TWI843241B - A hybrid mechanical and electronically controlled satellite earth terminal - Google Patents
A hybrid mechanical and electronically controlled satellite earth terminal Download PDFInfo
- Publication number
- TWI843241B TWI843241B TW111139729A TW111139729A TWI843241B TW I843241 B TWI843241 B TW I843241B TW 111139729 A TW111139729 A TW 111139729A TW 111139729 A TW111139729 A TW 111139729A TW I843241 B TWI843241 B TW I843241B
- Authority
- TW
- Taiwan
- Prior art keywords
- satellite
- phased array
- control unit
- signal
- antenna
- Prior art date
Links
- 230000008859 change Effects 0.000 claims abstract description 14
- 238000004891 communication Methods 0.000 claims description 50
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 238000010586 diagram Methods 0.000 description 14
- 201000008181 benign familial infantile epilepsy Diseases 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 102100032533 ADP/ATP translocase 1 Human genes 0.000 description 4
- 102100026400 ADP/ATP translocase 4 Human genes 0.000 description 4
- 101000768061 Escherichia phage P1 Antirepressor protein 1 Proteins 0.000 description 4
- 101000796932 Homo sapiens ADP/ATP translocase 1 Proteins 0.000 description 4
- 101000718447 Homo sapiens ADP/ATP translocase 4 Proteins 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- CWLVBFJCJXHUCF-RNPYNJAESA-N 4,8,12-trimethyltrideca 1,3,7,11-tetraene Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\C=C CWLVBFJCJXHUCF-RNPYNJAESA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
本發明是關於一種通訊終端,特別是用於衛星通訊的地球終端。The present invention relates to a communication terminal, in particular an earth terminal for satellite communication.
圖1是習知論文「K. Kibaroglu, M. Sayginer, T. Phelps and G. M. Rebeiz, "A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 Meters Without Any Calibration," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5796-5811, Dec. 2018, doi: 10.1109/TMTT.2018.2854174.」揭露的一種相控陣列模組的架構圖,這種習知的相控陣列模組利用一顆波束成形晶片BFIC來控制相電連接的4個子天線ANT1~ANT4,且每一顆波束成形晶片BFIC對應改變相電連接的這4 個子天線ANT1~ANT4所接收或發射的RF訊號的振幅與相位,經由複數顆波束成形晶片BFIC的控制,全部的子天線ANT1~ANT4共同合成的輻射波束就具有如圖2所示電子式掃描的功效。這種習知的技術應用在衛星通訊的地球終端UT雖然具有追蹤低軌衛星的優點,但在整體複雜度、成本、實用性與散熱的考量下仍具有進步的空間,原因在於: Figure 1 is from the paper "K. Kibaroglu, M. Sayginer, T. Phelps and GM Rebeiz, "A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 Meters Without Any Calibration," in IEEE Transactions on Microwave Theory and Techniques , vol. 66, no. 12, pp. 5796-5811, Dec. 2018, doi: 10.1109/TMTT.2018.2854174." discloses a structure diagram of a phased array module. This known phased array module uses a beamforming chip BFIC to control four electrically connected sub-antennas ANT1~ANT4, and each beamforming chip BFIC changes the amplitude and phase of the RF signal received or transmitted by the four electrically connected sub-antennas ANT1~ANT4. Through the control of multiple beamforming chips BFIC, the radiation beam synthesized by all the sub-antennas ANT1~ANT4 has the effect of electronic scanning as shown in FIG2. Although this known technology has the advantage of tracking low-orbit satellites when applied to the earth terminal UT of satellite communications, it still has room for improvement in terms of overall complexity, cost, practicality and heat dissipation. The reasons are:
同時參閱圖3、4,衛星在太空是沿著既定的圓形或橢圓形的軌道11飛行,也就是說以衛星通訊地球終端UT所在位置設定為球座標的原點時,低軌衛星LEO_SAT相對於球座標的原點而言是保持方位角φ固定,仰角θ則是隨著衛星飛行而時變,絕大多數的通訊狀況下衛星並不會在以任意變換方位角φ的彎曲軌道飛行,因此,這個現象啟示本申請的衛星地球終端UT只要先辨識出通訊衛星的方位角φ,接著調整自身天線陣列的方位角φ,最後再利用天線陣列以2D平面電子式切換只改變仰角θ去追蹤飛行的衛星即可,也就是說,本申請無須如圖1的先前技術為了要能達到方位角φ=0~360度、仰角θ= 40~40度的3D立體角波束掃描範圍,就必須將天線排列為M M的正方形陣列,抑或是其它已知文獻接露的圓形、八邊形等子天線數量需求多(面積大)的設計方式,且補充說明的是,子天線總數增加還會對應更多的波束成形晶片BFIC以及濾波器的需求,進一步衍生成本高昂、耗電,散熱困難等問題。 Refer to Figures 3 and 4. Satellites fly in space along a predetermined circular or elliptical orbit 11. That is to say, when the location of the satellite communication terminal UT is set as the origin of the spherical coordinates, the low-orbit satellite LEO_SAT maintains a fixed azimuth angle φ relative to the origin of the spherical coordinates, and the elevation angle θ changes with the flight of the satellite. In most communication situations, the satellite will not change the azimuth angle φ arbitrarily. Therefore, this phenomenon reveals that the satellite earth terminal UT of this application only needs to identify the azimuth angle φ of the communication satellite first, then adjust the azimuth angle φ of its own antenna array, and finally use the antenna array to electronically switch in a 2D plane to only change the elevation angle θ to track the flying satellite. In other words, this application does not need to achieve the azimuth angle φ = 0 ~ 360 degrees and the elevation angle θ = 0 ~ 360 degrees as in the prior art of FIG. 1. To achieve a 3D stereo beam scanning range of 40~40 degrees, the antennas must be arranged in M The invention proposes a square array of M, or other known circular, octagonal and other designs that require a large number of sub-antennas (large area) as disclosed in the literature. It is also noted that the increase in the total number of sub-antennas will also correspond to the demand for more beamforming chips BFIC and filters, which will further lead to problems such as high cost, power consumption, and difficulty in heat dissipation.
為了解決先前技術的問題,本發明提出了一種混合機械與電子控制的衛星地球終端。In order to solve the problems of the prior art, the present invention proposes a satellite earth terminal that combines mechanical and electronic control.
該混合機械與電子控制的衛星地球終端的第一較佳實施例包含一相控陣列天線模組、一馬達轉台、一天線控制單元、一定位模組、一升頻模組、一低雜訊降頻模組及一數據機。The first preferred embodiment of the hybrid mechanical and electronically controlled satellite earth terminal includes a phased array antenna module, a motor turntable, an antenna control unit, a positioning module, a frequency up-conversion module, a low noise frequency down-conversion module and a modem.
該相控陣列天線模組用以朝向太空輻射出一主波束,該相控陣列天線模組受一仰角控制信號控制去改變該主波束的一仰角 。該相控陣列天線模組包括三片不共面且彼此相連接的天線板,相鄰的兩個天線板之間是以可改變角度的一轉軸裝置連接或者是以一種可撓性材料連接,每一片天線板具有N×M個矩形陣列排列的天線,其中,參數N、M是正整數,且N≥1,M≥4,(M/N)≥2。舉例說明,(N=4、M=16)、(N=1、M=16)、(N=4、M=8)。 The phased array antenna module is used to radiate a main beam toward space. The phased array antenna module is controlled by an elevation control signal to change an elevation angle of the main beam. The phased array antenna module includes three non-coplanar and mutually connected antenna panels, two adjacent antenna panels are connected by a rotating shaft device with a variable angle or by a flexible material, and each antenna panel has N×M antennas arranged in a rectangular array, wherein the parameters N and M are positive integers, and N≥1, M≥4, (M/N)≥2. For example, (N=4, M=16), (N=1, M=16), (N=4, M=8).
該馬達轉台用以承載並連動該相控陣列天線模組進行0~360度不同方位角φ的轉動,且方位角φ的數值是受一方位角信號控制,且該仰角θ及該方位角φ是位於同一個球座標中,該相控陣列天線模組位於該球座標的原點。The motor turntable is used to carry and link the phased array antenna module to rotate at different azimuth angles φ from 0 to 360 degrees, and the value of the azimuth angle φ is controlled by an azimuth angle signal, and the elevation angle θ and the azimuth angle φ are located in the same spherical coordinate, and the phased array antenna module is located at the origin of the spherical coordinate.
該定位模組用以提供自身所在地球的位置的一地球位置資訊。The positioning module is used to provide earth position information of the position of the earth where the positioning module is located.
該天線控制單元電連接該相控陣列天線模組及該馬達轉台以分別提供該仰角信號及該方位角信號,更詳細的說明,該天線控制單元還電連接該定位模組並接收該地球位置資訊,並根據該地球位置資訊選取最接近自身所在位置對應通訊的一衛星星鏈的一衛星軌道位置資訊。該天線控制單元利用該衛星軌道位置資訊及該地球位置資訊去決定該方位角信號的內容,該方位角信號控制該馬達轉台轉動,連動地調整該方位角φ的數值,以使該主波束轉動的一掃描平面是平行該衛星星鏈。The antenna control unit is electrically connected to the phased array antenna module and the motor turntable to provide the elevation signal and the azimuth signal respectively. To explain in more detail, the antenna control unit is also electrically connected to the positioning module and receives the earth position information, and selects a satellite orbit position information of a satellite constellation corresponding to the communication closest to its own position according to the earth position information. The antenna control unit uses the satellite orbit position information and the earth position information to determine the content of the azimuth signal, and the azimuth signal controls the motor turntable to rotate, and adjusts the value of the azimuth angle φ in a linked manner so that a scanning plane of the main beam rotation is parallel to the satellite constellation.
該升頻模組及該低雜訊降頻模組電連接該相控陣列天線模組。該數據機電連接該升頻模組及該低雜訊降頻模組,並根據來自該低雜訊降頻模組的一衛星訊號對應輸出一通訊品質參數,該通訊品質參數是訊雜比、位元訊雜比Eb/No、誤差向量幅度EVM及位元錯誤率BER中的一者或多者。The up-conversion module and the low-noise down-conversion module are electrically connected to the phased array antenna module. The data machine is electrically connected to the up-conversion module and the low-noise down-conversion module, and outputs a communication quality parameter according to a satellite signal from the low-noise down-conversion module. The communication quality parameter is one or more of signal-to-noise ratio, bit signal-to-noise ratio Eb/No, error vector magnitude EVM and bit error rate BER.
該天線控制單元還電連接該數據機並接收該通訊品質參數。該天線控制單元會先決定該方位角信號的內容並調整完該馬達轉台後再根據以下步驟調整該仰角信號:The antenna control unit is powered on and connected to the modem and receives the communication quality parameters. The antenna control unit first determines the content of the azimuth signal and adjusts the motor turntable before adjusting the elevation signal according to the following steps:
步驟(A):該天線控制單元傳送多種不同的該仰角訊號到該相控陣列天線模組以改變該主波束的仰角,並記錄儲存每一個該仰角訊號所對應的該通訊品質參數;Step (A): the antenna control unit transmits a plurality of different elevation angle signals to the phased array antenna module to change the elevation angle of the main beam, and records and stores the communication quality parameter corresponding to each elevation angle signal;
步驟(B)該天線控制單元根據所有儲存的該等通訊品質參數中最佳的一者回推找出對應的該仰角訊號;及Step (B) the antenna control unit back-calculates and finds the corresponding elevation angle signal according to the best one of all the stored communication quality parameters; and
步驟(C)該天線控制單元利用步驟(B)找到的該仰角信號去控制該相控陣列天線模組。Step (C) The antenna control unit uses the elevation angle signal found in step (B) to control the phased array antenna module.
經由上述步驟就能控制該主波束對準該衛星星鏈中收訊最佳的一個。Through the above steps, the main beam can be controlled to align with the satellite with the best signal reception in the satellite chain.
該混合機械與電子控制的衛星地球終端的第二較佳實施例與第一較佳實施例近似,差異在於:第二較佳實施例還包含一個三軸電子羅盤,安裝在該相控陣列天線模組上,用以輸出該相控陣列天線模組的三軸方向數值。該天線控制單元還電連接該定位模組並接收該地球位置資訊,且根據該地球位置資訊選取最接近自身所在位置且將對應通訊的一衛星星鏈的一衛星軌道位置資訊,該天線控制單元還電連接該三軸電子羅盤並接收代表該相控陣列天線模組設置方向的該三軸方向數值,該天線控制單元共同利用該地球位置資訊、該衛星軌道位置資訊及該三軸方向數值去決定該方位角信號的內容,該方位角信號控制該馬達轉台轉動,連動地調整該方位角φ的數值,以使該主波束轉動的一掃描平面是平行該衛星星鏈的一連線。The second preferred embodiment of the hybrid mechanical and electronically controlled satellite earth terminal is similar to the first preferred embodiment, except that the second preferred embodiment further comprises a three-axis electronic compass mounted on the phased array antenna module to output the three-axis direction values of the phased array antenna module. The antenna control unit is electrically connected to the positioning module and receives the earth position information, and selects a satellite orbit position information of a satellite constellation that is closest to its own position and will correspond to the communication according to the earth position information. The antenna control unit is electrically connected to the three-axis electronic compass and receives the three-axis direction values representing the setting direction of the phased array antenna module. The antenna control unit jointly uses the earth position information, the satellite orbit position information and the three-axis direction values to determine the content of the azimuth signal. The azimuth signal controls the rotation of the motor turntable and adjusts the value of the azimuth angle φ in a linked manner so that a scanning plane of the main beam rotation is parallel to a line of the satellite constellation.
該混合機械與電子控制的衛星地球終端的第三較佳實施例與第一較佳實施例近似,差異在於:The third preferred embodiment of the hybrid mechanical and electronically controlled satellite earth terminal is similar to the first preferred embodiment, except that:
該天線控制單元是根據以下步驟判斷最接近自身所在位置對應通訊的一衛星星鏈的一衛星軌道線,並決定該方位角信號,如下:The antenna control unit determines the satellite orbit line of the satellite constellation corresponding to the communication closest to its own position according to the following steps, and determines the azimuth signal, as follows:
步驟(A):該天線控制單元控制該馬達轉台轉動一圈360度,並記錄該馬達轉台位於每一個不同的方位角時該相控陣列天線模組所接收到該衛星星鏈的一衛星電波的強度;Step (A): the antenna control unit controls the motor turntable to rotate 360 degrees, and records the intensity of a satellite radio wave of the satellite constellation received by the phased array antenna module when the motor turntable is located at each different azimuth angle;
步驟(B)該天線控制單元根據強度最大的該衛星電波回推找出量得該強度最大的衛星電波時,該馬達轉台所設定的該方位角;及Step (B) the antenna control unit back-calculates the azimuth angle set by the motor turntable when the satellite radio wave with the largest intensity is measured based on the satellite radio wave with the largest intensity; and
步驟(C)該天線控制單元透過該仰角信號去控制該馬達轉台轉動到量得該強度最大的衛星電波時該馬達轉台所設定的該方位角。Step (C) The antenna control unit controls the motor turntable to rotate to the azimuth angle set when the satellite radio wave with the maximum intensity is measured through the elevation angle signal.
該混合機械與電子控制的衛星地球終端的第四較佳實施例與第一較佳實施例近似,差異在於:The fourth preferred embodiment of the hybrid mechanical and electronically controlled satellite earth terminal is similar to the first preferred embodiment, except that:
第四較佳實施例還包含一升頻模組、一低雜訊降頻模組及一數據機。該升頻模組及該低雜訊降頻模組電連接該相控陣列天線模組,該數據機電連接該升頻模組及該低雜訊降頻模組,並根據來自該低雜訊降頻模組的一衛星訊號對應輸出一通訊品質參數,該通訊品質參數是訊雜比、位元訊雜比、誤差向量幅度及位元錯誤率中的一者。該天線控制單元還電連接該數據機並接收該通訊品質參數,並根據以下步驟判斷最接近自身所在位置對應通訊的一衛星星鏈的一衛星軌道線,並決定該方位角信號,如下:The fourth preferred embodiment further comprises an up-conversion module, a low-noise down-conversion module and a modem. The up-conversion module and the low-noise down-conversion module are electrically connected to the phased array antenna module, and the modem is electrically connected to the up-conversion module and the low-noise down-conversion module, and outputs a communication quality parameter corresponding to a satellite signal from the low-noise down-conversion module, and the communication quality parameter is one of signal-to-noise ratio, bit signal-to-noise ratio, error vector magnitude and bit error rate. The antenna control unit is electrically connected to the modem and receives the communication quality parameter, and determines the satellite orbit line of the satellite constellation closest to the corresponding communication position of the antenna control unit according to the following steps, and determines the azimuth signal, as follows:
步驟(A):該天線控制單元控制該馬達轉台轉動一圈360度,並記錄該馬達轉台位於每一個不同的方位角時該相控陣列天線模組所接收到的該通訊品質參數;Step (A): the antenna control unit controls the motor turntable to rotate 360 degrees, and records the communication quality parameters received by the phased array antenna module when the motor turntable is located at each different azimuth angle;
步驟(B)該天線控制單元根據數值最大的該通訊品質參數回推找出量得該數值最大的通訊品質參數時,該馬達轉台所設定的該方位角;及Step (B) the antenna control unit back-calculates the communication quality parameter with the largest value to find out the azimuth angle set by the motor turntable when the communication quality parameter with the largest value is measured; and
步驟(C)該天線控制單元透過該仰角信號去控制該馬達轉台轉動到量得該強度最大的衛星電波時該馬達轉台所設定的該方位角。Step (C) The antenna control unit controls the motor turntable to rotate to the azimuth angle set when the satellite radio wave with the maximum intensity is measured through the elevation angle signal.
本發明的效果在於:The effects of the present invention are:
(1)、利用該馬達轉台改變該方位角φ的數值,該相控陣列天線模組的該主波束只需負責仰角θ的變化,因此不需被限制於只能採用M×M的正方形陣列的設計方式,而是可以採用元件數目相對較少的N×M矩形陣列排,且M/N 2,因此N×M的矩形陣列相對於M×M的正方形陣列只需要一半甚至更少的元件數量,這裡所說的元件包括天線、波束成形晶片及濾波器。而較少的元件數量需求代表較低的成本、低功耗、更輕的產品體積與較易散熱。 (1) By using the motor turntable to change the value of the azimuth angle φ, the main beam of the phased array antenna module only needs to be responsible for the change of the elevation angle θ. Therefore, it is not limited to the design of an M×M square array, but can adopt an N×M rectangular array with a relatively small number of components, and M/N 2, so an N×M rectangular array requires only half or even fewer components than an M×M square array, including antennas, beamforming chips, and filters. Fewer components means lower cost, lower power consumption, lighter product size, and easier heat dissipation.
(2). 在海事的應用上,傳統M×M的對稱形正方形陣列會使得任何平行Z軸的平面(也就是垂直地球的平面)3 dB束徑寬(HPBW)都非常窄,這對非移動式陸地對衛星通訊具有高指向性的優點,但是對於隨時都在晃動的船舶對衛星通訊卻不完全是優點,高指向性的集中波束意味著隨著海浪的任何方向搖晃都會導致波束必須頻繁的切換,若是硬體切換運算速度不夠即時甚至會產生誤切換而降低訊號傳輸容量或斷訊,然而,本申請的(N/M) 1/2,所以在天線數目N的切面上會得到相對天線數目M的切面上較寬的3dB束徑寬,可以克服海浪的晃動。 (2) In maritime applications, the traditional M×M symmetrical square array will make the 3 dB beam width (HPBW) of any plane parallel to the Z axis (that is, the plane perpendicular to the earth) very narrow. This has the advantage of high directivity for non-mobile land-to-satellite communications, but it is not entirely an advantage for satellite communications on ships that are shaking all the time. The highly directive concentrated beam means that the beam must be switched frequently with any shaking in the direction of the waves. If the hardware switching operation speed is not real-time enough, it may even cause erroneous switching, reducing the signal transmission capacity or disconnecting the signal. However, the (N/M) 1/2, so the cross section with N antennas will get a wider 3dB beam width than the cross section with M antennas, which can overcome the shaking of waves.
參閱圖5,本發明混合機械與電子控制的衛星地球終端的第一較佳實施例包含一相控陣列天線模組1、一馬達轉台2、一天線控制單元3及、一定位模組4、一升頻模組BUC、一低雜訊降頻模組LNB及一數據機MODEM。Referring to FIG. 5 , the first preferred embodiment of the hybrid mechanical and electronically controlled satellite earth terminal of the present invention comprises a phased array antenna module 1, a motor turntable 2, an antenna control unit 3, a positioning module 4, a frequency upconversion module BUC, a low noise frequency downconversion module LNB and a modem MODEM.
該相控陣列天線模組1用以朝向太空輻射出一主波束10,該相控陣列天線模組1受一仰角控制信號控制去改變該主波束10的一仰角θ。The phased array antenna module 1 is used for radiating a main beam 10 toward space. The phased array antenna module 1 is controlled by an elevation control signal to change an elevation angle θ of the main beam 10 .
參閱圖6、7,該相控陣列天線模組1包括三片不共面且彼此相連接的天線板11,相鄰的兩個天線板11之間是以可改變角度的一轉軸裝置12連接或者是以一種可撓性材料13連接,每一片天線板11具有N×M個矩形陣列排列的天線111,其中,參數N、M是正整數,且N≥1,M≥4,(M/N)≥2。舉例說明,(N=4、M=16)、(N=1、M=16)、(N=4、M=8)。Referring to FIGS. 6 and 7 , the phased array antenna module 1 includes three antenna panels 11 that are not coplanar and connected to each other. Two adjacent antenna panels 11 are connected by a rotating shaft device 12 that can change the angle or by a flexible material 13. Each antenna panel 11 has N×M antennas 111 arranged in a rectangular array, wherein the parameters N and M are positive integers, and N≥1, M≥4, and (M/N)≥2. For example, (N=4, M=16), (N=1, M=16), and (N=4, M=8).
回歸參閱圖5,該馬達轉台2用以承載並連動該相控陣列天線模組1進行0~360度不同方位角φ的轉動,且方位角φ的數值是受一方位角信號控制,且該仰角θ及該方位角φ是位於同一個球座標中,該相控陣列天線模組1位於該球座標的原點。Referring back to FIG. 5 , the motor turntable 2 is used to carry and link the phased array antenna module 1 to rotate at different azimuth angles φ from 0 to 360 degrees, and the value of the azimuth angle φ is controlled by an azimuth angle signal, and the elevation angle θ and the azimuth angle φ are located in the same spherical coordinate, and the phased array antenna module 1 is located at the origin of the spherical coordinate.
該定位模組4用以提供自身所在地球的位置的一地球位置資訊。在本較佳實施例中,該定位模組4是全球定位系統(GPS)模組,該地球位置資訊是該定位模組4所在位置的經緯度資訊。The positioning module 4 is used to provide a piece of earth position information of the position of the earth where the positioning module 4 is located. In the preferred embodiment, the positioning module 4 is a global positioning system (GPS) module, and the earth position information is the latitude and longitude information of the position where the positioning module 4 is located.
該天線控制單元3電連接該相控陣列天線模組1及該馬達轉台2以分別提供該仰角信號及該方位角信號。更詳細的說明,該天線控制單元3還電連接該定位模組4並接收該地球位置資訊,並根據該地球位置資訊選取最接近自身所在位置對應通訊的一衛星星鏈9的一衛星軌道位置資訊。該天線控制單元3利用該衛星軌道位置資訊及該地球位置資訊去決定該方位角信號的內容,該方位角信號控制該馬達轉台2轉動,連動地調整該方位角φ的數值,以使該主波束10轉動的一掃描平面是平行該衛星星鏈9的衛星軌道線91。The antenna control unit 3 is electrically connected to the phased array antenna module 1 and the motor turntable 2 to provide the elevation signal and the azimuth signal respectively. In more detail, the antenna control unit 3 is also electrically connected to the positioning module 4 and receives the earth position information, and selects the satellite orbit position information of a satellite constellation 9 that is closest to its own position and corresponds to the communication according to the earth position information. The antenna control unit 3 uses the satellite orbit position information and the earth position information to determine the content of the azimuth signal, and the azimuth signal controls the motor turntable 2 to rotate, and adjusts the value of the azimuth angle φ in a linked manner, so that a scanning plane of the main beam 10 rotation is parallel to the satellite orbit line 91 of the satellite constellation 9.
該升頻模組BUC及該低雜訊降頻模組LNB電連接該相控陣列天線模組1,該數據機MODEM電連接該升頻模組BUC及該低雜訊降頻模組LNB,並根據來自該低雜訊降頻模組LNB的一衛星訊號對應輸出一通訊品質參數,該通訊品質參數是訊雜比SNR、位元訊雜比Eb/No、誤差向量幅度EVM及位元錯誤率BER中的一者或多者。The up-conversion module BUC and the low-noise down-conversion module LNB are electrically connected to the phased array antenna module 1, and the modem MODEM is electrically connected to the up-conversion module BUC and the low-noise down-conversion module LNB, and outputs a communication quality parameter corresponding to a satellite signal from the low-noise down-conversion module LNB. The communication quality parameter is one or more of a signal-to-noise ratio SNR, a bit-to-noise ratio Eb/No, an error vector magnitude EVM, and a bit error rate BER.
該天線控制單元3還電連接該數據機MODEM並接收該通訊品質參數。該天線控制單元3會先決定該方位角信號的內容並調整完該馬達轉台2後再根據以下步驟調整該仰角信號:The antenna control unit 3 is also electrically connected to the modem and receives the communication quality parameter. The antenna control unit 3 first determines the content of the azimuth signal and adjusts the motor turntable 2 before adjusting the elevation signal according to the following steps:
步驟(A):該天線控制單元3傳送多種不同的該仰角訊號到該相控陣列天線模組1以改變該主波束的仰角,並記錄儲存每一個該仰角訊號所對應的該通訊品質參數;Step (A): The antenna control unit 3 transmits a plurality of different elevation angle signals to the phased array antenna module 1 to change the elevation angle of the main beam, and records and stores the communication quality parameter corresponding to each elevation angle signal;
步驟(B)該天線控制單元3根據所有儲存的該等通訊品質參數中最佳的一者回推找出對應的該仰角訊號;及Step (B) the antenna control unit 3 finds the corresponding elevation angle signal by back-calculating the best one among all the stored communication quality parameters; and
步驟(C)該天線控制單元3利用步驟(B)找到的該仰角信號去控制該相控陣列天線模組1。Step (C) The antenna control unit 3 uses the elevation angle signal found in step (B) to control the phased array antenna module 1.
經由上述步驟就能控制該主波束對準該衛星星鏈9中收訊最佳的一個。Through the above steps, the main beam can be controlled to align with the one with the best signal reception in the satellite chain 9.
參閱圖8,是該混合機械與電子控制的衛星地球終端的第二較佳實施例的示意圖,該第二較佳實施例相較第一較佳實施例更適合應用在移動的交通工具上,例如車輛、船舶,第一及第二較佳實施例兩者的差異在於:第二較佳實施例還包含一個三軸電子羅盤5,安裝在該相控陣列天線模組1上,用以輸出該相控陣列天線模組1的三軸方向數值,因此該三軸電子羅盤5能偵測移動的交通工具的轉向,該天線控制單元3還電連接該定位模組4並接收該地球位置資訊,且根據該地球位置資訊選取最接近自身所在位置且將對應通訊的一衛星星鏈9的一衛星軌道位置資訊,該天線控制單元3還電連接該三軸電子羅盤5並接收代表該相控陣列天線模組1設置方向的該三軸方向數值,該天線控制單元3共同利用該地球位置資訊、該衛星軌道位置資訊及該三軸方向數值去決定該方位角信號的內容,該方位角信號控制該馬達轉台2轉動,連動地調整該方位角φ的數值,以使該主波束10轉動的一掃描平面是平行該衛星星鏈9的衛星軌道線91。Referring to FIG. 8 , it is a schematic diagram of the second preferred embodiment of the hybrid mechanical and electronically controlled satellite earth terminal. Compared with the first preferred embodiment, the second preferred embodiment is more suitable for application in mobile vehicles, such as vehicles and ships. The difference between the first and second preferred embodiments is that the second preferred embodiment further includes a three-axis electronic compass 5 mounted on the phased array antenna module 1 to output the three-axis direction values of the phased array antenna module 1. Therefore, the three-axis electronic compass 5 can detect the turning direction of the mobile vehicle. The antenna control unit 3 is also electrically connected to the positioning module 4 and receives the earth position information, and based on the positioning module 4, the positioning module 4 can detect the direction of the moving vehicle. According to the earth position information, the antenna control unit 3 selects the satellite orbit position information of the satellite constellation 9 that is closest to its own position and will correspond to the communication. The antenna control unit 3 is also electrically connected to the three-axis electronic compass 5 and receives the three-axis direction values representing the setting direction of the phased array antenna module 1. The antenna control unit 3 uses the earth position information, the satellite orbit position information and the three-axis direction values to determine the content of the azimuth signal. The azimuth signal controls the rotation of the motor turntable 2 and adjusts the value of the azimuth angle φ in a linked manner so that a scanning plane of the main beam 10 rotation is parallel to the satellite orbit line 91 of the satellite constellation 9.
參閱圖9,該混合機械與電子控制的衛星地球終端的第三較佳實施例與第一較佳實施例近似,差異在於:Referring to FIG. 9 , the third preferred embodiment of the hybrid mechanical and electronically controlled satellite earth terminal is similar to the first preferred embodiment, except that:
該天線控制單元3是根據以下步驟判斷最接近自身所在位置對應通訊的一衛星星鏈9的一衛星軌道線91,並決定該方位角信號,如下:The antenna control unit 3 determines the satellite orbit line 91 of the satellite constellation 9 corresponding to the communication closest to its own position according to the following steps, and determines the azimuth signal, as follows:
步驟(A):該天線控制單元3控制該馬達轉台2轉動一圈360度,並記錄該馬達轉台2位於每一個不同的方位角時該相控陣列天線模組1所接收到該衛星星鏈9的一衛星電波的強度;Step (A): the antenna control unit 3 controls the motor turntable 2 to rotate 360 degrees, and records the intensity of a satellite radio wave of the satellite star chain 9 received by the phased array antenna module 1 when the motor turntable 2 is located at each different azimuth angle;
步驟(B)該天線控制單元3根據強度最大的該衛星電波回推找出量得該強度最大的衛星電波時,該馬達轉台2所設定的該方位角;及Step (B) the antenna control unit 3 back-calculates the strongest satellite radio wave to find out the azimuth angle set by the motor turntable 2 when the strongest satellite radio wave is measured; and
步驟(C)該天線控制單元3透過該仰角信號去控制該馬達轉台2轉動到量得該強度最大的衛星電波時該馬達轉台2所設定的該方位角。Step (C) The antenna control unit 3 controls the motor turntable 2 to rotate to the azimuth angle set when the satellite radio wave with the maximum intensity is measured through the elevation angle signal.
由於該第三較佳實施例是直接透過φ=0~360度的接收該衛星電波,再將該馬達轉台2設定為能收到強度最大的衛星電波的角度,因此相較第一、第二較佳實施例更能靈活地追蹤預設之外的衛星φ,又或者將第三較佳實施例結合第一、二較佳實施例,增加輔助判斷機制。Since the third preferred embodiment directly receives the satellite radio wave through φ=0~360 degrees and then sets the motor turntable 2 to the angle that can receive the satellite radio wave with the strongest intensity, it can more flexibly track satellite φ other than the preset one compared to the first and second preferred embodiments, or the third preferred embodiment can be combined with the first and second preferred embodiments to increase the auxiliary judgment mechanism.
參閱圖10,該混合機械與電子控制的衛星地球終端的第四較佳實施例與第一較佳實施例近似,差異在於:Referring to FIG. 10 , the fourth preferred embodiment of the hybrid mechanical and electronically controlled satellite earth terminal is similar to the first preferred embodiment, except that:
第四較佳實施例是根據以下步驟判斷最接近自身所在位置對應通訊的一衛星星鏈9的一衛星軌道線91,並決定該方位角信號,如下:The fourth preferred embodiment is to determine the satellite orbit line 91 of the satellite constellation 9 that is closest to the corresponding communication position of the own position according to the following steps, and determine the azimuth signal, as follows:
步驟(A):該天線控制單元3控制該馬達轉台2轉動一圈360度,並記錄該馬達轉台2位於每一個不同的方位角時該相控陣列天線模組1所接收到的該通訊品質參數;Step (A): the antenna control unit 3 controls the motor turntable 2 to rotate 360 degrees, and records the communication quality parameters received by the phased array antenna module 1 when the motor turntable 2 is located at each different azimuth angle;
步驟(B)該天線控制單元3根據數值最大的該通訊品質參數回推找出量得該數值最大的通訊品質參數時,該馬達轉台2所設定的該方位角;及Step (B) the antenna control unit 3 back-calculates the communication quality parameter with the largest value to find out the azimuth angle set by the motor turntable 2 when the communication quality parameter with the largest value is measured; and
步驟(C)該天線控制單元3透過該仰角信號去控制該馬達轉台2轉動到量得該強度最大的衛星電波時該馬達轉台2所設定的該方位角φ。Step (C) The antenna control unit 3 controls the motor turntable 2 to rotate to the azimuth angle φ set when the satellite radio wave with the maximum intensity is measured through the elevation angle signal.
並且,在該四較佳實施例決定完該方位角φ後再根據前述[0032]~[0035]段的步驟決定Furthermore, after the azimuth angle φ is determined in the fourth preferred embodiment, the step of determining the azimuth angle φ in the above-mentioned steps [0032] to [0035] is repeated.
本發明的效果在於:The effects of the present invention are:
(1)、利用該馬達轉台2改變該方位角φ的數值,該相控陣列天線模組1的該主波束10只需負責仰角θ的變化,因此不需被限制於只能採用M×M的正方形陣列的設計方式,而是可以採用元件數目相對較少的N×M矩形陣列排,且M/N≥2,因此N×M的矩形陣列相對於M×M的正方形陣列只需要一半甚至更少的元件數量,這裡所說的元件包括天線111、波束成形晶片BFIC及濾波器。而較少的元件數量需求代表較低的成本、低功耗、更輕的產品體積與較易散熱。(1) By using the motor turntable 2 to change the value of the azimuth angle φ, the main beam 10 of the phased array antenna module 1 is only responsible for the change of the elevation angle θ, so it is not limited to the design of the M×M square array, but can adopt the N×M rectangular array with a relatively small number of components, and M/N ≥ 2. Therefore, the N×M rectangular array only needs half or even less components than the M×M square array. The components mentioned here include the antenna 111, the beamforming chip BFIC and the filter. The smaller number of components required means lower cost, lower power consumption, lighter product volume and easier heat dissipation.
(2).在海事的應用上,傳統M×M的對稱形正方形陣列會使得主波束MB如圖11所示都非常窄,這對非移動式陸地對衛星通訊具有高指向性的優點,但是對於隨時都在晃動的船舶對衛星通訊卻不完全是優點,高指向性的集中波束意味著隨著海浪的任何方向搖晃都會導致波束偏離追蹤衛星而必須頻繁的切換,若是硬體切換運算速度不夠即時甚至會產生誤切換,進而降低訊號傳輸容量或斷訊,然而,本申請的該相控陣列天線模組1 是採用如圖6所示(N/M)≤1/2的設計,所以主波束會呈現如圖12示意的扁扇形,展開的扇形面相對可以克服部分的海浪晃動。(2) In maritime applications, the traditional M×M symmetrical square array will make the main beam MB very narrow as shown in FIG. 11. This has the advantage of high directivity for non-mobile land-to-satellite communications, but it is not entirely an advantage for satellite communications on ships that are shaking all the time. The highly directive concentrated beam means that any shaking in any direction of the waves will cause the beam to deviate from the tracking satellite and must be switched frequently. If the hardware switching operation speed is not real-time enough, it may even cause erroneous switching, thereby reducing the signal transmission capacity or disconnecting the signal. However, the phased array antenna module 1 of the present application adopts the design of (N/M)≤1/2 as shown in FIG. 6, so the main beam will present a flat fan shape as shown in FIG. 12, and the unfolded fan surface can relatively overcome part of the wave shaking.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單地等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only a preferred embodiment of the present invention, and should not be used to limit the scope of implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the present invention.
BFIC 波束成形晶片 ANT1~ANT4 子天線 LEO_SAT 低軌衛星 UT 地球終端 LEO_SAT 低軌衛星 1 相控陣列天線模組 11 天線板 111 天線 12 轉軸裝置 13 可撓性材料 2 馬達轉台 3 天線控制單元 4 定位模組 5 三軸電子羅盤 9 衛星星鏈 91 衛星軌道線 10 主波束 BUC 升頻模組 LNB 低雜訊降頻模組 MODEM 數據機 MB 主波束 BFIC Beamforming chip ANT1~ANT4 Sub-antenna LEO_SAT Low-orbit satellite UT Earth terminal LEO_SAT Low-orbit satellite 1 Phased array antenna module 11 Antenna board 111 Antenna 12 Rotating device 13 Flexible material 2 Motor turntable 3 Antenna control unit 4 Positioning module 5 Three-axis electronic compass 9 Satellite star chain 91 Satellite orbit line 10 Main beam BUC Up-conversion module LNB Low noise down-conversion module MODEM Modem MB Main beam
[圖1]是習知論文揭露的一種相控陣列模組的架構圖。 [圖2]是該習知天線的波束掃描輻射場型圖。 [圖3]是球座標的示意圖,說明衛星與地球終端的角度關係。 [圖4]是多個衛星星鏈繞地球飛行的示意圖,說明星鏈軌道的規則性。 [圖5]是本發明混合機械與電子控制的衛星地球終端的第一較佳實施例的示意圖。 [圖6]是第一較佳實施例的相控陣列天線模組的多種態樣的示意圖。 [圖7]是相控陣列天線模組的示意圖,說明相鄰的兩個天線板之間的連接方法。 [圖8]是本發明第二較佳實施例的示意圖。 [圖9]是本發明第三較佳實施例的示意圖。 [圖10]是習知技術海事應用時的一示意圖,。 [圖11]是習知技術在海事應用時的一示意圖。 [圖12]是本發明在海事應用時的一示意圖。 [Figure 1] is a schematic diagram of a phased array module disclosed in the paper. [Figure 2] is a beam scan radiation field diagram of the antenna. [Figure 3] is a schematic diagram of spherical coordinates, illustrating the angular relationship between the satellite and the earth terminal. [Figure 4] is a schematic diagram of multiple satellite star chains flying around the earth, illustrating the regularity of the star chain orbits. [Figure 5] is a schematic diagram of the first preferred embodiment of the satellite earth terminal of the present invention with hybrid mechanical and electronic control. [Figure 6] is a schematic diagram of various forms of the phased array antenna module of the first preferred embodiment. [Figure 7] is a schematic diagram of the phased array antenna module, illustrating the connection method between two adjacent antenna panels. [Figure 8] is a schematic diagram of the second preferred embodiment of the present invention. [Figure 9] is a schematic diagram of the third preferred embodiment of the present invention. [Figure 10] is a schematic diagram of the known technology in maritime application. [Figure 11] is a schematic diagram of the known technology in maritime application. [Figure 12] is a schematic diagram of the present invention in maritime application.
1 相控陣列天線模組 11 天線板 2 馬達轉台 3 天線控制單元 4 定位模組 9 衛星星鏈 91 衛星軌道線 10 主波束 BUC 升頻模組 LNB 低雜訊降頻模組 MODEM 數據機 1 Phased array antenna module 11 Antenna board 2 Motor turntable 3 Antenna control unit 4 Positioning module 9 Satellite star chain 91 Satellite orbit line 10 Main beam BUC Up-conversion module LNB Low noise down-conversion module MODEM Modem
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111139729A TWI843241B (en) | 2022-10-19 | 2022-10-19 | A hybrid mechanical and electronically controlled satellite earth terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111139729A TWI843241B (en) | 2022-10-19 | 2022-10-19 | A hybrid mechanical and electronically controlled satellite earth terminal |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202418652A TW202418652A (en) | 2024-05-01 |
TWI843241B true TWI843241B (en) | 2024-05-21 |
Family
ID=92074362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111139729A TWI843241B (en) | 2022-10-19 | 2022-10-19 | A hybrid mechanical and electronically controlled satellite earth terminal |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI843241B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111869003A (en) * | 2018-03-07 | 2020-10-30 | 西泰尔股份有限公司(Dba科巴姆卫星通讯) | Active array antenna system with tracking pedestal |
-
2022
- 2022-10-19 TW TW111139729A patent/TWI843241B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111869003A (en) * | 2018-03-07 | 2020-10-30 | 西泰尔股份有限公司(Dba科巴姆卫星通讯) | Active array antenna system with tracking pedestal |
Also Published As
Publication number | Publication date |
---|---|
TW202418652A (en) | 2024-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5786244B2 (en) | In-vehicle directional flat antenna, vehicle including such antenna, and satellite communication system including such vehicle | |
US10971815B1 (en) | Element level polarization synthesis network for electronically scanned arrays | |
US7623075B2 (en) | Ultra compact UHF satcom antenna | |
US7345625B1 (en) | Radar polarization calibration and correction | |
KR101183482B1 (en) | Phased array planar antenna for tracking a moving target and tracking method | |
Gray et al. | Electronically steerable Yagi-Uda microstrip patch antenna array | |
US5678171A (en) | Mobile receiver for satellite broadcast during flight | |
US20040017316A1 (en) | Antenna apparatus | |
US10749258B1 (en) | Antenna system and method for a digitally beam formed intersecting fan beam | |
WO2019173014A1 (en) | Antenna system with active array on tracking pedestal | |
CN107492712A (en) | A kind of low section double-circle polarization microstrip antenna array for being used for the asymmetric large-angle scanning of two dimension | |
US11165167B2 (en) | Antenna system for circularly polarized signals | |
CN115986422B (en) | Linear polarization tracking implementation method of phased array antenna | |
Low et al. | A reconfigurable dual-polarized 1024-element Ka-band SATCOM transmit phased-array with large scan volume and+ 48 dBW EIRP | |
JPH03231503A (en) | Curved dipole element antenna | |
TWI843241B (en) | A hybrid mechanical and electronically controlled satellite earth terminal | |
TW405279B (en) | Antenna for communicating with low earth orbit satellite | |
Sadhukhan et al. | Compact S-band ship borne reconfigurable receiving antenna for down-range telemetry application | |
CN215869820U (en) | Dual-band full-airspace satellite communication phased array antenna | |
CN113782987B (en) | Dual-band full airspace satellite communication phased array antenna | |
Akbar et al. | A multi-mode superposition technique for circular polarized beamforming and steering in mobile communication and radar systems | |
JP3097876B2 (en) | Directional antenna control device | |
Chieh et al. | 5G Silicon RFICs‐Based Phased Array Antennas | |
Liu et al. | Phased Array of Data Transmission System for Earth Observing Satellite | |
JPS62203402A (en) | Antenna system for mobile satellite communication |