TWI845278B - Semiconductor structure and semiconductor device - Google Patents
Semiconductor structure and semiconductor device Download PDFInfo
- Publication number
- TWI845278B TWI845278B TW112115310A TW112115310A TWI845278B TW I845278 B TWI845278 B TW I845278B TW 112115310 A TW112115310 A TW 112115310A TW 112115310 A TW112115310 A TW 112115310A TW I845278 B TWI845278 B TW I845278B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- unit
- semiconductor structure
- field plate
- epitaxial layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 129
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 125000006850 spacer group Chemical group 0.000 claims description 18
- 230000007704 transition Effects 0.000 claims description 11
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 10
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 10
- 230000000903 blocking effect Effects 0.000 claims description 9
- 238000011084 recovery Methods 0.000 description 26
- 239000000463 material Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 12
- 230000004888 barrier function Effects 0.000 description 10
- 230000003071 parasitic effect Effects 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 7
- 230000005684 electric field Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 3
- 229910001195 gallium oxide Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- YBQVBAAUGCVJOD-UHFFFAOYSA-N [O-2].[Ta+5].[O-2].[Al+3] Chemical compound [O-2].[Ta+5].[O-2].[Al+3] YBQVBAAUGCVJOD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- ORQWZDMGFYSKGA-UHFFFAOYSA-N dioxosilane tantalum Chemical compound [Si](=O)=O.[Ta] ORQWZDMGFYSKGA-UHFFFAOYSA-N 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- HWEYZGSCHQNNEH-UHFFFAOYSA-N silicon tantalum Chemical compound [Si].[Ta] HWEYZGSCHQNNEH-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本發明是關於半導體結構,特別是關於包括場板結構的半導體結構。The present invention relates to semiconductor structures, and more particularly to semiconductor structures including field plate structures.
近年來,半導體產業在功率元件(power device)的發展上具有顯著的進步。目前已發展出例如高電壓金氧半導體(high voltage metal-oxide-semiconductor,HVMOS)電晶體、絕緣閘雙極性電晶體(insulated gate bipolar transistor,IGBT)、接面場效電晶體(Junction Field Effect Transistor,JFET)、與肖特基阻障二極體(Schottky barrier diode,SBD)等多種功率元件。這些元件通常係用於如家用電器、通信設備與車用發電機等儀器之功率系統內的功率放大、功率控制等多種應用之中。In recent years, the semiconductor industry has made significant progress in the development of power devices. Currently, a variety of power devices have been developed, such as high voltage metal-oxide-semiconductor (HVMOS) transistors, insulated gate bipolar transistors (IGBT), junction field effect transistors (JFET), and Schottky barrier diodes (SBD). These devices are usually used in power amplification, power control and other applications in power systems of household appliances, communication equipment and automotive generators.
在現有的金屬氧化物半導體電晶體設計中,藉由使用溝槽式的電晶體結構,能夠降低電晶體的導通電阻。此外,藉由形成包括分離式閘極(split-gate)的電晶體,能夠降低半導體元件的寄生電容以減少切換損耗(switching loss)。再者,可以將包括快速恢復二極體(fast recovery diode,FRD)或肖特基阻障二極體的晶片並聯到具有電晶體的晶片。如此一來,能夠減少逆向恢復(reverse recovery)電荷以進一步減少開關損耗。In existing metal oxide semiconductor transistor designs, the on-resistance of the transistor can be reduced by using a trench transistor structure. In addition, by forming a transistor including a split-gate, the parasitic capacitance of the semiconductor element can be reduced to reduce switching loss. Furthermore, a chip including a fast recovery diode (FRD) or a Schottky barrier diode can be connected in parallel to a chip with a transistor. In this way, the reverse recovery charge can be reduced to further reduce switching loss.
然而,為了將上述兩晶片封裝在一起,需要使用接合電線(bonding wires)進行電性連接,這會產生額外的寄生電感以及不必要的訊號。此外,由於需要封裝位於不同晶片的二極體及電晶體,這樣的傳統製程較冗長且所形成的半導體結構會佔據較大的空間。因此,功率元件的研發需要持續的更新與調整以解決功率元件在製造及運作時所面臨的各種問題。However, in order to package the two chips together, bonding wires are needed for electrical connection, which will generate additional parasitic inductance and unnecessary signals. In addition, since diodes and transistors located on different chips need to be packaged, such traditional processes are lengthy and the resulting semiconductor structure takes up a larger space. Therefore, the research and development of power components requires continuous updates and adjustments to solve the various problems faced by power components during manufacturing and operation.
一種半導體結構,包括:基底;磊晶層,設置於基底上;多個場板(field plate)結構,包括分別設置於半導體結構的第一單元及第二單元中的第一場板結構及第二場板結構;多個遮蔽層,設置於場板結構的多個底部與磊晶層之間;上電極層,覆蓋場板結構,其中上電極層在第一單元中與磊晶層分隔且在第二單元中直接接觸磊晶層;以及下電極層,設置於基底下且與磊晶層相對。A semiconductor structure includes: a substrate; an epitaxial layer disposed on the substrate; a plurality of field plate structures, including a first field plate structure and a second field plate structure disposed in a first unit and a second unit of the semiconductor structure respectively; a plurality of shielding layers disposed between a plurality of bottoms of the field plate structures and the epitaxial layer; an upper electrode layer covering the field plate structure, wherein the upper electrode layer is separated from the epitaxial layer in the first unit and directly contacts the epitaxial layer in the second unit; and a lower electrode layer disposed under the substrate and opposite to the epitaxial layer.
一種半導體裝置,包括:如上述之半導體結構;過渡層,橫向圍繞半導體結構;以及通道阻擋層,橫向圍繞過渡層,其中半導體結構具有複數個第一單元及第二單元。A semiconductor device comprises: the semiconductor structure as described above; a transition layer laterally surrounding the semiconductor structure; and a channel blocking layer laterally surrounding the transition layer, wherein the semiconductor structure has a plurality of first units and second units.
以下的揭示內容提供許多不同的實施例或範例,以展示本發明實施例的不同部件。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的參照符號及/或用字。這些重複符號或用字的目的在於簡化與清晰,並非用以限定各式實施例及/或所述配置之間的關係。The following disclosure provides many different embodiments or examples to show different components of the embodiments of the present invention. The following will disclose specific examples of the components of this specification and their arrangement to simplify the disclosure. Of course, these specific examples are not used to limit the disclosure. For example, if the following invention content of this specification describes forming a first component on or above a second component, it means that it includes an embodiment in which the first and second components formed are in direct contact, and also includes an embodiment in which an additional component can be formed between the above-mentioned first and second components, and the first and second components are not in direct contact. In addition, the various examples in the disclosure may use repeated reference symbols and/or words. The purpose of these repeated symbols or words is to simplify and clarify, and is not used to limit the relationship between the various embodiments and/or the configurations.
再者,為了方便描述圖式中一元件或部件與另一(些)元件或部件的關係,可使用空間相對用語,例如「在…之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖式所繪示之方位外,空間相對用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相對形容詞亦將依轉向後的方位來解釋。Furthermore, to facilitate description of the relationship between one element or component and another element or component in the drawings, spatially relative terms may be used, such as "under," "below," "lower," "above," "upper," and the like. In addition to the orientation depicted in the drawings, spatially relative terms also cover different orientations of the device in use or operation. When the device is turned to a different orientation (for example, rotated 90 degrees or other orientations), the spatially relative adjectives used therein will also be interpreted based on the orientation after the rotation.
在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "generally" generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, in the absence of specific description of "about", "approximately", and "generally", the meaning of "about", "approximately", and "generally" can still be implied.
以下敘述一些本發明實施例,在這些實施例中所述的多個階段之前、期間以及/或之後,可提供額外的步驟。一些所述階段在不同實施例中可被替換或刪去。半導體裝置結構可增加額外部件。一些所述部件在不同實施例中可被替換或刪去。儘管所討論的一些實施例以特定順序的步驟執行,這些步驟仍可以另一合乎邏輯的順序執行。Some embodiments of the present invention are described below, and additional steps may be provided before, during, and/or after the various stages described in these embodiments. Some of the stages may be replaced or deleted in different embodiments. Additional components may be added to the semiconductor device structure. Some of the components may be replaced or deleted in different embodiments. Although some of the embodiments discussed are performed in a specific order of steps, these steps may still be performed in another logical order.
此處所使用的用語「實質上(substantially)」,表示一給定量的數值可基於目標半導體裝置相關的特定技術節點而改變。在一些實施例中,基於特定的技術節點,用語「實質上地」可表示一給定量的數值在例如目標(或期望)值之±5%的範圍。As used herein, the term "substantially" means that a given amount of value may vary based on a particular technology node associated with the target semiconductor device. In some embodiments, based on a particular technology node, the term "substantially" may mean that a given amount of value is within a range of, for example, ±5% of a target (or desired) value.
本揭露提供一種半導體結構及包括此半導體結構的半導體裝置,且在半導體結構中可以包括分別作為控制元件及二極體元件的第一單元及第二單元。本揭露的多個場板結構設置於第一單元及第二單元兩者,且第一單元及第二單元可以被形成為具有共同的基底及磊晶層。因此,本揭露的控制單元及二極體單元的製造能夠被良好地整合,藉此減少製造過程中的遮罩的使用,且能夠避免在兩單元之間產生額外的寄生電感。此外,作為單載子元件的第二單元可以減少半導體結構的逆向恢復時間。設置於場板結構的底部與磊晶層之間的遮蔽層能夠降低場板結構的氧化物中的電場並減少半導體結構的閘極與汲極之間的寄生電容。再者,透過場板結構及遮蔽層的設置降低肖特基二極體的表面電場,能夠減少來自鏡像力能障降低效應(image force barrier lowering effect)的漏電流。因此,本揭露的半導體結構及半導體裝置能夠在具有較佳的逆向恢復性質的同時減少運作期間的功率損耗。The present disclosure provides a semiconductor structure and a semiconductor device including the semiconductor structure, and the semiconductor structure may include a first unit and a second unit as a control element and a diode element, respectively. The multiple field plate structures disclosed in the present disclosure are arranged in both the first unit and the second unit, and the first unit and the second unit can be formed to have a common substrate and epitaxial layer. Therefore, the manufacturing of the control unit and the diode unit disclosed in the present disclosure can be well integrated, thereby reducing the use of masks in the manufacturing process and avoiding the generation of additional parasitic inductance between the two units. In addition, the second unit as a single carrier element can reduce the reverse recovery time of the semiconductor structure. The shielding layer disposed between the bottom of the field plate structure and the epitaxial layer can reduce the electric field in the oxide of the field plate structure and reduce the parasitic capacitance between the gate and the drain of the semiconductor structure. Furthermore, by reducing the surface electric field of the Schottky diode through the provision of the field plate structure and the shielding layer, the leakage current from the image force barrier lowering effect can be reduced. Therefore, the semiconductor structure and semiconductor device disclosed in the present invention can reduce the power loss during operation while having better reverse recovery properties.
第1圖是根據本揭露的一些實施例,繪示出半導體結構10的剖面圖。半導體結構10可以包括基底100以及設置於基底100上的磊晶層102。半導體結構10可以更包括多個場板結構110,其包括分別設置於半導體結構10的第一單元10A及第二單元10B中的第一場板結構110A及第二場板結構110B。如第1圖所示,在各個場板結構110的底部與磊晶層102之間可以設置有多個遮蔽層120。半導體結構10可以更包括覆蓋場板結構110的上電極層130以及設置於基底100下且與磊晶層102相對的下電極層140。如第1圖所示,上電極層130可以在第一單元10A中與磊晶層102分隔且在第二單元10B中直接接觸磊晶層102。FIG. 1 is a cross-sectional view of a
在一些實施例中,基底100是塊狀半導體基板,例如半導體晶圓。在一些實施例中,基底100是由矽、鍺、其他適合的半導體材料、或前述之組合所形成。舉例而言,在一個特定的實施例中,基底100包括矽。在一些實施例中,基底100可以包括化合物半導體,例如碳化矽、氮化鎵、氧化鎵、砷化鎵、其他適合的半導體材料、或前述之組合。在一些實施例中,基底100可以包括合金半導體,例如矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。在一些實施例中,基底100可以由多層材料組成,例如包括矽/矽鍺、矽/碳化矽的多層材料。In some embodiments, the
在本揭露的一些實施例中,舉例而言,基底100是摻雜有第一導電類型的摻質的晶圓,且第一導電類型是n型。在一些其他的實施例中,第一導電類型也可以是p型。在第一導電類型是n型的情況下,上述具有第一導電類型的摻質可以是例如氮、磷、砷、銻、鉍、矽。在一些實施例中,基底100的摻雜濃度可以在大約1e19 atoms/cm
3至大約1E21 atoms/cm
3之間。
In some embodiments of the present disclosure, for example, the
磊晶層102可以包括與基底100相同或類似的材料,例如矽、鍺、碳化矽、氮化鎵、氧化鎵、砷化鎵、矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。在一些實施例中,基底100與磊晶層102具有相同的導電類型(例如n型),且基底100與磊晶層102可以包括相同的摻質。在一些實施例中,上述摻質在磊晶層102中的摻雜濃度小於在基底100中的摻雜濃度。在一些實施例中,磊晶層102的摻雜濃度可以在大約1e13 atoms/cm
3至大約1e18 atoms/cm
3之間。在本揭露的一些實施例中,舉例而言,磊晶層102包括碳化矽。藉由以碳化矽形成磊晶層102,能夠以適合碳化矽的能帶範圍且具有較低的活化能的摻質摻雜磊晶層102。此外,由碳化矽形成的磊晶層102能夠提供較高的崩潰電壓、較低的漏電流、以及較低的導通電阻。
The
在一些實施例中,各個場板結構110包括導電填充層112及介電間隔層114。至少一部分的導電填充層112可以嵌入磊晶層102,且介電間隔層114可以在導電填充層112與磊晶層102之間延伸。在一些實施例中,如第1圖所示,導電填充層112可以在第二單元10B中完全嵌入磊晶層102,使得導電填充層112的上表面低於磊晶層102的上表面或與其共平面。在一些實施例中,介電間隔層114具有在導電填充層112與上電極層130之間延伸的頂部。In some embodiments, each
導電填充層112的材料可以包括多晶矽、金屬、金屬氮化物、其他適合的導電材料、或前述之組合。介電間隔層114的材料可以包括氧化矽、氧化鉿、氧化鋯、氧化鋁、二氧化鋁鉿合金、二氧化矽鉿、氮氧化矽鉿、氧化鉭鉿、氧化鈦鉿、氧化鋯鉿、其它適合的高介電常數(high-k)介電材料、或前述之組合。在一些實施例中,介電間隔層114包括具有與磊晶層102共同的元素的氧化物。舉例而言,在一個特定的實施例中,磊晶層102包括矽或碳化矽,且介電間隔層114包括氧化矽。The material of the
在一些實施例中,場板結構110包括被配置為分離式閘極結構的導電填充層112。如第1圖所示,導電填充層112可以包括被介電間隔層114分隔的上導電層112U及下導電層112L。第一單元10A中的上導電層112U可以電性連接到閘極(未顯示)。在一些實施例中,下導電層112L電性連接到源極(未顯示)。取決於半導體結構10的設計需求,第二單元10B中的上導電層112U可以電性連接到閘極或源極。如果第二單元10B中的上導電層112U電性連接到閘極,能夠在將正向偏壓施加於第二單元10B中的上導電層112U時在鄰近上導電層112U的部分的磊晶層102產生載子的累積層(accumulation layer),有利於順向電流的產生。如果第二單元10B中的上導電層112U電性連接到源極,可以減少產生於上導電層112U與磊晶層102之間的部分的介電間隔層114的寄生電容,有利於減少半導體結構10的切換損耗。In some embodiments, the
應理解的是,儘管在第1圖所示的第一單元10A及第二單元10B中的場板結構110的導電填充層112皆被配置為分離式閘極結構,本揭露並未限定所有的單元中的導電填充層112皆必須是分離式閘極結構。舉例而言,第一單元10A及第二單元10B的其中一者中的導電填充層112可以被配置為分離式閘極結構,且另外一者中的導電填充層112可以是單一的塊體。It should be understood that, although the
介電間隔層114可以在例如第一單元10A及/或第二單元10B中包括開口O,且導電填充層112可以透過開口O與遮蔽層120直接接觸。然而,介電間隔層114也可以在導電填充層112與遮蔽層120之間延伸以將兩者分隔。在一些實施例中,下導電層112L的下表面的面積小於下導電層112L的上表面的面積。在一些實施例中,基底100及磊晶層102具有第一導電類型(例如n型),且遮蔽層120具有與第一導電類型相反的第二導電類型(例如p型)。遮蔽層120能夠用於分隔導電填充層112與磊晶層102,避免在介電間隔層114中產生過高的電場。此外,藉由設置遮蔽層120,能夠降低場板結構110的中的氧化物(例如介電間隔層114)中的電場並減少半導體結構10的閘極與汲極之間的寄生電容。再者,透過場板結構110及遮蔽層120的設置降低第二單元10B中的肖特基二極體元件的表面電場,能夠減少來自鏡像力能障降低效應(image force barrier lowering effect)的漏電流。The
遮蔽層120的材料可以包括例如藉由佈植所形成的半導體材料、其他適合的材料、或前述之組合。在本揭露的一些實施例中,舉例而言,遮蔽層120具有p型之第二導電類型,且在遮蔽層120中摻雜有例如硼、鋁等摻質。在一些實施例中,遮蔽層120的摻雜濃度可以在大約1e14 atoms/cm
3至大約1e19 atoms/cm
3之間。
The material of the
在一些實施例中,如第1圖所示,磊晶層102在第一單元10A中包括橫向圍繞第一場板結構110A且在與上電極層130之間的界面的摻雜結構150。摻雜結構150可以包括摻雜井152、第一重摻雜區154、及第二重摻雜區156。在一些實施例中,摻雜井152的鄰近第一場板結構110A的部分能夠用作半導體結構10運作時的通道區。舉例而言,當對導電填充層112施加正向偏壓時,能夠在摻雜井152的鄰近第一場板結構110A的側壁附近形成反轉層(inversion layer)以產生電流。第二重摻雜區156可以用於將摻雜井152電性連接到上電極層130。第一重摻雜區154可以被電性連接到源極。In some embodiments, as shown in FIG. 1 , the
第一重摻雜區154可以具有與磊晶層102相同的第一導電類型(例如n型),且摻雜井152及第二重摻雜區156可以具有與遮蔽層120相同的第二導電類型(例如p型)。摻雜井152的摻雜濃度可以在大約1e15 atoms/cm
3至大約1e18 atoms/cm
3之間。第一重摻雜區154的摻雜濃度可以在大約1e18 atoms/cm
3至大約1e21 atoms/cm
3之間。第二重摻雜區156的摻雜濃度可以在大約1e18 atoms/cm
3至大約1e21 atoms/cm
3之間。
The first heavily doped
摻雜結構150可以包括與磊晶層102的摻雜結構150下方的部分相同或類似的材料,例如矽、鍺、碳化矽、氮化鎵、氧化鎵、砷化鎵、矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。摻雜結構150可以透過在半導體結構10之用於形成第一單元10A的區域內的部分的用於形成磊晶層102的磊晶材料中進行摻雜製程所形成。在一些實施例中,摻雜結構150的上表面低於第一場板結構110A的上表面。在一些實施例中,摻雜結構150的上表面與磊晶層102的在第二單元10B中的上表面實質上共平面。根據摻雜結構150的配置,在一些實施例中,如第1圖所示,磊晶層102在第一單元10A中的上表面與在第二單元10B中的上表面等高。The doped
上電極層130及下電極層140可以分別電性連接到半導體結構10的源極及汲極(未顯示)。然而,取決於半導體結構10的結構設計,在本揭露的一些實施例中,上電極層130及下電極層140本身也可以分別被視為半導體結構10的源極及汲極。此外,在第二單元10B中,在上電極層130與磊晶層102之間的界面上可以具有肖特基接觸。如此一來,第二單元10B可以作為一種單載子元件(例如肖特基二極體元件)運作,藉此改善半導體結構10的逆向恢復性質,減少逆向恢復時間。The
在一些實施例中,場板結構110的多個頂部突出到上電極層130中。如第1圖所示,第一場板結構110A及第二場板結構110B的頂部可以突出到上電極層130中。進一步如第1圖所示,第一場板結構110A及第二場板結構110B的頂部可以分別在第一單元10A及第二單元10B中具有高於周圍的摻雜結構150及磊晶層102的上表面。In some embodiments, multiple top portions of the
上電極層130可以是或包括,例如鉑(Pt)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)、鎢(W)、氮化鎢(WN)、金(Au)、鐵(Fe)、鎳(Ni)、鈹(Be)、鉻(Cr)、鈷(Co)、銻(Sb)、銥(Ir)、鉬(Mo)、鋨(Os)、釷(Th)、釩(V)、一些其他的金屬或金屬氮化物、或前述之組合。The
下電極層140可以是或包括與上電極層130相同或類似的材料。舉例而言,下電極層140可以是或包括,例如鉑(Pt)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)、鎢(W)、氮化鎢(WN)、金(Au)、鐵(Fe)、鎳(Ni)、鈹(Be)、鉻(Cr)、鈷(Co)、銻(Sb)、銥(Ir)、鉬(Mo)、鋨(Os)、釷(Th)、釩(V)、一些其他的金屬或金屬氮化物、或前述之組合。The
應理解的是,第一單元10A及第二單元10B也可以分別被稱為半導體結構10的控制元件及二極體元件。基底100及磊晶層102可以在第一單元10A及第二單元10B之間連續延伸。在一些實施例中,第一單元10A及第二單元10B是經由上電極層130及下電極層140以並聯形式電性連接。在本揭露的一些實施例中,多個場板結構110設置於第一單元10A及第二單元10B兩者,且第一單元10A及第二單元10B可以具有共同的基底100及磊晶層102。因此,半導體結構10的控制單元及二極體單元能夠被良好地整合在一起。相較於習知的包括控制單元及二極體單元的半導體結構,能夠減少製造過程中的遮罩的使用,且能夠避免在兩單元之間產生額外的寄生電感。It should be understood that the
以下將參照第2A、3A圖以說明半導體裝置1、2的配置,且參照第2B、3B圖以說明半導體結構10中的第一單元10A及第二單元10B的佈局。2A and 3A are referred to for explaining the configuration of the
第2A圖是根據本揭露的一些實施例,繪示出半導體裝置1的俯視圖。除了如上所述之半導體結構10,可以設置橫向圍繞半導體結構10的過渡層12以及橫向圍繞過渡層12的通道阻擋層14。半導體結構10可以具有複數個第一單元及第二單元,且第一單元及第二單元能夠分別用作半導體裝置1的控制單元及二極體單元。關於第一單元及第二單元的結構及配置與第1圖中的第一單元10A及第二單元10B類似,在此為了簡化起見而省略其詳細描述。FIG. 2A is a top view of a
過渡層12可以用於保護半導體結構10的內部元件。過渡層12的材料可以包括與上述磊晶層102相同或類似的材料、其他適合的材料、或前述之組合。在一些實施例中,過渡層被摻雜以具有第二導電類型。通道阻擋層14可以用於隔離相鄰的晶片。通道阻擋層14的材料可以包括與上述磊晶層102相同或類似的材料、其他適合的材料、或前述之組合。在一些實施例中,通道阻擋層14被摻雜以具有第一導電類型。The
第2B圖是根據本揭露的一些實施例,繪示出顯示第一單元10A及第二單元10B的佈局的剖面示意圖。在一些實施例中,如第2B圖所示,各個第一單元10A及第二單元10B彼此橫向交替設置。由於第一單元10A是半導體結構10打開時電流流經的部分,所以第一單元10A會成為發熱源。藉由將第二單元10B配置於兩個第一單元10A之間,能夠使兩個發熱源隔離並減緩晶片的升溫速度。FIG. 2B is a cross-sectional schematic diagram showing the layout of the
第3A圖是根據本揭露的一些其他的實施例,繪示出半導體裝置2的俯視圖。與第2A圖所示的半導體裝置1的差異在於,半導體裝置2中的半導體結構10具有第一區域A1及第二區域A2,且分別用作半導體裝置1的控制單元及二極體單元的第一單元及第二單元分別位於第一區域A1及第二區域A2。在一些實施例中,第一區域A1及第二區域A2的其中一者橫向圍繞另一者。舉例而言,如第3A圖所示,在一些實施例中,第二區域A2橫向圍繞第一區域A1。在其他的實施例中,也可以具有第一區域A1橫向圍繞第二區域A2的配置。關於過渡層12及通道阻擋層14的功能及材料與第2A圖中的過渡層12及通道阻擋層14類似,在此為了簡化起見而省略其描述。FIG. 3A is a top view of a
第3B圖是根據本揭露的一些其他的實施例,繪示出顯示第一單元10A及第二單元10B的佈局的剖面示意圖。如第3B圖所示,在複數個第一單元10A及複數個第二單元10B分別設置於各自的區域的實施例中,複數個第一單元10A彼此相鄰,且複數個第二單元10B彼此相鄰。如此一來,由於能夠降低源極、汲極、及閘極往第一單元10A及第二單元10B的走線(routing)的複雜度,能夠使半導體結構10的製造過程較容易進行。FIG. 3B is a cross-sectional schematic diagram showing the layout of the
應注意的是,儘管在第2B、3B圖中是將第一單元10A及第二單元10B繪示為彼此相鄰,本揭露並非限定於此。在一些其他的實施例中,舉例而言,可以具有額外的結構配置於第一單元10A及第二單元10B之間。It should be noted that, although the
第4圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體(embedded Schottky barrier diode,E-SBD)的區域(以下稱為二極體區域)的面積對於半導體裝置在逆向恢復時的電流變化的影響。第5圖顯示出半導體裝置中的二極體區域的面積對於半導體裝置的逆向恢復時間(T rr)及逆向恢復電荷(Q rr)的影響。第6圖顯示出半導體裝置中的二極體區域的面積對於半導體裝置的切換能量(E sw)及逆向恢復軟度係數(RRSF)的影響。第7圖顯示出半導體裝置中的二極體區域的面積對於半導體裝置在不同切換頻率下的功率損耗的影響。 FIG. 4 shows the effect of the area of a region having an embedded Schottky barrier diode (E-SBD) in a semiconductor device (hereinafter referred to as a diode region) on the current change of the semiconductor device during reverse recovery according to some embodiments of the present disclosure. FIG. 5 shows the effect of the area of the diode region in a semiconductor device on the reverse recovery time (T rr ) and reverse recovery charge (Q rr ) of the semiconductor device. FIG. 6 shows the effect of the area of the diode region in a semiconductor device on the switching energy (E sw ) and reverse recovery softness factor (RRSF) of the semiconductor device. FIG. 7 shows the effect of the diode area in a semiconductor device on the power loss of the semiconductor device at different switching frequencies.
如第4圖所示的逆向恢復時的電流變化的測量可以藉由數值模擬軟體來進行,且通常知識者可以任意選擇測量電壓及電流。此外,通常知識者能夠選擇特定的具有控制元件的區域(例如第3A圖的第一區域A1或半導體結構中的第一單元所佔據的區域,以下稱為控制區域)的面積,藉此觀察二極體區域的面積對於半導體裝置在逆向恢復時的電流變化的影響。在一個特定的範例中,以800V的電壓及20A的電流進行動態測試的測量,藉此得到如第4圖所示的二極體電流隨時間的變化。The measurement of the current change during reverse recovery as shown in FIG. 4 can be performed by digital simulation software, and a person skilled in the art can arbitrarily select the voltage and current to be measured. In addition, a person skilled in the art can select the area of a specific region having a control element (e.g., the first region A1 in FIG. 3A or the region occupied by the first unit in the semiconductor structure, hereinafter referred to as the control region) to observe the effect of the area of the diode region on the current change during reverse recovery of the semiconductor device. In a specific example, a dynamic test measurement is performed with a voltage of 800V and a current of 20A, thereby obtaining the change of the diode current over time as shown in FIG. 4.
在各個測量結果的電流波形(waveform)中,二極體電流從開始降低到逆向的峰值的時間稱為ta,從上述峰值返回電流零點的時間稱為tb,且時間ta及tb的總和可以被稱為逆向恢復時間(T rr)。由第4、5圖可以得知,隨著二極體區域的面積相對控制區域的面積增加,半導體裝置的逆向恢復時間逐漸減少,即半導體裝置具有較快的響應速度。 In the current waveform of each measurement result, the time from the beginning of the diode current decrease to the reverse peak is called ta, and the time from the peak value to the current zero point is called tb, and the sum of the time ta and tb can be called the reverse recovery time (T rr ). It can be seen from Figures 4 and 5 that as the area of the diode region increases relative to the area of the control region, the reverse recovery time of the semiconductor device gradually decreases, that is, the semiconductor device has a faster response speed.
此外,在第4圖的各個電流波形中,電流從開始降低到返回電流零點期間之電流對時間積分的值即為逆向恢復期間的逆向恢復電荷(Q rr)。由第4、5圖可以得知,隨著二極體區域的面積相對控制區域的面積增加,半導體裝置的逆向恢復電荷逐漸減少。參照第6圖,隨著二極體區域的面積增加,切換能量(E sw)也逐漸降低。因此,藉由將作為二極體元件的第二單元並聯到做為控制元件的第一單元,能夠降低半導體裝置在運作期間的功率損耗。 In addition, in each current waveform of Figure 4, the value of the current integral over time from the beginning of the current decrease to the return to the current zero point is the reverse recovery charge ( Qrr ) during the reverse recovery period. It can be seen from Figures 4 and 5 that as the area of the diode region increases relative to the area of the control region, the reverse recovery charge of the semiconductor device gradually decreases. Referring to Figure 6, as the area of the diode region increases, the switching energy ( Esw ) also gradually decreases. Therefore, by connecting the second unit as a diode element in parallel to the first unit as a control element, the power loss of the semiconductor device during operation can be reduced.
時間tb及ta的比值tb/ta可以被稱為逆向恢復軟度係數(RRSF)。由第4、6圖可以得知,隨著二極體區域的面積相對控制區域的面積增加,半導體裝置的逆向恢復軟度係數(RRSF)逐漸增加,且在電流值從逆向的峰值到電流零點的過程中的電流值對時間的斜率變小。因此,藉由將更多具有二極體元件的第二單元並聯到做為控制元件的第一單元,能夠降少半導體裝置在逆向恢復後產生突波電壓(spike voltage)的可能性,避免產生額外的功率損耗。The ratio of time tb to time ta, tb/ta, can be called the reverse recovery softness factor (RRSF). As shown in Figures 4 and 6, as the area of the diode region increases relative to the area of the control region, the reverse recovery softness factor (RRSF) of the semiconductor device gradually increases, and the slope of the current value to time in the process from the reverse peak to the current zero point becomes smaller. Therefore, by connecting more second units with diode elements in parallel to the first unit as the control element, the possibility of the semiconductor device generating a spike voltage after reverse recovery can be reduced, avoiding additional power loss.
接著參照第7圖,隨著二極體區域的面積相對控制區域的面積增加,半導體裝置在各個切換頻率下的功率損耗也跟著減少。這是因為半導體裝置的功率損耗來自於電流傳導以及切換時的功率損耗,且由於二極體區域的面積增加導致切換能量減少,使得切換時的功率損耗降低。Referring to Figure 7, as the area of the diode region increases relative to the area of the control region, the power loss of the semiconductor device at each switching frequency also decreases. This is because the power loss of the semiconductor device comes from the power loss during current conduction and switching, and the increase in the area of the diode region reduces the switching energy, which reduces the power loss during switching.
綜上所述,本揭露提供一種一種半導體結構及包括此半導體結構的半導體裝置,且在半導體結構中可以包括分別作為控制元件及二極體元件的第一單元及第二單元。本揭露的多個場板結構設置於第一單元及第二單元兩者,且第一單元及第二單元可以被形成為具有共同的基底及磊晶層。因此,本揭露的控制單元及二極體單元的製造能夠被良好地整合,藉此減少製造過程中的遮罩的使用,且能夠避免在兩單元之間產生額外的寄生電感。此外,作為單載子元件的第二單元可以減少半導體結構的逆向恢復時間。設置於場板結構的底部與磊晶層之間的遮蔽層能夠降低場板結構的氧化物中的電場並減少半導體結構的閘極與汲極之間的寄生電容。再者,透過場板結構及遮蔽層的設置降低肖特基二極體的表面電場,能夠減少來自鏡像力能障降低效應的漏電流。因此,本揭露的半導體結構及半導體裝置能夠在具有較佳的逆向恢復性質的同時減少運作期間的功率損耗。In summary, the present disclosure provides a semiconductor structure and a semiconductor device including the semiconductor structure, and the semiconductor structure may include a first unit and a second unit as a control element and a diode element, respectively. The multiple field plate structures disclosed in the present disclosure are arranged in both the first unit and the second unit, and the first unit and the second unit can be formed to have a common substrate and epitaxial layer. Therefore, the manufacturing of the control unit and the diode unit disclosed in the present disclosure can be well integrated, thereby reducing the use of masks in the manufacturing process and avoiding the generation of additional parasitic inductance between the two units. In addition, the second unit as a single carrier element can reduce the reverse recovery time of the semiconductor structure. The shielding layer disposed between the bottom of the field plate structure and the epitaxial layer can reduce the electric field in the oxide of the field plate structure and reduce the parasitic capacitance between the gate and the drain of the semiconductor structure. Furthermore, by reducing the surface electric field of the Schottky diode through the provision of the field plate structure and the shielding layer, the leakage current from the mirror force barrier reduction effect can be reduced. Therefore, the semiconductor structure and semiconductor device disclosed in the present invention can reduce the power loss during operation while having better reverse recovery properties.
以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可更易理解本發明實施例的觀點。本發明所屬技術領域中具有通常知識者應理解,可輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且可在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。The features of several embodiments are summarized above so that those with ordinary knowledge in the art to which the present invention belongs can more easily understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the art to which the present invention belongs should understand that other processes and structures can be easily designed or modified based on the embodiments of the present invention to achieve the same purpose and/or advantages as the embodiments introduced herein. Those with ordinary knowledge in the art to which the present invention belongs should also understand that such equivalent processes and structures do not violate the spirit and scope of the present invention, and various changes, substitutions and replacements can be made without violating the spirit and scope of the present invention.
1,2:半導體裝置1,2:Semiconductor devices
10:半導體結構10: Semiconductor structure
10A:第一單元10A:
10B:第二單元10B:
12:過渡層12: Transition layer
14:通道阻擋層14: Channel blocking layer
100:基底100: Base
102:磊晶層102: Epitaxial layer
110:場板結構110: Field plate structure
110A:第一場板結構110A: First Field Plate Structure
110B:第二場板結構110B: Second field plate structure
112:導電填充層112: Conductive filling layer
112L:下導電層112L: Lower conductive layer
112U:上導電層112U: Upper conductive layer
114:介電間隔層114: Dielectric spacer layer
120:遮蔽層120: Shielding layer
130:上電極層130: Upper electrode layer
140:下電極層140: Lower electrode layer
150:摻雜結構150: mixed structure
152:摻雜井152: Mixed Well
154:第一重摻雜區154: First heavy doping area
156:第二重摻雜區156: Second mixed area
A1:第一區域A1:
A2:第二區域A2: Second Area
O:開口O: Open
以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1圖是根據本揭露的一些實施例,繪示出半導體結構的剖面圖。 第2A圖是根據本揭露的一些實施例,繪示出半導體裝置的俯視圖。 第2B圖是根據本揭露的一些實施例,繪示出顯示第一單元及第二單元的佈局的剖面示意圖。 第3A圖是根據本揭露的一些其他的實施例,繪示出半導體裝置的俯視圖。 第3B圖是根據本揭露的一些其他的實施例,繪示出顯示第一單元及第二單元的佈局的剖面示意圖。 第4圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體(embedded Schottky barrier diode,E-SBD)的區域的面積對於半導體裝置在逆向恢復時的電流變化的影響。 第5圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體的區域的面積對於半導體裝置的逆向恢復時間(T rr)及逆向恢復電荷(Q rr)的影響。 第6圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體的區域的面積對於半導體裝置的切換能量(E sw)及逆向恢復軟度係數(reverse recovery softness factor,RRSF)的影響。 第7圖是根據本揭露的一些實施例,繪示出半導體裝置中的具有嵌入式肖特基阻障二極體的區域的面積對於半導體裝置在不同切換頻率下的功率損耗的影響。 The following will be described in detail with the accompanying drawings. It should be noted that, in accordance with standard practices in the industry, various features are not drawn to scale and are only used for illustration. In fact, the size of the components can be arbitrarily enlarged or reduced to clearly show the features of the embodiments of the present invention. Figure 1 is a cross-sectional view of a semiconductor structure according to some embodiments of the present disclosure. Figure 2A is a top view of a semiconductor device according to some embodiments of the present disclosure. Figure 2B is a cross-sectional schematic diagram showing the layout of the first unit and the second unit according to some embodiments of the present disclosure. Figure 3A is a top view of a semiconductor device according to some other embodiments of the present disclosure. Figure 3B is a cross-sectional schematic diagram showing the layout of the first unit and the second unit according to some other embodiments of the present disclosure. FIG. 4 illustrates the effect of the area of an embedded Schottky barrier diode (E-SBD) in a semiconductor device on the current change of the semiconductor device during reverse recovery according to some embodiments of the present disclosure. FIG. 5 illustrates the effect of the area of an embedded Schottky barrier diode in a semiconductor device on the reverse recovery time (T rr ) and reverse recovery charge (Q rr ) of the semiconductor device according to some embodiments of the present disclosure. FIG. 6 illustrates the effect of the area of an embedded Schottky barrier diode in a semiconductor device on the switching energy (E sw ) and reverse recovery softness factor (RRSF) of the semiconductor device according to some embodiments of the present disclosure. FIG. 7 illustrates the effect of the area of a semiconductor device having an embedded Schottky barrier diode on the power loss of the semiconductor device at different switching frequencies according to some embodiments of the present disclosure.
10:半導體結構 10:Semiconductor structure
10A:第一單元
10A:
10B:第二單元
10B:
100:基底 100: Base
102:磊晶層 102: Epitaxial layer
110:場板結構 110: Field plate structure
110A:第一場板結構 110A: First stage plate structure
110B:第二場板結構 110B: Second field plate structure
112:導電填充層 112: Conductive filling layer
112L:下導電層 112L: Lower conductive layer
112U:上導電層 112U: Upper conductive layer
114:介電間隔層 114: Dielectric spacer layer
120:遮蔽層 120: Shielding layer
130:上電極層 130: Upper electrode layer
140:下電極層 140: Lower electrode layer
150:摻雜結構 150:Doped structure
152:摻雜井 152: Mixed Well
154:第一重摻雜區 154: The first heavily doped area
156:第二重摻雜區 156: Second mixed area
O:開口 O: Open
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112115310A TWI845278B (en) | 2023-04-25 | 2023-04-25 | Semiconductor structure and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112115310A TWI845278B (en) | 2023-04-25 | 2023-04-25 | Semiconductor structure and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI845278B true TWI845278B (en) | 2024-06-11 |
TW202443898A TW202443898A (en) | 2024-11-01 |
Family
ID=92541722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112115310A TWI845278B (en) | 2023-04-25 | 2023-04-25 | Semiconductor structure and semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI845278B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090008709A1 (en) * | 2003-05-20 | 2009-01-08 | Yedinak Joseph A | Power Semiconductor Devices with Trenched Shielded Split Gate Transistor and Methods of Manufacture |
US20120032258A1 (en) * | 2008-02-14 | 2012-02-09 | Maxpower Semiconductor, Inc. | Semiconductor Device Structures and Related Processes |
US20140042525A1 (en) * | 2012-02-13 | 2014-02-13 | Maxpower Semiconductor, Inc. | Lateral transistors and methods with low-voltage-drop shunt to body diode |
US20140252463A1 (en) * | 2008-02-14 | 2014-09-11 | Maxpower Semiconductor, Inc. | Schottky and mosfet+schottky structures, devices, and methods |
US20180366569A1 (en) * | 2016-06-10 | 2018-12-20 | Maxpower Semiconductor Inc. | Trench-Gated Heterostructure and Double-Heterostructure Active Devices |
-
2023
- 2023-04-25 TW TW112115310A patent/TWI845278B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090008709A1 (en) * | 2003-05-20 | 2009-01-08 | Yedinak Joseph A | Power Semiconductor Devices with Trenched Shielded Split Gate Transistor and Methods of Manufacture |
US20120032258A1 (en) * | 2008-02-14 | 2012-02-09 | Maxpower Semiconductor, Inc. | Semiconductor Device Structures and Related Processes |
US20140252463A1 (en) * | 2008-02-14 | 2014-09-11 | Maxpower Semiconductor, Inc. | Schottky and mosfet+schottky structures, devices, and methods |
US20140042525A1 (en) * | 2012-02-13 | 2014-02-13 | Maxpower Semiconductor, Inc. | Lateral transistors and methods with low-voltage-drop shunt to body diode |
US20180366569A1 (en) * | 2016-06-10 | 2018-12-20 | Maxpower Semiconductor Inc. | Trench-Gated Heterostructure and Double-Heterostructure Active Devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9947741B2 (en) | Field-effect semiconductor device having pillar regions of different conductivity type arranged in an active area | |
US8390058B2 (en) | Configurations and methods for manufacturing devices with trench-oxide-nano-tube super-junctions | |
US11538933B2 (en) | Schottky diode integrated into superjunction power MOSFETs | |
US10672878B2 (en) | Silicon carbide semiconductor device | |
US7238976B1 (en) | Schottky barrier rectifier and method of manufacturing the same | |
US6255692B1 (en) | Trench-gate semiconductor device | |
US20240170569A1 (en) | Semiconductor device and method of manufacturing the same | |
JP2024019464A (en) | Semiconductor device | |
US10504891B2 (en) | Semiconductor device and a manufacturing method therefor | |
TWI845278B (en) | Semiconductor structure and semiconductor device | |
CN114207836B (en) | Silicon carbide transistor device | |
US11664436B2 (en) | Semiconductor devices having gate resistors with low variation in resistance values | |
JP7476502B2 (en) | Semiconductor Device | |
CN118899332A (en) | Semiconductor structure and semiconductor device | |
US12074226B2 (en) | Schottky diode integrated with a semiconductor device | |
US20230420527A1 (en) | Gate trench power semiconductor devices having improved breakdown performance and methods of forming such devices | |
US20240145588A1 (en) | Vertical power semiconductor device including a silicon carbide (sic) semiconductor body | |
US20240097050A1 (en) | Semiconductor device and fabrication method thereof | |
US20240282823A1 (en) | Power semiconductor device | |
US20240371989A1 (en) | Sic static induction transistor with double side cooling and method of manufacture | |
CN117637850A (en) | Silicon carbide MOS device and preparation method thereof | |
CN112054023A (en) | Semiconductor device with a plurality of transistors |