant contents of FIG10 and FIG11, which will not be elaborated here.

參考圖13所示,在一些實施例中,不僅可以通過在振動元件1311與殼體1350之間增設第一減振結構來減小殼體1350的機械振動強度,還可以通過其他方式來實現該目的。在一些實施例中,可以通過減小振動元件1311的質量來降低振動元件1311振動時對殼體1350的影響,從而減小殼體1350的機械振動強度。振動元件1311可以包括振膜1313,殼體1350的機械振動是由振膜1313振動引起的,如果振動元件1311(例如,振膜1313)的質量較小,那麼振動元件1311振動時對殼體1350的影響就會變小,殼體1350產生的機械振動的強度就小。在一些實施例中,振膜1313的質量可以控制在0.001g~1g範圍內。在一些實施例中,振膜1313的質量可以控制在0.002g~0.9g範圍內。在一些實施例中,振膜1313的質量可以控制在0.003g~0.8g範圍內。在一些實施例中,振膜1313的質量可以控制在0.004g~0.7g範圍內。在一些實施例中,振膜1313的質量可以控制在0.005g~0.6g範圍內。在一些實施例中,振膜1313的質量可以控制在0.005g~0.5g範圍內。在一些實施例中,振膜1313的質量可以控制在0.005g~0.3g範圍內。 13, in some embodiments, the mechanical vibration intensity of the housing 1350 can be reduced not only by adding a first vibration reduction structure between the vibration element 1311 and the housing 1350, but also by other means. In some embodiments, the mechanical vibration intensity of the housing 1350 can be reduced by reducing the mass of the vibration element 1311 to reduce the impact of the vibration element 1311 on the housing 1350 when it vibrates. The vibration element 1311 may include a diaphragm 1313. The mechanical vibration of the housing 1350 is caused by the vibration of the diaphragm 1313. If the mass of the vibration element 1311 (for example, the diaphragm 1313) is small, then the impact of the vibration element 1311 on the housing 1350 will be smaller when it vibrates, and the intensity of the mechanical vibration generated by the housing 1350 will be small. In some embodiments, the mass of the diaphragm 1313 can be controlled within the range of 0.001g~1g. In some embodiments, the mass of the diaphragm 1313 can be controlled within the range of 0.002g~0.9g. In some embodiments, the mass of the diaphragm 1313 can be controlled within the range of 0.003g~0.8g. In some embodiments, the mass of the diaphragm 1313 can be controlled within the range of 0.004g~0.7g. In some embodiments, the mass of the diaphragm 1313 can be controlled within the range of 0.005g~0.6g. In some embodiments, the mass of the diaphragm 1313 can be controlled within the range of 0.005g~0.5g. In some embodiments, the mass of the diaphragm 1313 can be controlled within the range of 0.005g~0.3g.

類似的,如果殼體1350的質量遠大於振膜1313的質量,那麼振膜 1313的機械振動對於殼體1350的影響也較小。因此,在一些實施例中,可以通過增大殼體1350的質量來減小殼體1350的機械振動器強度。在一些實施例中,殼體1350的質量可以控制在2g~20g範圍內。在一些實施例中,殼體1350的質量可以控制在3g~15g範圍內。在一些實施例中,殼體1350的質量可以控制在4g~10g範圍內。在一些實施例中,可以控制殼體1350的質量與振膜1313的質量之比,使得殼體1350的質量遠大於振膜1313的質量,減小振膜1313的機械振動對於殼體1350的影響。在一些實施例中,殼體1350的質量與振膜1313的質量之比可以控制在10~100範圍內。在一些實施例中,殼體1350的質量與振膜1313的質量之比可以控制在15~80範圍內。在一些實施例中,殼體1350的質量與振膜1313的質量之比可以控制在20~60範圍內。在一些實施例中,殼體1350的質量與振膜1313的質量之比可以控制在25~50範圍內。在一些實施例中,殼體1350的質量與振膜1313的質量之比可以控制在30~50範圍內。 Similarly, if the mass of the housing 1350 is much greater than the mass of the diaphragm 1313, the mechanical vibration of the diaphragm 1313 will have less impact on the housing 1350. Therefore, in some embodiments, the mechanical vibrator strength of the housing 1350 can be reduced by increasing the mass of the housing 1350. In some embodiments, the mass of the housing 1350 can be controlled within a range of 2g to 20g. In some embodiments, the mass of the housing 1350 can be controlled within a range of 3g to 15g. In some embodiments, the mass of the housing 1350 can be controlled within a range of 4g to 10g. In some embodiments, the ratio of the mass of the housing 1350 to the mass of the diaphragm 1313 can be controlled so that the mass of the housing 1350 is much greater than the mass of the diaphragm 1313, thereby reducing the influence of the mechanical vibration of the diaphragm 1313 on the housing 1350. In some embodiments, the ratio of the mass of the housing 1350 to the mass of the diaphragm 1313 can be controlled within a range of 10 to 100. In some embodiments, the ratio of the mass of the housing 1350 to the mass of the diaphragm 1313 can be controlled within a range of 15 to 80. In some embodiments, the ratio of the mass of the housing 1350 to the mass of the diaphragm 1313 can be controlled within a range of 20 to 60. In some embodiments, the ratio of the mass of the housing 1350 to the mass of the diaphragm 1313 can be controlled within a range of 25 to 50. In some embodiments, the ratio of the mass of the housing 1350 to the mass of the diaphragm 1313 can be controlled within a range of 30 to 50.

圖14是本發明一些實施例所示的具有兩個氣傳導揚聲器元件的聲學輸入輸出設備的截面示意圖,圖15是本發明一些實施例所示的具有兩個氣傳導揚聲器元件的又一聲學輸入輸出設備的截面示意圖。圖14和圖15所示的實施例中,揚聲器元件均為氣傳導揚聲器元件。如圖14所示,在一些實施例中,揚聲器元件1410可以包括第一振動元件1411和第二振動元件1412,第一振動元件1411包括第一振膜1413、第一磁路元件1415和第一線圈1417,第二振動元件1412包括第二振膜1414、第二磁路元件1416和第二線圈1418(或音圈)。在一些實施例中,第一振膜1413和第二振膜1414的振動方向相反。例如,圖14示出了在某一時刻下的第一振膜1413和第二振膜1414的振動方向,其中,第一振膜1413的振動方向為從上至下,第二振膜1414的振動方向為從下至上。由於使用者聽到的聲音並不來源於使用者骨骼、皮膚等感受到的振動,而是第一振膜1413且第二振膜1414通過推動空氣振動改變空氣密度,從而使使用者聽到聲音。所以在不影響氣 傳導揚聲器元件輸出的聲音信號音量的情況下,可以通過減小殼體1450且與殼體1450相連的部件(即回聲信號源)的機械振動(即第一機械振動)的強度來減小骨傳導麥克風(圖中未示出)接收的殼體1450傳遞的機械振動(即第三機械振動)的強度,進而減小骨傳導麥克風產生的第一信號的強度。此外,揚聲器元件1410中還設置有與第一振膜1413的振動方向相反的第二振膜1414。氣傳導揚聲器元件中設置了兩個振膜,第一振膜1413產生的機械振動會引起殼體1450進行振動,第二振膜1414產生的機械振動也會引起殼體1450進行振動。又由於第一振膜1413的振動方向和第二振膜1414的振動方向相反,所以在殼體上產生的兩種機械振動互相抵消,從而減小殼體的機械振動的強度。在一些實施例中,兩個振膜可以是同一個氣傳導揚聲器元件內的部件。在另一些實施例中,聲學輸入輸出設備1400可以包括第一氣傳導揚聲器元件和第二氣傳導揚聲器元件,第一振膜1413和第二振膜1414分別為第一氣傳導揚聲器元件和第二氣傳導揚聲器元件內的部件。在圖14所示的實施例中,可以認為是有兩個氣傳導揚聲器元件,分別位於殼體1450的不同的區域,每個氣傳導揚聲器元件包括一個振膜、磁路元件且線圈。 FIG. 14 is a schematic cross-sectional view of an acoustic input-output device having two air-conducting speaker elements shown in some embodiments of the present invention, and FIG. 15 is a schematic cross-sectional view of another acoustic input-output device having two air-conducting speaker elements shown in some embodiments of the present invention. In the embodiments shown in FIG. 14 and FIG. 15 , the speaker elements are both air-conducting speaker elements. As shown in FIG. 14 , in some embodiments, the speaker element 1410 may include a first vibration element 1411 and a second vibration element 1412, the first vibration element 1411 includes a first diaphragm 1413, a first magnetic circuit element 1415, and a first coil 1417, and the second vibration element 1412 includes a second diaphragm 1414, a second magnetic circuit element 1416, and a second coil 1418 (or a voice coil). In some embodiments, the first diaphragm 1413 and the second diaphragm 1414 have opposite vibration directions. For example, FIG. 14 shows the vibration directions of the first diaphragm 1413 and the second diaphragm 1414 at a certain moment, wherein the vibration direction of the first diaphragm 1413 is from top to bottom, and the vibration direction of the second diaphragm 1414 is from bottom to top. Since the sound heard by the user does not come from the vibration felt by the user's bones, skin, etc., but the first diaphragm 1413 and the second diaphragm 1414 change the air density by pushing the air to vibrate, so that the user can hear the sound. Therefore, without affecting the volume of the sound signal output by the air conduction speaker element, the strength of the mechanical vibration (i.e., the first mechanical vibration) of the housing 1450 and the component connected to the housing 1450 (i.e., the echo signal source) can be reduced to reduce the strength of the mechanical vibration (i.e., the third mechanical vibration) transmitted by the housing 1450 received by the bone conduction microphone (not shown in the figure), thereby reducing the strength of the first signal generated by the bone conduction microphone. In addition, the speaker element 1410 is also provided with a second diaphragm 1414 having a vibration direction opposite to that of the first diaphragm 1413. Two diaphragms are provided in the air conduction speaker element. The mechanical vibration generated by the first diaphragm 1413 causes the housing 1450 to vibrate, and the mechanical vibration generated by the second diaphragm 1414 also causes the housing 1450 to vibrate. Since the vibration direction of the first diaphragm 1413 is opposite to the vibration direction of the second diaphragm 1414, the two mechanical vibrations generated on the housing cancel each other out, thereby reducing the intensity of the mechanical vibration of the housing. In some embodiments, the two diaphragms may be components in the same air conduction speaker element. In other embodiments, the acoustic input-output device 1400 may include a first air conduction speaker element and a second air conduction speaker element, and the first diaphragm 1413 and the second diaphragm 1414 are components in the first air conduction speaker element and the second air conduction speaker element, respectively. In the embodiment shown in FIG. 14 , it can be considered that there are two air conduction speaker elements, which are respectively located in different areas of the housing 1450, and each air conduction speaker element includes a diaphragm, a magnetic circuit element, and a coil.

在一些實施例中,殼體1450可以包括第一腔體1455和第二腔體1456,第一振膜1413和第二振膜1414可以分別位於第一腔體1455和第二腔體1456中。殼體1450可以包括對應第一腔體1455的第一部分且對應第二腔體1456的第二部分。第一腔體1455的側壁(即殼體1450的第一部分的側壁)可以開設有第一透聲孔1451和第二透聲孔1452。在一些實施例中,第一透聲孔1451和第二透聲孔1452可以設置在殼體1450的第一部分的不同側壁上。在一些實施例中,第一透聲孔1451和第二透聲孔1452可以設置在殼體1450的第一部分的不相鄰的側壁上,即第一透聲孔1451和第二透聲孔1452可以設置在殼體1450的第一部分的對側位置(如圖14所示)。 In some embodiments, the housing 1450 may include a first cavity 1455 and a second cavity 1456, and the first diaphragm 1413 and the second diaphragm 1414 may be located in the first cavity 1455 and the second cavity 1456, respectively. The housing 1450 may include a first portion corresponding to the first cavity 1455 and a second portion corresponding to the second cavity 1456. The side wall of the first cavity 1455 (i.e., the side wall of the first portion of the housing 1450) may be provided with a first sound-transmitting hole 1451 and a second sound-transmitting hole 1452. In some embodiments, the first sound-transmitting hole 1451 and the second sound-transmitting hole 1452 may be provided on different side walls of the first portion of the housing 1450. In some embodiments, the first sound-transmitting hole 1451 and the second sound-transmitting hole 1452 may be disposed on non-adjacent side walls of the first portion of the housing 1450, that is, the first sound-transmitting hole 1451 and the second sound-transmitting hole 1452 may be disposed on opposite sides of the first portion of the housing 1450 (as shown in FIG. 14 ).

第二腔體1456(即殼體1450的第二部分的側壁)的側壁可以開設有第三透聲孔1453和第四透聲孔1454。在一些實施例中,第三透聲孔1453和第四透聲孔1454可以設置在殼體1450的第二部分的不同側壁上。在一些實施例中,第三透聲孔1453和第四透聲孔1454可以設置在殼體1450的第而部分的不相鄰的側壁上,即第三透聲孔1453和第四透聲孔1454可以設置在殼體1450的第二部分的對側位置(如圖14所示)。 The side wall of the second cavity 1456 (i.e., the side wall of the second part of the shell 1450) may be provided with a third sound-transmitting hole 1453 and a fourth sound-transmitting hole 1454. In some embodiments, the third sound-transmitting hole 1453 and the fourth sound-transmitting hole 1454 may be arranged on different side walls of the second part of the shell 1450. In some embodiments, the third sound-transmitting hole 1453 and the fourth sound-transmitting hole 1454 may be arranged on non-adjacent side walls of the second part of the shell 1450, i.e., the third sound-transmitting hole 1453 and the fourth sound-transmitting hole 1454 may be arranged on opposite sides of the second part of the shell 1450 (as shown in FIG. 14).

如圖14所示,在一些實施例中,第一透聲孔1451與第三透聲孔1453可以設置在殼體1450的同側。第二透聲孔1452與第四透聲孔1454可以設置在殼體1450的同側,以使得第一透聲孔1451發出的聲音相位與第三透聲孔1453發出的聲音相位相同,第二透聲孔1452發出的聲音相位與第四透聲孔1454發出的聲音相位相同。在本實施例中,殼體1450分為了兩個互不連通的腔體,即第一腔體1455和第二腔體1456,第一氣傳導揚聲器元件或(第一振動元件1411)和第二氣傳導揚聲器元件(或第二振動元件1412)分別位於兩個腔體中。第一腔體1455可以由第一振膜1413分為前腔和後腔,第二腔體1456可以由第二振膜1414分為前腔和後腔。第一透聲孔1451和第三透聲孔1453可以相當於第一腔體1455和第二腔體1456的前腔透聲孔,第二透聲孔1452和第四透聲孔1454可以相當於第一腔體1455和第二腔體1456的後腔透聲孔,當第一腔體1455和第二腔體1456的前腔透聲孔的聲音相位相同,且後腔透聲孔的聲音相位也相同時,兩個振膜發出的聲音相位相同,因此不會減小氣傳導的音量。 As shown in FIG. 14 , in some embodiments, the first sound-transmitting hole 1451 and the third sound-transmitting hole 1453 may be disposed on the same side of the housing 1450. The second sound-transmitting hole 1452 and the fourth sound-transmitting hole 1454 may be disposed on the same side of the housing 1450, so that the phase of the sound emitted by the first sound-transmitting hole 1451 is the same as the phase of the sound emitted by the third sound-transmitting hole 1453, and the phase of the sound emitted by the second sound-transmitting hole 1452 is the same as the phase of the sound emitted by the fourth sound-transmitting hole 1454. In this embodiment, the housing 1450 is divided into two unconnected cavities, namely, a first cavity 1455 and a second cavity 1456, and the first air-conducting speaker element or (the first vibration element 1411) and the second air-conducting speaker element (or the second vibration element 1412) are respectively located in the two cavities. The first cavity 1455 can be divided into a front cavity and a rear cavity by the first diaphragm 1413, and the second cavity 1456 can be divided into a front cavity and a rear cavity by the second diaphragm 1414. The first sound-transmitting hole 1451 and the third sound-transmitting hole 1453 can be equivalent to the front cavity sound-transmitting hole of the first cavity 1455 and the second cavity 1456, and the second sound-transmitting hole 1452 and the fourth sound-transmitting hole 1454 can be equivalent to the rear cavity sound-transmitting hole of the first cavity 1455 and the second cavity 1456. When the sound phases of the front cavity sound-transmitting holes of the first cavity 1455 and the second cavity 1456 are the same, and the sound phases of the rear cavity sound-transmitting holes are also the same, the sound phases emitted by the two diaphragms are the same, so the volume of air conduction will not be reduced.

在一些實施例中,當揚聲器元件1410的振膜數量為多個時,可以對揚聲器元件1410的結構進行調整以縮減整體尺寸。 In some embodiments, when the speaker element 1410 has multiple diaphragms, the structure of the speaker element 1410 can be adjusted to reduce the overall size.

如圖15所示,在一些實施例中,揚聲器元件1510可以包括第一振動元件1511和第二振動元件1512,第一振動元件1511包括第一振膜1513、第一磁路元件1515和第一線圈1517,同樣的,第二振動元件1512也包括第二振膜1514、 第二磁路元件1516和第二線圈1518(或音圈),第一腔體1555和第二腔體1556可以連通。第一磁路元件1515與第二磁路元件1516聯結為一個整體,以減小整個揚聲器元件1510的佔用空間。在一些實施例中,揚聲器元件1510的殼體1550可以包括第一透聲孔1551、第二透聲孔1552、第三透聲孔1553和第四透聲孔1554。圖15中的第一透聲孔1551、第二透聲孔1552、第三透聲孔1553和第四透聲孔1554可以與圖14中的第一透聲孔1451、第二透聲孔1452、第三透聲孔1453和第四透聲孔1454相同或者相似。 As shown in FIG. 15 , in some embodiments, the speaker element 1510 may include a first vibration element 1511 and a second vibration element 1512. The first vibration element 1511 includes a first diaphragm 1513, a first magnetic circuit element 1515, and a first coil 1517. Similarly, the second vibration element 1512 also includes a second diaphragm 1514, a second magnetic circuit element 1516, and a second coil 1518 (or a voice coil). The first cavity 1555 and the second cavity 1556 may be connected. The first magnetic circuit element 1515 and the second magnetic circuit element 1516 are connected as a whole to reduce the space occupied by the entire speaker element 1510. In some embodiments, the housing 1550 of the speaker element 1510 may include a first sound-transmitting hole 1551, a second sound-transmitting hole 1552, a third sound-transmitting hole 1553, and a fourth sound-transmitting hole 1554. The first sound-transmitting hole 1551, the second sound-transmitting hole 1552, the third sound-transmitting hole 1553, and the fourth sound-transmitting hole 1554 in FIG. 15 may be the same as or similar to the first sound-transmitting hole 1451, the second sound-transmitting hole 1452, the third sound-transmitting hole 1453, and the fourth sound-transmitting hole 1454 in FIG. 14.

在一些實施例中,第一氣傳導揚聲器元件和第二氣傳導揚聲器元件可以是兩個相同的揚聲器。在一些實施例中,第一氣傳導揚聲器元件和第二氣傳導揚聲器元件可以是兩個不相同的揚聲器。例如,在一聲學輸入輸出設備1500中,包括第一氣傳導揚聲器元件和第二氣傳導揚聲器元件,其中,第一氣傳導揚聲器元件可以作為主揚聲器,主要產生使用者所聽到的聲音信號。第二氣傳導揚聲器元件可以作為輔助揚聲器。通過調節輔助揚聲器的機械振動的強度,使其對殼體1550產生與主揚聲器相反的力,減小殼體1550的振動強度。在一些實施例中,揚聲器元件1510可以包括主揚聲器且用於對殼體1550產生與主揚聲器振動方向相反的振動的輔助裝置。在一些實施例中,輔助裝置可以為振動馬達,振動馬達可以對殼體1550產生與主揚聲器的振動方向相反的振動,減小殼體1550的振動強度。在一些實施例中,輔助揚聲器產生的機械振動的強度可以調節。具體的,揚聲器元件1510可以包括輔助揚聲器控制裝置,輔助揚聲器控制裝置可以獲取主揚聲器的機械振動的強度和方向,並基於主揚聲器的機械振動的強度和方向調節輔助揚聲器所產生的機械振動的強度和方向,從而使得輔助揚聲器對殼體的力與主揚聲器對殼體1550的力能夠互相抵消以減小殼體1550的振動,進一步可以減小殼體1550傳遞給骨傳導麥克風1520的振動以減小骨傳導麥克風(圖15中未示出)產生的回聲信號的強度。 In some embodiments, the first air conduction speaker element and the second air conduction speaker element may be two identical speakers. In some embodiments, the first air conduction speaker element and the second air conduction speaker element may be two different speakers. For example, in an acoustic input-output device 1500, a first air conduction speaker element and a second air conduction speaker element are included, wherein the first air conduction speaker element may be used as a main speaker to mainly generate a sound signal heard by a user. The second air conduction speaker element may be used as an auxiliary speaker. By adjusting the intensity of the mechanical vibration of the auxiliary speaker, it generates a force opposite to that of the main speaker on the housing 1550, thereby reducing the vibration intensity of the housing 1550. In some embodiments, the speaker element 1510 may include a main speaker and an auxiliary device for generating vibrations in the opposite direction to the vibration direction of the main speaker on the housing 1550. In some embodiments, the auxiliary device may be a vibration motor, which may generate vibrations in the opposite direction to the vibration direction of the main speaker on the housing 1550, thereby reducing the vibration intensity of the housing 1550. In some embodiments, the intensity of the mechanical vibration generated by the auxiliary speaker may be adjusted. Specifically, the speaker element 1510 may include an auxiliary speaker control device, which can obtain the strength and direction of the mechanical vibration of the main speaker, and adjust the strength and direction of the mechanical vibration generated by the auxiliary speaker based on the strength and direction of the mechanical vibration of the main speaker, so that the force of the auxiliary speaker on the housing and the force of the main speaker on the housing 1550 can offset each other to reduce the vibration of the housing 1550, and further reduce the vibration transmitted from the housing 1550 to the bone conduction microphone 1520 to reduce the strength of the echo signal generated by the bone conduction microphone (not shown in FIG. 15).

需要說明的是,將兩個振膜的振動方向設置成相反的實施方式可以與前述一個或多個實施例相結合。例如,在兩個振膜的振動方向設置成相反的實施例中,可以在第一振膜(例如,第一振膜1413)和殼體(例如,殼體1450)之間且第二振膜(例如,第二振膜1414)和殼體1450之間均設置第二減振結構,減小殼體1450接收到的機械振動,從而減小骨傳導麥克風接收到的第一機械振動的強度。 It should be noted that the embodiment of setting the vibration directions of the two diaphragms to be opposite can be combined with one or more of the above embodiments. For example, in the embodiment of setting the vibration directions of the two diaphragms to be opposite, a second vibration reduction structure can be set between the first diaphragm (e.g., the first diaphragm 1413) and the housing (e.g., the housing 1450) and between the second diaphragm (e.g., the second diaphragm 1414) and the housing 1450 to reduce the mechanical vibration received by the housing 1450, thereby reducing the intensity of the first mechanical vibration received by the bone conduction microphone.

在一些實施例中,語音信號源可以為使用者提供語音信號時的振動部位。例如,使用者在說話時,其聲帶、嘴巴、鼻腔、喉部等部位的振動的強度明顯要高於耳朵、眼睛等部位,因此,這些部位可以作為語音信號源。在一些實施例中,可以在設計骨傳導麥克風1920時,使得骨傳導麥克風1920可以位於使用者的嘴巴、鼻腔或聲帶中至少一個附近。例如,當聲學輸入輸出設備1900為圖19所示的眼鏡時可以將骨傳導麥克風1920設置在眼鏡的鼻樑架1935中,由於骨傳導麥克風1920靠近使用者的鼻樑,因此接收到的第二機械振動的強度更大,關於圖19所示的眼鏡的更多描述可以在本發明其他實施例中找到,此處不再贅述。如圖19所示,在一些實施例中,可以將聲學輸入輸出設備1900設置為當使用者佩戴聲學輸入輸出設備1900時,骨傳導麥克風1920與使用者的振動部位(圖中未示出)的距離小於第三閾值。如本文所述,以骨傳導麥克風1920與使用者的喉部之間的距離為例,在一些實施例中,第三閾值可以為20cm。在一些實施例中,第三閾值可以為15cm。在一些實施例中,第三閾值可以為10cm。在一些實施例中,第三閾值可以為2cm。在本實施例中,由於骨傳導麥克風1920更靠近使用者的振動部位,因此接收到的第二機械振動(即第四機械振動)的強度更大,骨傳導麥克風1920所產生的第二信號的強度越大,能夠有效提高語音信號強度。 In some embodiments, the voice signal source can be the vibrating part when providing the voice signal to the user. For example, when the user speaks, the vibration intensity of the vocal cords, mouth, nasal cavity, throat and other parts is obviously higher than that of the ears, eyes and other parts. Therefore, these parts can be used as the voice signal source. In some embodiments, when designing the bone conduction microphone 1920, the bone conduction microphone 1920 can be located near at least one of the user's mouth, nasal cavity or vocal cords. For example, when the acoustic input-output device 1900 is a pair of glasses as shown in FIG. 19 , the bone conduction microphone 1920 can be set in the nose bridge 1935 of the glasses. Since the bone conduction microphone 1920 is close to the user's nose bridge, the intensity of the received second mechanical vibration is greater. More descriptions of the glasses shown in FIG. 19 can be found in other embodiments of the present invention, which will not be repeated here. As shown in FIG. 19 , in some embodiments, the acoustic input-output device 1900 can be set so that when the user wears the acoustic input-output device 1900, the distance between the bone conduction microphone 1920 and the vibration part of the user (not shown in the figure) is less than the third threshold. As described herein, taking the distance between the bone conduction microphone 1920 and the user's throat as an example, in some embodiments, the third threshold may be 20 cm. In some embodiments, the third threshold may be 15 cm. In some embodiments, the third threshold may be 10 cm. In some embodiments, the third threshold may be 2 cm. In this embodiment, since the bone conduction microphone 1920 is closer to the vibration part of the user, the intensity of the received second mechanical vibration (i.e., the fourth mechanical vibration) is greater, and the greater the intensity of the second signal generated by the bone conduction microphone 1920, the more effectively the voice signal intensity can be improved.

圖16是本發明一些實施例所示的頭戴式耳機的結構示意圖。如圖16所示,在一些實施例中,聲學輸入輸出設備1600可以為頭戴式耳機,包括固定 元件1630。固定元件1630可以包括頭帶1632且連接在頭帶1632兩側的兩個耳罩1631,頭帶1632可以用於與將頭戴式耳機與使用者的頭部固定並將兩個耳罩1631固定於使用者的頭部的兩側。每個耳罩1631中均可以設置有骨傳導麥克風1620和揚聲器元件1610。在一些實施例中,骨傳導麥克風1620可以位於耳罩1631中的任意位置,例如,骨傳導麥克風1620可以位於耳罩1631的偏上方的位置。又例如,骨傳導麥克風1620可以位於耳罩1631的偏下方的位置(如圖16所示),當使用者佩戴聲學輸入輸出設備1600時,可以縮短骨傳導麥克風1620與使用者的振動部位的距離。在本實施例中,骨傳導麥克風1620更靠近使用者說話時的振動部位,可以使得骨傳導麥克風1620在使用者說話時接收到的振動部位的振動(即第四機械振動)強度更大,骨傳導麥克風1620所產生的第二信號的強度更大。進而使第二信號的強度與第一信號的強度之比更大,骨傳導麥克風產生的聲音信號中的回聲信號占比更小,使用者體驗更佳。 FIG. 16 is a schematic diagram of the structure of a headset shown in some embodiments of the present invention. As shown in FIG. 16 , in some embodiments, the acoustic input/output device 1600 may be a headset, including a fixing element 1630. The fixing element 1630 may include a headband 1632 and two earmuffs 1631 connected to both sides of the headband 1632. The headband 1632 may be used to fix the headset to the user's head and fix the two earmuffs 1631 to both sides of the user's head. A bone conduction microphone 1620 and a speaker element 1610 may be provided in each earmuff 1631. In some embodiments, the bone conduction microphone 1620 may be located at any position in the earmuff 1631, for example, the bone conduction microphone 1620 may be located at a position slightly above the earmuff 1631. For another example, the bone conduction microphone 1620 can be located at a position slightly below the earmuff 1631 (as shown in FIG. 16 ). When the user wears the acoustic input and output device 1600 , the distance between the bone conduction microphone 1620 and the vibration part of the user can be shortened. In this embodiment, the bone conduction microphone 1620 is closer to the vibration part of the user when speaking, so that the vibration (i.e., the fourth mechanical vibration) intensity of the vibration part received by the bone conduction microphone 1620 when the user speaks can be greater, and the intensity of the second signal generated by the bone conduction microphone 1620 can be greater. In turn, the ratio of the intensity of the second signal to the intensity of the first signal is greater, the echo signal in the sound signal generated by the bone conduction microphone accounts for a smaller proportion, and the user experience is better.

圖17是本發明一些實施例所示的單耳頭戴式耳機的結構示意圖。如圖17所示,在一些實施例中,聲學輸入輸出設備1700可以為單耳式頭戴耳機,即骨傳導麥克風1720和揚聲器元件1710可以分別設置於兩個耳罩1731中,每個耳罩1731中只設置一個揚聲器元件1710或者一個骨傳導麥克風1720。在本實施例中,由於骨傳導麥克風1720和揚聲器元件1710分別設置在不同的耳罩1731中,位於使用者頭部的兩側,骨傳導麥克風1720和揚聲器元件1710之間的距離較遠,因此骨傳導麥克風1720接收到的揚聲器元件1710產生的第一機械振動的強度較小,即第三機械振動的強度更小,使得骨傳導麥克風1720產生的聲音信號中的回聲信號占比更小,使用者體驗更佳。在一些實施例中,頭帶1732可以包括一個或多個第二減振結構(圖中未示出),用於減小經由頭帶1732傳遞的第一機械振動的強度。在一些實施例中,頭帶1732上可以設置有泡棉,通過泡棉來降低揚聲器元件1710傳遞給骨傳導麥克風1720的第一機械振動的強度。在另一些具體實施 例中,頭帶1732可以是由第二減振材料製作而成。減振材料可以與前述一個或多個實施例中的減振材料相同,例如,頭帶1732可以由矽膠或者橡膠等材料製作而成。 Fig. 17 is a schematic diagram of the structure of a monaural headset shown in some embodiments of the present invention. As shown in Fig. 17, in some embodiments, the acoustic input and output device 1700 can be a monaural headset, that is, the bone conduction microphone 1720 and the speaker element 1710 can be respectively arranged in two earmuffs 1731, and each earmuff 1731 is only provided with one speaker element 1710 or one bone conduction microphone 1720. In this embodiment, since the bone conduction microphone 1720 and the speaker element 1710 are respectively arranged in different earmuffs 1731, located on both sides of the user's head, the distance between the bone conduction microphone 1720 and the speaker element 1710 is relatively far, so the intensity of the first mechanical vibration generated by the speaker element 1710 received by the bone conduction microphone 1720 is relatively small, that is, the intensity of the third mechanical vibration is relatively small, so that the echo signal in the sound signal generated by the bone conduction microphone 1720 accounts for a smaller proportion, and the user experience is better. In some embodiments, the headband 1732 may include one or more second vibration reduction structures (not shown in the figure) for reducing the intensity of the first mechanical vibration transmitted through the headband 1732. In some embodiments, the headband 1732 may be provided with foam to reduce the intensity of the first mechanical vibration transmitted from the speaker element 1710 to the bone conduction microphone 1720. In other specific embodiments, the headband 1732 may be made of a second vibration-damping material. The vibration-damping material may be the same as the vibration-damping material in one or more of the aforementioned embodiments. For example, the headband 1732 may be made of materials such as silicone or rubber.

在一些實施例中,骨傳導麥克風1720或者揚聲器元件1710也可以不設置在耳罩1731內,例如,骨傳導麥克風可以設置在圖16和圖17所示的頭帶上的D點,D點對應於使用者的頭頂,而揚聲器元件則設置在耳罩內。又例如,揚聲器元件可以設置在圖16和圖17所示的頭帶上的D點,D點對應於使用者的頭頂,而骨傳導麥克風則設置在耳罩內。 In some embodiments, the bone conduction microphone 1720 or the speaker element 1710 may not be disposed in the earmuff 1731. For example, the bone conduction microphone may be disposed at point D on the headband shown in FIGS. 16 and 17, where point D corresponds to the top of the user's head, while the speaker element is disposed in the earmuff. For another example, the speaker element may be disposed at point D on the headband shown in FIGS. 16 and 17, where point D corresponds to the top of the user's head, while the bone conduction microphone is disposed in the earmuff.

圖18是本發明一些實施例所示的雙耳頭戴式耳機的截面示意圖。結合圖16和圖18所示,在一些實施例中,聲學輸入輸出設備1800可以為雙耳頭戴式耳機,包括固定元件1830。固定元件1830可以包括頭帶1832且連接在頭帶1832兩側的兩個耳罩1831。每個耳罩1831的與使用者臉部1840接觸的一側可以設置有海綿套1833,骨傳導麥克風1820可以被容納於海綿套1833內。在設置海綿套1833之後,等同於在骨傳導麥克風1820與揚聲器元件1810的殼體1850之間增設了減振結構,也即前述實施例中所講的第二減振結構,減小殼體1850傳遞揚聲器元件1810傳遞聲波時產生的第一機械振動的強度。進一步的,由於海綿套1833的彈性較大,會減弱經由使用者臉部1840傳遞到骨傳導麥克風1820的第二機械振動的強度,因此,在一些實施例中,海綿套1833的表面有一部分可以設置剛度較大的傳振結構。在一些實施例中,傳振結構可以設置為片狀構件,例如,金屬片或塑膠片(金屬片和塑膠片在圖中均未示出)。在一些實施例中,片狀構件的的外側可以與使用者臉部1840接觸,片狀構件的內側與骨傳導麥克風1820連接。在本實施例中,通過剛度較大的片狀構件使使用者臉部1840與骨傳導麥克風1820進行接觸,盡可能減小骨傳導麥克風1820在使用者說話時接收到的振動部位的振動(即第二機械振動)在傳遞過程中的損耗,提高第四機械振動的強度,進而 提高產生的語音信號的強度。 FIG18 is a cross-sectional schematic diagram of a binaural headset shown in some embodiments of the present invention. In combination with FIG16 and FIG18 , in some embodiments, the acoustic input/output device 1800 may be a binaural headset, including a fixing element 1830. The fixing element 1830 may include a headband 1832 and two earmuffs 1831 connected to both sides of the headband 1832. A sponge cover 1833 may be provided on the side of each earmuff 1831 that contacts the user's face 1840, and the bone conduction microphone 1820 may be accommodated in the sponge cover 1833. After the sponge cover 1833 is provided, it is equivalent to adding a vibration reduction structure between the bone conduction microphone 1820 and the housing 1850 of the speaker element 1810, that is, the second vibration reduction structure mentioned in the above-mentioned embodiment, which reduces the intensity of the first mechanical vibration generated when the housing 1850 transmits the sound wave transmitted by the speaker element 1810. Furthermore, since the sponge cover 1833 has a large elasticity, it will weaken the intensity of the second mechanical vibration transmitted to the bone conduction microphone 1820 through the user's face 1840. Therefore, in some embodiments, a part of the surface of the sponge cover 1833 can be provided with a vibration structure with a large rigidity. In some embodiments, the vibration transmission structure can be configured as a sheet-like component, for example, a metal sheet or a plastic sheet (the metal sheet and the plastic sheet are not shown in the figure). In some embodiments, the outer side of the sheet-like component can be in contact with the user's face 1840, and the inner side of the sheet-like component is connected to the bone conduction microphone 1820. In this embodiment, the user's face 1840 is in contact with the bone conduction microphone 1820 through a sheet-like component with greater rigidity, so as to minimize the loss of the vibration (i.e., the second mechanical vibration) received by the bone conduction microphone 1820 during the transmission process when the user speaks, increase the strength of the fourth mechanical vibration, and thereby increase the strength of the generated voice signal.

圖19是本發明一些實施例所示的一種眼鏡的結構示意圖。如圖19所示,在一些實施例中,聲學輸入輸出設備1900可以為一種具備揚聲器和麥克風功能的眼鏡,眼鏡可以包括固定元件1930,固定元件1930包括一眼鏡架1931,該眼鏡架1931可以包括眼鏡框1932且兩條眼鏡腿1933,眼鏡腿1933可以包括與眼鏡框1932連接的鏡腿主體1934,至少一條鏡腿主體1934可以包括如上述本發明實施例中的揚聲器元件1910。在一些實施例中,揚聲器元件1910可以包括骨傳導揚聲器元件。骨傳導揚聲器元件可以位於眼鏡腿1933中會與使用者皮膚接觸的部分。在一些實施例中,眼鏡框1932可以包括用於支撐眼鏡框1932於使用者的鼻樑上方的鼻樑架1935,鼻樑架1935內可以設置有如上述本發明實施例中的骨傳導麥克風1920。鼻腔作為使用者提供語音信號時的振動部位,其機械振動的強度較大,將骨傳導麥克風設置於鼻樑架1935內帶來的好處是,一方面可以提高骨傳導麥克風1920接收到的語音信號的機械振動的強度,另一方面是由於骨傳導麥克風1920與揚聲器元件1910設置在眼鏡的不同位置,因此骨傳導麥克風1920接收到的揚聲器元件1910傳遞聲波時產生的第一機械振動的強度更小,骨傳導麥克風1920產生的回聲信號更小。 FIG19 is a schematic diagram of the structure of a pair of glasses shown in some embodiments of the present invention. As shown in FIG19 , in some embodiments, the acoustic input and output device 1900 may be a pair of glasses with speaker and microphone functions, and the glasses may include a fixing element 1930, and the fixing element 1930 includes a frame 1931, and the frame 1931 may include a frame 1932 and two legs 1933, and the legs 1933 may include a leg body 1934 connected to the frame 1932, and at least one leg body 1934 may include a speaker element 1910 in the above-mentioned embodiment of the present invention. In some embodiments, the speaker element 1910 may include a bone conduction speaker element. The bone conduction speaker element can be located in the portion of the eyeglass leg 1933 that contacts the user's skin. In some embodiments, the eyeglass frame 1932 can include a nose bridge 1935 for supporting the eyeglass frame 1932 above the user's nose bridge, and the nose bridge 1935 can be provided with a bone conduction microphone 1920 as in the above-mentioned embodiment of the present invention. The nasal cavity is the vibrating part when the user provides voice signals, and its mechanical vibration intensity is relatively large. The advantage of placing the bone conduction microphone in the nose bridge 1935 is that, on the one hand, the mechanical vibration intensity of the voice signal received by the bone conduction microphone 1920 can be increased, and on the other hand, since the bone conduction microphone 1920 and the speaker element 1910 are arranged at different positions of the glasses, the intensity of the first mechanical vibration generated when the speaker element 1910 transmits the sound wave received by the bone conduction microphone 1920 is smaller, and the echo signal generated by the bone conduction microphone 1920 is smaller.

需要說明的是,上述實施例所述的眼鏡可以是各種類型的眼鏡,例如,太陽鏡,近視眼鏡、遠視眼鏡的。在一些實施例中,眼鏡還可以是具有VR(Virtual Reality)功能或者AR(Augmented Reality)功能的眼鏡。 It should be noted that the glasses described in the above embodiments may be various types of glasses, such as sunglasses, myopia glasses, and hyperopia glasses. In some embodiments, the glasses may also be glasses with VR (Virtual Reality) function or AR (Augmented Reality) function.

本發明實施例可能帶來的有益效果包括但不限於:(1)將骨傳導麥克風的振動方向與回聲信號源的振動方向形成的第一夾角設置在設定的角度範圍內,減少骨傳導麥克風接收到的回聲信號源的振動的強度,減少產生的回聲信號(即第一信號)的強度;(2)將骨傳導麥克風的振動方向與語音信號源的振動方向形成的第二夾角設置在設定的角度範圍內,提高骨傳導麥克風接收到的 語音信號源的振動的強度,提高產生的語音信號(即第二信號)的強度;(3)將聲學輸入輸出設備與使用者接觸部分受到的夾緊力控制在一定範圍內,使得骨傳導麥克風與使用者接觸的更加緊密,接收到的語音信號源的振動的強度(即第四機械振動的強度)更高;(4)在骨傳導麥克風與揚聲器元件的殼體之間增設減振結構,減少接收到的揚聲器元件的振動的強度(即第三機械振動的強度);(5)在揚聲器元件的振動元件與殼體之間增設減振結構,通過減振結構減小振動元件的振動對於殼體的影響,從而減小殼體產生的機械振動的強度,最終實現減小骨傳導麥克風接收到的揚聲器元件的振動的強度;(6)將骨傳導麥克風設置為更靠近使用者提供語音信號時的振動部位,增大接收到的語音信號源的振動的強度。需要說明的是,不同實施例可能產生的有益效果不同,在不同的實施例裡,可能產生的有益效果可以是以上任意一種或幾種的組合,也可以是其他任何可能獲得的有益效果。 The beneficial effects that may be brought about by the embodiments of the present invention include but are not limited to: (1) setting the first angle formed by the vibration direction of the bone conduction microphone and the vibration direction of the echo signal source within a set angle range, reducing the vibration intensity of the echo signal source received by the bone conduction microphone, and reducing the intensity of the generated echo signal (i.e., the first signal); (2) setting the second angle formed by the vibration direction of the bone conduction microphone and the vibration direction of the voice signal source within a set angle range, increasing the vibration intensity of the voice signal source received by the bone conduction microphone, and increasing the intensity of the generated voice signal (i.e., the second signal); (3) controlling the clamping force of the acoustic input and output device and the user contact part within a certain range, so that the bone conduction microphone The closer the contact with the user is, the higher the vibration intensity of the received voice signal source (i.e., the fourth mechanical vibration intensity) is; (4) a vibration reduction structure is added between the bone conduction microphone and the housing of the speaker element to reduce the vibration intensity of the received speaker element (i.e., the third mechanical vibration intensity); (5) a vibration reduction structure is added between the vibration element of the speaker element and the housing. Vibration structure, through the vibration reduction structure to reduce the impact of the vibration of the vibrating element on the housing, thereby reducing the intensity of the mechanical vibration generated by the housing, and finally reducing the intensity of the vibration of the speaker element received by the bone conduction microphone; (6) the bone conduction microphone is set closer to the vibration part when the user provides the voice signal, and the intensity of the vibration of the received voice signal source is increased. It should be noted that different embodiments may produce different beneficial effects. In different embodiments, the beneficial effects that may be produced may be any one or a combination of the above, or any other possible beneficial effects.

上文已對基本概念做了描述,顯然,對於所屬技術領域中具有通常知識者來說,上述發明揭露內容僅僅作為示例,而並不構成對本發明的限定。雖然此處並沒有明確說明,所屬技術領域中具有通常知識者可能會對本發明進行各種修改、改進和修正。該類修改、改進和修正在本發明中被建議,所以該類修改、改進、修正仍屬於本發明示範實施例的精神和範圍。 The basic concepts have been described above. Obviously, for those with ordinary knowledge in the relevant technical field, the above invention disclosure content is only used as an example and does not constitute a limitation of the present invention. Although it is not explicitly stated here, those with ordinary knowledge in the relevant technical field may make various modifications, improvements and amendments to the present invention. Such modifications, improvements and amendments are suggested in the present invention, so such modifications, improvements and amendments still belong to the spirit and scope of the exemplary embodiments of the present invention.

同時,本發明使用了特定詞語來描述本發明的實施例。如“一個實施例”、“一實施例”和/或“一些實施例”意指與本發明至少一個實施例相關的某一特徵、結構或特點。因此,應強調並注意的是,本說明書中在不同位置兩次或多次提及的“一實施例”或“一個實施例”或“一替代性實施例”並不一定是指同一實施例。此外,本發明的一個或多個實施例中的某些特徵、結構或特點可以進行適當的組合。 At the same time, the present invention uses specific words to describe the embodiments of the present invention. For example, "one embodiment", "an embodiment" and/or "some embodiments" refer to a certain feature, structure or feature related to at least one embodiment of the present invention. Therefore, it should be emphasized and noted that "one embodiment" or "an embodiment" or "an alternative embodiment" mentioned twice or more in different places in this specification does not necessarily refer to the same embodiment. In addition, certain features, structures or features in one or more embodiments of the present invention can be appropriately combined.

此外,除非申請專利範圍中明確說明,本發明所述處理元素和序 列的順序、數字字母的使用或其他名稱的使用,並非用於限定本發明流程和方法的順序。儘管上述揭露內容中通過各種示例討論了一些目前認為有用的發明實施例,但應當理解的是,該類細節僅起到說明的目的,附加的申請專利範圍並不僅限於揭露的實施例,相反地,申請專利範圍旨在覆蓋所有符合本發明實施例實質和範圍的修正和等價組合。例如,雖然以上所描述的系統元件可以通過硬體設備實現,但是也可以只通過軟體的解決方案得以實現,如在現有的伺服器或行動設備上安裝所描述的系統。 In addition, unless expressly stated in the scope of the patent application, the order of the processing elements and sequences described in the present invention, the use of numerals or other names, is not used to limit the order of the process and method of the present invention. Although the above disclosure discusses some of the invention embodiments currently considered useful through various examples, it should be understood that such details are only for illustrative purposes, and the attached patent scope is not limited to the disclosed embodiments. On the contrary, the scope of the patent application is intended to cover all modifications and equivalent combinations that are consistent with the essence and scope of the embodiments of the present invention. For example, although the system elements described above can be implemented by hardware devices, they can also be implemented only by software solutions, such as installing the described system on an existing server or mobile device.

同理,應當注意的是,為了簡化本發明揭露內容的表述,從而幫助對一個或多個發明實施例的理解,前文對本發明實施例的描述中,有時會將多種特徵歸併至一個實施例、附圖或對其的描述中。但是,這種揭露方式並不意味著本發明物件所需要的特徵比申請專利範圍中提及的特徵多。實際上,實施例的特徵要少於上述揭露的單個實施例的全部特徵。 Similarly, it should be noted that in order to simplify the description of the disclosure of the present invention and thus help understand one or more embodiments of the invention, in the above description of the embodiments of the present invention, multiple features are sometimes incorporated into one embodiment, drawings or description thereof. However, this disclosure does not mean that the invention object requires more features than the features mentioned in the patent application scope. In fact, the features of the embodiments are less than all the features of the single embodiment disclosed above.

一些實施例中使用了描述成分、屬性數量的數字,應當理解的是,此類用於實施例描述的數字,在一些示例中使用了修飾詞“大約”、“近似”或“大體上”等來修飾。除非另外說明,“大約”、“近似”或“大體上”表明所述數字允許有±20%的變化。相應地,在一些實施例中,說明書和申請專利範圍中使用的數值資料均為近似值,該近似值根據個別實施例所需特點可以發生改變。在一些實施例中,數值資料應考慮規定的有效位數並採用一般位數保留的方法。儘管本發明一些實施例中用於確認其範圍廣度的數值域和資料為近似值,在具體實施例中,此類數值的設定在可行範圍內盡可能精確。最後,應當理解的是,本發明中所述實施例僅用以說明本發明實施例的原則。其他的變形也可能屬於本發明的範圍。因此,作為示例而非限制,本發明實施例的替代配置可視為與本發明的教導一致。相應地,本發明的實施例不僅限於本發明明確介紹和描述的實施例。 In some embodiments, numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments are modified by modifiers such as "approximately", "approximately" or "substantially" in some examples. Unless otherwise specified, "approximately", "approximately" or "substantially" indicate that the numbers are allowed to vary by ±20%. Accordingly, in some embodiments, the numerical data used in the specification and the scope of the patent application are approximate values, which may change according to the required features of the individual embodiments. In some embodiments, the numerical data should consider the specified number of significant digits and adopt the general method of retaining digits. Although the numerical domains and data used to confirm the breadth of the scope in some embodiments of the present invention are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range. Finally, it should be understood that the embodiments described in the present invention are intended only to illustrate the principles of the embodiments of the present invention. Other variations may also fall within the scope of the present invention. Therefore, as an example and not a limitation, alternative configurations of the embodiments of the present invention may be considered consistent with the teachings of the present invention. Accordingly, the embodiments of the present invention are not limited to the embodiments explicitly introduced and described in the present invention.

100:聲學輸入輸出設備 100:Acoustic input and output equipment

110:揚聲器元件 110: Speaker components

120:麥克風元件 120: Microphone component

130:固定元件 130:Fixed element

Claims (10)

一種聲學輸入輸出設備,包括: 揚聲器元件,用於藉由產生第一機械振動來傳遞聲波;以及 麥克風,用於接收在語音信號源提供語音信號時所產生的第二機械振動,所述麥克風在所述第一機械振動和所述第二機械振動的作用下分別產生第一信號和第二信號,其中,在一定頻率範圍內,所述第一機械振動的強度與所述第一信號的強度的比值大於所述第二機械振動的強度與所述第二信號的強度的比值。 An acoustic input-output device comprises: a speaker element for transmitting sound waves by generating a first mechanical vibration; and a microphone for receiving a second mechanical vibration generated when a voice signal source provides a voice signal, wherein the microphone generates a first signal and a second signal respectively under the action of the first mechanical vibration and the second mechanical vibration, wherein, within a certain frequency range, the ratio of the intensity of the first mechanical vibration to the intensity of the first signal is greater than the ratio of the intensity of the second mechanical vibration to the intensity of the second signal. 如請求項1之聲學輸入輸出設備,其中,所述揚聲器元件為骨傳導揚聲器元件,所述骨傳導揚聲器元件包括殼體和與所述殼體連接的用於產生所述第一機械振動的振動元件,所述麥克風與所述殼體直接或間接連接。An acoustic input-output device as claimed in claim 1, wherein the speaker element is a bone conduction speaker element, the bone conduction speaker element comprises a housing and a vibration element connected to the housing for generating the first mechanical vibration, and the microphone is directly or indirectly connected to the housing. 如請求項1之聲學輸入輸出設備,進一步包括減振結構,所述麥克風通過所述減振結構與所述揚聲器元件連接,其中,所述減振結構包括彈性模量小於第一閾值的減振材料。The acoustic input-output device of claim 1 further includes a vibration-damping structure, wherein the microphone is connected to the speaker element through the vibration-damping structure, wherein the vibration-damping structure includes a vibration-damping material having an elastic modulus less than a first threshold. 如請求項3之聲學輸入輸出設備,其中,所述麥克風的表面的第一部分用於傳導所述第二機械振動,所述麥克風的表面的第二部分外設置有所述減振結構並通過所述減振結構與所述揚聲器元件連接。An acoustic input-output device as claimed in claim 3, wherein a first portion of the surface of the microphone is used to conduct the second mechanical vibration, and a second portion of the surface of the microphone is externally provided with the vibration-damping structure and is connected to the speaker element via the vibration-damping structure. 如請求項3之聲學輸入輸出設備,其中,所述麥克風的表面的第一部分設置有傳振層,所述傳振層的材料的彈性模量大於第二閾值。An acoustic input-output device as claimed in claim 3, wherein a first portion of the surface of the microphone is provided with a vibration-transmitting layer, and the elastic modulus of the material of the vibration-transmitting layer is greater than a second threshold. 如請求項1之聲學輸入輸出設備,其中,所述揚聲器元件包括殼體以及振動元件,所述殼體與所述振動元件之間具有第一連接,所述麥克風與所述殼體之間具有第二連接,所述第一連接包括第一減振結構,所述第二連接包括第二減振結構。An acoustic input-output device as claimed in claim 1, wherein the speaker element includes a housing and a vibration element, a first connection is formed between the housing and the vibration element, a second connection is formed between the microphone and the housing, the first connection includes a first vibration-damping structure, and the second connection includes a second vibration-damping structure. 如請求項1之聲學輸入輸出設備,其中,所述揚聲器元件包括第一振膜和第二振膜,所述第一振膜和所述第二振膜的振動方向相反; 所述揚聲器元件包括殼體,所述殼體包括第一腔體和第二腔體,所述第一振膜和所述第二振膜分別位於所述第一腔體和所述第二腔體中; 所述第一腔體的側壁開設有第一透聲孔和第二透聲孔,所述第二腔體的側壁開設有第三透聲孔和第四透聲孔,所述第一透聲孔發出的聲音相位與所述第三透聲孔發出的聲音相位相同,所述第二透聲孔發出的聲音相位與所述第四透聲孔發出的聲音相位相同。 As in claim 1, the acoustic input-output device, wherein the speaker element comprises a first diaphragm and a second diaphragm, the first diaphragm and the second diaphragm vibrate in opposite directions; The speaker element comprises a housing, the housing comprises a first cavity and a second cavity, the first diaphragm and the second diaphragm are respectively located in the first cavity and the second cavity; The side wall of the first cavity is provided with a first sound-transmitting hole and a second sound-transmitting hole, the side wall of the second cavity is provided with a third sound-transmitting hole and a fourth sound-transmitting hole, the sound phase emitted by the first sound-transmitting hole is the same as the sound phase emitted by the third sound-transmitting hole, and the sound phase emitted by the second sound-transmitting hole is the same as the sound phase emitted by the fourth sound-transmitting hole. 如請求項7之聲學輸入輸出設備,其中,所述第一透聲孔和所述第三透聲孔設置在所述殼體的同一側壁上,所述第二透聲孔和所述第四透聲孔設置在所述殼體的同一側壁上,所述第一透聲孔和所述第二透聲孔設置在所述殼體的不相鄰的側壁上,所述第三透聲孔和所述第四透聲孔設置在所述殼體的不相鄰的側壁上。An acoustic input-output device as claimed in claim 7, wherein the first sound-transmitting hole and the third sound-transmitting hole are arranged on the same side wall of the shell, the second sound-transmitting hole and the fourth sound-transmitting hole are arranged on the same side wall of the shell, the first sound-transmitting hole and the second sound-transmitting hole are arranged on non-adjacent side walls of the shell, and the third sound-transmitting hole and the fourth sound-transmitting hole are arranged on non-adjacent side walls of the shell. 如請求項7之聲學輸入輸出設備,其中,所述揚聲器元件進一步包括用於形成磁場的第一磁路元件和第二磁路元件,所述第一磁路元件用於使所述第一振膜產生振動,所述第二磁路元件用於使所述第二振膜產生振動; 所述第一腔體和所述第二腔體連通,所述第一磁路元件和所述第二磁路元件直接或間接連接。 As in claim 7, the acoustic input-output device, wherein the speaker element further comprises a first magnetic circuit element and a second magnetic circuit element for forming a magnetic field, the first magnetic circuit element is used to vibrate the first diaphragm, and the second magnetic circuit element is used to vibrate the second diaphragm; The first cavity and the second cavity are connected, and the first magnetic circuit element and the second magnetic circuit element are directly or indirectly connected. 一種聲學輸入輸出設備,包括: 揚聲器元件,用於藉由產生第一機械振動來傳遞聲波;以及 麥克風,用於接收在語音信號源提供語音信號時所產生的第二機械振動,所述麥克風在所述第一機械振動和所述第二機械振動的作用下分別產生第一信號和第二信號; 所述麥克風的振動方向與所述第一機械振動的方向形成的第一夾角在設定的角度範圍內,使得在一定頻率範圍內,所述第一機械振動的強度與所述第一信號的強度的比值大於所述第二機械振動的強度與所述第二信號的強度的比值。 An acoustic input-output device, comprising: a speaker element, used to transmit sound waves by generating a first mechanical vibration; and a microphone, used to receive a second mechanical vibration generated when a voice signal source provides a voice signal, the microphone generates a first signal and a second signal respectively under the action of the first mechanical vibration and the second mechanical vibration; a first angle formed by the vibration direction of the microphone and the direction of the first mechanical vibration is within a set angle range, so that within a certain frequency range, the ratio of the intensity of the first mechanical vibration to the intensity of the first signal is greater than the ratio of the intensity of the second mechanical vibration to the intensity of the second signal.
TW111115560A 2021-04-27 2022-04-25 Acoustic output/input device TWI853236B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110462049.9 2021-04-27
PCT/CN2021/090298 WO2022226792A1 (en) 2021-04-27 2021-04-27 Acoustic input and output device
CN202110460677.3A CN115250395A (en) 2021-04-27 2021-04-27 Acoustic input-output device
CN202110460677.3 2021-04-27
CN202110462049.9A CN115250392A (en) 2021-04-27 2021-04-27 Acoustic input-output device
WOPCT/CN2021/090298 2021-04-27

Publications (2)

Publication Number Publication Date
TW202242847A TW202242847A (en) 2022-11-01
TWI853236B true TWI853236B (en) 2024-08-21

Family

ID=85793338

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111115560A TWI853236B (en) 2021-04-27 2022-04-25 Acoustic output/input device

Country Status (1)

Country Link
TW (1) TWI853236B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201611564A (en) * 2010-12-27 2016-03-16 Rohm Co Ltd Transmitter/receiver unit and receiver unit
CN111212346A (en) * 2020-02-06 2020-05-29 北京声智科技有限公司 Voice interaction module and voice interaction equipment
CN111757219A (en) * 2020-06-29 2020-10-09 歌尔股份有限公司 Sound production device and head-mounted electronic apparatus
CN112637736A (en) * 2018-04-26 2021-04-09 深圳市韶音科技有限公司 Earphone system and microphone device thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201611564A (en) * 2010-12-27 2016-03-16 Rohm Co Ltd Transmitter/receiver unit and receiver unit
CN112637736A (en) * 2018-04-26 2021-04-09 深圳市韶音科技有限公司 Earphone system and microphone device thereof
CN111212346A (en) * 2020-02-06 2020-05-29 北京声智科技有限公司 Voice interaction module and voice interaction equipment
CN111757219A (en) * 2020-06-29 2020-10-09 歌尔股份有限公司 Sound production device and head-mounted electronic apparatus

Also Published As

Publication number Publication date
TW202242847A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US9949048B2 (en) Controlling own-voice experience of talker with occluded ear
WO2022227514A1 (en) Earphone
KR101176827B1 (en) Audio apparatus
US11240588B2 (en) Sound reproducing apparatus
US8005249B2 (en) Ear canal signal converting method, ear canal transducer and headset
US10735844B2 (en) Wearable device
JP2007505540A6 (en) Audio equipment
US11212610B2 (en) Hearing device
CN115250395A (en) Acoustic input-output device
WO2022226792A1 (en) Acoustic input and output device
TW202236866A (en) Hearing aid device
US20210084399A1 (en) Hearing device using bone conduction
TWI853236B (en) Acoustic output/input device
CN115250392A (en) Acoustic input-output device
JP2012147077A (en) Bone conduction type sound transmitting device
CN117412212B (en) Mixed conduction earphone device at inner side of tragus and design method thereof
RU2800623C1 (en) Hearing aid
JP3187151U (en) Dialogue hearing aid
JP7347943B2 (en) cartilage conduction hearing aid
JPH099383A (en) Ear piece for earphone or the like
WO2020116253A1 (en) Electroacoustic transducer and acoustic device