[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI845278B - Semiconductor structure and semiconductor device - Google Patents

Semiconductor structure and semiconductor device Download PDF

Info

Publication number
TWI845278B
TWI845278B TW112115310A TW112115310A TWI845278B TW I845278 B TWI845278 B TW I845278B TW 112115310 A TW112115310 A TW 112115310A TW 112115310 A TW112115310 A TW 112115310A TW I845278 B TWI845278 B TW I845278B
Authority
TW
Taiwan
Prior art keywords
layer
unit
semiconductor structure
field plate
epitaxial layer
Prior art date
Application number
TW112115310A
Other languages
Chinese (zh)
Other versions
TW202443898A (en
Inventor
鄒振東
李家豪
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW112115310A priority Critical patent/TWI845278B/en
Application granted granted Critical
Publication of TWI845278B publication Critical patent/TWI845278B/en
Publication of TW202443898A publication Critical patent/TW202443898A/en

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The present disclosure provides a semiconductor structure including: a substrate; an epitaxial layer disposed on the substrate; multiple field plate structures including a first field plate structure and a second field plate structure disposed in a first cell and a second cell of the semiconductor structure, respectively; an upper electrode layer covering the field plate structures, wherein the upper electrode layer is separated from the epitaxial layer in the first cell and in direct contact with the epitaxial layer in the second cell; and a lower electrode layer disposed under the substrate and opposite to the epitaxial layer.

Description

半導體結構及半導體裝置Semiconductor structure and semiconductor device

本發明是關於半導體結構,特別是關於包括場板結構的半導體結構。The present invention relates to semiconductor structures, and more particularly to semiconductor structures including field plate structures.

近年來,半導體產業在功率元件(power device)的發展上具有顯著的進步。目前已發展出例如高電壓金氧半導體(high voltage metal-oxide-semiconductor,HVMOS)電晶體、絕緣閘雙極性電晶體(insulated gate bipolar transistor,IGBT)、接面場效電晶體(Junction Field Effect Transistor,JFET)、與肖特基阻障二極體(Schottky barrier diode,SBD)等多種功率元件。這些元件通常係用於如家用電器、通信設備與車用發電機等儀器之功率系統內的功率放大、功率控制等多種應用之中。In recent years, the semiconductor industry has made significant progress in the development of power devices. Currently, a variety of power devices have been developed, such as high voltage metal-oxide-semiconductor (HVMOS) transistors, insulated gate bipolar transistors (IGBT), junction field effect transistors (JFET), and Schottky barrier diodes (SBD). These devices are usually used in power amplification, power control and other applications in power systems of household appliances, communication equipment and automotive generators.

在現有的金屬氧化物半導體電晶體設計中,藉由使用溝槽式的電晶體結構,能夠降低電晶體的導通電阻。此外,藉由形成包括分離式閘極(split-gate)的電晶體,能夠降低半導體元件的寄生電容以減少切換損耗(switching loss)。再者,可以將包括快速恢復二極體(fast recovery diode,FRD)或肖特基阻障二極體的晶片並聯到具有電晶體的晶片。如此一來,能夠減少逆向恢復(reverse recovery)電荷以進一步減少開關損耗。In existing metal oxide semiconductor transistor designs, the on-resistance of the transistor can be reduced by using a trench transistor structure. In addition, by forming a transistor including a split-gate, the parasitic capacitance of the semiconductor element can be reduced to reduce switching loss. Furthermore, a chip including a fast recovery diode (FRD) or a Schottky barrier diode can be connected in parallel to a chip with a transistor. In this way, the reverse recovery charge can be reduced to further reduce switching loss.

然而,為了將上述兩晶片封裝在一起,需要使用接合電線(bonding wires)進行電性連接,這會產生額外的寄生電感以及不必要的訊號。此外,由於需要封裝位於不同晶片的二極體及電晶體,這樣的傳統製程較冗長且所形成的半導體結構會佔據較大的空間。因此,功率元件的研發需要持續的更新與調整以解決功率元件在製造及運作時所面臨的各種問題。However, in order to package the two chips together, bonding wires are needed for electrical connection, which will generate additional parasitic inductance and unnecessary signals. In addition, since diodes and transistors located on different chips need to be packaged, such traditional processes are lengthy and the resulting semiconductor structure takes up a larger space. Therefore, the research and development of power components requires continuous updates and adjustments to solve the various problems faced by power components during manufacturing and operation.

一種半導體結構,包括:基底;磊晶層,設置於基底上;多個場板(field plate)結構,包括分別設置於半導體結構的第一單元及第二單元中的第一場板結構及第二場板結構;多個遮蔽層,設置於場板結構的多個底部與磊晶層之間;上電極層,覆蓋場板結構,其中上電極層在第一單元中與磊晶層分隔且在第二單元中直接接觸磊晶層;以及下電極層,設置於基底下且與磊晶層相對。A semiconductor structure includes: a substrate; an epitaxial layer disposed on the substrate; a plurality of field plate structures, including a first field plate structure and a second field plate structure disposed in a first unit and a second unit of the semiconductor structure respectively; a plurality of shielding layers disposed between a plurality of bottoms of the field plate structures and the epitaxial layer; an upper electrode layer covering the field plate structure, wherein the upper electrode layer is separated from the epitaxial layer in the first unit and directly contacts the epitaxial layer in the second unit; and a lower electrode layer disposed under the substrate and opposite to the epitaxial layer.

一種半導體裝置,包括:如上述之半導體結構;過渡層,橫向圍繞半導體結構;以及通道阻擋層,橫向圍繞過渡層,其中半導體結構具有複數個第一單元及第二單元。A semiconductor device comprises: the semiconductor structure as described above; a transition layer laterally surrounding the semiconductor structure; and a channel blocking layer laterally surrounding the transition layer, wherein the semiconductor structure has a plurality of first units and second units.

以下的揭示內容提供許多不同的實施例或範例,以展示本發明實施例的不同部件。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的參照符號及/或用字。這些重複符號或用字的目的在於簡化與清晰,並非用以限定各式實施例及/或所述配置之間的關係。The following disclosure provides many different embodiments or examples to show different components of the embodiments of the present invention. The following will disclose specific examples of the components of this specification and their arrangement to simplify the disclosure. Of course, these specific examples are not used to limit the disclosure. For example, if the following invention content of this specification describes forming a first component on or above a second component, it means that it includes an embodiment in which the first and second components formed are in direct contact, and also includes an embodiment in which an additional component can be formed between the above-mentioned first and second components, and the first and second components are not in direct contact. In addition, the various examples in the disclosure may use repeated reference symbols and/or words. The purpose of these repeated symbols or words is to simplify and clarify, and is not used to limit the relationship between the various embodiments and/or the configurations.

再者,為了方便描述圖式中一元件或部件與另一(些)元件或部件的關係,可使用空間相對用語,例如「在…之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖式所繪示之方位外,空間相對用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相對形容詞亦將依轉向後的方位來解釋。Furthermore, to facilitate description of the relationship between one element or component and another element or component in the drawings, spatially relative terms may be used, such as "under," "below," "lower," "above," "upper," and the like. In addition to the orientation depicted in the drawings, spatially relative terms also cover different orientations of the device in use or operation. When the device is turned to a different orientation (for example, rotated 90 degrees or other orientations), the spatially relative adjectives used therein will also be interpreted based on the orientation after the rotation.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "generally" generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, in the absence of specific description of "about", "approximately", and "generally", the meaning of "about", "approximately", and "generally" can still be implied.

以下敘述一些本發明實施例,在這些實施例中所述的多個階段之前、期間以及/或之後,可提供額外的步驟。一些所述階段在不同實施例中可被替換或刪去。半導體裝置結構可增加額外部件。一些所述部件在不同實施例中可被替換或刪去。儘管所討論的一些實施例以特定順序的步驟執行,這些步驟仍可以另一合乎邏輯的順序執行。Some embodiments of the present invention are described below, and additional steps may be provided before, during, and/or after the various stages described in these embodiments. Some of the stages may be replaced or deleted in different embodiments. Additional components may be added to the semiconductor device structure. Some of the components may be replaced or deleted in different embodiments. Although some of the embodiments discussed are performed in a specific order of steps, these steps may still be performed in another logical order.

此處所使用的用語「實質上(substantially)」,表示一給定量的數值可基於目標半導體裝置相關的特定技術節點而改變。在一些實施例中,基於特定的技術節點,用語「實質上地」可表示一給定量的數值在例如目標(或期望)值之±5%的範圍。As used herein, the term "substantially" means that a given amount of value may vary based on a particular technology node associated with the target semiconductor device. In some embodiments, based on a particular technology node, the term "substantially" may mean that a given amount of value is within a range of, for example, ±5% of a target (or desired) value.

本揭露提供一種半導體結構及包括此半導體結構的半導體裝置,且在半導體結構中可以包括分別作為控制元件及二極體元件的第一單元及第二單元。本揭露的多個場板結構設置於第一單元及第二單元兩者,且第一單元及第二單元可以被形成為具有共同的基底及磊晶層。因此,本揭露的控制單元及二極體單元的製造能夠被良好地整合,藉此減少製造過程中的遮罩的使用,且能夠避免在兩單元之間產生額外的寄生電感。此外,作為單載子元件的第二單元可以減少半導體結構的逆向恢復時間。設置於場板結構的底部與磊晶層之間的遮蔽層能夠降低場板結構的氧化物中的電場並減少半導體結構的閘極與汲極之間的寄生電容。再者,透過場板結構及遮蔽層的設置降低肖特基二極體的表面電場,能夠減少來自鏡像力能障降低效應(image force barrier lowering effect)的漏電流。因此,本揭露的半導體結構及半導體裝置能夠在具有較佳的逆向恢復性質的同時減少運作期間的功率損耗。The present disclosure provides a semiconductor structure and a semiconductor device including the semiconductor structure, and the semiconductor structure may include a first unit and a second unit as a control element and a diode element, respectively. The multiple field plate structures disclosed in the present disclosure are arranged in both the first unit and the second unit, and the first unit and the second unit can be formed to have a common substrate and epitaxial layer. Therefore, the manufacturing of the control unit and the diode unit disclosed in the present disclosure can be well integrated, thereby reducing the use of masks in the manufacturing process and avoiding the generation of additional parasitic inductance between the two units. In addition, the second unit as a single carrier element can reduce the reverse recovery time of the semiconductor structure. The shielding layer disposed between the bottom of the field plate structure and the epitaxial layer can reduce the electric field in the oxide of the field plate structure and reduce the parasitic capacitance between the gate and the drain of the semiconductor structure. Furthermore, by reducing the surface electric field of the Schottky diode through the provision of the field plate structure and the shielding layer, the leakage current from the image force barrier lowering effect can be reduced. Therefore, the semiconductor structure and semiconductor device disclosed in the present invention can reduce the power loss during operation while having better reverse recovery properties.

第1圖是根據本揭露的一些實施例,繪示出半導體結構10的剖面圖。半導體結構10可以包括基底100以及設置於基底100上的磊晶層102。半導體結構10可以更包括多個場板結構110,其包括分別設置於半導體結構10的第一單元10A及第二單元10B中的第一場板結構110A及第二場板結構110B。如第1圖所示,在各個場板結構110的底部與磊晶層102之間可以設置有多個遮蔽層120。半導體結構10可以更包括覆蓋場板結構110的上電極層130以及設置於基底100下且與磊晶層102相對的下電極層140。如第1圖所示,上電極層130可以在第一單元10A中與磊晶層102分隔且在第二單元10B中直接接觸磊晶層102。FIG. 1 is a cross-sectional view of a semiconductor structure 10 according to some embodiments of the present disclosure. The semiconductor structure 10 may include a substrate 100 and an epitaxial layer 102 disposed on the substrate 100. The semiconductor structure 10 may further include a plurality of field plate structures 110, which include a first field plate structure 110A and a second field plate structure 110B disposed in a first unit 10A and a second unit 10B of the semiconductor structure 10, respectively. As shown in FIG. 1 , a plurality of shielding layers 120 may be disposed between the bottom of each field plate structure 110 and the epitaxial layer 102. The semiconductor structure 10 may further include an upper electrode layer 130 covering the field plate structure 110 and a lower electrode layer 140 disposed under the substrate 100 and opposite to the epitaxial layer 102. As shown in FIG. 1 , the upper electrode layer 130 may be separated from the epitaxial layer 102 in the first unit 10A and directly contact the epitaxial layer 102 in the second unit 10B.

在一些實施例中,基底100是塊狀半導體基板,例如半導體晶圓。在一些實施例中,基底100是由矽、鍺、其他適合的半導體材料、或前述之組合所形成。舉例而言,在一個特定的實施例中,基底100包括矽。在一些實施例中,基底100可以包括化合物半導體,例如碳化矽、氮化鎵、氧化鎵、砷化鎵、其他適合的半導體材料、或前述之組合。在一些實施例中,基底100可以包括合金半導體,例如矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。在一些實施例中,基底100可以由多層材料組成,例如包括矽/矽鍺、矽/碳化矽的多層材料。In some embodiments, the substrate 100 is a bulk semiconductor substrate, such as a semiconductor wafer. In some embodiments, the substrate 100 is formed of silicon, germanium, other suitable semiconductor materials, or a combination thereof. For example, in a specific embodiment, the substrate 100 includes silicon. In some embodiments, the substrate 100 may include a compound semiconductor, such as silicon carbide, gallium nitride, gallium oxide, gallium arsenide, other suitable semiconductor materials, or a combination thereof. In some embodiments, the substrate 100 may include an alloy semiconductor, such as silicon germanium, silicon germanium carbide, other suitable materials, or a combination thereof. In some embodiments, the substrate 100 may be composed of multiple layers of materials, such as multiple layers of silicon/silicon germanium, silicon/silicon carbide.

在本揭露的一些實施例中,舉例而言,基底100是摻雜有第一導電類型的摻質的晶圓,且第一導電類型是n型。在一些其他的實施例中,第一導電類型也可以是p型。在第一導電類型是n型的情況下,上述具有第一導電類型的摻質可以是例如氮、磷、砷、銻、鉍、矽。在一些實施例中,基底100的摻雜濃度可以在大約1e19 atoms/cm 3至大約1E21 atoms/cm 3之間。 In some embodiments of the present disclosure, for example, the substrate 100 is a doped wafer doped with a first conductivity type, and the first conductivity type is n-type. In some other embodiments, the first conductivity type may also be p-type. In the case where the first conductivity type is n-type, the dopant having the first conductivity type may be, for example, nitrogen, phosphorus, arsenic, antimony, bismuth, or silicon. In some embodiments, the doping concentration of the substrate 100 may be between about 1e19 atoms/cm 3 and about 1E21 atoms/cm 3 .

磊晶層102可以包括與基底100相同或類似的材料,例如矽、鍺、碳化矽、氮化鎵、氧化鎵、砷化鎵、矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。在一些實施例中,基底100與磊晶層102具有相同的導電類型(例如n型),且基底100與磊晶層102可以包括相同的摻質。在一些實施例中,上述摻質在磊晶層102中的摻雜濃度小於在基底100中的摻雜濃度。在一些實施例中,磊晶層102的摻雜濃度可以在大約1e13 atoms/cm 3至大約1e18 atoms/cm 3之間。在本揭露的一些實施例中,舉例而言,磊晶層102包括碳化矽。藉由以碳化矽形成磊晶層102,能夠以適合碳化矽的能帶範圍且具有較低的活化能的摻質摻雜磊晶層102。此外,由碳化矽形成的磊晶層102能夠提供較高的崩潰電壓、較低的漏電流、以及較低的導通電阻。 The epitaxial layer 102 may include the same or similar material as the substrate 100, such as silicon, germanium, silicon carbide, gallium nitride, gallium oxide, gallium arsenide, silicon germanium, silicon germanium carbide, other suitable materials, or combinations thereof. In some embodiments, the substrate 100 and the epitaxial layer 102 have the same conductivity type (e.g., n-type), and the substrate 100 and the epitaxial layer 102 may include the same dopant. In some embodiments, the dopant concentration of the epitaxial layer 102 is less than the dopant concentration of the substrate 100. In some embodiments, the dopant concentration of the epitaxial layer 102 may be between about 1e13 atoms/cm 3 and about 1e18 atoms/cm 3 . In some embodiments of the present disclosure, for example, the epitaxial layer 102 includes silicon carbide. By forming the epitaxial layer 102 with silicon carbide, the epitaxial layer 102 can be doped with a dopant that is suitable for the energy band range of silicon carbide and has a lower activation energy. In addition, the epitaxial layer 102 formed of silicon carbide can provide a higher breakdown voltage, a lower leakage current, and a lower on-resistance.

在一些實施例中,各個場板結構110包括導電填充層112及介電間隔層114。至少一部分的導電填充層112可以嵌入磊晶層102,且介電間隔層114可以在導電填充層112與磊晶層102之間延伸。在一些實施例中,如第1圖所示,導電填充層112可以在第二單元10B中完全嵌入磊晶層102,使得導電填充層112的上表面低於磊晶層102的上表面或與其共平面。在一些實施例中,介電間隔層114具有在導電填充層112與上電極層130之間延伸的頂部。In some embodiments, each field plate structure 110 includes a conductive filling layer 112 and a dielectric spacer layer 114. At least a portion of the conductive filling layer 112 may be embedded in the epitaxial layer 102, and the dielectric spacer layer 114 may extend between the conductive filling layer 112 and the epitaxial layer 102. In some embodiments, as shown in FIG. 1 , the conductive filling layer 112 may be completely embedded in the epitaxial layer 102 in the second cell 10B, such that the upper surface of the conductive filling layer 112 is lower than or coplanar with the upper surface of the epitaxial layer 102. In some embodiments, the dielectric spacer layer 114 has a top portion extending between the conductive filling layer 112 and the upper electrode layer 130.

導電填充層112的材料可以包括多晶矽、金屬、金屬氮化物、其他適合的導電材料、或前述之組合。介電間隔層114的材料可以包括氧化矽、氧化鉿、氧化鋯、氧化鋁、二氧化鋁鉿合金、二氧化矽鉿、氮氧化矽鉿、氧化鉭鉿、氧化鈦鉿、氧化鋯鉿、其它適合的高介電常數(high-k)介電材料、或前述之組合。在一些實施例中,介電間隔層114包括具有與磊晶層102共同的元素的氧化物。舉例而言,在一個特定的實施例中,磊晶層102包括矽或碳化矽,且介電間隔層114包括氧化矽。The material of the conductive fill layer 112 may include polysilicon, metal, metal nitride, other suitable conductive materials, or a combination thereof. The material of the dielectric spacer 114 may include silicon oxide, tantalum oxide, zirconia, aluminum oxide, aluminum dioxide tantalum alloy, silicon dioxide tantalum, silicon tantalum oxynitride, tantalum oxide, titanium oxide, tantalum oxide, other suitable high-k dielectric materials, or a combination thereof. In some embodiments, the dielectric spacer 114 includes an oxide having an element in common with the epitaxial layer 102. For example, in a specific embodiment, the epitaxial layer 102 includes silicon or silicon carbide, and the dielectric spacer 114 includes silicon oxide.

在一些實施例中,場板結構110包括被配置為分離式閘極結構的導電填充層112。如第1圖所示,導電填充層112可以包括被介電間隔層114分隔的上導電層112U及下導電層112L。第一單元10A中的上導電層112U可以電性連接到閘極(未顯示)。在一些實施例中,下導電層112L電性連接到源極(未顯示)。取決於半導體結構10的設計需求,第二單元10B中的上導電層112U可以電性連接到閘極或源極。如果第二單元10B中的上導電層112U電性連接到閘極,能夠在將正向偏壓施加於第二單元10B中的上導電層112U時在鄰近上導電層112U的部分的磊晶層102產生載子的累積層(accumulation layer),有利於順向電流的產生。如果第二單元10B中的上導電層112U電性連接到源極,可以減少產生於上導電層112U與磊晶層102之間的部分的介電間隔層114的寄生電容,有利於減少半導體結構10的切換損耗。In some embodiments, the field plate structure 110 includes a conductive filling layer 112 configured as a separated gate structure. As shown in FIG. 1 , the conductive filling layer 112 may include an upper conductive layer 112U and a lower conductive layer 112L separated by a dielectric spacer layer 114. The upper conductive layer 112U in the first cell 10A may be electrically connected to a gate (not shown). In some embodiments, the lower conductive layer 112L is electrically connected to a source (not shown). Depending on the design requirements of the semiconductor structure 10, the upper conductive layer 112U in the second cell 10B may be electrically connected to a gate or a source. If the upper conductive layer 112U in the second cell 10B is electrically connected to the gate, when a forward bias is applied to the upper conductive layer 112U in the second cell 10B, an accumulation layer of carriers can be generated in the epitaxial layer 102 adjacent to the upper conductive layer 112U, which is beneficial to the generation of a forward current. If the upper conductive layer 112U in the second cell 10B is electrically connected to the source, the parasitic capacitance of the dielectric spacer 114 generated between the upper conductive layer 112U and the epitaxial layer 102 can be reduced, which is beneficial to reducing the switching loss of the semiconductor structure 10.

應理解的是,儘管在第1圖所示的第一單元10A及第二單元10B中的場板結構110的導電填充層112皆被配置為分離式閘極結構,本揭露並未限定所有的單元中的導電填充層112皆必須是分離式閘極結構。舉例而言,第一單元10A及第二單元10B的其中一者中的導電填充層112可以被配置為分離式閘極結構,且另外一者中的導電填充層112可以是單一的塊體。It should be understood that, although the conductive filling layer 112 of the field plate structure 110 in the first cell 10A and the second cell 10B shown in FIG. 1 are configured as a separate gate structure, the present disclosure does not limit the conductive filling layer 112 in all cells to be a separate gate structure. For example, the conductive filling layer 112 in one of the first cell 10A and the second cell 10B can be configured as a separate gate structure, and the conductive filling layer 112 in the other can be a single block.

介電間隔層114可以在例如第一單元10A及/或第二單元10B中包括開口O,且導電填充層112可以透過開口O與遮蔽層120直接接觸。然而,介電間隔層114也可以在導電填充層112與遮蔽層120之間延伸以將兩者分隔。在一些實施例中,下導電層112L的下表面的面積小於下導電層112L的上表面的面積。在一些實施例中,基底100及磊晶層102具有第一導電類型(例如n型),且遮蔽層120具有與第一導電類型相反的第二導電類型(例如p型)。遮蔽層120能夠用於分隔導電填充層112與磊晶層102,避免在介電間隔層114中產生過高的電場。此外,藉由設置遮蔽層120,能夠降低場板結構110的中的氧化物(例如介電間隔層114)中的電場並減少半導體結構10的閘極與汲極之間的寄生電容。再者,透過場板結構110及遮蔽層120的設置降低第二單元10B中的肖特基二極體元件的表面電場,能夠減少來自鏡像力能障降低效應(image force barrier lowering effect)的漏電流。The dielectric spacer layer 114 may include an opening O in, for example, the first cell 10A and/or the second cell 10B, and the conductive filling layer 112 may be in direct contact with the shielding layer 120 through the opening O. However, the dielectric spacer layer 114 may also extend between the conductive filling layer 112 and the shielding layer 120 to separate the two. In some embodiments, the area of the lower surface of the lower conductive layer 112L is smaller than the area of the upper surface of the lower conductive layer 112L. In some embodiments, the substrate 100 and the epitaxial layer 102 have a first conductivity type (e.g., n-type), and the shielding layer 120 has a second conductivity type (e.g., p-type) opposite to the first conductivity type. The shielding layer 120 can be used to separate the conductive filling layer 112 and the epitaxial layer 102 to avoid generating an excessively high electric field in the dielectric spacer layer 114. In addition, by providing the shielding layer 120, the electric field in the oxide (e.g., the dielectric spacer layer 114) in the field plate structure 110 can be reduced and the parasitic capacitance between the gate and the drain of the semiconductor structure 10 can be reduced. Furthermore, by providing the field plate structure 110 and the shielding layer 120, the surface electric field of the Schottky diode element in the second unit 10B can be reduced, and the leakage current from the image force barrier lowering effect can be reduced.

遮蔽層120的材料可以包括例如藉由佈植所形成的半導體材料、其他適合的材料、或前述之組合。在本揭露的一些實施例中,舉例而言,遮蔽層120具有p型之第二導電類型,且在遮蔽層120中摻雜有例如硼、鋁等摻質。在一些實施例中,遮蔽層120的摻雜濃度可以在大約1e14 atoms/cm 3至大約1e19 atoms/cm 3之間。 The material of the shielding layer 120 may include, for example, a semiconductor material formed by implantation, other suitable materials, or a combination thereof. In some embodiments of the present disclosure, for example, the shielding layer 120 has a second conductivity type of p-type, and is doped with dopants such as boron and aluminum in the shielding layer 120. In some embodiments, the doping concentration of the shielding layer 120 may be between about 1e14 atoms/cm 3 and about 1e19 atoms/cm 3 .

在一些實施例中,如第1圖所示,磊晶層102在第一單元10A中包括橫向圍繞第一場板結構110A且在與上電極層130之間的界面的摻雜結構150。摻雜結構150可以包括摻雜井152、第一重摻雜區154、及第二重摻雜區156。在一些實施例中,摻雜井152的鄰近第一場板結構110A的部分能夠用作半導體結構10運作時的通道區。舉例而言,當對導電填充層112施加正向偏壓時,能夠在摻雜井152的鄰近第一場板結構110A的側壁附近形成反轉層(inversion layer)以產生電流。第二重摻雜區156可以用於將摻雜井152電性連接到上電極層130。第一重摻雜區154可以被電性連接到源極。In some embodiments, as shown in FIG. 1 , the epitaxial layer 102 includes a doping structure 150 in the first cell 10A that laterally surrounds the first field plate structure 110A and at an interface with the upper electrode layer 130. The doping structure 150 may include a doping well 152, a first heavily doped region 154, and a second heavily doped region 156. In some embodiments, a portion of the doping well 152 adjacent to the first field plate structure 110A can be used as a channel region when the semiconductor structure 10 is in operation. For example, when a forward bias is applied to the conductive fill layer 112, an inversion layer can be formed near the sidewall of the first field plate structure 110A adjacent to the doped well 152 to generate current. The second heavily doped region 156 can be used to electrically connect the doped well 152 to the upper electrode layer 130. The first heavily doped region 154 can be electrically connected to the source.

第一重摻雜區154可以具有與磊晶層102相同的第一導電類型(例如n型),且摻雜井152及第二重摻雜區156可以具有與遮蔽層120相同的第二導電類型(例如p型)。摻雜井152的摻雜濃度可以在大約1e15 atoms/cm 3至大約1e18 atoms/cm 3之間。第一重摻雜區154的摻雜濃度可以在大約1e18 atoms/cm 3至大約1e21 atoms/cm 3之間。第二重摻雜區156的摻雜濃度可以在大約1e18 atoms/cm 3至大約1e21 atoms/cm 3之間。 The first heavily doped region 154 may have the same first conductivity type (e.g., n-type) as the epitaxial layer 102, and the doped well 152 and the second heavily doped region 156 may have the same second conductivity type (e.g., p-type) as the shielding layer 120. The doping concentration of the doped well 152 may be between about 1e15 atoms/cm 3 and about 1e18 atoms/cm 3. The doping concentration of the first heavily doped region 154 may be between about 1e18 atoms/cm 3 and about 1e21 atoms/cm 3. The doping concentration of the second heavily doped region 156 may be between about 1e18 atoms/cm 3 and about 1e21 atoms/cm 3 .

摻雜結構150可以包括與磊晶層102的摻雜結構150下方的部分相同或類似的材料,例如矽、鍺、碳化矽、氮化鎵、氧化鎵、砷化鎵、矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。摻雜結構150可以透過在半導體結構10之用於形成第一單元10A的區域內的部分的用於形成磊晶層102的磊晶材料中進行摻雜製程所形成。在一些實施例中,摻雜結構150的上表面低於第一場板結構110A的上表面。在一些實施例中,摻雜結構150的上表面與磊晶層102的在第二單元10B中的上表面實質上共平面。根據摻雜結構150的配置,在一些實施例中,如第1圖所示,磊晶層102在第一單元10A中的上表面與在第二單元10B中的上表面等高。The doped structure 150 may include a material that is the same as or similar to the portion of the epitaxial layer 102 below the doped structure 150, such as silicon, germanium, silicon carbide, gallium nitride, gallium oxide, gallium arsenide, silicon germanium, silicon germanium carbide, other suitable materials, or a combination thereof. The doped structure 150 may be formed by performing a doping process in the epitaxial material used to form the epitaxial layer 102 in a portion of the semiconductor structure 10 in a region used to form the first cell 10A. In some embodiments, the upper surface of the doped structure 150 is lower than the upper surface of the first field plate structure 110A. In some embodiments, the upper surface of the doped structure 150 is substantially coplanar with the upper surface of the epitaxial layer 102 in the second cell 10B. Depending on the configuration of the doped structure 150, in some embodiments, as shown in FIG. 1 , the upper surface of the epitaxial layer 102 in the first cell 10A is at the same height as the upper surface in the second cell 10B.

上電極層130及下電極層140可以分別電性連接到半導體結構10的源極及汲極(未顯示)。然而,取決於半導體結構10的結構設計,在本揭露的一些實施例中,上電極層130及下電極層140本身也可以分別被視為半導體結構10的源極及汲極。此外,在第二單元10B中,在上電極層130與磊晶層102之間的界面上可以具有肖特基接觸。如此一來,第二單元10B可以作為一種單載子元件(例如肖特基二極體元件)運作,藉此改善半導體結構10的逆向恢復性質,減少逆向恢復時間。The upper electrode layer 130 and the lower electrode layer 140 can be electrically connected to the source and drain (not shown) of the semiconductor structure 10, respectively. However, depending on the structural design of the semiconductor structure 10, in some embodiments of the present disclosure, the upper electrode layer 130 and the lower electrode layer 140 themselves can also be regarded as the source and drain of the semiconductor structure 10, respectively. In addition, in the second unit 10B, a Schottky contact can be provided on the interface between the upper electrode layer 130 and the epitaxial layer 102. In this way, the second unit 10B can operate as a single carrier element (e.g., a Schottky diode element), thereby improving the reverse recovery properties of the semiconductor structure 10 and reducing the reverse recovery time.

在一些實施例中,場板結構110的多個頂部突出到上電極層130中。如第1圖所示,第一場板結構110A及第二場板結構110B的頂部可以突出到上電極層130中。進一步如第1圖所示,第一場板結構110A及第二場板結構110B的頂部可以分別在第一單元10A及第二單元10B中具有高於周圍的摻雜結構150及磊晶層102的上表面。In some embodiments, multiple top portions of the field plate structure 110 protrude into the upper electrode layer 130. As shown in FIG. 1 , the top portions of the first field plate structure 110A and the second field plate structure 110B may protrude into the upper electrode layer 130. Further as shown in FIG. 1 , the top portions of the first field plate structure 110A and the second field plate structure 110B may have a top surface higher than the surrounding doping structure 150 and the epitaxial layer 102 in the first cell 10A and the second cell 10B, respectively.

上電極層130可以是或包括,例如鉑(Pt)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)、鎢(W)、氮化鎢(WN)、金(Au)、鐵(Fe)、鎳(Ni)、鈹(Be)、鉻(Cr)、鈷(Co)、銻(Sb)、銥(Ir)、鉬(Mo)、鋨(Os)、釷(Th)、釩(V)、一些其他的金屬或金屬氮化物、或前述之組合。The upper electrode layer 130 may be or include, for example, platinum (Pt), titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), tungsten (W), tungsten nitride (WN), gold (Au), iron (Fe), nickel (Ni), benium (Be), chromium (Cr), cobalt (Co), antimony (Sb), iridium (Ir), molybdenum (Mo), nimum (Os), thorium (Th), vanadium (V), some other metal or metal nitride, or a combination thereof.

下電極層140可以是或包括與上電極層130相同或類似的材料。舉例而言,下電極層140可以是或包括,例如鉑(Pt)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)、鎢(W)、氮化鎢(WN)、金(Au)、鐵(Fe)、鎳(Ni)、鈹(Be)、鉻(Cr)、鈷(Co)、銻(Sb)、銥(Ir)、鉬(Mo)、鋨(Os)、釷(Th)、釩(V)、一些其他的金屬或金屬氮化物、或前述之組合。The lower electrode layer 140 may be or include the same or similar material as the upper electrode layer 130. For example, the lower electrode layer 140 may be or include, for example, platinum (Pt), titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), tungsten (W), tungsten nitride (WN), gold (Au), iron (Fe), nickel (Ni), benium (Be), chromium (Cr), cobalt (Co), antimony (Sb), iridium (Ir), molybdenum (Mo), nimum (Os), thorium (Th), vanadium (V), some other metal or metal nitride, or a combination thereof.

應理解的是,第一單元10A及第二單元10B也可以分別被稱為半導體結構10的控制元件及二極體元件。基底100及磊晶層102可以在第一單元10A及第二單元10B之間連續延伸。在一些實施例中,第一單元10A及第二單元10B是經由上電極層130及下電極層140以並聯形式電性連接。在本揭露的一些實施例中,多個場板結構110設置於第一單元10A及第二單元10B兩者,且第一單元10A及第二單元10B可以具有共同的基底100及磊晶層102。因此,半導體結構10的控制單元及二極體單元能夠被良好地整合在一起。相較於習知的包括控制單元及二極體單元的半導體結構,能夠減少製造過程中的遮罩的使用,且能夠避免在兩單元之間產生額外的寄生電感。It should be understood that the first unit 10A and the second unit 10B may also be referred to as the control element and the diode element of the semiconductor structure 10, respectively. The substrate 100 and the epitaxial layer 102 may extend continuously between the first unit 10A and the second unit 10B. In some embodiments, the first unit 10A and the second unit 10B are electrically connected in parallel via the upper electrode layer 130 and the lower electrode layer 140. In some embodiments of the present disclosure, a plurality of field plate structures 110 are disposed in both the first unit 10A and the second unit 10B, and the first unit 10A and the second unit 10B may have a common substrate 100 and epitaxial layer 102. Therefore, the control unit and the diode unit of the semiconductor structure 10 can be well integrated. Compared with a conventional semiconductor structure including a control unit and a diode unit, the use of a mask in a manufacturing process can be reduced, and additional parasitic inductance between the two units can be avoided.

以下將參照第2A、3A圖以說明半導體裝置1、2的配置,且參照第2B、3B圖以說明半導體結構10中的第一單元10A及第二單元10B的佈局。2A and 3A are referred to for explaining the configuration of the semiconductor devices 1 and 2, and FIG. 2B and 3B are referred to for explaining the layout of the first unit 10A and the second unit 10B in the semiconductor structure 10.

第2A圖是根據本揭露的一些實施例,繪示出半導體裝置1的俯視圖。除了如上所述之半導體結構10,可以設置橫向圍繞半導體結構10的過渡層12以及橫向圍繞過渡層12的通道阻擋層14。半導體結構10可以具有複數個第一單元及第二單元,且第一單元及第二單元能夠分別用作半導體裝置1的控制單元及二極體單元。關於第一單元及第二單元的結構及配置與第1圖中的第一單元10A及第二單元10B類似,在此為了簡化起見而省略其詳細描述。FIG. 2A is a top view of a semiconductor device 1 according to some embodiments of the present disclosure. In addition to the semiconductor structure 10 as described above, a transition layer 12 and a channel blocking layer 14 may be provided which laterally surround the semiconductor structure 10. The semiconductor structure 10 may have a plurality of first cells and second cells, and the first cells and the second cells may be used as a control cell and a diode cell of the semiconductor device 1, respectively. The structure and configuration of the first cells and the second cells are similar to the first cells 10A and the second cells 10B in FIG. 1, and their detailed description is omitted for simplicity.

過渡層12可以用於保護半導體結構10的內部元件。過渡層12的材料可以包括與上述磊晶層102相同或類似的材料、其他適合的材料、或前述之組合。在一些實施例中,過渡層被摻雜以具有第二導電類型。通道阻擋層14可以用於隔離相鄰的晶片。通道阻擋層14的材料可以包括與上述磊晶層102相同或類似的材料、其他適合的材料、或前述之組合。在一些實施例中,通道阻擋層14被摻雜以具有第一導電類型。The transition layer 12 can be used to protect the internal components of the semiconductor structure 10. The material of the transition layer 12 can include the same or similar material as the above-mentioned epitaxial layer 102, other suitable materials, or a combination of the foregoing. In some embodiments, the transition layer is doped to have a second conductivity type. The channel blocking layer 14 can be used to isolate adjacent chips. The material of the channel blocking layer 14 can include the same or similar material as the above-mentioned epitaxial layer 102, other suitable materials, or a combination of the foregoing. In some embodiments, the channel blocking layer 14 is doped to have a first conductivity type.

第2B圖是根據本揭露的一些實施例,繪示出顯示第一單元10A及第二單元10B的佈局的剖面示意圖。在一些實施例中,如第2B圖所示,各個第一單元10A及第二單元10B彼此橫向交替設置。由於第一單元10A是半導體結構10打開時電流流經的部分,所以第一單元10A會成為發熱源。藉由將第二單元10B配置於兩個第一單元10A之間,能夠使兩個發熱源隔離並減緩晶片的升溫速度。FIG. 2B is a cross-sectional schematic diagram showing the layout of the first unit 10A and the second unit 10B according to some embodiments of the present disclosure. In some embodiments, as shown in FIG. 2B, the first units 10A and the second units 10B are arranged alternately with each other in a transverse direction. Since the first unit 10A is the part through which the current flows when the semiconductor structure 10 is turned on, the first unit 10A will become a heat source. By disposing the second unit 10B between the two first units 10A, the two heat sources can be isolated and the temperature rise rate of the chip can be slowed down.

第3A圖是根據本揭露的一些其他的實施例,繪示出半導體裝置2的俯視圖。與第2A圖所示的半導體裝置1的差異在於,半導體裝置2中的半導體結構10具有第一區域A1及第二區域A2,且分別用作半導體裝置1的控制單元及二極體單元的第一單元及第二單元分別位於第一區域A1及第二區域A2。在一些實施例中,第一區域A1及第二區域A2的其中一者橫向圍繞另一者。舉例而言,如第3A圖所示,在一些實施例中,第二區域A2橫向圍繞第一區域A1。在其他的實施例中,也可以具有第一區域A1橫向圍繞第二區域A2的配置。關於過渡層12及通道阻擋層14的功能及材料與第2A圖中的過渡層12及通道阻擋層14類似,在此為了簡化起見而省略其描述。FIG. 3A is a top view of a semiconductor device 2 according to some other embodiments of the present disclosure. The difference from the semiconductor device 1 shown in FIG. 2A is that the semiconductor structure 10 in the semiconductor device 2 has a first area A1 and a second area A2, and the first unit and the second unit used as the control unit and the diode unit of the semiconductor device 1 are respectively located in the first area A1 and the second area A2. In some embodiments, one of the first area A1 and the second area A2 laterally surrounds the other. For example, as shown in FIG. 3A, in some embodiments, the second area A2 laterally surrounds the first area A1. In other embodiments, the first area A1 may also be configured to laterally surround the second area A2. The functions and materials of the transition layer 12 and the channel blocking layer 14 are similar to those of the transition layer 12 and the channel blocking layer 14 in FIG. 2A , and their descriptions are omitted here for simplicity.

第3B圖是根據本揭露的一些其他的實施例,繪示出顯示第一單元10A及第二單元10B的佈局的剖面示意圖。如第3B圖所示,在複數個第一單元10A及複數個第二單元10B分別設置於各自的區域的實施例中,複數個第一單元10A彼此相鄰,且複數個第二單元10B彼此相鄰。如此一來,由於能夠降低源極、汲極、及閘極往第一單元10A及第二單元10B的走線(routing)的複雜度,能夠使半導體結構10的製造過程較容易進行。FIG. 3B is a cross-sectional schematic diagram showing the layout of the first unit 10A and the second unit 10B according to some other embodiments of the present disclosure. As shown in FIG. 3B, in an embodiment where a plurality of first units 10A and a plurality of second units 10B are respectively arranged in respective regions, a plurality of first units 10A are adjacent to each other, and a plurality of second units 10B are adjacent to each other. In this way, since the complexity of the routing of the source, drain, and gate to the first unit 10A and the second unit 10B can be reduced, the manufacturing process of the semiconductor structure 10 can be made easier.

應注意的是,儘管在第2B、3B圖中是將第一單元10A及第二單元10B繪示為彼此相鄰,本揭露並非限定於此。在一些其他的實施例中,舉例而言,可以具有額外的結構配置於第一單元10A及第二單元10B之間。It should be noted that, although the first unit 10A and the second unit 10B are shown as being adjacent to each other in Figures 2B and 3B, the present disclosure is not limited thereto. In some other embodiments, for example, an additional structure may be disposed between the first unit 10A and the second unit 10B.

第4圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體(embedded Schottky barrier diode,E-SBD)的區域(以下稱為二極體區域)的面積對於半導體裝置在逆向恢復時的電流變化的影響。第5圖顯示出半導體裝置中的二極體區域的面積對於半導體裝置的逆向恢復時間(T rr)及逆向恢復電荷(Q rr)的影響。第6圖顯示出半導體裝置中的二極體區域的面積對於半導體裝置的切換能量(E sw)及逆向恢復軟度係數(RRSF)的影響。第7圖顯示出半導體裝置中的二極體區域的面積對於半導體裝置在不同切換頻率下的功率損耗的影響。 FIG. 4 shows the effect of the area of a region having an embedded Schottky barrier diode (E-SBD) in a semiconductor device (hereinafter referred to as a diode region) on the current change of the semiconductor device during reverse recovery according to some embodiments of the present disclosure. FIG. 5 shows the effect of the area of the diode region in a semiconductor device on the reverse recovery time (T rr ) and reverse recovery charge (Q rr ) of the semiconductor device. FIG. 6 shows the effect of the area of the diode region in a semiconductor device on the switching energy (E sw ) and reverse recovery softness factor (RRSF) of the semiconductor device. FIG. 7 shows the effect of the diode area in a semiconductor device on the power loss of the semiconductor device at different switching frequencies.

如第4圖所示的逆向恢復時的電流變化的測量可以藉由數值模擬軟體來進行,且通常知識者可以任意選擇測量電壓及電流。此外,通常知識者能夠選擇特定的具有控制元件的區域(例如第3A圖的第一區域A1或半導體結構中的第一單元所佔據的區域,以下稱為控制區域)的面積,藉此觀察二極體區域的面積對於半導體裝置在逆向恢復時的電流變化的影響。在一個特定的範例中,以800V的電壓及20A的電流進行動態測試的測量,藉此得到如第4圖所示的二極體電流隨時間的變化。The measurement of the current change during reverse recovery as shown in FIG. 4 can be performed by digital simulation software, and a person skilled in the art can arbitrarily select the voltage and current to be measured. In addition, a person skilled in the art can select the area of a specific region having a control element (e.g., the first region A1 in FIG. 3A or the region occupied by the first unit in the semiconductor structure, hereinafter referred to as the control region) to observe the effect of the area of the diode region on the current change during reverse recovery of the semiconductor device. In a specific example, a dynamic test measurement is performed with a voltage of 800V and a current of 20A, thereby obtaining the change of the diode current over time as shown in FIG. 4.

在各個測量結果的電流波形(waveform)中,二極體電流從開始降低到逆向的峰值的時間稱為ta,從上述峰值返回電流零點的時間稱為tb,且時間ta及tb的總和可以被稱為逆向恢復時間(T rr)。由第4、5圖可以得知,隨著二極體區域的面積相對控制區域的面積增加,半導體裝置的逆向恢復時間逐漸減少,即半導體裝置具有較快的響應速度。 In the current waveform of each measurement result, the time from the beginning of the diode current decrease to the reverse peak is called ta, and the time from the peak value to the current zero point is called tb, and the sum of the time ta and tb can be called the reverse recovery time (T rr ). It can be seen from Figures 4 and 5 that as the area of the diode region increases relative to the area of the control region, the reverse recovery time of the semiconductor device gradually decreases, that is, the semiconductor device has a faster response speed.

此外,在第4圖的各個電流波形中,電流從開始降低到返回電流零點期間之電流對時間積分的值即為逆向恢復期間的逆向恢復電荷(Q rr)。由第4、5圖可以得知,隨著二極體區域的面積相對控制區域的面積增加,半導體裝置的逆向恢復電荷逐漸減少。參照第6圖,隨著二極體區域的面積增加,切換能量(E sw)也逐漸降低。因此,藉由將作為二極體元件的第二單元並聯到做為控制元件的第一單元,能夠降低半導體裝置在運作期間的功率損耗。 In addition, in each current waveform of Figure 4, the value of the current integral over time from the beginning of the current decrease to the return to the current zero point is the reverse recovery charge ( Qrr ) during the reverse recovery period. It can be seen from Figures 4 and 5 that as the area of the diode region increases relative to the area of the control region, the reverse recovery charge of the semiconductor device gradually decreases. Referring to Figure 6, as the area of the diode region increases, the switching energy ( Esw ) also gradually decreases. Therefore, by connecting the second unit as a diode element in parallel to the first unit as a control element, the power loss of the semiconductor device during operation can be reduced.

時間tb及ta的比值tb/ta可以被稱為逆向恢復軟度係數(RRSF)。由第4、6圖可以得知,隨著二極體區域的面積相對控制區域的面積增加,半導體裝置的逆向恢復軟度係數(RRSF)逐漸增加,且在電流值從逆向的峰值到電流零點的過程中的電流值對時間的斜率變小。因此,藉由將更多具有二極體元件的第二單元並聯到做為控制元件的第一單元,能夠降少半導體裝置在逆向恢復後產生突波電壓(spike voltage)的可能性,避免產生額外的功率損耗。The ratio of time tb to time ta, tb/ta, can be called the reverse recovery softness factor (RRSF). As shown in Figures 4 and 6, as the area of the diode region increases relative to the area of the control region, the reverse recovery softness factor (RRSF) of the semiconductor device gradually increases, and the slope of the current value to time in the process from the reverse peak to the current zero point becomes smaller. Therefore, by connecting more second units with diode elements in parallel to the first unit as the control element, the possibility of the semiconductor device generating a spike voltage after reverse recovery can be reduced, avoiding additional power loss.

接著參照第7圖,隨著二極體區域的面積相對控制區域的面積增加,半導體裝置在各個切換頻率下的功率損耗也跟著減少。這是因為半導體裝置的功率損耗來自於電流傳導以及切換時的功率損耗,且由於二極體區域的面積增加導致切換能量減少,使得切換時的功率損耗降低。Referring to Figure 7, as the area of the diode region increases relative to the area of the control region, the power loss of the semiconductor device at each switching frequency also decreases. This is because the power loss of the semiconductor device comes from the power loss during current conduction and switching, and the increase in the area of the diode region reduces the switching energy, which reduces the power loss during switching.

綜上所述,本揭露提供一種一種半導體結構及包括此半導體結構的半導體裝置,且在半導體結構中可以包括分別作為控制元件及二極體元件的第一單元及第二單元。本揭露的多個場板結構設置於第一單元及第二單元兩者,且第一單元及第二單元可以被形成為具有共同的基底及磊晶層。因此,本揭露的控制單元及二極體單元的製造能夠被良好地整合,藉此減少製造過程中的遮罩的使用,且能夠避免在兩單元之間產生額外的寄生電感。此外,作為單載子元件的第二單元可以減少半導體結構的逆向恢復時間。設置於場板結構的底部與磊晶層之間的遮蔽層能夠降低場板結構的氧化物中的電場並減少半導體結構的閘極與汲極之間的寄生電容。再者,透過場板結構及遮蔽層的設置降低肖特基二極體的表面電場,能夠減少來自鏡像力能障降低效應的漏電流。因此,本揭露的半導體結構及半導體裝置能夠在具有較佳的逆向恢復性質的同時減少運作期間的功率損耗。In summary, the present disclosure provides a semiconductor structure and a semiconductor device including the semiconductor structure, and the semiconductor structure may include a first unit and a second unit as a control element and a diode element, respectively. The multiple field plate structures disclosed in the present disclosure are arranged in both the first unit and the second unit, and the first unit and the second unit can be formed to have a common substrate and epitaxial layer. Therefore, the manufacturing of the control unit and the diode unit disclosed in the present disclosure can be well integrated, thereby reducing the use of masks in the manufacturing process and avoiding the generation of additional parasitic inductance between the two units. In addition, the second unit as a single carrier element can reduce the reverse recovery time of the semiconductor structure. The shielding layer disposed between the bottom of the field plate structure and the epitaxial layer can reduce the electric field in the oxide of the field plate structure and reduce the parasitic capacitance between the gate and the drain of the semiconductor structure. Furthermore, by reducing the surface electric field of the Schottky diode through the provision of the field plate structure and the shielding layer, the leakage current from the mirror force barrier reduction effect can be reduced. Therefore, the semiconductor structure and semiconductor device disclosed in the present invention can reduce the power loss during operation while having better reverse recovery properties.

以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可更易理解本發明實施例的觀點。本發明所屬技術領域中具有通常知識者應理解,可輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且可在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。The features of several embodiments are summarized above so that those with ordinary knowledge in the art to which the present invention belongs can more easily understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the art to which the present invention belongs should understand that other processes and structures can be easily designed or modified based on the embodiments of the present invention to achieve the same purpose and/or advantages as the embodiments introduced herein. Those with ordinary knowledge in the art to which the present invention belongs should also understand that such equivalent processes and structures do not violate the spirit and scope of the present invention, and various changes, substitutions and replacements can be made without violating the spirit and scope of the present invention.

1,2:半導體裝置1,2:Semiconductor devices

10:半導體結構10: Semiconductor structure

10A:第一單元10A: Unit 1

10B:第二單元10B: Unit 2

12:過渡層12: Transition layer

14:通道阻擋層14: Channel blocking layer

100:基底100: Base

102:磊晶層102: Epitaxial layer

110:場板結構110: Field plate structure

110A:第一場板結構110A: First Field Plate Structure

110B:第二場板結構110B: Second field plate structure

112:導電填充層112: Conductive filling layer

112L:下導電層112L: Lower conductive layer

112U:上導電層112U: Upper conductive layer

114:介電間隔層114: Dielectric spacer layer

120:遮蔽層120: Shielding layer

130:上電極層130: Upper electrode layer

140:下電極層140: Lower electrode layer

150:摻雜結構150: mixed structure

152:摻雜井152: Mixed Well

154:第一重摻雜區154: First heavy doping area

156:第二重摻雜區156: Second mixed area

A1:第一區域A1: Area 1

A2:第二區域A2: Second Area

O:開口O: Open

以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1圖是根據本揭露的一些實施例,繪示出半導體結構的剖面圖。 第2A圖是根據本揭露的一些實施例,繪示出半導體裝置的俯視圖。 第2B圖是根據本揭露的一些實施例,繪示出顯示第一單元及第二單元的佈局的剖面示意圖。 第3A圖是根據本揭露的一些其他的實施例,繪示出半導體裝置的俯視圖。 第3B圖是根據本揭露的一些其他的實施例,繪示出顯示第一單元及第二單元的佈局的剖面示意圖。 第4圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體(embedded Schottky barrier diode,E-SBD)的區域的面積對於半導體裝置在逆向恢復時的電流變化的影響。 第5圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體的區域的面積對於半導體裝置的逆向恢復時間(T rr)及逆向恢復電荷(Q rr)的影響。 第6圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體的區域的面積對於半導體裝置的切換能量(E sw)及逆向恢復軟度係數(reverse recovery softness factor,RRSF)的影響。 第7圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體的區域的面積對於半導體裝置在不同切換頻率下的功率損耗的影響。 The following will be described in detail with the accompanying drawings. It should be noted that, in accordance with standard practices in the industry, various features are not drawn to scale and are only used for illustration. In fact, the size of the components can be arbitrarily enlarged or reduced to clearly show the features of the embodiments of the present invention. Figure 1 is a cross-sectional view of a semiconductor structure according to some embodiments of the present disclosure. Figure 2A is a top view of a semiconductor device according to some embodiments of the present disclosure. Figure 2B is a cross-sectional schematic diagram showing the layout of the first unit and the second unit according to some embodiments of the present disclosure. Figure 3A is a top view of a semiconductor device according to some other embodiments of the present disclosure. Figure 3B is a cross-sectional schematic diagram showing the layout of the first unit and the second unit according to some other embodiments of the present disclosure. FIG. 4 illustrates the effect of the area of an embedded Schottky barrier diode (E-SBD) in a semiconductor device on the current change of the semiconductor device during reverse recovery according to some embodiments of the present disclosure. FIG. 5 illustrates the effect of the area of an embedded Schottky barrier diode in a semiconductor device on the reverse recovery time (T rr ) and reverse recovery charge (Q rr ) of the semiconductor device according to some embodiments of the present disclosure. FIG. 6 illustrates the effect of the area of an embedded Schottky barrier diode in a semiconductor device on the switching energy (E sw ) and reverse recovery softness factor (RRSF) of the semiconductor device according to some embodiments of the present disclosure. FIG. 7 illustrates the effect of the area of a semiconductor device having an embedded Schottky barrier diode on the power loss of the semiconductor device at different switching frequencies according to some embodiments of the present disclosure.

10:半導體結構 10:Semiconductor structure

10A:第一單元 10A: Unit 1

10B:第二單元 10B: Unit 2

100:基底 100: Base

102:磊晶層 102: Epitaxial layer

110:場板結構 110: Field plate structure

110A:第一場板結構 110A: First stage plate structure

110B:第二場板結構 110B: Second field plate structure

112:導電填充層 112: Conductive filling layer

112L:下導電層 112L: Lower conductive layer

112U:上導電層 112U: Upper conductive layer

114:介電間隔層 114: Dielectric spacer layer

120:遮蔽層 120: Shielding layer

130:上電極層 130: Upper electrode layer

140:下電極層 140: Lower electrode layer

150:摻雜結構 150:Doped structure

152:摻雜井 152: Mixed Well

154:第一重摻雜區 154: The first heavily doped area

156:第二重摻雜區 156: Second mixed area

O:開口 O: Open

Claims (18)

一種半導體結構,包括:一基底;一磊晶層,設置於該基底上;多個場板(field plate)結構,各個該些場板結構包括:一導電填充層,至少一部分嵌入該磊晶層;以及一介電間隔層,在該導電填充層與該磊晶層之間延伸,且該介電間隔層包括一開口,其中該些場板結構包括分別設置於該半導體結構的一第一單元及一第二單元中的一第一場板結構及一第二場板結構;多個遮蔽層,設置於該些場板結構的多個底部與該磊晶層之間,且該導電填充層透過該開口與該些遮蔽層直接接觸;一上電極層,覆蓋該些場板結構,其中該上電極層在該第一單元中與該磊晶層分隔且在該第二單元中直接接觸該磊晶層;以及一下電極層,設置於該基底下且與該磊晶層相對。 A semiconductor structure includes: a substrate; an epitaxial layer disposed on the substrate; a plurality of field plate structures, each of the field plate structures includes: a conductive filling layer, at least a portion of which is embedded in the epitaxial layer; and a dielectric spacer layer extending between the conductive filling layer and the epitaxial layer, and the dielectric spacer layer includes an opening, wherein the field plate structures include a first field plate structure and a second field plate structure respectively disposed in a first unit and a second unit of the semiconductor structure; A plurality of shielding layers are disposed between the plurality of bottoms of the field plate structures and the epitaxial layer, and the conductive filling layer is in direct contact with the shielding layers through the opening; an upper electrode layer covers the field plate structures, wherein the upper electrode layer is separated from the epitaxial layer in the first unit and directly contacts the epitaxial layer in the second unit; and a lower electrode layer is disposed under the substrate and opposite to the epitaxial layer. 如請求項1之半導體結構,其中該介電間隔層具有在該導電填充層與該上電極層之間延伸的頂部。 A semiconductor structure as claimed in claim 1, wherein the dielectric spacer layer has a top portion extending between the conductive fill layer and the upper electrode layer. 如請求項1之半導體結構,其中該導電填充層包括被該介電間隔層分隔的一上導電層及一下導電層,且該第一單元中的該上導電層電性連接到一閘極。 A semiconductor structure as claimed in claim 1, wherein the conductive filling layer includes an upper conductive layer and a lower conductive layer separated by the dielectric spacer layer, and the upper conductive layer in the first unit is electrically connected to a gate. 如請求項3之半導體結構,其中該下導電層電性連 接到一源極,且該第二單元中的該上導電層電性連接到該閘極或該源極。 A semiconductor structure as claimed in claim 3, wherein the lower conductive layer is electrically connected to a source, and the upper conductive layer in the second unit is electrically connected to the gate or the source. 如請求項3之半導體結構,其中該下導電層的一下表面的面積小於該下導電層的一上表面的面積。 A semiconductor structure as claimed in claim 3, wherein the area of a lower surface of the lower conductive layer is smaller than the area of an upper surface of the lower conductive layer. 如請求項1之半導體結構,其中在該第二單元中,在該上電極層與該磊晶層之間的界面上具有一肖特基接觸。 A semiconductor structure as claimed in claim 1, wherein in the second unit, there is a Schottky contact at the interface between the upper electrode layer and the epitaxial layer. 如請求項1之半導體結構,其中該磊晶層在該第一單元中包括橫向圍繞該第一場板結構且在與該上電極層之間的界面的一摻雜結構。 A semiconductor structure as claimed in claim 1, wherein the epitaxial layer in the first unit includes a doped structure laterally surrounding the first field plate structure and at the interface with the upper electrode layer. 如請求項7之半導體結構,其中該摻雜結構的上表面低於該第一場板結構的上表面。 A semiconductor structure as claimed in claim 7, wherein the upper surface of the doped structure is lower than the upper surface of the first field plate structure. 如請求項7之半導體結構,其中該摻雜結構的上表面與該磊晶層的在該第二單元中的上表面共平面。 A semiconductor structure as claimed in claim 7, wherein the upper surface of the doped structure is coplanar with the upper surface of the epitaxial layer in the second unit. 如請求項1之半導體結構,其中該些場板結構的多個頂部突出到該上電極層中。 A semiconductor structure as claimed in claim 1, wherein the top portions of the field plate structures protrude into the upper electrode layer. 如請求項1之半導體結構,其中該基底及該磊晶層在該第一單元及該第二單元之間連續延伸。 A semiconductor structure as claimed in claim 1, wherein the substrate and the epitaxial layer extend continuously between the first unit and the second unit. 如請求項1之半導體結構,其中該磊晶層在該第一單元中的上表面與在該第二單元中的上表面等高。 A semiconductor structure as claimed in claim 1, wherein the upper surface of the epitaxial layer in the first unit is at the same height as the upper surface in the second unit. 如請求項1之半導體結構,其中該基底及該磊晶層具有一第一導電類型,且該些遮蔽層具有與該第一導電類型相反的 一第二導電類型。 A semiconductor structure as claimed in claim 1, wherein the substrate and the epitaxial layer have a first conductivity type, and the shielding layers have a second conductivity type opposite to the first conductivity type. 如請求項1之半導體結構,其中該第一單元及該第二單元是經由該上電極層及該下電極層以並聯形式電性連接。 A semiconductor structure as claimed in claim 1, wherein the first unit and the second unit are electrically connected in parallel via the upper electrode layer and the lower electrode layer. 如請求項1之半導體結構,其中該磊晶層包括碳化矽。 A semiconductor structure as claimed in claim 1, wherein the epitaxial layer comprises silicon carbide. 一種半導體裝置,包括:如請求項1~15中任一項之半導體結構;一過渡層,橫向圍繞該半導體結構;以及一通道阻擋層,橫向圍繞該過渡層;其中該半導體結構具有複數個該第一單元及該第二單元。 A semiconductor device, comprising: a semiconductor structure as claimed in any one of claims 1 to 15; a transition layer laterally surrounding the semiconductor structure; and a channel blocking layer laterally surrounding the transition layer; wherein the semiconductor structure has a plurality of the first units and the second units. 如請求項16之半導體裝置,其中各個該些第一單元及該些第二單元彼此橫向交替設置。 A semiconductor device as claimed in claim 16, wherein each of the first units and the second units are arranged alternately with each other horizontally. 如請求項16之半導體裝置,其中該些第一單元及該些第二單元分別位於該半導體結構的一第一區域及一第二區域,且該第一區域及該第二區域的其中一者橫向圍繞另一者。 A semiconductor device as claimed in claim 16, wherein the first units and the second units are respectively located in a first region and a second region of the semiconductor structure, and one of the first region and the second region laterally surrounds the other.
TW112115310A 2023-04-25 2023-04-25 Semiconductor structure and semiconductor device TWI845278B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112115310A TWI845278B (en) 2023-04-25 2023-04-25 Semiconductor structure and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112115310A TWI845278B (en) 2023-04-25 2023-04-25 Semiconductor structure and semiconductor device

Publications (2)

Publication Number Publication Date
TWI845278B true TWI845278B (en) 2024-06-11
TW202443898A TW202443898A (en) 2024-11-01

Family

ID=92541722

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112115310A TWI845278B (en) 2023-04-25 2023-04-25 Semiconductor structure and semiconductor device

Country Status (1)

Country Link
TW (1) TWI845278B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008709A1 (en) * 2003-05-20 2009-01-08 Yedinak Joseph A Power Semiconductor Devices with Trenched Shielded Split Gate Transistor and Methods of Manufacture
US20120032258A1 (en) * 2008-02-14 2012-02-09 Maxpower Semiconductor, Inc. Semiconductor Device Structures and Related Processes
US20140042525A1 (en) * 2012-02-13 2014-02-13 Maxpower Semiconductor, Inc. Lateral transistors and methods with low-voltage-drop shunt to body diode
US20140252463A1 (en) * 2008-02-14 2014-09-11 Maxpower Semiconductor, Inc. Schottky and mosfet+schottky structures, devices, and methods
US20180366569A1 (en) * 2016-06-10 2018-12-20 Maxpower Semiconductor Inc. Trench-Gated Heterostructure and Double-Heterostructure Active Devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008709A1 (en) * 2003-05-20 2009-01-08 Yedinak Joseph A Power Semiconductor Devices with Trenched Shielded Split Gate Transistor and Methods of Manufacture
US20120032258A1 (en) * 2008-02-14 2012-02-09 Maxpower Semiconductor, Inc. Semiconductor Device Structures and Related Processes
US20140252463A1 (en) * 2008-02-14 2014-09-11 Maxpower Semiconductor, Inc. Schottky and mosfet+schottky structures, devices, and methods
US20140042525A1 (en) * 2012-02-13 2014-02-13 Maxpower Semiconductor, Inc. Lateral transistors and methods with low-voltage-drop shunt to body diode
US20180366569A1 (en) * 2016-06-10 2018-12-20 Maxpower Semiconductor Inc. Trench-Gated Heterostructure and Double-Heterostructure Active Devices

Similar Documents

Publication Publication Date Title
US9947741B2 (en) Field-effect semiconductor device having pillar regions of different conductivity type arranged in an active area
US8390058B2 (en) Configurations and methods for manufacturing devices with trench-oxide-nano-tube super-junctions
US11538933B2 (en) Schottky diode integrated into superjunction power MOSFETs
US10672878B2 (en) Silicon carbide semiconductor device
US7238976B1 (en) Schottky barrier rectifier and method of manufacturing the same
US6255692B1 (en) Trench-gate semiconductor device
US20240170569A1 (en) Semiconductor device and method of manufacturing the same
JP2024019464A (en) Semiconductor device
US10504891B2 (en) Semiconductor device and a manufacturing method therefor
TWI845278B (en) Semiconductor structure and semiconductor device
CN114207836B (en) Silicon carbide transistor device
US11664436B2 (en) Semiconductor devices having gate resistors with low variation in resistance values
JP7476502B2 (en) Semiconductor Device
CN118899332A (en) Semiconductor structure and semiconductor device
US12074226B2 (en) Schottky diode integrated with a semiconductor device
US20230420527A1 (en) Gate trench power semiconductor devices having improved breakdown performance and methods of forming such devices
US20240145588A1 (en) Vertical power semiconductor device including a silicon carbide (sic) semiconductor body
US20240097050A1 (en) Semiconductor device and fabrication method thereof
US20240282823A1 (en) Power semiconductor device
US20240371989A1 (en) Sic static induction transistor with double side cooling and method of manufacture
CN117637850A (en) Silicon carbide MOS device and preparation method thereof
CN112054023A (en) Semiconductor device with a plurality of transistors