[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI845445B - System and method of training symbol recognition model and system and method of detecting display device - Google Patents

System and method of training symbol recognition model and system and method of detecting display device Download PDF

Info

Publication number
TWI845445B
TWI845445B TW112143223A TW112143223A TWI845445B TW I845445 B TWI845445 B TW I845445B TW 112143223 A TW112143223 A TW 112143223A TW 112143223 A TW112143223 A TW 112143223A TW I845445 B TWI845445 B TW I845445B
Authority
TW
Taiwan
Prior art keywords
image
symbol
display device
display
recognition model
Prior art date
Application number
TW112143223A
Other languages
Chinese (zh)
Inventor
羅際宇
孟憲明
孫武雄
廖祝湘
張基霖
Original Assignee
技嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技嘉科技股份有限公司 filed Critical 技嘉科技股份有限公司
Priority to TW112143223A priority Critical patent/TWI845445B/en
Application granted granted Critical
Publication of TWI845445B publication Critical patent/TWI845445B/en

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

The present disclosure provides a method of training symbol recognition model, performed by a computing device, and includes: outputting image control signals to a display device and controlling a camera to photograph the display device to obtain training images, using each of the training images as a target image, cutting the target image to obtain symbol image blocks according to default display areas of the display device, assigning a target label to each of the symbol image blocks, wherein the target label includes a first sub-label associated with one of the image control signals corresponding to the target image and a second sub-label indicating a valid status or an invalid status, and using the symbol image blocks and the target labels to performing training to generate a symbol recognition model. The present disclosure further provides a method of detecting display device using the symbol recognition model.

Description

符號辨識模型訓練方法及系統以及顯示裝置檢測方法及系統Symbol recognition model training method and system and display device detection method and system

本發明係關於一種符號辨識模型訓練方法及系統以及顯示裝置檢測方法及系統。The present invention relates to a symbol recognition model training method and system and a display device detection method and system.

為了檢測工廠內使用的顯示裝置是否異常,許多工廠採用光學字元辨識(optical character recognition,OCR)辨識顯示裝置上顯示的內容,並由使用者框選需要比對的區域,及設定相似度閾值,以進行檢測。In order to detect whether the display devices used in the factory are abnormal, many factories use optical character recognition (OCR) to identify the content displayed on the display device. The user selects the area to be compared and sets the similarity threshold for detection.

然而,由於顯示裝置上有多個顯示區域,上述的檢測方式相當耗時,且可能因人工的框選失誤而產生錯誤的檢測結果。並且,現有的光學字元辨識利用樣式、距離、色彩等影像特徵來檢測目標字元是數字、文字或特殊符號,而這樣的方式容易受到環境光線影響,需經常調整靈敏度或容許值來補償辨識結果。However, since there are multiple display areas on the display device, the above detection method is very time-consuming and may produce erroneous detection results due to manual frame selection errors. In addition, the existing optical character recognition uses image features such as pattern, distance, color, etc. to detect whether the target character is a number, text or special symbol. This method is easily affected by ambient light and requires frequent adjustment of sensitivity or tolerance to compensate for the recognition result.

鑒於上述,本發明提供一種以解決上述問題的符號辨識模型訓練方法及系統以及顯示裝置檢測方法及系統。In view of the above, the present invention provides a symbol recognition model training method and system and a display device detection method and system to solve the above problems.

依據本發明一實施例的符號辨識模型訓練方法,包含藉由運算裝置執行:輸出多個影像控制訊號至顯示裝置並控制攝影機拍攝顯示裝置以取得分別對應於所述多個影像控制訊號的多幀訓練影像;將所述多幀訓練影像的每一者作為目標影像並執行標記程序,標記程序包含:依據顯示裝置的多個預設顯示區域分割目標影像以取得多個符號影像區塊;以及分別賦予所述多個符號影像區塊多個目標標籤,其中所述多個目標標籤各包含第一子標籤及第二子標籤,第一子標籤關聯於所述多個影像控制訊號中對應於目標影像的一者,第二子標籤指示有效狀態或無效狀態;以及利用所述多個符號影像區塊及所述多個目標標籤進行訓練以產生符號辨識模型。According to an embodiment of the present invention, a symbol recognition model training method includes executing, by a computing device: outputting a plurality of image control signals to a display device and controlling a camera to shoot the display device to obtain a plurality of frames of training images respectively corresponding to the plurality of image control signals; using each of the plurality of frames of training images as a target image and executing a marking procedure, the marking procedure including: segmenting the target image according to a plurality of preset display areas of the display device to obtain A plurality of symbol image blocks are obtained; and a plurality of target labels are respectively assigned to the plurality of symbol image blocks, wherein the plurality of target labels each include a first sub-label and a second sub-label, the first sub-label is associated with one of the plurality of image control signals corresponding to the target image, and the second sub-label indicates a valid state or an invalid state; and the plurality of symbol image blocks and the plurality of target labels are used for training to generate a symbol recognition model.

依據本發明一實施例的顯示裝置檢測方法,藉由運算裝置執行,包含:輸出影像控制訊號至顯示裝置並控制攝影機拍攝顯示裝置以取得對應於影像控制訊號的測試影像;依據顯示裝置的多個預設顯示區域分割測試影像以取得多個符號影像區塊;將所述多個符號影像區塊輸入至符號辨識模型以取得所述多個符號影像區塊的多個預測標籤,其中所述多個預測標籤各包含第一子標籤及第二子標籤,第一子標籤指示預測符號,第二子標籤指示有效狀態或無效狀態;以及依據影像控制訊號與所述多個預測標籤之間的匹配程度產生顯示裝置的檢測結果。A display device detection method according to an embodiment of the present invention is executed by a computing device, including: outputting an image control signal to the display device and controlling a camera to shoot the display device to obtain a test image corresponding to the image control signal; segmenting the test image according to multiple preset display areas of the display device to obtain multiple symbol image blocks; inputting the multiple symbol image blocks into a symbol recognition model to obtain multiple prediction labels of the multiple symbol image blocks, wherein the multiple prediction labels each include a first sub-label and a second sub-label, the first sub-label indicates a predicted symbol, and the second sub-label indicates a valid state or an invalid state; and generating a detection result of the display device according to the degree of matching between the image control signal and the multiple prediction labels.

綜上所述,依據本發明一或多個實施例的符號辨識模型訓練方法及系統,可自動化收集訓練資料,且經訓練的符號辨識模型可準確檢測實際運作中的顯示裝置的顯示功能是否異常。並且,依據本發明一或多個實施例的顯示裝置檢測方法及系統,可有效檢測顯示裝置是否有異常。In summary, the symbol recognition model training method and system according to one or more embodiments of the present invention can automatically collect training data, and the trained symbol recognition model can accurately detect whether the display function of the display device in actual operation is abnormal. In addition, the display device detection method and system according to one or more embodiments of the present invention can effectively detect whether the display device is abnormal.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosed content and the following description of the implementation methods are used to demonstrate and explain the spirit and principle of the present invention, and provide a further explanation of the scope of the patent application of the present invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are described in detail in the following embodiments, and the contents are sufficient to enable any person skilled in the relevant art to understand the technical contents of the present invention and implement them accordingly. Moreover, according to the contents disclosed in this specification, the scope of the patent application and the drawings, any person skilled in the relevant art can easily understand the relevant purposes and advantages of the present invention. The following embodiments are to further illustrate the viewpoints of the present invention, but are not to limit the scope of the present invention by any viewpoint.

請參考圖1,圖1係依據本發明一實施例所繪示的符號辨識模型訓練系統的方塊圖。如圖1所示,符號辨識模型訓練系統1包括運算裝置10、顯示裝置11及攝影機12。運算裝置10連接於顯示裝置11及攝影機12。Please refer to FIG1, which is a block diagram of a symbol recognition model training system according to an embodiment of the present invention. As shown in FIG1, the symbol recognition model training system 1 includes a computing device 10, a display device 11 and a camera 12. The computing device 10 is connected to the display device 11 and the camera 12.

運算裝置10預存有顯示裝置11的多個預設顯示區域,且用於控制所述攝影機12拍攝顯示裝置11的顯示畫面,利用所述多個預設顯示區域處理攝影機12拍攝的影像,並利用處理後的影像進行訓練以產生符號辨識模型,其中符號辨識模型係用於預測顯示裝置顯示的符號及該符號為有效或無效符號。The computing device 10 pre-stores a plurality of preset display areas of the display device 11 and is used to control the camera 12 to capture the display screen of the display device 11, uses the plurality of preset display areas to process the images captured by the camera 12, and uses the processed images for training to generate a symbol recognition model, wherein the symbol recognition model is used to predict the symbol displayed by the display device and whether the symbol is a valid or invalid symbol.

運算裝置10可以包含一或多個處理器以及通訊元件。所述處理器例如為中央處理器、繪圖處理器、微控制器、可程式化邏輯控制器或其他具有訊號處理功能的處理器。所述通訊元件用於供運算裝置10與顯示裝置11進行通訊。舉例而言,運算裝置10可包括紅外線控制器,顯示裝置11可包括紅外線接收器;或者,運算裝置10及顯示裝置11可各自包括藍牙元件或無線網路(Wi-Fi)等無線通訊元件;或者,運算裝置10及顯示裝置11可各自包含有線連接埠以相互連接並通訊。顯示裝置11例如為具有上述通訊元件的液晶顯示器、發光二極體顯示器等。以應用情境來舉例說明,顯示裝置11可為工廠內用於顯示加工資訊的顯示器。顯示裝置11受運算裝置10控制以顯示影像。進一步來說,顯示裝置11可以是放置在暗箱內,攝影機12可拍攝暗箱內的顯示裝置11的顯示畫面,以取得更為清晰的影像供運算裝置10進行模型訓練。The computing device 10 may include one or more processors and communication elements. The processor may be, for example, a central processing unit, a graphics processor, a microcontroller, a programmable logic controller, or other processors with signal processing functions. The communication element is used for the computing device 10 to communicate with the display device 11. For example, the computing device 10 may include an infrared controller, and the display device 11 may include an infrared receiver; or, the computing device 10 and the display device 11 may each include a wireless communication element such as a Bluetooth element or a wireless network (Wi-Fi); or, the computing device 10 and the display device 11 may each include a wired connection port for interconnection and communication. The display device 11 may be, for example, a liquid crystal display, a light-emitting diode display, etc. having the above-mentioned communication element. Taking the application scenario as an example, the display device 11 can be a display in a factory for displaying processing information. The display device 11 is controlled by the computing device 10 to display images. Furthermore, the display device 11 can be placed in a dark box, and the camera 12 can shoot the display screen of the display device 11 in the dark box to obtain a clearer image for the computing device 10 to perform model training.

為了更詳細說明產生符號辨識模型的方法,請一併參考圖1、圖2及圖3,其中圖2係依據本發明一實施例所繪示的符號辨識模型訓練方法的流程圖,圖3係繪示依據預設顯示區域分割目標影像的示意圖。如圖2所示,符號辨識模型訓練方法包括:步驟S101:輸出多個影像控制訊號至顯示裝置並控制攝影機拍攝顯示裝置以取得分別對應於所述多個影像控制訊號的多幀訓練影像;將訓練影像中的每一者作為目標影像以執行步驟S103及步驟S105,其中步驟S103為:依據顯示裝置的多個預設顯示區域分割目標影像以取得多個符號影像區塊,且步驟S105為:分別賦予所述多個符號影像區塊多個目標標籤,其中所述多個目標標籤各包含第一子標籤及第二子標籤,第一子標籤關聯於所述多個影像控制訊號中對應於目標影像的一者,第二子標籤指示有效狀態或無效狀態;以及進行步驟S107:利用所述多個符號影像區塊及所述多個目標標籤進行訓練以產生符號辨識模型。圖2所示的步驟可以由圖1的符號辨識模型訓練系統1執行,特別係由運算裝置10執行。以下示例性地以圖1的符號辨識模型訓練系統1之運作來說明圖2的各步驟。In order to explain the method of generating a symbol recognition model in more detail, please refer to FIG. 1, FIG. 2 and FIG. 3, wherein FIG. 2 is a flow chart of a symbol recognition model training method according to an embodiment of the present invention, and FIG. 3 is a schematic diagram showing segmentation of a target image according to a preset display area. As shown in FIG. 2, the symbol recognition model training method includes: step S101: outputting a plurality of image control signals to a display device and controlling a camera to shoot the display device to obtain a plurality of training images corresponding to the plurality of image control signals; using each of the training images as a target image to execute steps S103 and S105, wherein step S103 is: segmenting the target image according to a plurality of preset display areas of the display device to obtain a plurality of symbol images; Image blocks, and step S105 is: assigning multiple target tags to the multiple symbol image blocks respectively, wherein the multiple target tags each include a first sub-tag and a second sub-tag, the first sub-tag is associated with one of the multiple image control signals corresponding to the target image, and the second sub-tag indicates a valid state or an invalid state; and performing step S107: using the multiple symbol image blocks and the multiple target tags for training to generate a symbol recognition model. The steps shown in FIG2 can be executed by the symbol recognition model training system 1 of FIG1, in particular, by the computing device 10. The following exemplarily illustrates the steps of FIG2 by taking the operation of the symbol recognition model training system 1 of FIG1 as an example.

於步驟S101,運算裝置10輸出多個影像控制訊號至顯示裝置11,及控制攝影機12拍攝運算裝置10顯示的影像以取得對應的多幀訓練影像。具體來說,一個影像控制訊號可對應一幀訓練影像。影像控制訊號可用於控制顯示裝置11的背光及顯示的文字、符號等。In step S101, the computing device 10 outputs a plurality of image control signals to the display device 11, and controls the camera 12 to shoot the image displayed by the computing device 10 to obtain a plurality of corresponding frames of training images. Specifically, one image control signal may correspond to one frame of training image. The image control signal may be used to control the backlight of the display device 11 and the displayed text, symbols, etc.

接著,運算裝置10將每幀訓練影像作為目標影像並執行標記程序,其中標記程序包括步驟S103及S105。於步驟S103,運算裝置10依據顯示裝置11的多個預設顯示區域分割目標影像以取得多個符號影像區塊,其中所述多個預設顯示區域各可為用於顯示七段顯示器、英文字母、電子轉盤、單位、通訊介面的圖式及標點符號中的一者的區域。一個符號影像區塊可包括一個符號,且所述符號可為數字、文字、標點符號、圖案及其組合等,本發明不予以限制。Next, the computing device 10 uses each frame of the training image as a target image and executes a marking procedure, wherein the marking procedure includes steps S103 and S105. In step S103, the computing device 10 divides the target image according to a plurality of preset display areas of the display device 11 to obtain a plurality of symbol image blocks, wherein each of the plurality of preset display areas can be an area for displaying one of a seven-segment display, English letters, an electronic dial, a unit, a communication interface diagram, and punctuation marks. A symbol image block can include a symbol, and the symbol can be a number, a word, a punctuation mark, a pattern, and a combination thereof, etc., which is not limited by the present invention.

步驟S101所取得的多幀訓練影像中的一者可如圖3所示的目標影像IMG1,且由於運算裝置10預存有顯示裝置11的多個預設顯示區域,運算裝置10可據以分割目標影像IMG1以產生多個符號影像區塊A1~A11。One of the multiple training images obtained in step S101 may be the target image IMG1 as shown in FIG. 3 , and since the computing device 10 pre-stores multiple preset display areas of the display device 11 , the computing device 10 may segment the target image IMG1 accordingly to generate multiple symbol image blocks A1 - A11 .

於步驟S105,運算裝置10賦予符號影像區塊A1~A11中的每一者對應的目標標籤,所述目標標籤包含第一子標籤及第二子標籤。運算裝置10是根據影像控制訊號賦予符號影像區塊對應的第一子標籤及第二子標籤。第一子標籤係影像控制訊號指示的符號代碼,第二子標籤係影像控制訊號指示的有效狀態或無效狀態。如圖3所示,符號影像區塊A1可以對應於七段顯示器的顯示區域,符號影像區塊A2、A3可以對應於英文字母的顯示區域,符號影像區塊A4可以對應於需量時段(EOI)的顯示區域,符號影像區塊A5可以對應於交替模式(ALT)的顯示區域,符號影像區塊A6可以對應於標點符號的顯示區域,符號影像區塊A7可以對應於電子轉盤(table)的顯示區域,符號影像區塊A8可以對應於介面圖示的顯示區域,例如RS485、紅外線等通訊圖示,符號影像區塊A9可以對應於連續(Continue,Cont)的顯示區域,符號影像區塊A10可以對應於累計需量(Cumulative,Cum)的顯示區域,及符號影像區塊A11可以對應於單位圖示的顯示區域。各符號影像區塊與對應的標籤如下表1示例性所示,其中P代表第二標籤指示有效狀態,F代表第二標籤指示無效狀態,而P/F後接的數字及/或英文字母為第一標籤。In step S105, the computing device 10 assigns a target tag corresponding to each of the symbol image blocks A1-A11, wherein the target tag includes a first sub-tag and a second sub-tag. The computing device 10 assigns the first sub-tag and the second sub-tag corresponding to the symbol image block according to the image control signal. The first sub-tag is the symbol code indicated by the image control signal, and the second sub-tag is the valid state or invalid state indicated by the image control signal. As shown in FIG3 , the symbol image block A1 may correspond to the display area of the seven-segment display, the symbol image blocks A2 and A3 may correspond to the display area of the English letters, the symbol image block A4 may correspond to the display area of the demand period (EOI), the symbol image block A5 may correspond to the display area of the alternate mode (ALT), the symbol image block A6 may correspond to the display area of the punctuation marks, and the symbol image block A7 may correspond to the electronic turntable ( table), the symbol image block A8 may correspond to the display area of the interface icon, such as RS485, infrared and other communication icons, the symbol image block A9 may correspond to the display area of the continuous (Continue, Cont), the symbol image block A10 may correspond to the display area of the cumulative demand (Cumulative, Cum), and the symbol image block A11 may correspond to the display area of the unit icon. Each symbol image block and the corresponding label are shown in Table 1 below, where P represents the second label indicating a valid state, F represents the second label indicating an invalid state, and the numbers and/or English letters following P/F are the first labels.

表1 符號影像區塊 目標標籤 符號影像區塊A1 P7058、P7069、F7001~F7057 符號影像區塊A2 PA~PD 符號影像區塊A3 PA~PF 符號影像區塊A4 PEOI 符號影像區塊A5 PALT 符號影像區塊A6 PP0、PP1、PP2、PP3 符號影像區塊A7 PT077、PT178、FT001~FT076 符號影像區塊A8 PI1~PI4 符號影像區塊A9 PCont 符號影像區塊A10 PCum 符號影像區塊A11 PU090、PU165、FU001~FU089 Table 1 Symbol image block Target label Symbol image block A1 P7058, P7069, F7001~F7057 Symbol image block A2 PA~PD Symbol image block A3 PA~PF Symbol image block A4 PEOI Symbol image block A5 PALT Symbol image block A6 PP0, PP1, PP2, PP3 Symbol image block A7 PT077, PT178, FT001~FT076 Symbol image block A8 PI1~PI4 Symbol image block A9 PCont Symbol image block A10 PCum Symbol image block A11 PU090, PU165, FU001~FU089

以符號影像區塊A1為例,第一子標籤為代碼「7058」,第二子標籤為有效狀態,則符號影像區塊A1中顯示的是有效數字。此外,同樣以符號影像區塊A1為例,假設第一子標籤為代碼「7002」,第二子標籤為無效狀態,則符號影像區塊A1中可能顯示亂碼。換言之,若影像控制訊號控制一個預設顯示區域顯示該區域可能會呈現的符號,則對應的第二子標籤為有效狀態;反之,若影像控制訊號控制一個預設顯示區域顯示該區域不會呈現的符號(例如,亂碼),則對應的第二子標籤為無效狀態。Taking symbol image block A1 as an example, if the first sub-tag is the code "7058" and the second sub-tag is in a valid state, then a valid number is displayed in symbol image block A1. In addition, taking symbol image block A1 as an example, assuming that the first sub-tag is the code "7002" and the second sub-tag is in an invalid state, garbled characters may be displayed in symbol image block A1. In other words, if the image control signal controls a preset display area to display a symbol that may appear in the area, the corresponding second sub-tag is in a valid state; conversely, if the image control signal controls a preset display area to display a symbol that will not appear in the area (for example, garbled characters), the corresponding second sub-tag is in an invalid state.

此外,運算裝置10可利用各符號及對應的目標標籤命名多個資料夾,並將各符號影像區塊及對應的目標標籤存入對應的資料夾,以更有效分類訓練資料。於此要特別說明的是,圖3及表1示例性地呈現多種顯示區域及標籤,然其種類可依實際所需增減或變換,本發明不予限制。於一實施例中,運算裝置10所發出的影像控制訊號中的一或多者可以指示顯示裝置11不顯示畫面,並賦予攝影機12所拍攝到的影像螢幕不顯示的標籤,例如為NA。In addition, the computing device 10 can name multiple folders using each symbol and the corresponding target label, and store each symbol image block and the corresponding target label in the corresponding folder to more effectively classify the training data. It should be particularly noted here that FIG. 3 and Table 1 exemplarily present a variety of display areas and labels, but their types can be increased, decreased or changed according to actual needs, and the present invention is not limited thereto. In one embodiment, one or more of the image control signals issued by the computing device 10 can instruct the display device 11 not to display the picture, and assign a label that the image captured by the camera 12 is not displayed on the screen, such as NA.

於步驟S107,運算裝置10利用每一幀訓練影像的符號影像區塊及對應的目標標籤進行訓練以產生符號辨識模型。符號辨識模型可以是利用遷移(transfer)學習。進行訓練時,預訓練模型(即已經過訓練後的模型)連接於輸入層及分類器之間。輸入層為訓練影像的長、寬及通道數量,分類器的輸出為與目標標籤相同形式的標籤(例如,後述的預測標籤)。預訓練模型可為卷積神經網路(convolutional neural network,CNN)模型,例如,MobileNet-v2。輸入層及分類器的權重在訓練時可被據以更新。In step S107, the computing device 10 uses the symbol image blocks and corresponding target labels of each frame of training image for training to generate a symbol recognition model. The symbol recognition model can be learned using transfer. During training, the pre-trained model (i.e., the trained model) is connected between the input layer and the classifier. The input layer is the length, width, and number of channels of the training image, and the output of the classifier is a label in the same form as the target label (for example, the predicted label described later). The pre-trained model can be a convolutional neural network (CNN) model, such as MobileNet-v2. The weights of the input layer and the classifier can be updated accordingly during training.

另外,在步驟S107前,運算裝置10可依據至少一隨機影像參數調整所述多幀訓練影像以產生多幀擴充影像,及將擴充影像的每一者作為目標影像並執行標記程序(步驟S103及步驟S105)。所述至少一隨機影像參數包含亮度、飽和度及對比度中的至少一者。據此,可以在不需多次執行步驟S101到步驟S105的情況下,即可得到較多的訓練影像。In addition, before step S107, the computing device 10 can adjust the multi-frame training images according to at least one random image parameter to generate a multi-frame expanded image, and use each of the expanded images as a target image and execute a marking process (step S103 and step S105). The at least one random image parameter includes at least one of brightness, saturation, and contrast. Accordingly, more training images can be obtained without executing steps S101 to S105 multiple times.

由於依據本發明的符號辨識模型訓練方法收集顯示裝置11上可能顯示的所有文字、數字及符號等,並賦予有效及無效標籤,經上述訓練產生的符號辨識模型可準確判斷實際運作中的顯示裝置11或與顯示裝置11相同的其他顯示裝置的顯示畫面所顯示的文字、符號、圖式等,可供進一步確認實際顯示結果是否符合控制訊號對應的預設顯示結果以判斷顯示功能是否異常。Since the symbol recognition model training method according to the present invention collects all the text, numbers, symbols, etc. that may be displayed on the display device 11 and assigns valid and invalid labels, the symbol recognition model generated by the above training can accurately judge the text, symbols, graphics, etc. displayed on the display screen of the display device 11 in actual operation or other display devices that are the same as the display device 11, and can be used to further confirm whether the actual display result conforms to the preset display result corresponding to the control signal to determine whether the display function is abnormal.

請一併參考圖1、圖4及圖5,其中圖4係依據本發明一實施例所繪示的符號辨識模型訓練方法中的顯示螢幕區域擷取的流程圖,圖5係繪示取得顯示螢幕區域的示意圖。圖4的步驟執行在圖2的步驟S101之前,且可由圖1的符號辨識模型訓練系統1執行,特別係由運算裝置10執行。如圖4所示,取得顯示螢幕區域的方法包括:步驟S201:控制顯示裝置顯示預設符號並控制攝影機拍攝顯示裝置以取得初始影像;步驟S203:校正初始影像以產生校正影像;以及步驟S205:根據預設符號的預設顯示位置及預設尺寸,從校正影像取得顯示螢幕區域。Please refer to FIG. 1, FIG. 4 and FIG. 5, wherein FIG. 4 is a flowchart of display screen area capture in a symbol recognition model training method according to an embodiment of the present invention, and FIG. 5 is a schematic diagram of obtaining a display screen area. The step of FIG. 4 is executed before step S101 of FIG. 2, and can be executed by the symbol recognition model training system 1 of FIG. 1, especially by the computing device 10. As shown in FIG. 4 , the method for obtaining a display screen area includes: step S201: controlling a display device to display a preset symbol and controlling a camera to shoot the display device to obtain an initial image; step S203: correcting the initial image to generate a corrected image; and step S205: obtaining a display screen area from the corrected image according to a preset display position and a preset size of the preset symbol.

於步驟S201,運算裝置10控制顯示裝置11顯示預設符號DS,及控制攝影機12拍攝顯示裝置11的顯像畫面以取得初始影像。如圖5所示,預設符號DS可為「7」。步驟S201的執行方式可與圖2的步驟S101相似。In step S201, the computing device 10 controls the display device 11 to display a default symbol DS, and controls the camera 12 to capture the display screen of the display device 11 to obtain an initial image. As shown in FIG5, the default symbol DS may be "7". The execution method of step S201 may be similar to step S101 in FIG2.

於步驟S203,運算裝置10校正初始影像以產生校正影像IMG。運算裝置10可以旋轉初始影像,以使校正影像IMG的至少一邊平行於顯示裝置11的對應的一邊。In step S203 , the computing device 10 calibrates the initial image to generate a calibrated image IMG. The computing device 10 may rotate the initial image so that at least one side of the calibrated image IMG is parallel to a corresponding side of the display device 11 .

於步驟S205,運算裝置10根據預設符號DS的輔助框DA1及預設尺寸,從校正影像IMG取得顯示螢幕區域DA,其中預設顯示區域DA包含顯示螢幕區域。運算裝置10可以是根據預設符號DS在校正影像中的多個座標之間的座標差與預設符號DS的預設尺寸的多個預設比例取得顯示螢幕區域。In step S205, the computing device 10 obtains the display screen area DA from the calibrated image IMG according to the auxiliary frame DA1 and the default size of the default symbol DS, wherein the default display area DA includes the display screen area. The computing device 10 may obtain the display screen area according to a plurality of default ratios of the coordinate difference between the plurality of coordinates of the default symbol DS in the calibrated image and the default size of the default symbol DS.

以下以圖5說明步驟S205。運算裝置10可根據影像控制訊號判斷預設符號DS包括多個基準點C2及C3,例如為「7」的右下角點及左上角點,其中基準點C2的座標為(x2,y2),且基準點C3的座標為(x3,y3)。運算裝置10計算基準點C2與基準點C3之間的水平座標差w(即x2-x3),及計算基準點C2與基準點C3之間的垂直座標差h(即y2-y3),並依據以下公式(1)取得基準點C4的座標(x4,y4),及依據以下公式(2)取得另一基準點C5的座標(x5,y5),進而依據基準點C4及基準點C5得到顯示螢幕區域DA。公式(1)及(2)中的R1、R2、R3及R4分別為多個預設比例值,可以公式(3)到公式(6)取得,其中shiftx指示預設符號DS的基準點C1與基準點C3之間的預設長度,shifty指示預設符號DS的基準點C1至基準點C2之間的預設長度。舉例來說,預設比例值R1、R2、R3及R4可以分別設定為4.22、1.23、6.28及1.75。 公式(1) 公式(2) 公式(3) 公式(4) 公式(5) 公式(6) The following is an explanation of step S205 with reference to FIG5. The computing device 10 can determine that the default symbol DS includes a plurality of reference points C2 and C3 according to the image control signal, such as the lower right corner and the upper left corner of "7", wherein the coordinates of the reference point C2 are (x2, y2), and the coordinates of the reference point C3 are (x3, y3). The computing device 10 calculates the horizontal coordinate difference w (i.e., x2-x3) between the reference point C2 and the reference point C3, and calculates the vertical coordinate difference h (i.e., y2-y3) between the reference point C2 and the reference point C3, and obtains the coordinates (x4, y4) of the reference point C4 according to the following formula (1), and obtains the coordinates (x5, y5) of another reference point C5 according to the following formula (2), and then obtains the display screen area DA according to the reference point C4 and the reference point C5. R1, R2, R3 and R4 in formulas (1) and (2) are multiple preset ratio values, which can be obtained by formulas (3) to (6), wherein shiftx indicates the preset length between the reference point C1 and the reference point C3 of the default symbol DS, and shifty indicates the preset length between the reference point C1 and the reference point C2 of the default symbol DS. For example, the preset ratio values R1, R2, R3 and R4 can be set to 4.22, 1.23, 6.28 and 1.75, respectively. Formula 1) Formula (2) Formula (3) Formula (4) Formula (5) Formula (6)

藉由上述取得顯示螢幕區域的方式,運算裝置10分割目標影像而取得的符號影像區塊可以更準確。於此要特別說明的是,圖5示例性地呈現預設符號DS可為「7」,然於其他實施例中,預設符號DS可以為包含基準點C2及C3的其他種符號。By the above method of obtaining the display screen area, the computing device 10 can divide the target image and obtain the symbol image block more accurately. It should be particularly noted that FIG. 5 shows that the default symbol DS can be "7" by way of example, but in other embodiments, the default symbol DS can be other symbols including the reference points C2 and C3.

請一併參考圖1、圖5及圖6,其中圖6係依據本發明一實施例所繪示的符號辨識模型訓練方法中的影像校正的流程圖。圖6的步驟執行在圖2的步驟S103之前,可視為圖4之步驟S203的一實施例的細部流程圖,且可由圖1的符號辨識模型訓練系統1執行,特別係由運算裝置10執行。如圖6所示,校正影像的方法包括:步驟S301:取得二基準點在初始影像中的第一座標及第二座標;步驟S303:根據第一座標與第二座標取得第一角度;以及步驟S305:基於第一角度與基準角度之間的差旋轉初始影像以取得校正影像。Please refer to FIG. 1 , FIG. 5 and FIG. 6 , wherein FIG. 6 is a flowchart of image correction in a symbol recognition model training method according to an embodiment of the present invention. The steps of FIG. 6 are executed before step S103 of FIG. 2 , and can be regarded as a detailed flowchart of an embodiment of step S203 of FIG. 4 , and can be executed by the symbol recognition model training system 1 of FIG. 1 , especially by the computing device 10 . As shown in FIG. 6 , the method for correcting an image includes: step S301: obtaining first coordinates and second coordinates of two reference points in an initial image; step S303: obtaining a first angle according to the first coordinates and the second coordinates; and step S305: rotating the initial image based on the difference between the first angle and the reference angle to obtain a corrected image.

需先說明的是,相似於前述,運算裝置10可根據影像控制訊號判斷預設符號包括二基準點,且該二基準點之間的連線對應於顯示裝置11的邊框。以圖5為例,預設符號DS包括二基準點C1及C2,基準點C1及C2之間的連線,且連線平行於顯示裝置11的短邊框(或/及垂直於顯示裝置11的長邊框)。另外,基準點C2及C3亦可作為預設符號DS的二基準點。以下是以基準點C1及C2作為預設符號DS的二基準點進行說明。It should be noted that, similar to the above, the computing device 10 can determine that the default symbol includes two reference points according to the image control signal, and the connection line between the two reference points corresponds to the frame of the display device 11. Taking FIG. 5 as an example, the default symbol DS includes two reference points C1 and C2, and the connection line between the reference points C1 and C2 is parallel to the short frame of the display device 11 (or/and perpendicular to the long frame of the display device 11). In addition, the reference points C2 and C3 can also be used as the two reference points of the default symbol DS. The following is an explanation using the reference points C1 and C2 as the two reference points of the default symbol DS.

於步驟S301,運算裝置10取得基準點C1及C2在初始影像中的第一座標(x1,y1)及第二座標(x2,y2)。具體而言,運算裝置10根據初始影像的中心點,依據預定比例的初始影像的長度及寬度向外延伸而得到輔助框DA1。預定比例例如為25%,本發明不予以限制。接著,運算裝置10抓取輔助框DA1內的輪廓的第一座標(x1,y1)及第二座標(x2,y2)。In step S301, the computing device 10 obtains the first coordinates (x1, y1) and the second coordinates (x2, y2) of the reference points C1 and C2 in the initial image. Specifically, the computing device 10 extends outward from the center point of the initial image according to the length and width of the initial image at a predetermined ratio to obtain the auxiliary frame DA1. The predetermined ratio is, for example, 25%, which is not limited in the present invention. Then, the computing device 10 captures the first coordinates (x1, y1) and the second coordinates (x2, y2) of the outline in the auxiliary frame DA1.

於步驟S303,運算裝置10根據第一座標與第二座標取得第一角度。運算裝置10可先基於以下公式(7)計算第二座標相對於第一座標的斜率m,再基於以下公式(8)將斜率m轉換為第一角度 公式(7) 公式(8) In step S303, the computing device 10 obtains a first angle according to the first coordinate and the second coordinate. The computing device 10 may first calculate the slope m of the second coordinate relative to the first coordinate based on the following formula (7), and then convert the slope m into the first angle based on the following formula (8): . Formula (7) Formula (8)

於步驟S305,運算裝置10基於第一角度與基準角度之間的差旋轉初始影像以取得校正影像。基準角度例如為 。運算裝置10可取得基準角度減第一角度的角度差,及將初始影像旋轉該角度差以得到校正影像。若所述角度差為負值,則順時針旋轉初始影像;若所述角度差為正值,則逆時針旋轉初始影像。 In step S305, the computing device 10 rotates the initial image based on the difference between the first angle and the reference angle to obtain a corrected image. The reference angle is, for example, The computing device 10 may obtain an angle difference between the base angle and the first angle, and rotate the initial image by the angle difference to obtain a corrected image. If the angle difference is a negative value, the initial image is rotated clockwise; if the angle difference is a positive value, the initial image is rotated counterclockwise.

請接著參考圖7,圖7係依據本發明一實施例所繪示的顯示裝置檢測系統的方塊圖。如圖7所示,顯示裝置檢測系統2包括運算裝置20、顯示裝置21及攝影機22。運算裝置20連接於顯示裝置21及攝影機22。Please refer to FIG. 7, which is a block diagram of a display device detection system according to an embodiment of the present invention. As shown in FIG. 7, the display device detection system 2 includes a computing device 20, a display device 21 and a camera 22. The computing device 20 is connected to the display device 21 and the camera 22.

運算裝置20用於控制所述攝影機22拍攝顯示裝置21的顯示畫面,及利用攝影機22拍攝的影像判斷顯示裝置21是否異常。運算裝置20可以包含一或多個處理器,所述處理器例如為中央處理器、繪圖處理器、微控制器、可程式化邏輯控制器或其他具有訊號處理功能的處理器。顯示裝置21與圖1的顯示裝置11為同一類型的顯示裝置。顯示裝置21受運算裝置20控制以顯示影像。運算裝置20及圖1的運算裝置10可為同一運算裝置或不同運算裝置,顯示裝置21及圖1的顯示裝置11可為同一顯示裝置或不同顯示裝置。The computing device 20 is used to control the camera 22 to shoot the display screen of the display device 21, and to use the image shot by the camera 22 to determine whether the display device 21 is abnormal. The computing device 20 may include one or more processors, such as a central processing unit, a graphics processor, a microcontroller, a programmable logic controller or other processors with signal processing functions. The display device 21 is the same type of display device as the display device 11 of FIG. 1. The display device 21 is controlled by the computing device 20 to display images. The computing device 20 and the computing device 10 of FIG. 1 may be the same computing device or different computing devices, and the display device 21 and the display device 11 of FIG. 1 may be the same display device or different display devices.

為了更詳細說明顯示裝置檢測方法,請一併參考圖7及圖8,其中圖8係依據本發明一實施例所繪示的顯示裝置檢測方法的流程圖。圖8所示的步驟係由圖7的顯示裝置檢測系統2執行,特別係由運算裝置20執行。如圖8所示,顯示裝置檢測方法包括:步驟S401:輸出影像控制訊號至顯示裝置並控制攝影機拍攝顯示裝置以取得對應於影像控制訊號的測試影像;步驟S403:依據顯示裝置的多個預設顯示區域分割測試影像以取得多個符號影像區塊;步驟S405:將所述多個符號影像區塊輸入至符號辨識模型以取得所述多個符號影像區塊的多個預測標籤,其中所述多個預測標籤各包含第一子標籤及第二子標籤,第一子標籤指示預測符號,第二子標籤指示有效狀態或無效狀態;以及步驟S407:依據影像控制訊號與所述多個預測標籤之間的匹配程度產生顯示裝置的檢測結果。To explain the display device detection method in more detail, please refer to FIG. 7 and FIG. 8 , wherein FIG. 8 is a flow chart of the display device detection method according to an embodiment of the present invention. The steps shown in FIG. 8 are executed by the display device detection system 2 of FIG. 7 , and in particular, by the computing device 20 . As shown in FIG8 , the display device detection method includes: step S401: outputting an image control signal to the display device and controlling a camera to shoot the display device to obtain a test image corresponding to the image control signal; step S403: segmenting the test image according to a plurality of preset display areas of the display device to obtain a plurality of symbol image blocks; step S405: inputting the plurality of symbol image blocks into a symbol recognition model to obtain a plurality of prediction labels of the plurality of symbol image blocks, wherein the plurality of prediction labels each include a first sub-label and a second sub-label, the first sub-label indicates a predicted symbol, and the second sub-label indicates a valid state or an invalid state; and step S407: generating a detection result of the display device according to a matching degree between the image control signal and the plurality of prediction labels.

於步驟S401,運算裝置20輸出影像控制訊號至顯示裝置21並控制攝影機22拍攝顯示裝置21以取得對應於影像控制訊號的測試影像。如前所述,顯示裝置21包括多個預設顯示區域,運算裝置20輸出的影像控制訊號是用於控制預設顯示區域顯示該區域可能或不可能呈現的符號。In step S401, the computing device 20 outputs an image control signal to the display device 21 and controls the camera 22 to shoot the display device 21 to obtain a test image corresponding to the image control signal. As mentioned above, the display device 21 includes a plurality of preset display areas, and the image control signal output by the computing device 20 is used to control the preset display area to display a symbol that may or may not be presented in the area.

於步驟S403,運算裝置20依據顯示裝置21的預設顯示區域以取得符號影像區塊。步驟S403與圖2的步驟S103相同,且可同樣包括圖4及/或圖5的實施例。In step S403, the computing device 20 obtains the symbol image block according to the default display area of the display device 21. Step S403 is the same as step S103 of FIG. 2 and may also include the embodiments of FIG. 4 and/or FIG. 5.

於步驟S405,運算裝置20將符號影像區塊輸入至符號辨識模型以取得符號影像區塊的預測標籤,其中符號辨識模型可以是依據以上一或多個實施例所述的符號辨識模型訓練方法及系統產生的符號辨識模型。每個預測標籤包括第一子標籤及第二子標籤,第一子標籤指示預測符號對應的代碼,第二子標籤指示預測符號的代碼為有效狀態或無效狀態。換言之,符號辨識模型產生的第一子標籤是用於預測該符號影像區塊顯示的符號,符號辨識模型產生的第二子標籤是用於預測所述符號為有效符號或無效符號。In step S405, the computing device 20 inputs the symbol image block into the symbol recognition model to obtain a predicted label of the symbol image block, wherein the symbol recognition model may be a symbol recognition model generated according to the symbol recognition model training method and system described in one or more of the above embodiments. Each predicted label includes a first sub-label and a second sub-label, the first sub-label indicating a code corresponding to the predicted symbol, and the second sub-label indicating whether the code of the predicted symbol is valid or invalid. In other words, the first sub-label generated by the symbol recognition model is used to predict the symbol displayed by the symbol image block, and the second sub-label generated by the symbol recognition model is used to predict whether the symbol is a valid symbol or an invalid symbol.

於步驟S407,運算裝置20依據影像控制訊號與預測標籤之間的匹配程度產生顯示裝置21的檢測結果。以圖3的符號影像區塊A1為例,若影像控制訊號指示符號影像區塊A1顯示的符號為「5」,符號辨識模型產生的第一子標籤為符號「5」的代碼,第二子標籤指示有效狀態,則對應於符號影像區塊A1的影像控制訊號與預測標籤之間的匹配程度高。若影像控制訊號指示符號影像區塊A1顯示的符號為「5」,而符號辨識模型產生的第一子標籤為亂碼的代碼,第二子標籤指示無效狀態,則對應於符號影像區塊A1的影像控制訊號與預測標籤之間的匹配程度低。相似地,若影像控制訊號指示符號影像區塊A1顯示的符號為亂碼,符號辨識模型產生的第一子標籤指示的預測符號為亂碼的代碼,第二子標籤指示無效狀態,則對應於符號影像區塊A1的影像控制訊號與預測標籤之間的匹配程度高。In step S407, the computing device 20 generates the detection result of the display device 21 according to the matching degree between the image control signal and the predicted label. Taking the symbol image block A1 of FIG3 as an example, if the image control signal indicates that the symbol displayed by the symbol image block A1 is "5", the first sub-label generated by the symbol recognition model is the code of the symbol "5", and the second sub-label indicates a valid state, then the matching degree between the image control signal corresponding to the symbol image block A1 and the predicted label is high. If the image control signal indicates that the symbol displayed by the symbol image block A1 is "5", and the first sub-label generated by the symbol recognition model is a garbled code, and the second sub-label indicates an invalid state, then the matching degree between the image control signal corresponding to the symbol image block A1 and the predicted label is low. Similarly, if the image control signal indicates that the symbol displayed by the symbol image block A1 is garbled, the first sub-label generated by the symbol recognition model indicates that the predicted symbol is a garbled code, and the second sub-label indicates an invalid state, then the image control signal corresponding to the symbol image block A1 has a high degree of match with the predicted label.

換言之,預測標籤用於指示測試影像中顯示的符號是否與影像控制訊號指示的符號一致,若不一致,則表示顯示裝置的顯示功能可能異常。據此,藉由上述的顯示裝置檢測方法及系統,可有效檢測顯示裝置是否有異常。In other words, the prediction tag is used to indicate whether the symbol displayed in the test image is consistent with the symbol indicated by the image control signal. If not, it means that the display function of the display device may be abnormal. Accordingly, the above display device detection method and system can effectively detect whether the display device is abnormal.

請接著一併參考圖7、圖9及圖10(a)到圖10(b),其中圖9係依據本發明一實施例所繪示的顯示裝置檢測方法中的邊框檢測的流程圖,圖10(a)係繪示空白測試影像及邊框檢測區塊的示意圖,圖10(b)係繪示圖10(a)的檢測結果。圖9的步驟可由圖7的顯示裝置檢測系統2執行,特別係由運算裝置20執行。如圖9所示,顯示裝置的邊框檢測方法包括:步驟S501:輸出空白影像訊號至顯示裝置並控制攝影機拍攝顯示裝置以取得對應於空白影像訊號的空白測試影像;步驟S503:依據預設寬度分割空白測試影像以取得多個邊框檢測區塊;步驟S505:分別計算所述多個邊框檢測區塊的多個灰度值;步驟S507:判斷所述多個灰度值的每一者是否高於對應的閾值;若步驟S507的判斷結果為「是」,執行步驟S509:輸出正面的邊框檢測結果;以及若步驟S507的判斷結果為「否」,執行步驟S511:輸出負面的邊框檢測結果。Please refer to FIG. 7, FIG. 9 and FIG. 10(a) to FIG. 10(b) together, wherein FIG. 9 is a flowchart of the border detection in the display device detection method according to an embodiment of the present invention, FIG. 10(a) is a schematic diagram showing a blank test image and a border detection block, and FIG. 10(b) is a diagram showing the detection result of FIG. 10(a). The steps of FIG. 9 can be executed by the display device detection system 2 of FIG. 7, and in particular, by the computing device 20. As shown in FIG. 9 , the border detection method of the display device includes: step S501: outputting a blank image signal to the display device and controlling a camera to shoot the display device to obtain a blank test image corresponding to the blank image signal; step S503: dividing the blank test image according to a preset width to obtain a plurality of border detection blocks; step S505: respectively calculating the plurality of A plurality of grayscale values of the border detection area; step S507: determining whether each of the plurality of grayscale values is higher than a corresponding threshold; if the determination result of step S507 is "yes", executing step S509: outputting a positive border detection result; and if the determination result of step S507 is "no", executing step S511: outputting a negative border detection result.

於步驟S501,運算裝置20輸出的空白影像訊號是用於控制顯示裝置21顯示背光而不顯示任何符號,運算裝置20控制攝影機22拍攝顯示裝置21以取得空白測試影像。In step S501, the blank image signal output by the computing device 20 is used to control the display device 21 to display the backlight without displaying any symbols. The computing device 20 controls the camera 22 to shoot the display device 21 to obtain a blank test image.

以圖10(a)為例,於步驟S503,運算裝置20將空白測試影像分割為第一邊框檢測區塊BDX1到第n邊框檢測區塊BDXn,其中n是大於1的正整數。第一邊框檢測區塊BDX1到第n邊框檢測區塊BDXn中的每一者的寬度可等於預設寬度。Taking FIG. 10( a) as an example, in step S503, the computing device 20 divides the blank test image into the first border detection block BDX1 to the nth border detection block BDXn, where n is a positive integer greater than 1. The width of each of the first border detection block BDX1 to the nth border detection block BDXn may be equal to a preset width.

於步驟S505,在圖10(a)及圖10(b)的例子中,運算裝置20計算第一邊框檢測區塊BDX1到第n邊框檢測區塊BDXn中的每一者的灰度值。由於第一邊框檢測區塊BDX1及第n邊框檢測區塊BDXn皆對應於顯示裝置21的整條邊框,故兩者的灰度值皆較高,而第二邊框檢測區塊BDX2對應於顯示裝置21的部分邊框,故灰度值較低。In step S505, in the examples of FIG. 10(a) and FIG. 10(b), the computing device 20 calculates the grayscale value of each of the first border detection block BDX1 to the nth border detection block BDXn. Since the first border detection block BDX1 and the nth border detection block BDXn both correspond to the entire border of the display device 21, the grayscale values of both are relatively high, while the second border detection block BDX2 corresponds to a partial border of the display device 21, so the grayscale value is relatively low.

於步驟S507,運算裝置20判斷各灰度值是否高於對應的閾值,其中不同邊框檢測區塊可對應不同的閾值。以圖10(a)及圖10(b)為例,第一邊框檢測區塊BDX1及第n邊框檢測區塊BDXn的閾值高於第二邊框檢測區塊BDX2的閾值。例如,第一邊框檢測區塊BDX1及第n邊框檢測區塊BDXn的閾值可為200,第二邊框檢測區塊BDX2的閾值可為20。In step S507, the computing device 20 determines whether each grayscale value is higher than the corresponding threshold value, wherein different border detection blocks may correspond to different threshold values. Taking FIG. 10(a) and FIG. 10(b) as examples, the threshold values of the first border detection block BDX1 and the nth border detection block BDXn are higher than the threshold value of the second border detection block BDX2. For example, the threshold values of the first border detection block BDX1 and the nth border detection block BDXn may be 200, and the threshold value of the second border detection block BDX2 may be 20.

以第二邊框檢測區塊BDX2為例,若運算裝置20判斷第二邊框檢測區塊BDX2的灰度值不高於閾值,表示第二邊框檢測區塊BDX2未顯示其他內容。因此,於步驟S509,運算裝置20輸出正面的邊框檢測結果,其中正面的邊框檢測結果可指示第二邊框檢測區塊BDX2的位置及其顯示功能正常。Taking the second border detection block BDX2 as an example, if the computing device 20 determines that the grayscale value of the second border detection block BDX2 is not higher than the threshold value, it means that the second border detection block BDX2 does not display other content. Therefore, in step S509, the computing device 20 outputs the positive border detection result, wherein the positive border detection result can indicate that the position of the second border detection block BDX2 and its display function are normal.

以第二邊框檢測區塊BDX2為例,若運算裝置20判斷第二邊框檢測區塊BDX2的灰度值高於閾值,表示第二邊框檢測區塊BDX2可能顯示了非空白影像訊號指示的其他內容,而有較高的灰度值。因此,於步驟S511,運算裝置20輸出負面的邊框檢測結果,其中負面的邊框檢測結果可指示第二邊框檢測區塊BDX2的位置及其顯示功能異常。Taking the second border detection block BDX2 as an example, if the computing device 20 determines that the grayscale value of the second border detection block BDX2 is higher than the threshold value, it means that the second border detection block BDX2 may display other content indicated by the non-blank image signal and has a higher grayscale value. Therefore, in step S511, the computing device 20 outputs a negative border detection result, wherein the negative border detection result can indicate that the position of the second border detection block BDX2 and its display function are abnormal.

請參考圖10(c)及圖10(d),圖10(c)係繪示空白測試影像及邊框檢測區塊的示意圖,圖10(d)係繪示圖10(c)的檢測結果。除了檢測如圖10(a)及圖10(b)所示的沿橫軸分割得到的邊框檢測區塊,亦可檢測如圖10(c)及圖10(d)所示的沿縱軸分割得到的邊框檢測區塊。圖9所述的檢測方式亦可應用於,圖10(c)及圖10(d),詳細內容不再於此贅述。Please refer to FIG. 10(c) and FIG. 10(d). FIG. 10(c) is a schematic diagram showing a blank test image and a border detection block, and FIG. 10(d) is a diagram showing the detection result of FIG. 10(c). In addition to detecting the border detection block obtained by segmentation along the horizontal axis as shown in FIG. 10(a) and FIG. 10(b), the border detection block obtained by segmentation along the vertical axis as shown in FIG. 10(c) and FIG. 10(d) can also be detected. The detection method described in FIG. 9 can also be applied to FIG. 10(c) and FIG. 10(d). The details are not repeated here.

根據以上的邊框檢測方法,即使顯示裝置僅有些微的瑕疵,亦可有效檢測出瑕疵的存在及其位置。According to the above border detection method, even if the display device has only a slight defect, the existence and location of the defect can be effectively detected.

另需說明的是,圖8所示的檢測方法可執行在圖9的檢測方法之前或之後,本發明不予以限制。It should also be noted that the detection method shown in FIG. 8 can be executed before or after the detection method shown in FIG. 9 , and the present invention is not limited thereto.

綜上所述,依據本發明一或多個實施例的符號辨識模型訓練方法及系統,可自動化收集訓練資料,且經訓練的符號辨識模型可準確檢測實際運作中的顯示裝置的顯示功能是否異常。並且,透過擴充訓練資料的數量,可改善進行訓練時模型的收斂速度。依據本發明一或多個實施例的顯示裝置檢測方法及系統,可有效檢測顯示裝置是否有異常。此外,依據以上一或多個實施例的影像分割方法,可自動框選符號的外框。In summary, according to the symbol recognition model training method and system of one or more embodiments of the present invention, training data can be automatically collected, and the trained symbol recognition model can accurately detect whether the display function of the display device in actual operation is abnormal. In addition, by expanding the amount of training data, the convergence speed of the model during training can be improved. According to the display device detection method and system of one or more embodiments of the present invention, it is possible to effectively detect whether the display device is abnormal. In addition, according to the image segmentation method of one or more embodiments above, the outer frame of the symbol can be automatically selected.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention is disclosed as above with the aforementioned embodiments, it is not intended to limit the present invention. Any changes and modifications made within the spirit and scope of the present invention are within the scope of patent protection of the present invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

1:符號辨識模型訓練系統 2:顯示裝置檢測系統 10,20:運算裝置 11,21:顯示裝置 12,22:攝影機 A1,A2:符號影像區塊 IMG0:初始影像 IMG1:目標影像 C1,C2,C3,C4,C5:基準點 DA:顯示螢幕區域 DA1:輔助框 BDX1,BDX2,BDXn,BDY1,BDYn:邊框檢測區塊 S101,S103,S105,S107,S201,S203,S205,S301,S303,S305,S401,S403,S405,S407,S501,S503,S505,S507,S509,S511:步驟 1: Symbol recognition model training system 2: Display device detection system 10,20: Computing device 11,21: Display device 12,22: Camera A1,A2: Symbol image block IMG0: Initial image IMG1: Target image C1,C2,C3,C4,C5: Reference point DA: Display screen area DA1: Auxiliary frame BDX1,BDX2,BDXn,BDY1,BDYn: Border detection block S101,S103,S105,S107,S201,S203,S205,S301,S303,S305,S401,S403,S405,S407,S501,S503,S505,S507,S509,S511: Steps

圖1係依據本發明一實施例所繪示的符號辨識模型訓練系統的方塊圖。 圖2係依據本發明一實施例所繪示的符號辨識模型訓練方法的流程圖。 圖3係繪示依據預設顯示區域分割目標影像的示意圖。 圖4係依據本發明一實施例所繪示的符號辨識模型訓練方法中的顯示螢幕區域擷取的流程圖。 圖5係繪示取得顯示螢幕區域的示意圖。 圖6係依據本發明一實施例所繪示的符號辨識模型訓練方法中的影像校正的流程圖。 圖7係依據本發明一實施例所繪示的顯示裝置檢測系統的方塊圖。 圖8係依據本發明一實施例所繪示的顯示裝置檢測方法的流程圖。 圖9係依據本發明一實施例所繪示的顯示裝置檢測方法中的邊框檢測的流程圖。 圖10(a)到圖10(d)係繪示對應圖9的示意圖。 FIG. 1 is a block diagram of a symbol recognition model training system according to an embodiment of the present invention. FIG. 2 is a flow chart of a symbol recognition model training method according to an embodiment of the present invention. FIG. 3 is a schematic diagram showing segmentation of a target image according to a preset display area. FIG. 4 is a flow chart of display screen area capture in a symbol recognition model training method according to an embodiment of the present invention. FIG. 5 is a schematic diagram showing acquisition of a display screen area. FIG. 6 is a flow chart of image correction in a symbol recognition model training method according to an embodiment of the present invention. FIG. 7 is a block diagram of a display device detection system according to an embodiment of the present invention. FIG8 is a flow chart of a display device detection method according to an embodiment of the present invention. FIG9 is a flow chart of a border detection in a display device detection method according to an embodiment of the present invention. FIG10(a) to FIG10(d) are schematic diagrams corresponding to FIG9.

S101,S103,S105,S107:步驟 S101, S103, S105, S107: Steps

Claims (12)

一種符號辨識模型訓練方法,包含藉由一運算裝置執行: 輸出多個影像控制訊號至一顯示裝置並控制一攝影機拍攝該顯示裝置以取得分別對應於該些影像控制訊號的多幀訓練影像;將該些訓練影像的每一者作為一目標影像並執行一標記程序,該標記程序包含:依據該顯示裝置的多個預設顯示區域分割該目標影像以取得多個符號影像區塊;以及分別賦予該些符號影像區塊多個目標標籤,其中該些目標標籤各包含一第一子標籤及一第二子標籤,該第一子標籤關聯於該些影像控制訊號中對應於該目標影像的一者,該第二子標籤指示一有效狀態或一無效狀態;以及利用該些符號影像區塊及該些目標標籤進行訓練以產生一符號辨識模型。 A symbol recognition model training method includes executing by a computing device: Output multiple image control signals to a display device and control a camera to shoot the display device to obtain multiple frames of training images corresponding to the image control signals; use each of the training images as a target image and execute a labeling procedure, the labeling procedure comprising: segmenting the target image according to multiple preset display areas of the display device to obtain multiple symbol image blocks; and assigning multiple target labels to the symbol image blocks respectively, wherein the target labels each include a first sub-label and a second sub-label, the first sub-label is associated with one of the image control signals corresponding to the target image, and the second sub-label indicates a valid state or an invalid state; and use the symbol image blocks and the target labels for training to generate a symbol recognition model. 如請求項1所述的符號辨識模型訓練方法,更包含: 控制該顯示裝置顯示一預設符號並控制該攝影機拍攝該顯示裝置以取得一初始影像;校正該初始影像以產生一校正影像;以及根據該預設符號的預設顯示位置及預設尺寸,從該校正影像取得一顯示螢幕區域;其中該些預設顯示區域包含該顯示螢幕區域。 The symbol recognition model training method as described in claim 1 further includes: Controlling the display device to display a preset symbol and controlling the camera to shoot the display device to obtain an initial image; correcting the initial image to generate a corrected image; and obtaining a display screen area from the corrected image according to the preset display position and preset size of the preset symbol; wherein the preset display areas include the display screen area. 如請求項2所述的符號辨識模型訓練方法,其中根據該預設符號的該預設顯示位置及該預設尺寸,從該校正影像取得該顯示螢幕區域包含: 根據該預設符號在該校正影像中的多個座標之間的座標差與該預設尺寸的多個預設比例取得該顯示螢幕區域。 The symbol recognition model training method as described in claim 2, wherein obtaining the display screen area from the calibrated image according to the default display position and the default size of the default symbol comprises: Obtaining the display screen area according to the coordinate difference between multiple coordinates of the default symbol in the calibrated image and multiple default ratios of the default size. 如請求項2所述的符號辨識模型訓練方法,其中該預設符號包含二基準點,該二基準點之間的連線對應於該顯示裝置的一邊框,且校正該初始影像以產生該校正影像包含: 取得該二基準點在該初始影像中的一第一座標及一第二座標;根據該第一座標與該第二座標取得一第一角度;以及基於該第一角度與一基準角度之間的差旋轉該初始影像以取得該校正影像。 A symbol recognition model training method as described in claim 2, wherein the default symbol includes two reference points, the line between the two reference points corresponds to a border of the display device, and correcting the initial image to generate the corrected image includes: Obtaining a first coordinate and a second coordinate of the two reference points in the initial image; obtaining a first angle based on the first coordinate and the second coordinate; and rotating the initial image based on the difference between the first angle and a reference angle to obtain the corrected image. 如請求項1所述的符號辨識模型訓練方法,在進行該訓練前更包含: 依據至少一隨機影像參數調整該些訓練影像以產生多幀擴充影像;以及將該些擴充影像的每一者作為該目標影像並執行該標記程序;其中該至少一隨機影像參數包含亮度、飽和度及對比度中的至少一者。 The symbol recognition model training method as described in claim 1 further comprises before the training: Adjusting the training images according to at least one random image parameter to generate multi-frame extended images; and using each of the extended images as the target image and executing the labeling process; wherein the at least one random image parameter includes at least one of brightness, saturation and contrast. 一種符號辨識模型訓練系統,包含用於執行如請求項1到5中的任一項所述的符號辨識模型訓練方法的該運算裝置、該顯示裝置及該攝影機。A symbol recognition model training system includes the computing device, the display device and the camera for executing the symbol recognition model training method as described in any one of claims 1 to 5. 一種顯示裝置檢測方法,藉由一運算裝置執行,包含: 輸出一影像控制訊號至一顯示裝置並控制一攝影機拍攝該顯示裝置以取得對應於該影像控制訊號的一測試影像;依據該顯示裝置的多個預設顯示區域分割該測試影像以取得多個符號影像區塊;將該些符號影像區塊輸入至一符號辨識模型以取得該些符號影像區塊的多個預測標籤,其中該些預測標籤各包含一第一子標籤及一第二子標籤,該第一子標籤指示一預測符號,該第二子標籤指示一有效狀態或一無效狀態;以及依據該影像控制訊號與該些預測標籤之間的匹配程度產生該顯示裝置的檢測結果。 A display device detection method, executed by a computing device, includes: outputting an image control signal to a display device and controlling a camera to shoot the display device to obtain a test image corresponding to the image control signal; segmenting the test image according to multiple preset display areas of the display device to obtain multiple symbol image blocks; inputting the symbol image blocks to a symbol recognition model to obtain multiple prediction labels of the symbol image blocks, wherein the prediction labels each include a first sub-label and a second sub-label, the first sub-label indicates a predicted symbol, and the second sub-label indicates a valid state or an invalid state; and generating a detection result of the display device according to the matching degree between the image control signal and the prediction labels. 如請求項7所述的顯示裝置檢測方法,更包含: 控制該顯示裝置顯示一預設符號並控制該攝影機拍攝該顯示裝置以取得一初始影像;校正該初始影像以產生一校正影像;以及根據該預設符號的預設顯示位置及預設尺寸,從該校正影像取得一顯示螢幕區域;其中該些預設顯示區域包含該顯示螢幕區域。 The display device detection method as described in claim 7 further comprises: Controlling the display device to display a preset symbol and controlling the camera to shoot the display device to obtain an initial image; correcting the initial image to generate a corrected image; and obtaining a display screen area from the corrected image according to the preset display position and preset size of the preset symbol; wherein the preset display areas include the display screen area. 如請求項8所述的顯示裝置檢測方法,其中根據該預設符號的該預設顯示位置及該預設尺寸,從該校正影像取得該顯示螢幕區域包含: 根據該預設符號在該校正影像中的多個座標之間的座標差與該預設尺寸的多個預設比例取得該顯示螢幕區域。 The display device detection method as described in claim 8, wherein obtaining the display screen area from the calibration image according to the default display position and the default size of the default symbol comprises: Obtaining the display screen area according to the coordinate difference between multiple coordinates of the default symbol in the calibration image and multiple default ratios of the default size. 如請求項8所述的顯示裝置檢測方法,其中該預設符號包含二基準點,該二基準點之間的連線對應於該顯示裝置的一邊框,且校正該初始影像以產生該校正影像包含: 取得該二基準點在該初始影像中的一第一座標及一第二座標;根據該第一座標與該第二座標取得一第一角度;以及基於該第一角度與一基準角度之間的差旋轉該初始影像以取得該校正影像。 A display device detection method as described in claim 8, wherein the preset symbol includes two reference points, the line between the two reference points corresponds to a border of the display device, and correcting the initial image to generate the corrected image includes: Obtaining a first coordinate and a second coordinate of the two reference points in the initial image; obtaining a first angle based on the first coordinate and the second coordinate; and rotating the initial image based on the difference between the first angle and a reference angle to obtain the corrected image. 如請求項7所述的顯示裝置檢測方法,更包含: 輸出一空白影像訊號至該顯示裝置並控制該攝影機拍攝該顯示裝置以取得對應於該空白影像訊號的一空白測試影像;依據一預設寬度分割該空白測試影像以取得多個邊框檢測區塊;分別計算該些邊框檢測區塊的多個灰度值;以及當該些灰度值中的任一者高於對應的一閾值時,輸出負面的邊框檢測結果。 The display device detection method as described in claim 7 further comprises: Outputting a blank image signal to the display device and controlling the camera to shoot the display device to obtain a blank test image corresponding to the blank image signal; dividing the blank test image according to a preset width to obtain a plurality of border detection blocks; respectively calculating a plurality of gray values of the border detection blocks; and outputting a negative border detection result when any of the gray values is higher than a corresponding threshold value. 一種顯示裝置檢測系統,包含用於執行如請求項7到11中的任一項所述的顯示裝置檢測方法的該運算裝置、該顯示裝置及該攝影機。A display device detection system includes the computing device for executing the display device detection method as described in any one of claims 7 to 11, the display device and the camera.
TW112143223A 2023-11-09 2023-11-09 System and method of training symbol recognition model and system and method of detecting display device TWI845445B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112143223A TWI845445B (en) 2023-11-09 2023-11-09 System and method of training symbol recognition model and system and method of detecting display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112143223A TWI845445B (en) 2023-11-09 2023-11-09 System and method of training symbol recognition model and system and method of detecting display device

Publications (1)

Publication Number Publication Date
TWI845445B true TWI845445B (en) 2024-06-11

Family

ID=92541591

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112143223A TWI845445B (en) 2023-11-09 2023-11-09 System and method of training symbol recognition model and system and method of detecting display device

Country Status (1)

Country Link
TW (1) TWI845445B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351712A (en) * 2015-09-21 2018-07-31 株式会社Ip舍路信 device and card-type device
WO2020125839A1 (en) * 2018-12-18 2020-06-25 GRID INVENT gGmbH Electronic element and electrically controlled display element
TWI749714B (en) * 2020-08-17 2021-12-11 宜谷京科技實業有限公司 Method for defect detection, method for defect classification and system thereof
TWI767439B (en) * 2020-01-03 2022-06-11 國立臺灣大學 Medical image analyzing system and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351712A (en) * 2015-09-21 2018-07-31 株式会社Ip舍路信 device and card-type device
WO2020125839A1 (en) * 2018-12-18 2020-06-25 GRID INVENT gGmbH Electronic element and electrically controlled display element
TWI767439B (en) * 2020-01-03 2022-06-11 國立臺灣大學 Medical image analyzing system and method thereof
TWI749714B (en) * 2020-08-17 2021-12-11 宜谷京科技實業有限公司 Method for defect detection, method for defect classification and system thereof

Similar Documents

Publication Publication Date Title
US11238613B2 (en) Dynamical camera calibration
US9646370B2 (en) Automatic detection method for defects of a display panel
WO2019208036A1 (en) Reading system, reading method, program, and storage medium
JP6750500B2 (en) Information processing apparatus and recognition support method
CN109240572A (en) A kind of method obtaining picture, method and device that picture is handled
JP2018500647A (en) Mapping images to items
CN111325717A (en) Mobile phone defect position identification method and equipment
JP6953178B2 (en) Image processing device, image processing method, program
KR20060046328A (en) Display device which enables information to be inputted by use of beams of light
TWI845445B (en) System and method of training symbol recognition model and system and method of detecting display device
CN113269728B (en) Visual edge-tracking method, device, readable storage medium and program product
TW201715472A (en) Image segmentation determining method, gesture determining method, image sensing system and gesture determining system
CN112051920B (en) Sight line falling point determining method and device
CN116452468B (en) Deformation correction method and device for silica gel process
US10943109B2 (en) Electronic apparatus, method for controlling thereof and the computer readable recording medium
US11494944B2 (en) Automatic low contrast detection
JP2015032261A (en) Display device and control method
KR101447570B1 (en) Board inspection method and board inspection apparatus using the same
JP5901680B2 (en) Portable terminal device and display device
TWI469089B (en) Image determining method and object coordinate computing apparatus
CN107316293B (en) LED fuzzy picture identification and judgment method and system
JP6614029B2 (en) ROBOT HAND POSITION DETECTION DEVICE, ROBOT DEVICE, AND ROBOT HAND POSITION DETECTION METHOD
TWI795921B (en) Image detection method, computer device, and storage medium
CN105989587A (en) Automatic calibration method of multifunctional OCT (optical coherence tomography) system
EP4421739A1 (en) Electronic device and control method therefor