[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI844057B - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
TWI844057B
TWI844057B TW111127152A TW111127152A TWI844057B TW I844057 B TWI844057 B TW I844057B TW 111127152 A TW111127152 A TW 111127152A TW 111127152 A TW111127152 A TW 111127152A TW I844057 B TWI844057 B TW I844057B
Authority
TW
Taiwan
Prior art keywords
electrode
photovoltaic device
active layer
additive
substrate
Prior art date
Application number
TW111127152A
Other languages
Chinese (zh)
Other versions
TW202406163A (en
Inventor
莊士卿
謝承明
蕭煥璋
Original Assignee
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學 filed Critical 國立陽明交通大學
Priority to TW111127152A priority Critical patent/TWI844057B/en
Publication of TW202406163A publication Critical patent/TW202406163A/en
Application granted granted Critical
Publication of TWI844057B publication Critical patent/TWI844057B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A photovoltaic device is disclosed and comprises a substrate, a firs electrode, a second electrode and an active layer. The first electrode is disposed on the substrate. The second electrode is disposed opposite to the first electrode. In addition, the active layer is disposed between the first electrode and the second electrode, and comprises an additive represented by the following formula (I). Moreover, on the basis of the total weight of the active layer, the content of the additive is ranged from 0.1 wt% to 10 wt%.
Figure 111127152-A0101-11-0002-2
Wherein, R is defined in the specification.

Description

光伏裝置 Photovoltaic installations

本揭露是關於一種添加劑,特別是適用於光伏裝置之添加劑。 This disclosure relates to an additive, particularly an additive suitable for photovoltaic devices.

目前多數的光伏裝置之結構由下至上依序為基板/陽極/電洞傳輸層/主動層/電子傳輸層/陰極,係為傳統結構。由於電子傳輸層與陰極之材料容易氧化,需要使用紫外線硬化膠進行封裝,造成生產成本大幅提高。 At present, the structure of most photovoltaic devices from bottom to top is substrate/anode/hole transport layer/active layer/electron transport layer/cathode, which is a traditional structure. Because the materials of the electron transport layer and the cathode are easily oxidized, ultraviolet curing glue is required for packaging, which greatly increases the production cost.

另一方面,目前常見的光伏裝置係為PM6:Y6系統,其中PM6作為供體材料,Y6作為受體材料,但是其效率與穩定度仍需進一步改善;且受到近年來個人裝置蓬勃發展的影響,使用室內光源的光伏裝置(Indoor photovoltaics,IPVs)的需求也隨之大幅增加,但其光電轉換效率與穩定性仍需要改善。 On the other hand, the most common photovoltaic device is the PM6:Y6 system, where PM6 is the donor material and Y6 is the acceptor material, but its efficiency and stability still need to be further improved; and affected by the booming development of personal devices in recent years, the demand for photovoltaic devices using indoor light sources (Indoor photovoltaics, IPVs) has also increased significantly, but its photoelectric conversion efficiency and stability still need to be improved.

因此,亟須提出一種改良的添加劑及包含其之光伏裝置,以消除或緩和上述問題。 Therefore, it is urgent to propose an improved additive and a photovoltaic device containing the same to eliminate or alleviate the above problems.

有鑑於此,本揭露提出一種添加劑及包含其之光伏裝置,藉由以開籠富勒烯材料作為添加劑,並將光伏裝置之結構改良為倒置結構,以提升其 光電轉換效率與穩定性。在此,光伏裝置之倒置結構是指由下至上依序為基板/陰極/電子傳輸層/主動層/電洞傳輸層/陽極之結構。 In view of this, the present disclosure proposes an additive and a photovoltaic device containing the same, by using an open cage fullerene material as an additive and improving the structure of the photovoltaic device to an inverted structure to enhance its photoelectric conversion efficiency and stability. Here, the inverted structure of the photovoltaic device refers to a structure of substrate/cathode/electron transport layer/active layer/hole transport layer/anode in order from bottom to top.

本揭露之光伏裝置包括一基板、一第一電極、一第二電極以及一主動層,其中第一電極設置於基板上,第二電極與第一電極相對設置,主動層設置於第一電極與第二電極之間且包括一如下式(I)所示的添加劑,且與主動層的總重量相比,添加劑之含量介於0.1wt%至10wt%之間: The photovoltaic device disclosed herein includes a substrate, a first electrode, a second electrode and an active layer, wherein the first electrode is disposed on the substrate, the second electrode is disposed opposite to the first electrode, the active layer is disposed between the first electrode and the second electrode and includes an additive as shown in the following formula (I), and compared with the total weight of the active layer, the content of the additive is between 0.1wt% and 10wt%:

Figure 111127152-A0101-12-0002-4
Figure 111127152-A0101-12-0002-4

其中R為H或C1-6烷基。 Wherein R is H or C 1-6 alkyl.

於本揭露的一實施例中,R可為C1-4烷基(例如C1-3烷基、C1-2烷基)。於本揭露的一實施例中,R可為甲基。然而,本揭露不限於此。 In one embodiment of the present disclosure, R may be a C 1-4 alkyl group (eg, a C 1-3 alkyl group, a C 1-2 alkyl group). In one embodiment of the present disclosure, R may be a methyl group. However, the present disclosure is not limited thereto.

於本揭露的一實施例中,主動層可更包括一主動層材料,其中, 主動層材料可包括至少一選自由

Figure 111127152-A0101-12-0002-5
、 In one embodiment of the present disclosure, the active layer may further include an active layer material, wherein the active layer material may include at least one selected free
Figure 111127152-A0101-12-0002-5
,

Figure 111127152-A0101-12-0003-6
(PC71BM)或
Figure 111127152-A0101-12-0003-7
所組成之群 組,例如主動層材料可包括PM6:Y6、PM7:Y6、P3HT:PC61BM、PM6:Y6:PC61BM、PM6:IT-4F、PM6:IT-4F:PC61BM、PM6:IT-4F:PC71BM、PM6:PC61BM、PM6:PC71BM、PM7:IT-4F、PM7:IT-4F:PC61BM、PM7:IT-4F:PC71BM、PM7:PC61BM、或PM7:PC71BM。於本揭露的一實施例中,主動層材料可包括PM6及Y6。然而,本揭露不限於此。
Figure 111127152-A0101-12-0003-6
(PC 71 BM) or
Figure 111127152-A0101-12-0003-7
The group formed, for example, active layer materials may include PM6:Y6, PM7:Y6, P3HT:PC 61 BM, PM6:Y6:PC 61 BM, PM6:IT-4F, PM6:IT-4F:PC 61 BM, PM6:IT-4F:PC 71 BM, PM6:PC 61 BM, PM6:PC 71 BM, PM7:IT-4F, PM7:IT-4F:PC 61 BM, PM7:IT-4F:PC 71 BM, PM7:PC 61 BM, or PM7:PC 71 BM. In one embodiment of the present disclosure, the active layer materials may include PM6 and Y6. However, the present disclosure is not limited thereto.

於本揭露的一實施例中,其中與主動層的總重量相比,添加劑之含量可介於0.5wt%至3wt%之間,較佳介於0.8wt%至1.2wt%之間,更佳為0.9wt%至1.1wt%之間,最佳為約1wt%,但本揭露不限於此。 In one embodiment of the present disclosure, the content of the additive may be between 0.5wt% and 3wt%, preferably between 0.8wt% and 1.2wt%, more preferably between 0.9wt% and 1.1wt%, and most preferably about 1wt%, compared to the total weight of the active layer, but the present disclosure is not limited thereto.

於本揭露的一實施例中,光伏裝置可更包括一電子傳輸層,其中電子傳輸層可設置於基板與主動層之間。電子傳輸層之材料可包括富勒烯衍生物、二氧化鈦(TiO2)、氧化鋅(ZnO)、銦錫氧化物(InSnOx)、氧化銅(CuOx)、氧化鋁(Al2O3)、氧化鋯(ZrO2)、氧化錫(SnO2)、氧化鎢(WO3)、氧化鈮(Nb2O5)、硫化鎘(CdS)、硒化鎘(CdSe)、碲化鎘(CdTe)、硫化鉍(Bi2S3)、硫化鉛(PbS)、磷化銦(InP)或其組合,但本揭露不限於此。 In one embodiment of the present disclosure, the photovoltaic device may further include an electron transport layer, wherein the electron transport layer may be disposed between the substrate and the active layer. The material of the electron transport layer may include fullerene derivatives, titanium dioxide (TiO 2 ), zinc oxide (ZnO), indium tin oxide (InSnO x ), copper oxide (CuO x ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), bismuth sulfide (Bi 2 S 3 ), lead sulfide (PbS), indium phosphide (InP) or a combination thereof, but the present disclosure is not limited thereto.

於本揭露一實施例中,光伏裝置可更包括一電洞傳輸層,其中電洞傳輸層可設置於主動層與第二電極之間。電洞傳輸層之材料可包括三氧化鉬(MoO3)、2,2',7,7'-四-(N,N-二-對甲氧基苯乙胺)9,9螺二芴(spiro-OMeTAD)、聚(3,4-並乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT-PSS)、N,N'-二(3-甲基苯基)-N,N'-二苯基-[1,1'-聯苯基]-4,4'-二胺(TPD)、聚三己基聚噻吩(P3HT)或其組合,但本揭露不限於此。 In one embodiment of the present disclosure, the photovoltaic device may further include a hole transport layer, wherein the hole transport layer may be disposed between the active layer and the second electrode. The material of the hole transport layer may include molybdenum trioxide (MoO 3 ), 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylethylamine)9,9-spirobifluorene (spiro-OMeTAD), poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT-PSS), N,N'-di(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), polytrihexylpolythiophene (P3HT) or a combination thereof, but the present disclosure is not limited thereto.

於本揭露的一實施例中,第一電極之材料可為導電透明金屬氧化物,例如包括氧化銦錫(indium tin oxide,ITO)、摻氟氧化錫(fluorine doped tin oxide,FTO)、摻銻氧化錫(antimony doped tin oxide,ATO)、摻鋁氧化鋅(aluminum doped zinc oxide,AZO)、氧化銦鋅(indium zinc oxide,IZO)、(gallium zinc oxide,GZO)、氧化銦錫鋅(indium tin zinc oxide,ITZO)、氧化銦鎵鋅(indium gallium zinc oxide,IGZO)或其組合。 In one embodiment of the present disclosure, the material of the first electrode may be a conductive transparent metal oxide, such as indium tin oxide (ITO), fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), aluminum doped zinc oxide (AZO), indium zinc oxide (IZO), gallium zinc oxide (GZO), indium tin zinc oxide (ITZO), indium gallium zinc oxide (IGZO) or a combination thereof.

於本揭露的一實施例中,第二電極之材料可為金屬,例如包括金、銀、銅、鋁、鈀、鎳、鈦、鉻、鉬、其合金或其組合。 In one embodiment of the present disclosure, the material of the second electrode may be a metal, such as gold, silver, copper, aluminum, palladium, nickel, titanium, chromium, molybdenum, alloys thereof, or combinations thereof.

於本揭露中,所謂之「烷基」包括直鏈及支鏈之烷基,例如,包括直鏈及支鏈之C1-6烷基、C1-5烷基、C1-4烷基、C1-3烷基或C1-2烷基;且其具體例子包括,但不限於:甲基、乙基、丙基、異丙基、丁基、異丁基、仲丁基、叔丁基、戊基、新戊基、及己基。 In the present disclosure, the so-called "alkyl" includes linear and branched alkyl groups, for example, linear and branched C1-6 alkyl groups, C1-5 alkyl groups, C1-4 alkyl groups, C1-3 alkyl groups or C1-2 alkyl groups; and specific examples thereof include, but are not limited to: methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, and hexyl.

下文將配合圖式並詳細說明,使本發明的其他目的、優點、及新穎特徵更明顯。 The following will be accompanied by drawings and detailed descriptions to make other purposes, advantages, and novel features of the present invention more obvious.

1:光伏裝置 1: Photovoltaic device

10:基板 10: Substrate

11:第一電極 11: First electrode

12:第二電極 12: Second electrode

13:主動層 13: Active layer

14:電子傳輸層 14:Electron transmission layer

15:電洞傳輸層 15: Hole transport layer

圖1為本揭露一實施例的光伏裝置之示意圖。 Figure 1 is a schematic diagram of a photovoltaic device according to an embodiment of the present disclosure.

圖2為在室溫下的比較例與實施例1至實施例3的光伏裝置之標準化效率。 Figure 2 shows the normalized efficiency of the photovoltaic devices of the comparison example and Examples 1 to 3 at room temperature.

圖3為經退火溫度80℃的比較例與實施例1至實施例3的光伏裝置之標準化效率。 Figure 3 shows the normalized efficiency of the photovoltaic devices of the comparison example and Examples 1 to 3 after annealing at 80°C.

圖4為比較例與實施例1至實施例3的光伏裝置之電流密度-電壓曲線。 Figure 4 shows the current density-voltage curves of the photovoltaic devices of the comparison example and embodiments 1 to 3.

圖5為比較例在不同光照條件下之電流密度與電壓(Jsc-V)特性曲線。 FIG. 5 is a comparison of the current density and voltage (J sc -V) characteristic curves under different lighting conditions.

圖6為實施例2在不同光照條件下之電流密度與電壓(Jsc-V)特性曲線。 FIG. 6 is a characteristic curve of current density and voltage (J sc -V) of Example 2 under different lighting conditions.

以下提供本發明的不同實施例。這些實施例是用於說明本發明的技術內容,而非用於限制本發明的權利範圍。一實施例的一特徵可透過合適的修飾、置換、組合、分離以應用於其他實施例。 Different embodiments of the present invention are provided below. These embodiments are used to illustrate the technical content of the present invention, rather than to limit the scope of the present invention. A feature of an embodiment can be applied to other embodiments through appropriate modification, replacement, combination, and separation.

應注意的是,在本文中,除了特別指明者之外,具備「一」元件不限於具備單一的該元件,而可具備一或更多的該元件。 It should be noted that, in this document, unless otherwise specified, "having an element" is not limited to having a single element, but may have one or more elements.

此外,在本文中,除了特別指明者之外,「第一」、「第二」等序數,只是用於區別具有相同名稱的多個元件,並不表示它們之間存在位階、層級、執行順序、或製程順序。一「第一」元件與一「第二」元件可能一起出現在同一構件中,或分別出現在不同構件中。序數較大的一元件的存在不必然表示序數較小的另一元件的存在。 In addition, in this article, unless otherwise specified, ordinal numbers such as "first" and "second" are only used to distinguish multiple components with the same name, and do not indicate the existence of a hierarchy, level, execution order, or process order between them. A "first" component and a "second" component may appear together in the same component, or appear separately in different components. The existence of a component with a larger ordinal number does not necessarily indicate the existence of another component with a smaller ordinal number.

在本文中,除了特別指明者之外,所謂的特徵甲「或」(or)或「及/或」(and/or)特徵乙,是指甲單獨存在、乙單獨存在、或甲與乙同時存在;所謂的特徵甲「及」(and)或「與」(and)或「且」(and)特徵乙,是指甲與乙同時存在;所謂的「包括」、「包含」、「具有」、「含有」,是指包括但不限於此。 In this document, unless otherwise specified, the so-called feature A "or" or "and/or" feature B means that A exists alone, B exists alone, or A and B exist at the same time; the so-called feature A "and" or "and" or "and" feature B means that A and B exist at the same time; the so-called "include", "include", "have", "contain" means including but not limited to these.

此外,在本文中,所謂的「上」、「下」、「左」、「右」、「前」、「後」、或「之間」等用語,只是用於描述多個元件之間的相對位置,並在解釋上可推廣成包括平移、旋轉、或鏡射的情形。 In addition, in this article, the terms "upper", "lower", "left", "right", "front", "back", or "between" are only used to describe the relative positions between multiple components, and the interpretation can be extended to include translation, rotation, or mirroring.

此外,在本文中,除了特別指明者之外,「一元件在另一元件上」或類似敘述不必然表示該元件接觸該另一元件。 In addition, in this document, unless otherwise specified, "an element is on another element" or similar descriptions do not necessarily mean that the element contacts the other element.

此外,在本文中,「較佳」或「更佳」是用於描述可選的或附加的元件或特徵,亦即,這些元件或特徵並不是必要的,而可能加以省略。 In addition, in this article, "preferable" or "better" is used to describe optional or additional elements or features, that is, these elements or features are not necessary and may be omitted.

此外,在本文中,除了特別指明者之外,一數值可涵蓋該數值的±10%的範圍,特別是該數值±5%的範圍。除了特別指明者之外,一數值範圍是由較小端點數、較小四分位數、中位數、較大四分位數、及較大端點數所定義的多個子範圍所組成。 In addition, in this document, unless otherwise specified, a numerical value may cover a range of ±10% of the numerical value, in particular, a range of ±5% of the numerical value. Unless otherwise specified, a numerical range is composed of multiple sub-ranges defined by the lower end point, the lower quartile, the median, the upper quartile, and the upper end point.

開籠富勒烯8OC60Me之製備方法 Preparation method of open cage fullerene 8OC 60 Me

[反應式1]

Figure 111127152-A0101-12-0007-8
[Reaction 1]
Figure 111127152-A0101-12-0007-8

取0.714g之3,6-二(噻吩-2-基)-1,2,4,5-四嗪1與0.492g之5-己烯酸甲酯2溶於30mL之鄰二甲苯,置入高壓管後加熱至140℃並反應24小時。將氧氣打入反應後的淡橘色液體15分鐘,再加熱反應24小時。以矽膠搭配己烷/乙酸乙酯(1/1)作為沖提液,進行管柱層析純化上述反應後的粗產物,得739mg之淡黃色固體(產率74%)的化合物3,熔點介於57℃至60℃之間。 Take 0.714g of 3,6-di(thiophene-2-yl)-1,2,4,5-tetrazine 1 and 0.492g of 5-hexenoic acid methyl ester 2 and dissolve them in 30mL of o-xylene, place them in a high pressure tube, heat to 140℃ and react for 24 hours. Inject oxygen into the light orange liquid after the reaction for 15 minutes, and heat to react for another 24 hours. Use silica gel with hexane/ethyl acetate (1/1) as the eluent to purify the crude product after the above reaction by column chromatography to obtain 739mg of light yellow solid (yield 74%) compound 3, with a melting point between 57℃ and 60℃.

化合物3之氫譜數據如下:19.4-2.04(m,2H),2.42(t,J=7.1Hz,2H),2.91(t,J=8.1Hz,2H),,3.68(s,3H),7.07-7.14(m,2H),7.48-7.63(m,5H) The hydrogen spectrum data of compound 3 are as follows: 19.4-2.04 (m, 2H), 2.42 (t, J = 7.1 Hz, 2H), 2.91 (t, J = 8.1 Hz, 2H), 3.68 (s, 3H), 7.07-7.14 (m, 2H), 7.48-7.63 (m, 5H)

化合物3之碳譜數據如下:23.6,31.9,33.3,51.8,122.5,126.0,127.8,127.9,128.0,128.6,128.8,137.1,140.2,140.3,152.9,153.1,172.5 The carbon spectrum data of compound 3 are as follows: 23.6, 31.9, 33.3, 51.8, 122.5, 126.0, 127.8, 127.9, 128.0, 128.6, 128.8, 137.1, 140.2, 140.3, 152.9, 153.1, 172.5

化合物3之IR光譜如下:1731cm-1 The IR spectrum of compound 3 is as follows: 1731cm -1

化合物3之質譜如下:344.0649 The mass spectrum of compound 3 is as follows: 344.0649

接著,取728.6mg之碳60與420mg之上述的化合物3溶於50mL之1-氯萘,於氬氣下加熱至270℃並迴流48小時。以矽膠搭配甲苯/正己烷(2/1)作為沖提液,進行快速管柱層析純化上述反應後的紫紅色粗產物,得330mg之未反應碳60。接著以甲苯作為沖提液,得棕色固體(產率45%)的開籠富勒烯8OC60Me。 Next, 728.6 mg of carbon 60 and 420 mg of the above compound 3 were dissolved in 50 mL of 1-chloronaphthalene, heated to 270°C under argon and refluxed for 48 hours. The purple-red crude product after the above reaction was purified by rapid column chromatography using silica gel and toluene/n-hexane (2/1) as the eluent to obtain 330 mg of unreacted carbon 60. Next, toluene was used as the eluent to obtain brown solid (yield 45%) open cage fullerene 8OC 60 Me.

8OC60Me之氫譜數據如下:1.69-1.89(m,2H),1.95-2.09(b,2H),2.31(t,J=7.5Hz,2H),3.64(s,3H),6.18(s,1H),7.11(dd,J=3.5Hz,5.1Hz,2H),7.42-7.55(m,4H) The hydrogen spectrum of 8OC 60 Me is as follows: 1.69-1.89 (m, 2H), 1.95-2.09 (b, 2H), 2.31 (t, J = 7.5Hz, 2H), 3.64 (s, 3H), 6.18 (s, 1H), 7.11 (dd, J = 3.5Hz, 5.1Hz, 2H), 7.42-7.55 (m, 4H)

8OC60Me之碳譜數據如下:23.1,32.2,33.5,51.5,51.9,54.1,124.5,125.0,125.5,125.6,125.8,126.2,126.3,126.4,126.6,126.8,127.0,127.5,127.7,128.1,129.7,130.2,134.7,134.8,135.3,135.8,136.9,137.1,137.5,137.8,138.1,138.3,140.2,140.3,140.4,140.6,140.7,140.81,140.84,140.89,142.1,142.4,143.2,143.6,143.7,143.8,143.9,144.1,144.11,144.13,144.19,144.21,144.3,144.39,144.42,144.59,144.61,144.8,144.9,145.0,145.4,145.6,145.87,145.91,149.1,149.3,150.2,151.8,153.8,173.5 The carbon spectrum data of 8OC 60 Me are as follows: 23.1, 32.2, 33.5, 51.5, 51.9, 54.1, 124.5, 125.0, 125.5, 125.6, 125.8, 126.2, 126.3, 126.4, 126.6, 126.8, 127.0, 127.5, 127.7, 128.1, 129.7, 130.2, 134.7, 134.8, 135.3, 135.8, 136.9, 137.1, 137.5, 137.8, 138.1, 138.3, 140.2, 140.3, 140.4, 140. 6,140.7,140.81,140.84,140.89,142.1,142.4,143.2,143.6,143.7,143.8,143.9,144.1,144.11,144.13,144.19,144.21,144.3,144.39,144.42,144.59,144.61,144.8,144.9,145.0,145.4,145.6,145.87,145.91,149.1,149.3,150.2,151.8,153.8,173.5

8OC60Me之IR光譜如下:1714cm-1 The IR spectrum of 8OC 60 Me is as follows: 1714cm -1

8OC60Me之質譜如下:1036.44 The mass spectrum of 8OC 60 Me is as follows: 1036.44

光伏裝置之結構 Structure of photovoltaic device

圖1為本揭露一實施例的光伏裝置之示意圖。 Figure 1 is a schematic diagram of a photovoltaic device according to an embodiment of the present disclosure.

如圖1所示,本揭露提供一種光伏裝置1,包括一基板10、第一電極11、一第二電極12、一主動層13、一電子傳輸層14及一電洞傳輸層15,其中 第一電極11設置於基板10上,第二電極12與第一電極11相對設置,主動層13設置於第一電極11與第二電極12之間,電子傳輸層14設置於第一電極11與主動層13之間,電洞傳輸層15設置於主動層13與第二電極12之間。 As shown in FIG. 1 , the present disclosure provides a photovoltaic device 1, comprising a substrate 10, a first electrode 11, a second electrode 12, an active layer 13, an electron transport layer 14 and a hole transport layer 15, wherein the first electrode 11 is disposed on the substrate 10, the second electrode 12 is disposed opposite to the first electrode 11, the active layer 13 is disposed between the first electrode 11 and the second electrode 12, the electron transport layer 14 is disposed between the first electrode 11 and the active layer 13, and the hole transport layer 15 is disposed between the active layer 13 and the second electrode 12.

光伏裝置之製備方法 Preparation method of photovoltaic device

在超音波水浴中,以溫熱的洗滌劑(detergent)、去離子水、丙酮及異丙醇清洗圖案化的氧化銦錫(ITO)玻璃基板(即為設置於基板10上之第一電極11)持續20分鐘。ITO的厚度為260±20奈米。接著,以紫外線臭氧處理氧化銦錫(ITO)玻璃基板持續5分鐘。將氧化鋅奈米顆粒(ZnO nanoparticle)溶液滴到基板上,並以3000rpm的速度旋轉塗佈30秒。隨後,將塗佈有氧化鋅層的玻璃基板在加熱板上以180℃烘烤20分鐘,形成氧化鋅(ZnO)層(即為電子傳輸層14)。電子傳輸層14的厚度為30奈米。將混合的活性溶液,即PM6:Y6(D/A 1:1.2)溶解在含有溶劑添加劑1-氯萘(1-chloronaphthalene,CN)(0.5% v/v)與不同比例的依上述方法製備的8OC60Me的氯仿(16mg/mL)中,滴加在氧化鋅層上以3000rpm旋轉澆鑄30秒,形成主動層13。主動層13的厚度為100奈米。最後,於3×10-7托的基本壓力下,在真空腔室中熱蒸鍍3nm的氧化鉬(MoO3)作為電洞傳輸層15,並且熱蒸鍍100nm的金屬銀(Ag)作為第二電極12。其中,裝置的有效面積為0.10cm2In an ultrasonic water bath, the patterned indium tin oxide (ITO) glass substrate (i.e., the first electrode 11 disposed on the substrate 10) is cleaned with warm detergent, deionized water, acetone, and isopropyl alcohol for 20 minutes. The thickness of ITO is 260±20 nanometers. Then, the indium tin oxide (ITO) glass substrate is treated with ultraviolet ozone for 5 minutes. A zinc oxide nanoparticle (ZnO nanoparticle) solution is dropped onto the substrate and coated by rotation at a speed of 3000 rpm for 30 seconds. Subsequently, the glass substrate coated with the zinc oxide layer is baked at 180°C on a heating plate for 20 minutes to form a zinc oxide (ZnO) layer (i.e., the electron transport layer 14). The thickness of the electron transport layer 14 is 30 nm. The mixed active solution, PM6:Y6 (D/A 1:1.2), was dissolved in chloroform (16 mg/mL) containing a solvent additive 1-chloronaphthalene (CN) (0.5% v/v) and different proportions of 8OC 60 Me prepared according to the above method, and then dropped onto the zinc oxide layer and spin-casted at 3000 rpm for 30 seconds to form the active layer 13. The thickness of the active layer 13 is 100 nm. Finally, 3 nm of molybdenum oxide (MoO 3 ) was thermally evaporated in a vacuum chamber at a basic pressure of 3×10 -7 Torr as the hole transport layer 15, and 100 nm of metal silver (Ag) was thermally evaporated as the second electrode 12. The effective area of the device is 0.10 cm 2 .

實施例1 Implementation Example 1

於本實施例中,依照上述製備方法製備光伏裝置1,其中光伏裝置1之第一電極11為ITO、電子傳輸層14為氧化鋅、主動層13為含有0.5wt% 8OC60Me的PM6:Y6、電洞傳輸層15為氧化鉬及第二電極12為金屬銀。 In this embodiment, a photovoltaic device 1 is prepared according to the above preparation method, wherein the first electrode 11 of the photovoltaic device 1 is ITO, the electron transport layer 14 is zinc oxide, the active layer 13 is PM6:Y6 containing 0.5wt% 8OC 60 Me, the hole transport layer 15 is molybdenum oxide and the second electrode 12 is metallic silver.

實施例2 Example 2

本實施例與實施例1相似,差異在於主動層13為含有1wt% 8OC60Me的PM6:Y6。 This embodiment is similar to Embodiment 1, except that the active layer 13 is PM6:Y6 containing 1 wt% 8OC 60 Me.

實施例3 Example 3

本實施例與實施例1相似,差異在於主動層13為含有3wt% 8OC60Me的PM6:Y6。 This embodiment is similar to Embodiment 1, except that the active layer 13 is PM6:Y6 containing 3 wt % 8OC 60 Me.

比較例 Comparison example

本比較例與實施例1相似,差異在於主動層13僅包括PM6:Y6,而不包括8OC60Me。 This comparative example is similar to the embodiment 1, except that the active layer 13 only includes PM6:Y6 but does not include 8OC 60 Me.

功效 Efficacy

圖2為在室溫下的比較例與實施例1至實施例3的光伏裝置之標準化效率。圖3為經退火溫度80℃的比較例與實施例1至實施例3的光伏裝置之標準化效率。 Figure 2 shows the normalized efficiency of the photovoltaic devices of the comparative example and Examples 1 to 3 at room temperature. Figure 3 shows the normalized efficiency of the photovoltaic devices of the comparative example and Examples 1 to 3 after annealing at 80°C.

如圖2所示,係比較在室溫下不同主動層的光伏裝置的標準化效率。與比較例相比,可發現實施例1至實施例3的光伏裝置具有顯著提升的穩定性。於室溫下,比較例的標準化效率(Normalized PCE)在測試50小時內下降至90%,並在測試500小時內降至80%。然而,實施例1至實施例3的光伏裝置的標準化效率在測試500小時內仍保持在92%以上,其中實施例2的光伏裝置的標準化效率在相同測試條件下維持在99.4%。 As shown in Figure 2, the normalized efficiency of photovoltaic devices with different active layers at room temperature is compared. Compared with the comparative example, it can be found that the photovoltaic devices of Examples 1 to 3 have significantly improved stability. At room temperature, the normalized efficiency (Normalized PCE) of the comparative example dropped to 90% within 50 hours of testing, and dropped to 80% within 500 hours of testing. However, the normalized efficiency of the photovoltaic devices of Examples 1 to 3 remained above 92% within 500 hours of testing, and the normalized efficiency of the photovoltaic device of Example 2 remained at 99.4% under the same test conditions.

此外,如圖3所示,係比較在退火溫度為80℃下不同主動層的光伏裝置的標準化效率。於退火溫度為80℃的情況下,比較例的光伏裝置的標準 化效率在測試3小時內降至89.5%,且在測試45小時內降至73.5%;然而,實施例1至實施例3的光伏裝置的標準化效率則在測試45小時內維持在85%以上,其中實施例2的光伏裝置的標準化效率在測試20小時內維持在91.7%,且在測試45小時內維持在91.0%。由此可知,相較於比較例,本揭露的實施例1至實施例3具有顯著提升的熱穩定性。更具體而言,於PM6:Y6內添加開籠富勒烯8OC60Me能有效提升光伏裝置的熱穩定性。 In addition, as shown in FIG3, the normalized efficiency of photovoltaic devices with different active layers at an annealing temperature of 80°C is compared. When the annealing temperature is 80°C, the normalized efficiency of the photovoltaic device of the comparative example drops to 89.5% within 3 hours of testing, and drops to 73.5% within 45 hours of testing; however, the normalized efficiency of the photovoltaic devices of Examples 1 to 3 is maintained at more than 85% within 45 hours of testing, and the normalized efficiency of the photovoltaic device of Example 2 is maintained at 91.7% within 20 hours of testing, and maintained at 91.0% within 45 hours of testing. It can be seen that, compared with the comparative example, Examples 1 to 3 of the present disclosure have significantly improved thermal stability. More specifically, adding open cage fullerene 8OC 60 Me to PM6:Y6 can effectively improve the thermal stability of photovoltaic devices.

另一方面,如下表1所示,請一併參閱圖4,係比較不同主動層的光伏裝置於AM 1.5G(100mW cm-2)照度下的裝置參數。相較於比較例,可發現實施例2的光伏裝置具有較佳的功率轉換效率,實施例2的PCEmax為16.5%,PCE為16.2%,J sc為27.3mA/cm2,填充因子(FF)為70.4%。實施例2的PCEmax較比較例的PCEmax高了約10%。此外,實施例2的J sc數值亦高於比較例。由此可知,於PM6:Y6內添加1wt% 8OC60Me有助於提升光伏裝置的功率轉換效率。 On the other hand, as shown in Table 1 below, please refer to Figure 4, which compares the device parameters of photovoltaic devices with different active layers under AM 1.5G (100mW cm -2 ) illumination. Compared with the comparative example, it can be found that the photovoltaic device of Example 2 has better power conversion efficiency. The PCE max of Example 2 is 16.5%, the PCE is 16.2%, the Jsc is 27.3mA/ cm2 , and the fill factor (FF) is 70.4%. The PCE max of Example 2 is about 10% higher than the PCE max of the comparative example. In addition, the Jsc value of Example 2 is also higher than that of the comparative example. It can be seen that adding 1wt% 8OC 60 Me to PM6:Y6 helps to improve the power conversion efficiency of the photovoltaic device.

表1 比較例及實施例1至實施例3之光伏裝置的裝置參數。

Figure 111127152-A0101-12-0011-9
Table 1 Device parameters of the photovoltaic devices of the comparative example and embodiments 1 to 3.
Figure 111127152-A0101-12-0011-9

如下表2及表3所示,請一併參閱圖5及圖6,係比較不同主動層的光伏裝置在不同室內光源的光照條件下的裝置性能,可發現光強度由200 lux增加至2000 lux,會使J scV oc以及填充因子(FF)增加,從而有助於提升光伏裝置的PCE。其中,實施例2的光伏裝置在1600 lux下的PCEmax為30.0%,高於比較例在 相同條件下的PCEmax(PCEmax為23.5%)。由此可知,由在主動層內添加開籠富勒烯8OC60Me作為添加劑所製成的光伏裝置在建築整合太陽能(BIPV)系統或是室內光伏裝置(IPV)中具有相當大的應用潛力。 As shown in Tables 2 and 3 below, please refer to Figures 5 and 6, which compare the device performance of photovoltaic devices with different active layers under different indoor light sources. It can be found that when the light intensity increases from 200 lux to 2000 lux, J sc , V oc and fill factor (FF) will increase, thereby helping to improve the PCE of the photovoltaic device. Among them, the PCE max of the photovoltaic device of Example 2 at 1600 lux is 30.0%, which is higher than the PCE max of the comparison example under the same conditions (PCE max is 23.5%). It can be seen that the photovoltaic device made by adding open cage fullerene 8OC 60 Me as an additive in the active layer has considerable application potential in building integrated solar (BIPV) systems or indoor photovoltaic devices (IPV).

表2 不同光照條件下的PM6:Y6系統的光伏裝置(比較例)的裝置性能。

Figure 111127152-A0101-12-0012-11
Table 2 Device performance of the PM6:Y6 system photovoltaic device (comparison example) under different lighting conditions.
Figure 111127152-A0101-12-0012-11

表3 不同光照條件下的含有1wt% 8OC60Me的PM6:Y6的光伏裝置(實施例2)的裝置性能。

Figure 111127152-A0101-12-0012-12
Table 3 Device performance of the photovoltaic device of PM6:Y6 containing 1 wt % 8OC 60 Me (Example 2) under different illumination conditions.
Figure 111127152-A0101-12-0012-12

綜上所述,本揭露以開籠富勒烯8OC60Me作為添加劑可提升光電轉換效率與熱穩定性,並且在室內光源環境下可提供優異的光電轉換效率。因此,本揭露以開籠富勒烯8OC60Me作為主動層中的添加劑所製成的光伏裝置對於應用在一般太陽光或室內光源的建築整合太陽能(BIPV)系統或是室內光伏裝置(IPV)具有相當潛力,可大幅拓展光伏裝置的應用領域。 In summary, the present disclosure uses the open cage fullerene 8OC 60 Me as an additive to improve the photoelectric conversion efficiency and thermal stability, and can provide excellent photoelectric conversion efficiency in an indoor light source environment. Therefore, the present disclosure uses the open cage fullerene 8OC 60 Me as an additive in the active layer to make a photovoltaic device with considerable potential for use in building integrated solar (BIPV) systems or indoor photovoltaic devices (IPV) that are applied to general sunlight or indoor light sources, and can greatly expand the application field of photovoltaic devices.

儘管本發明已透過多個實施例來說明,應理解的是,只要不背離本發明的精神及申請專利範圍所主張者,可作出許多其他可能的修飾及變化。 Although the present invention has been described through a number of embodiments, it should be understood that many other possible modifications and changes may be made without departing from the spirit of the present invention and the scope of the patent application.

Figure 111127152-A0101-11-0003-3
Figure 111127152-A0101-11-0003-3

1:光伏裝置 1: Photovoltaic device

10:基板 10: Substrate

11:第一電極 11: First electrode

12:第二電極 12: Second electrode

13:主動層 13: Active layer

14:電子傳輸層 14:Electron transmission layer

15:電洞傳輸層 15: Hole transport layer

Claims (10)

一種光伏裝置,包括:一基板;一第一電極,設置於該基板上;一第二電極,與該第一電極相對設置;以及一主動層,設置於該第一電極與該第二電極之間且包括一如下式(I)所示的添加劑,且與該主動層的總重量相比,該添加劑之含量介於0.1wt%至10wt%之間:
Figure 111127152-A0305-02-0017-1
其中R為H或C1-6烷基。
A photovoltaic device comprises: a substrate; a first electrode disposed on the substrate; a second electrode disposed opposite to the first electrode; and an active layer disposed between the first electrode and the second electrode and comprising an additive as shown in the following formula (I), wherein the content of the additive is between 0.1wt% and 10wt% compared to the total weight of the active layer:
Figure 111127152-A0305-02-0017-1
Wherein R is H or C 1-6 alkyl.
如請求項1所述的光伏裝置,其中R為C1-4烷基。 The photovoltaic device as described in claim 1, wherein R is a C 1-4 alkyl group. 如請求項1所述的光伏裝置,其中R為甲基。 A photovoltaic device as described in claim 1, wherein R is a methyl group. 如請求項1所述的光伏裝置,其中該主動層更包括一主動層材料,該主動層材料包括至少一選自由PM6、PM7、Y6、P3HT、PC61BM、PC71BM或IT-4F所組成之群組。 The photovoltaic device as described in claim 1, wherein the active layer further comprises an active layer material, and the active layer material comprises at least one selected from the group consisting of PM6, PM7, Y6, P3HT, PC 61 BM, PC 71 BM or IT-4F. 如請求項4所述的光伏裝置,其中該主動層材料包括PM6及Y6。 A photovoltaic device as described in claim 4, wherein the active layer material includes PM6 and Y6. 如請求項1所述的光伏裝置,其中與該主動層的總重量相比,該添加劑之含量介於0.5wt%至3wt%之間。 A photovoltaic device as described in claim 1, wherein the content of the additive is between 0.5wt% and 3wt% compared to the total weight of the active layer. 如請求項6所述的光伏裝置,其中與該主動層的總重量相比,該添加劑之含量介於0.8wt%至1.2wt%之間。 A photovoltaic device as described in claim 6, wherein the content of the additive is between 0.8wt% and 1.2wt% compared to the total weight of the active layer. 如請求項1所述的光伏裝置,更包括一電子傳輸層,其中該電子傳輸層設置於該基板與該主動層之間。 The photovoltaic device as described in claim 1 further includes an electron transport layer, wherein the electron transport layer is disposed between the substrate and the active layer. 如請求項1所述的光伏裝置,其中該第一電極之材料包括ITO、FTO、ATO、AZO、IZO、GZO、ITZO、IGZO或其組合。 The photovoltaic device as described in claim 1, wherein the material of the first electrode includes ITO, FTO, ATO, AZO, IZO, GZO, ITZO, IGZO or a combination thereof. 如請求項1所述的光伏裝置,其中該第二電極之材料包括金、銀、銅、鋁、鈀、鎳、鈦、鉻、鉬、其合金或其組合。 The photovoltaic device as described in claim 1, wherein the material of the second electrode includes gold, silver, copper, aluminum, palladium, nickel, titanium, chromium, molybdenum, alloys thereof or combinations thereof.
TW111127152A 2022-07-20 2022-07-20 Photovoltaic device TWI844057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111127152A TWI844057B (en) 2022-07-20 2022-07-20 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111127152A TWI844057B (en) 2022-07-20 2022-07-20 Photovoltaic device

Publications (2)

Publication Number Publication Date
TW202406163A TW202406163A (en) 2024-02-01
TWI844057B true TWI844057B (en) 2024-06-01

Family

ID=90822580

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111127152A TWI844057B (en) 2022-07-20 2022-07-20 Photovoltaic device

Country Status (1)

Country Link
TW (1) TWI844057B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189666A1 (en) * 2001-06-11 2002-12-19 Forrest Stephen R. Solar cells using fullerenes
US20140251434A1 (en) * 2006-06-13 2014-09-11 Plextronics, Inc. Organic photovoltaic devices comprising fullerenes and derivatives thereof
US20140319404A1 (en) * 2011-07-04 2014-10-30 Lanxess Deutschland Gmbh Two-component electron-selective buffer layer and photovoltaic cells using the same
US20180233608A1 (en) * 2017-02-15 2018-08-16 Panasonic Intellectual Property Management Co., Ltd. Photoelectric conversion material and solar cell using the same
TW202033445A (en) * 2018-12-17 2020-09-16 美商奈米 C有限公司 Fullerene derivative blends, methods of making and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189666A1 (en) * 2001-06-11 2002-12-19 Forrest Stephen R. Solar cells using fullerenes
US20140251434A1 (en) * 2006-06-13 2014-09-11 Plextronics, Inc. Organic photovoltaic devices comprising fullerenes and derivatives thereof
US20140319404A1 (en) * 2011-07-04 2014-10-30 Lanxess Deutschland Gmbh Two-component electron-selective buffer layer and photovoltaic cells using the same
US20180233608A1 (en) * 2017-02-15 2018-08-16 Panasonic Intellectual Property Management Co., Ltd. Photoelectric conversion material and solar cell using the same
TW202033445A (en) * 2018-12-17 2020-09-16 美商奈米 C有限公司 Fullerene derivative blends, methods of making and uses thereof

Also Published As

Publication number Publication date
TW202406163A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
Sharma et al. Comparative analysis of photovoltaic technologies for high efficiency solar cell design
Wang et al. Development of antimony sulfide–selenide Sb2 (S, Se) 3-based solar cells
US20170162809A1 (en) Perovskite thin-film photovoltaic cell and preparation method thereof
RU2413333C2 (en) Front contact based on indium-zinc oxide for photoelectric device and method of making said contact
KR101462866B1 (en) Solar cell and method of manufacturing the solar cell
CN103746078B (en) Perovskite solar cell and preparation method thereof
Ren et al. Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells
US20070012356A1 (en) Process for the production of thin layers, preferably for a photovoltaic cell
Fan et al. Delayed annealing treatment for high-quality CuSCN: exploring its impact on bifacial semitransparent nip planar perovskite solar cells
Zhang et al. Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells
US20190115487A1 (en) Perovskite solar cell module and fabrication method thereof
Singh et al. Optimization of lead-free materials-based perovskite solar cell using SCAPS-1D simulation
Jiang et al. Passivated metal oxide n-type contacts for efficient and stable organic solar cells
RU2726713C2 (en) Alloyed titanate
Zhu et al. Recent progress on semi-transparent perovskite solar cell for building-integrated photovoltaics
CN111816794A (en) PEIE (Positive electrode interference) intervention standard inverted QLED (quantum dot light emitting diode) device and preparation method thereof
TWI844057B (en) Photovoltaic device
Moradi et al. Nanocomposite perovskite based optical sensor with broadband absorption spectrum
KR20170000422A (en) Method for preparing Perovskite Solar Cell using 1,8-diiodooctane
CN105448524A (en) Silver-doped organometallic perovskite material, solar cell and manufacturing method thereof
Chauhan et al. Synthesis and characterization of ambient-processed FTO/ZnO/CsPbBr2Cl/C perovskite solar cell deposited by SILAR method
CN106571426B (en) Perovskite battery with titanium dioxide nanotube array as electron transport layer and preparation method thereof
CN215771174U (en) Laminated solar cell with interlayer SnS thin film absorption layer
CN109326718A (en) A kind of double-buffering layer perovskite method for manufacturing solar battery
KR101465397B1 (en) Solar cell