[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI730247B - Semiconductor devices and methods of fabricating the same - Google Patents

Semiconductor devices and methods of fabricating the same Download PDF

Info

Publication number
TWI730247B
TWI730247B TW107127426A TW107127426A TWI730247B TW I730247 B TWI730247 B TW I730247B TW 107127426 A TW107127426 A TW 107127426A TW 107127426 A TW107127426 A TW 107127426A TW I730247 B TWI730247 B TW I730247B
Authority
TW
Taiwan
Prior art keywords
layer
gate
metal
opening
contact
Prior art date
Application number
TW107127426A
Other languages
Chinese (zh)
Other versions
TW201926505A (en
Inventor
王朝勳
薛婉容
趙高毅
王美勻
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201926505A publication Critical patent/TW201926505A/en
Application granted granted Critical
Publication of TWI730247B publication Critical patent/TWI730247B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66537Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a self aligned punch through stopper or threshold implant under the gate region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

A method and structure for forming a via-first metal gate contact includes depositing a first dielectric layer over a substrate having a gate structure with a metal gate layer. An opening is formed within the first dielectric layer to expose a portion of the substrate, and a first metal layer is deposited within the opening. A second dielectric layer is deposited over the first dielectric layer and over the first metal layer. The first and second dielectric layers are etched to form a gate via opening. The gate via opening exposes the metal gate layer. A portion of the second dielectric layer is removed to form a contact opening that exposes the first metal layer. The gate via and contact openings merge to form a composite opening. A second metal layer is deposited within the composite opening, thus connecting the metal gate layer to the first metal layer.

Description

半導體裝置及其製造方法 Semiconductor device and manufacturing method thereof

本發明實施例有關於半導體裝置及其製造方法,且特別有關於形成導孔先製金屬閘極接觸件的方法及其相關結構。 The embodiment of the present invention relates to a semiconductor device and a manufacturing method thereof, and particularly relates to a method of forming a via hole pre-made metal gate contact and its related structure.

半導體工業已經歷了對於更小且更快速的電子裝置之更增加的需求,且電子裝置同時能夠支撐大量的越來越複雜和精密的功能。因此,在半導體工業上持續朝向製造低成本、高效能和低功率的積體電路發展。這些遠大的目標已經藉由縮減半導體積體電路的尺寸(例如最小部件尺寸)而大部分達成,並藉此改善生產效率和降低伴隨的成本。然而,這樣的縮減也使得半導體製造製程增加複雜度。因此,在半導體積體電路和裝置上的持續發展之實現需要在半導體製造製程和技術上有類似的發展。 The semiconductor industry has experienced an increasing demand for smaller and faster electronic devices, and electronic devices can simultaneously support a large number of increasingly complex and sophisticated functions. Therefore, the semiconductor industry continues to develop towards manufacturing low-cost, high-efficiency, and low-power integrated circuits. These ambitious goals have been largely achieved by reducing the size of semiconductor integrated circuits (such as the smallest component size), thereby improving production efficiency and reducing accompanying costs. However, this reduction also increases the complexity of the semiconductor manufacturing process. Therefore, the realization of continuous development in semiconductor integrated circuits and devices requires similar development in semiconductor manufacturing process and technology.

僅作為一例子,形成可靠的接觸件至金屬閘極層,且位於金屬閘極層與相鄰的源極、汲極、和/或本體區之間,其需要高度的重疊控制(例如圖案對圖案的對準)以及足夠大的製程容許度。然而,隨著積體電路尺寸的持續縮減,以及與新的圖案化技術(例如像是雙重圖案化)的連結,準確的重疊控制比以往更關鍵。此外,對於劇烈地縮減的積體電路而言, 其製程容許度變得更窄,這會導致裝置的劣化及/或失效。對於至少一些傳統製程而言,用於形成這樣的接觸件至金屬閘極層,且位於金屬閘極層與相鄰的源極、汲極、和/或本體區之間,其半導體製造製程的製程容許度已經變得太窄,且沒有辦法更久地滿足製程容許度的需求。 Just as an example, a reliable contact is formed to the metal gate layer and is located between the metal gate layer and the adjacent source, drain, and/or body regions, which requires a high degree of overlap control (such as pattern pairing). Pattern alignment) and sufficient process tolerance. However, with the continuous reduction in the size of integrated circuits and the connection with new patterning technologies (such as double patterning), accurate overlap control is more critical than ever. In addition, for a drastically reduced integrated circuit, The process tolerance becomes narrower, which may lead to device degradation and/or failure. For at least some conventional processes, for forming such contacts to the metal gate layer, and between the metal gate layer and the adjacent source, drain, and/or body regions, the semiconductor manufacturing process The process tolerance has become too narrow, and there is no way to meet the process tolerance requirements for longer.

因此,現存的技術無法在全方位完全令人滿意。 Therefore, the existing technology cannot be completely satisfactory in all aspects.

在一些實施例中,半導體裝置的製造方法包含沉積第一介電層於基底之上,基底包含的閘極結構具有金屬閘極層;形成開口於第一介電層內,以露出相鄰於閘極結構之基底的一部分,並且沉積第一金屬層於開口內;沉積第二介電層於第一介電層之上和第一金屬層之上;蝕刻第一介電層和第二介電層,以形成閘極導孔的開口,其露出閘極結構的金屬閘極層;移除第二介電層的一部分,以形成接觸件開口,其露出第一金屬層,其中閘極導孔的開口和接觸件開口合併,以形成複合開口;以及沉積第二金屬層於複合開口內,其中第二金屬層經由第二金屬層的閘極導孔部分,電性連接閘極結構的金屬閘極層至第一金屬層。 In some embodiments, the method for manufacturing a semiconductor device includes depositing a first dielectric layer on a substrate, the substrate includes a gate structure having a metal gate layer; forming an opening in the first dielectric layer to expose adjacent Part of the base of the gate structure, and deposit a first metal layer in the opening; deposit a second dielectric layer on the first dielectric layer and on the first metal layer; etch the first dielectric layer and the second dielectric layer Electrical layer to form the opening of the gate via hole, which exposes the metal gate layer of the gate structure; remove a part of the second dielectric layer to form a contact opening, which exposes the first metal layer, wherein the gate conductive The opening of the hole and the contact opening are merged to form a composite opening; and a second metal layer is deposited in the composite opening, wherein the second metal layer is electrically connected to the metal of the gate structure through the gate via portion of the second metal layer The gate layer to the first metal layer.

在另一些實施例中,半導體裝置的製造方法包含形成第一金屬層,其鄰接閘極結構的側壁,其中第一金屬層接觸位於第一金屬層下方之基底的一區,且其中閘極結構包含金屬閘極;沉積第一介電層於基底之上;蝕刻在閘極結構之上的一區中的第一介電層,以形成閘極導孔的開口,其中閘極導孔的開口露出閘極結構的金屬閘極;蝕刻在第一金屬層之上的一 區中的第一介電層,以形成接觸件導孔的開口,其中接觸件導孔的開口露出第一金屬層;從閘極導孔的開口與接觸件導孔的開口之間的一區移除第一介電層,以形成接觸件開口,其中接觸件開口、閘極導孔的開口和接觸件導孔的開口合併,以形成複合開口;以及形成第二金屬層於複合開口內,經由第二金屬層的閘極導孔部分和接觸件導孔部分,電性連接閘極結構的金屬閘極至第一金屬層。 In other embodiments, the manufacturing method of the semiconductor device includes forming a first metal layer adjacent to the sidewall of the gate structure, wherein the first metal layer contacts a region of the substrate below the first metal layer, and wherein the gate structure Including a metal gate; depositing a first dielectric layer on the substrate; etching the first dielectric layer in a region above the gate structure to form the opening of the gate via, wherein the opening of the gate via The metal gate of the gate structure is exposed; the one etched on the first metal layer The first dielectric layer in the region to form the opening of the contact via hole, wherein the opening of the contact via hole exposes the first metal layer; from a region between the opening of the gate via hole and the opening of the contact via hole Removing the first dielectric layer to form a contact opening, wherein the contact opening, the opening of the gate via hole and the opening of the contact via hole merge to form a composite opening; and forming a second metal layer in the composite opening, The metal gate of the gate structure is electrically connected to the first metal layer through the gate via hole portion of the second metal layer and the contact via hole portion.

在又另一些實施例中,半導體裝置包含基底,基底包含的閘極結構具有金屬閘極;第一金屬層鄰接於側壁間隔物,側壁間隔物設置在閘極結構的側壁上,其中第一金屬層接觸在第一金屬層下方之基底的一區;以及介電層位於基底之上,介電層包含用第二金屬層填充的複合開口;其中第二金屬層包含閘極導孔,其定義於複合開口的閘極導孔部分中,閘極導孔接觸金屬閘極,且閘極導孔對齊金屬閘極;且其中第二金屬層接觸複合開口的接觸件部分中的第一金屬層。 In still other embodiments, the semiconductor device includes a substrate, and the gate structure included in the substrate has a metal gate; the first metal layer is adjacent to the sidewall spacer, and the sidewall spacer is disposed on the sidewall of the gate structure, wherein the first metal The layer is in contact with a region of the substrate below the first metal layer; and the dielectric layer is located on the substrate, the dielectric layer includes a composite opening filled with a second metal layer; wherein the second metal layer includes a gate via, which defines In the gate via part of the composite opening, the gate via contacts the metal gate, and the gate via is aligned with the metal gate; and the second metal layer contacts the first metal layer in the contact part of the composite opening.

100‧‧‧電晶體 100‧‧‧Transistor

102‧‧‧基底 102‧‧‧Base

104‧‧‧閘極堆疊 104‧‧‧Gate Stack

106‧‧‧閘極介電層 106‧‧‧Gate Dielectric Layer

108‧‧‧閘極電極層 108‧‧‧Gate electrode layer

110‧‧‧源極區 110‧‧‧Source area

112‧‧‧汲極區 112‧‧‧Dip pole area

114‧‧‧通道區 114‧‧‧Access area

W‧‧‧通道寬度 W‧‧‧Channel width

L‧‧‧通道長度 L‧‧‧Channel length

150‧‧‧FinFET裝置 150‧‧‧FinFET device

152‧‧‧基底 152‧‧‧Base

154‧‧‧鰭元件 154‧‧‧Fin element

155‧‧‧源極區 155‧‧‧Source Region

156‧‧‧隔離區 156‧‧‧Isolation Area

157‧‧‧汲極區 157‧‧‧Dip pole area

158‧‧‧閘極結構 158‧‧‧Gate structure

160‧‧‧界面層 160‧‧‧Interface layer

162‧‧‧閘極介電層 162‧‧‧Gate Dielectric Layer

164‧‧‧金屬層 164‧‧‧Metal layer

200、700、1600‧‧‧方法 200, 700, 1600‧‧‧Method

202、204、206、208、210、702、704、706、708、710、712、714、716、1602、1604、1606、1608、1610、1612、1614、 1616‧‧‧區塊 202, 204, 206, 208, 210, 702, 704, 706, 708, 710, 712, 714, 716, 1602, 1604, 1606, 1608, 1610, 1612, 1614, 1616‧‧‧block

800、1700‧‧‧裝置 800, 1700‧‧‧ device

802、1702‧‧‧基底 802、1702‧‧‧Base

804、806、808、1704、1706、1708‧‧‧閘極結構 804, 806, 808, 1704, 1706, 1708‧‧‧Gate structure

810、812、1710、1712‧‧‧區域 810, 812, 1710, 1712‧‧‧ area

814、1714‧‧‧金屬閘極層 814、1714‧‧‧Metal gate layer

816、818、1716、1718‧‧‧側壁間隔物層 816, 818, 1716, 1718‧‧‧ sidewall spacer layer

820、832、1720、1732‧‧‧介電層 820, 832, 1720, 1732‧‧‧Dielectric layer

822、824、1722、1724‧‧‧開口 822, 824, 1722, 1724‧‧‧ opening

826、840、1726、1742‧‧‧膠層或阻障層 826, 840, 1726, 1742‧‧‧Glue layer or barrier layer

828、829、842、1728、1729、1744‧‧‧金屬層 828, 829, 842, 1728, 1729, 1744‧‧‧Metal layer

830、1730‧‧‧接觸蝕刻停止層 830、1730‧‧‧Contact etching stop layer

834、1734‧‧‧閘極導孔的開口 834, 1734‧‧‧ Gate openings

836、1738‧‧‧接觸件開口 836、1738‧‧‧Contact opening

838、1740‧‧‧複合開口 838、1740‧‧‧Composite opening

A、A’、B、B’、C、C’‧‧‧距離 A, A’, B, B’, C, C’‧‧‧distance

Z‧‧‧增加的距離 Z‧‧‧ Increased distance

900、1800‧‧‧布局設計 900、1800‧‧‧Layout design

914、1814‧‧‧金屬閘極層 914、1814‧‧‧Metal gate layer

928、929、942、1828、1829‧‧‧金屬層 928, 929, 942, 1828, 1829‧‧‧Metal layer

934、1834‧‧‧閘極導孔 934、1834‧‧‧Gate via

1736‧‧‧接觸件導孔的開口 1736‧‧‧The opening of the contact guide hole

1836‧‧‧接觸件導孔 1836‧‧‧Contact guide hole

為了讓本發明實施例的各個方面能更容易理解,以下配合所附圖式作詳細說明。應該注意,根據工業上的標準範例,各個部件(feature)未必按照比例繪製。實際上,為了讓討論清晰易懂,各個部件的尺寸可能被任意放大或縮小。 In order to make the various aspects of the embodiments of the present invention easier to understand, detailed descriptions are given below in conjunction with the accompanying drawings. It should be noted that according to industry standard paradigms, various features are not necessarily drawn to scale. In fact, in order to make the discussion clear and easy to understand, the size of each component may be arbitrarily enlarged or reduced.

第1A圖是根據一些實施例,金屬氧化物半導體(MOS)電晶體的剖面圖。 FIG. 1A is a cross-sectional view of a metal oxide semiconductor (MOS) transistor according to some embodiments.

第1B圖是根據本發明實施例的一或多個方面,鰭式場效電晶體(FinFET)裝置的一實施例之立體透視圖。 FIG. 1B is a perspective view of an embodiment of a FinFET device according to one or more aspects of the embodiments of the present invention.

第2圖是在金屬閘極與相鄰的源極、汲極、和/或本體區之間形成直接接觸件的方法之流程圖。 FIG. 2 is a flowchart of a method of forming direct contacts between a metal gate and adjacent source, drain, and/or body regions.

第3至6圖是根據第2圖的方法,在製造和處理的中間階段之裝置的剖面圖。 Figures 3 to 6 are cross-sectional views of the device in an intermediate stage of manufacturing and processing according to the method of Figure 2.

第7圖是根據一些實施例,形成導孔先製金屬閘極接觸件的方法之流程圖。 FIG. 7 is a flowchart of a method of forming a via hole pre-made metal gate contact according to some embodiments.

第8至14圖是根據第7圖的方法,在製造和處理的中間階段之裝置的剖面圖。 Figures 8 to 14 are cross-sectional views of the device in an intermediate stage of manufacturing and processing according to the method of Figure 7.

第15圖提供布局設計,繪示說明本發明一些實施例的各個方面。 Figure 15 provides a layout design and illustrates various aspects of some embodiments of the present invention.

第16圖是根據一些實施例,形成導孔先製金屬閘極接觸件的另一方法之流程圖。 FIG. 16 is a flowchart of another method of forming a via hole pre-made metal gate contact according to some embodiments.

第17至23圖是根據第16圖的方法,在製造和處理的中間階段之裝置的剖面圖。 Figures 17 to 23 are cross-sectional views of the device at an intermediate stage of manufacturing and processing according to the method of Figure 16.

第24圖提供布局設計,繪示說明本發明其他實施例的各個方面。 Figure 24 provides a layout design and illustrates various aspects of other embodiments of the present invention.

以下內容提供了許多不同實施例或範例,以實現所提供標的物之不同部件(feature)。以下描述組件和配置方式的具體範例,以簡化本發明實施例。當然,這些僅僅是範例,而非意圖限制本發明實施例。舉例而言,在以下描述中提及於第二部件上方或其上形成第一部件,其可以包含第一部件和第二部件以直接接觸的方式形成的實施例,並且也可以包含在第一部件和第二部件之間形成額外的部件,使得第一部件和第二 部件可以不直接接觸的實施例。此外,本發明實施例可在各個範例中重複參考標號及/或字母。此重複是為了簡化和清楚之目的,其本身並非用於指定所討論的各個實施例及/或配置之間的關係。 The following content provides many different embodiments or examples to realize different features of the provided subject matter. Specific examples of components and configuration methods are described below to simplify the embodiments of the present invention. Of course, these are only examples and are not intended to limit the embodiments of the present invention. For example, in the following description, it is mentioned that the first part is formed above or on the second part, which may include an embodiment in which the first part and the second part are formed in direct contact, and may also be included in the first part. An additional part is formed between the part and the second part, so that the first part and the second part An embodiment where the components may not be in direct contact. In addition, in the embodiments of the present invention, reference numerals and/or letters may be repeated in each example. This repetition is for the purpose of simplification and clarity, and is not used in itself to specify the relationship between the various embodiments and/or configurations discussed.

再者,為了容易描述圖示中一個元件或部件與另一元件或部件之間的關係,在此可以使用空間相關用語,像是“在...下方”、“在...底下”、“較低”、“較高”、“在...上方”、”之上”和類似用語。這些空間相關用語意欲涵蓋除了圖示所繪製的方向以外,在使用或操作中的裝置之不同方向。設備可以用其他方向定位(旋轉90度或在其他方向),且在此描述中所使用的空間相關用語可以依此做相應的解讀。 Furthermore, in order to easily describe the relationship between one element or component and another element or component in the figure, spatially related terms such as "below", "below", "Lower", "higher", "above", "above" and similar terms. These spatially related terms are intended to cover different directions of the device in use or operation in addition to the directions drawn in the illustration. The device can be positioned in other directions (rotated by 90 degrees or in other directions), and the space-related terms used in this description can be interpreted accordingly.

應注意的是,本發明實施例是以導孔先製金屬閘極接觸件(via-first metal gate contact)的形式說明,但是也可以在任何種類的裝置類型中使用。舉例而言,本發明實施例可用於形成導孔先製金屬閘極接觸件在平面式塊體的金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistors,MOSFETs);多閘極電晶體(平面式或垂直式),像是鰭式場效電晶體(FinFET)裝置、閘極全環繞(gate-all-around,GAA)裝置、Ω形閘極(Ω-gate)裝置、或Π形閘極(Π-gate)裝置中;以及在應變半導體裝置、絕緣體上的矽(silicon-on-insulator,SOI)裝置、部份空乏(partially-depleted)SOI裝置、全空乏(fully-depleted)SOI裝置、或其他已知的裝置中形成導孔先製金屬閘極接觸件。此外,本發明實施例可在P型及/或N型裝置的形成中使用。本發明所屬 技術領域中具有通常知識者可以理解,半導體裝置的其他實施例也可從本發明實施例的各個方面得到好處。 It should be noted that the embodiment of the present invention is described in the form of a via-first metal gate contact, but it can also be used in any type of device. For example, the embodiment of the present invention can be used to form metal-oxide-semiconductor field-effect transistors (MOSFETs) in which the metal gate contacts are formed in a planar block with via holes; Polar transistors (planar or vertical), such as FinFET devices, gate-all-around (GAA) devices, Ω-gate devices, or Π-gate devices; and strained semiconductor devices, silicon-on-insulator (SOI) devices, partially-depleted SOI devices, fully-depleted devices 1) Pre-made metal gate contacts with via holes formed in SOI devices or other known devices. In addition, the embodiments of the present invention may be used in the formation of P-type and/or N-type devices. This invention belongs to Those with ordinary knowledge in the technical field can understand that other embodiments of the semiconductor device can also benefit from various aspects of the embodiments of the present invention.

參閱第1A圖的例子,在此說明金屬氧化物半導體(MOS)電晶體100,其僅提供做為可包含本發明實施例的一種裝置類型的例子。可以理解的是,示範的電晶體100並不限於任何形式,且本發明所屬技術領域中具有通常知識者可以理解,本發明實施例可同樣地應用於任何種類的其他裝置類型,像是以上描述的那些裝置。電晶體100在基底102上製造,且包含閘極堆疊104。基底102可以是半導體基底,像是矽基底。基底102可包含各種層,包含導電或絕緣層形成於基底102上。基底102可包含各種摻雜配置,其取決於熟知的設計需求。基底102也可包含其他半導體材料,像是鍺、碳化矽(SiC)、矽鍺(SiGe)、或金剛石(diamond)。另外,基底102可包含化合物半導體及/或合金半導體。此外,在一些實施例中,基底102可包含磊晶層(epi-layer)。基底102可以是應變的,以提升效能。基底102可包含絕緣體上的矽(SOI)結構、及/或基底102可具有其他合適的增強部件。 Referring to the example in FIG. 1A, a metal oxide semiconductor (MOS) transistor 100 is described here, which is only provided as an example of a device type that can include embodiments of the present invention. It can be understood that the exemplary transistor 100 is not limited to any form, and those with ordinary knowledge in the technical field of the present invention can understand that the embodiments of the present invention can be equally applied to any kind of other device types, such as those described above. Those devices. The transistor 100 is fabricated on a substrate 102 and includes a gate stack 104. The substrate 102 may be a semiconductor substrate, such as a silicon substrate. The substrate 102 may include various layers, including a conductive or insulating layer formed on the substrate 102. The substrate 102 may include various doping configurations, which depend on well-known design requirements. The substrate 102 may also include other semiconductor materials, such as germanium, silicon carbide (SiC), silicon germanium (SiGe), or diamond. In addition, the substrate 102 may include a compound semiconductor and/or an alloy semiconductor. In addition, in some embodiments, the substrate 102 may include an epi-layer. The substrate 102 may be strained to improve performance. The substrate 102 may include a silicon-on-insulator (SOI) structure, and/or the substrate 102 may have other suitable reinforcement components.

閘極堆疊104包含閘極介電層106,以及設置於閘極介電層106上的閘極電極層108。在一些實施例中,閘極介電層106可包含界面層,像是氧化矽(SiO2)或氮氧化矽(SiON),界面層可由化學氧化、熱氧化、原子層沉積(atomic layer deposition,ALD)、化學氣相沉積(chemical vapor deposition,CVD)、及/或其他合適方法形成。在一些例子中,閘極介電層106包含高介電常數介電層,像是氧化鉿(HfO2)。另外,高介 電常數介電層可包含其他高介電常數介電質,像是TiO2、HfZrO、Ta2O3、HfSiO4、ZrO2、ZrSiO2、LaO、AlO、ZrO、TiO、Ta2O5、Y2O3、SrTiO3(STO)、BaTiO3(BTO)、BaZrO、HfZrO、HfLaO、HfSiO、LaSiO、AlSiO、HfTaO、HfTiO、(Ba、Sr)TiO3(BST)、Al2O3、Si3N4、氮氧化矽(SiON)、前述之組合、或其他合適材料。在此所使用和描述的高介電常數閘極介電層包含具有高介電常數的介電材料,例如大於熱氧化矽的介電常數(~3.9)。在其他實施例中,閘極介電層106可包含二氧化矽或其他合適介電質。閘極介電層106可由原子層沉積(ALD)、物理氣相沉積(physical vapor deposition,PVD)、化學氣相沉積(CVD)、氧化、及/或其他合適方法形成。在一些實施例中,可沉積閘極電極層108作為閘極先製(gate first)或閘極後製(gate last)(例如置換閘極)製程的一部分。在各種實施例中,閘極電極層108包含導電層,像是W、Ti、TiN、TiAl、TiAlN、Ta、TaN、WN、Re、Ir、Ru、Mo、Al、Cu、Co、CoSi、Ni、NiSi、前述之組合、及/或其他合適組成。在一些例子中,閘極電極層108可包含用於N型電晶體的第一金屬材料,以及用於P型電晶體的第二金屬材料。因此,電晶體100可包含雙功函數金屬閘極配置。舉例而言,第一金屬材料(例如用於N型裝置)可包含金屬,其具有的功函數大抵上對齊基底導帶(conduction band)的功函數,或者至少大抵上對齊電晶體100的通道區114的導帶之功函數。類似地,第二金屬材料(例如用於P型裝置)可包含金屬,其具有的功函數大抵上對齊基底價帶(valence band)的功函數,或者至少大抵上對齊電晶體100的通道區114的價帶的功 函數。因此,閘極電極層108可提供用於電晶體100的閘極電極,電晶體100包含N型和P型裝置兩者。在一些實施例中,閘極電極層108可替代地或額外地包含多晶矽層。在各種例子中,可使用物理氣相沉積(PVD)、化學氣相沉積(CVD)、電子束蒸鍍(electron beam(e-beam)evaporation)、及/或其他合適製程來形成閘極電極層108。在一些實施例中,在閘極堆疊104的側壁上形成側壁間隔物。側壁間隔物可包含介電材料,像是氧化矽、氮化矽,碳化矽、氮氧化矽、或前述之組合。 The gate stack 104 includes a gate dielectric layer 106 and a gate electrode layer 108 disposed on the gate dielectric layer 106. In some embodiments, the gate dielectric layer 106 may include an interface layer, such as silicon oxide (SiO 2 ) or silicon oxynitride (SiON), and the interface layer may be chemical oxidation, thermal oxidation, or atomic layer deposition (atomic layer deposition, ALD), chemical vapor deposition (CVD), and/or other suitable methods. In some examples, the gate dielectric layer 106 includes a high-k dielectric layer, such as hafnium oxide (HfO 2 ). In addition, high-k dielectric layer may comprise other high k dielectric, such as TiO 2, HfZrO, Ta 2 O 3, HfSiO 4, ZrO 2, ZrSiO 2, LaO, AlO, ZrO, TiO, Ta 2 O 5 , Y 2 O 3 , SrTiO 3 (STO), BaTiO 3 (BTO), BaZrO, HfZrO, HfLaO, HfSiO, LaSiO, AlSiO, HfTaO, HfTiO, (Ba, Sr)TiO 3 (BST), Al 2 O 3 , Si 3 N 4 , silicon oxynitride (SiON), a combination of the foregoing, or other suitable materials. The high-permittivity gate dielectric layer used and described herein includes a dielectric material with a high permittivity, such as a permittivity greater than that of thermal silicon oxide (~3.9). In other embodiments, the gate dielectric layer 106 may include silicon dioxide or other suitable dielectrics. The gate dielectric layer 106 may be formed by atomic layer deposition (ALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), oxidation, and/or other suitable methods. In some embodiments, the gate electrode layer 108 may be deposited as part of a gate first or gate last (eg, replacement gate) process. In various embodiments, the gate electrode layer 108 includes conductive layers such as W, Ti, TiN, TiAl, TiAlN, Ta, TaN, WN, Re, Ir, Ru, Mo, Al, Cu, Co, CoSi, Ni , NiSi, a combination of the foregoing, and/or other suitable compositions. In some examples, the gate electrode layer 108 may include a first metal material for N-type transistors and a second metal material for P-type transistors. Therefore, the transistor 100 may include a dual work function metal gate configuration. For example, the first metal material (for example for an N-type device) may include a metal, which has a work function approximately aligned with the work function of the substrate conduction band, or at least approximately aligned with the channel region of the transistor 100 Work function of the conduction band of 114. Similarly, the second metal material (for example, for a P-type device) may include a metal, which has a work function that is approximately aligned with the work function of the valence band of the substrate, or at least approximately aligned with the channel region 114 of the transistor 100 The work function of the valence band. Therefore, the gate electrode layer 108 may provide a gate electrode for the transistor 100, which includes both N-type and P-type devices. In some embodiments, the gate electrode layer 108 may alternatively or additionally include a polysilicon layer. In various examples, physical vapor deposition (PVD), chemical vapor deposition (CVD), electron beam (e-beam) evaporation, and/or other suitable processes can be used to form the gate electrode layer 108. In some embodiments, sidewall spacers are formed on the sidewalls of the gate stack 104. The sidewall spacers may include dielectric materials, such as silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, or a combination of the foregoing.

電晶體100還包含源極區110和汲極區112,各自形成在半導體的基底102中,源極區110和汲極區112鄰接於閘極堆疊104且在閘極堆疊104的兩側。在一些實施例中,源極區110和汲極區112包含擴散的源極/汲極區、離子植入的源極/汲極區、磊晶成長區、或前述之組合。電晶體100的通道區114定義為源極區110和汲極區112之間的區域,通道區114在閘極介電層106底下,且在半導體的基底102中。通道區114具有伴隨的通道長度"L",以及伴隨的通道寬度"W"。當大於電晶體100的臨界電壓(Vt)(亦即開啟電壓(turn-on voltage))之偏壓施加於閘極電極層108時,伴隨著同時施加偏壓於源極區110和汲極區112之間,電流(例如電晶體驅動電流)在源極區110和汲極區112之間流動經過通道區114。對於給定的偏壓(例如施加在閘極電極層108或施加在源極區110和汲極區112之間)所發展出的驅動電流量,其為形成通道區114的材料之移動率和其他參數之間的函數。在一些例子中,通道區114包含矽(Si)及/或高移動率材料,像是鍺,鍺可以磊晶成長形成,通道區114還可包含 任何已知的多種化合物半導體或合金半導體。高移動率材料包含那些具有電子及/或電洞移動率大於矽(Si)的材料,矽在室溫(300K)所具有的本質電子移動率約為1350cm2/V-s,並且矽在室溫(300K)所具有的本質電洞移動率約為480cm2/V-s。 The transistor 100 also includes a source region 110 and a drain region 112, which are respectively formed in the substrate 102 of the semiconductor. The source region 110 and the drain region 112 are adjacent to the gate stack 104 and on both sides of the gate stack 104. In some embodiments, the source region 110 and the drain region 112 include diffused source/drain regions, ion-implanted source/drain regions, epitaxial growth regions, or a combination of the foregoing. The channel region 114 of the transistor 100 is defined as the region between the source region 110 and the drain region 112. The channel region 114 is under the gate dielectric layer 106 and in the substrate 102 of the semiconductor. The channel area 114 has an accompanying channel length "L" and an accompanying channel width "W". When a bias voltage greater than the threshold voltage (V t ) of the transistor 100 (that is, the turn-on voltage) is applied to the gate electrode layer 108, the bias voltage is simultaneously applied to the source region 110 and the drain electrode. Between the regions 112, a current (for example, a transistor driving current) flows between the source region 110 and the drain region 112 through the channel region 114. The amount of drive current developed for a given bias voltage (for example, applied to the gate electrode layer 108 or applied between the source region 110 and the drain region 112), which is the mobility of the material forming the channel region 114 and Functions between other parameters. In some examples, the channel region 114 includes silicon (Si) and/or high-mobility materials, such as germanium, which can be formed by epitaxial growth, and the channel region 114 can also include any known compound semiconductors or alloy semiconductors. High-mobility materials include those with electron and/or hole mobility greater than silicon (Si). Silicon has an intrinsic electron mobility of about 1350cm 2 /Vs at room temperature (300K), and silicon at room temperature ( The intrinsic hole mobility of 300K) is about 480 cm 2 /Vs.

參閱第1B圖,在此說明鰭式場效電晶體(FinFET)裝置150以提供另一裝置類型的例子,其可包含本發明實施例。藉由示範的方式,FinFET裝置150包含一或多個以鰭結構為基礎、多閘極的場效電晶體(FETs)。FinFET裝置150包含基底152、至少一鰭元件154從基底152延伸、隔離區156、以及閘極結構158設置在鰭元件154上和鰭元件154周圍。基底152可以是半導體基底,像是矽基底。在各種實施例中,基底152可以與基底102大抵上相同,且可包含如上所述用於基底102的一或多種材料。 Referring to FIG. 1B, a fin field effect transistor (FinFET) device 150 is described here to provide an example of another device type, which may include embodiments of the present invention. By way of example, the FinFET device 150 includes one or more multi-gate field-effect transistors (FETs) based on a fin structure. The FinFET device 150 includes a substrate 152, at least one fin element 154 extending from the substrate 152, an isolation region 156, and a gate structure 158 disposed on the fin element 154 and around the fin element 154. The substrate 152 may be a semiconductor substrate, such as a silicon substrate. In various embodiments, the substrate 152 may be substantially the same as the substrate 102, and may include one or more materials for the substrate 102 as described above.

鰭元件154類似於基底152,可包含一或多層磊晶成長層,且可包含矽或其他元素半導體,像是鍺;化合物半導體,包含碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、及/或銻化銦;合金半導體,包含SiGe、GaAsP、AlInAs、AlGaAs、InGaAs、GaInP、及/或GaInAsP;或前述之組合。可使用合適的製程來製造鰭元件154,包含微影和蝕刻製程。微影製程可包含形成光阻層(光阻)於基底上(例如在矽層上),將光阻曝光於一圖案,進行曝光後烘烤製程,以及將光阻顯影以形成包含光阻的遮罩元件。在一些實施例中,可使用電子束(e-beam)微影製程將光阻圖案化,以形成遮罩元件。然後,當蝕刻製程形成凹陷於矽層內時,遮罩元件可用於保護基底的一些區域,藉 此留下延伸的鰭元件154。可使用乾蝕刻(例如化學氧化物移除)、濕蝕刻、及/或其他合適製程蝕刻出凹陷。也可使用多種其他實施例之方法形成鰭元件154於基底152上。 The fin element 154 is similar to the substrate 152, and may include one or more epitaxial growth layers, and may include silicon or other elemental semiconductors, such as germanium; compound semiconductors, including silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, Indium arsenide and/or indium antimonide; alloy semiconductors, including SiGe, GaAsP, AlInAs, AlGaAs, InGaAs, GaInP, and/or GaInAsP; or a combination of the foregoing. Suitable processes can be used to manufacture the fin element 154, including lithography and etching processes. The photolithography process may include forming a photoresist layer (photoresist) on a substrate (for example, on a silicon layer), exposing the photoresist to a pattern, performing a post-exposure baking process, and developing the photoresist to form a photoresist Mask component. In some embodiments, an electron beam (e-beam) lithography process may be used to pattern the photoresist to form a mask element. Then, when the etching process forms a depression in the silicon layer, the mask element can be used to protect some areas of the substrate, by This leaves the fin element 154 extended. Dry etching (such as chemical oxide removal), wet etching, and/or other suitable processes may be used to etch the recesses. Various methods of other embodiments can also be used to form the fin element 154 on the substrate 152.

這些鰭元件154中的每一個還包含源極區155和汲極區157,其中源極區155和汲極區157形成於鰭元件154內、上、及/或圍繞鰭元件154。源極區155和汲極區157可磊晶成長於鰭元件154上方。此外,電晶體的通道區設置在鰭元件154內,位於閘極結構158底下且沿著一平面,此平面大抵上平行於第1B圖的剖面AA’所定義的平面。在一些例子中,鰭元件154的通道區包含如前所述之高移動率材料。 Each of the fin elements 154 further includes a source region 155 and a drain region 157, wherein the source region 155 and the drain region 157 are formed in, on, and/or surrounding the fin element 154. The source region 155 and the drain region 157 can be epitaxially grown above the fin element 154. In addition, the channel region of the transistor is disposed in the fin element 154, located under the gate structure 158 and along a plane, which is substantially parallel to the plane defined by the cross-section AA' of FIG. 1B. In some examples, the channel region of the fin element 154 includes a high mobility material as described above.

隔離區156可以是淺溝槽隔離(shallow trench isolation,STI)部件。此外,可在基底152上及/或基底152中實行場氧化(field oxide)、矽的局部氧化(LOCOS)部件、及/或其他合適的隔離部件。隔離區156可由氧化矽、氮化矽、氮氧化矽、摻雜氟的矽酸鹽玻璃(fluorine-doped silicate glass,FSG)、低介電常數介電質、前述之組合、及/或已知的其他合適材料組成。在一實施例中,隔離區156為淺溝槽隔離(STI)部件,且藉由在基底152內蝕刻出溝槽,然後用隔離材料填充溝槽,接著藉由化學機械研磨(chemical mechanical polishing,CMP)製程而形成。然而,其他實施例也有可能。在一些實施例中,隔離區156可包含多層結構,例如具有一或多層內襯層。 The isolation region 156 may be a shallow trench isolation (STI) feature. In addition, field oxide, local oxidation of silicon (LOCOS) components, and/or other suitable isolation components may be performed on and/or in the substrate 152. The isolation region 156 can be made of silicon oxide, silicon nitride, silicon oxynitride, fluorine-doped silicate glass (fluorine-doped silicate glass, FSG), low-k dielectric, a combination of the foregoing, and/or known The composition of other suitable materials. In one embodiment, the isolation region 156 is a shallow trench isolation (STI) feature, and the trench is etched in the substrate 152, then the trench is filled with an isolation material, and then chemical mechanical polishing (chemical mechanical polishing, CMP) process. However, other embodiments are also possible. In some embodiments, the isolation region 156 may include a multilayer structure, such as one or more lining layers.

閘極結構158包含閘極堆疊,其具有界面層160形成於鰭元件154的通道區上,閘極介電層162形成於界面層160上,以及金屬層164形成於閘極介電層162上。在各種實施例 中,界面層160與描述的閘極介電層106的一部份之界面層大抵上相同。在一些實施例中,閘極介電層162與閘極介電層106大抵上相同,且可包含高介電常數介電質,其類似於用在閘極介電層106的高介電常數介電質。類似地,在各種實施例中,金屬層164與前述之閘極電極層108大抵上相同。在一些實施例中,在閘極結構158的側壁上形成側壁間隔物。側壁間隔物可包含介電材料,像是氧化矽、氮化矽、碳化矽、氮氧化矽、或前述之組合。 The gate structure 158 includes a gate stack having an interface layer 160 formed on the channel region of the fin element 154, a gate dielectric layer 162 is formed on the interface layer 160, and a metal layer 164 is formed on the gate dielectric layer 162 . In various embodiments Here, the interface layer 160 is substantially the same as the interface layer of a part of the gate dielectric layer 106 described. In some embodiments, the gate dielectric layer 162 is substantially the same as the gate dielectric layer 106, and may include a high-k dielectric, which is similar to the high-k dielectric used in the gate dielectric layer 106 Dielectric. Similarly, in various embodiments, the metal layer 164 is substantially the same as the aforementioned gate electrode layer 108. In some embodiments, sidewall spacers are formed on the sidewalls of the gate structure 158. The sidewall spacers may include dielectric materials, such as silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, or a combination of the foregoing.

如前述討論,每一個電晶體100和FinFET裝置150可包含一或多個導孔先製金屬閘極接觸件,其實施例詳細描述如下。在一些例子中,在此所述之導孔先製金屬閘極接觸件可以是局部內連線結構的一部分。如同在此所使用,此用語”局部內連線(local interconnect)”係用於描述最低層的金屬內連線,且與中間及/或整體內連線不同。局部內連線橫跨相對短的距離,且有時用在例如電性連接至給定裝置或附近裝置的源極、汲極、本體(body)、及/或閘極。此外,局部內連線可用於幫助一或多個裝置與上方的金屬層(例如中間的內連線層)的垂直連接,例如經由一或多個導孔。內連線(例如包含局部、中間或整體內連線)通常做為後段(back-end-of-line,BEOL)製造製程的一部分而形成,且包含金屬導線的多層網狀物。此外,任何多個積體電路及/或裝置(例如像是電晶體100或FinFET 150)可藉由內連線連接。 As discussed above, each of the transistor 100 and the FinFET device 150 may include one or more via-hole prefabricated metal gate contacts, embodiments of which are described in detail as follows. In some examples, the via-hole prefabricated metal gate contacts described herein may be part of a local interconnect structure. As used herein, the term "local interconnect" is used to describe the lowest level metal interconnection, and is different from the intermediate and/or overall interconnection. Local interconnects span relatively short distances, and are sometimes used, for example, to electrically connect to the source, drain, body, and/or gate of a given device or nearby devices. In addition, local interconnects can be used to facilitate the vertical connection of one or more devices with the upper metal layer (such as the middle interconnect layer), for example, via one or more vias. Interconnections (for example, including partial, intermediate, or overall interconnections) are usually formed as part of a back-end-of-line (BEOL) manufacturing process and include a multilayer mesh of metal wires. In addition, any multiple integrated circuits and/or devices (such as transistor 100 or FinFET 150) can be connected by interconnection.

隨著先進積體電路裝置和電路的劇烈縮減和越來越增加的複雜度,接觸件和局部內連線之設計已顯示出困難的 挑戰。舉例而言,形成可靠的接觸件至金屬閘極層,且位於金屬閘極層與相鄰的源極、汲極、和/或本體區(body region)之間,其需要高度的重疊控制(例如圖案對圖案的對準)以及足夠大的製程容許度。在此所使用的用語“製程容許度(process window)”是用來定義特定的聚焦點和曝光(強度),其用於將最終影像圖案化至光阻層內(例如藉由微影製程),並滿足定義的規格(例如對於給定的技術節點、對於給定的工具集(toolset)等)。另一種說法,製程容許度可用來設定聚焦點和曝光的上和下邊界,在此範圍內將仍然可以產生圖案化光阻層,並且滿足定義的規格界限。本發明所屬技術領域中具有通常知識者將可理解,通常希望能夠改善(亦即增加)製程容許度的尺寸。積體電路尺寸的持續縮減,加上新的圖案化技術(例如像是雙重圖案化)已經使得準確的重疊控制比以往更困難且更關鍵。此外,劇烈縮減的積體電路之製程容許度變得相當窄,其可能會導致裝置劣化及/或失效。對於至少一些傳統製程而言,用於形成這樣的接觸件至金屬閘極層,且位於金屬閘極層與相鄰的源極、汲極、和/或本體區之間,其半導體製造製程的製程容許度已經變得太窄,且沒有辦法更長久地滿足製程容許度的需求。另外,在一些目前的製程中,在形成接觸件至金屬閘極層的期間,可能會發生源極及/或汲極的氧化,而且在形成接觸件至金屬閘極層之後,通常會進行源極和汲極的金屬矽化(silicide)製程。因此,現存的方法已經無法在全方位上完全令人滿意。 With the drastic reduction and increasing complexity of advanced integrated circuit devices and circuits, the design of contacts and local interconnections has shown difficulties challenge. For example, forming a reliable contact to the metal gate layer and between the metal gate layer and the adjacent source, drain, and/or body region, which requires a high degree of overlap control ( Such as pattern-to-pattern alignment) and sufficient process tolerance. The term "process window" used here is used to define a specific focus point and exposure (intensity), which is used to pattern the final image into the photoresist layer (for example, by a photolithography process) , And meet the defined specifications (for example, for a given technology node, for a given tool set, etc.). In another way, the process tolerance can be used to set the focus point and the upper and lower boundaries of the exposure. Within this range, a patterned photoresist layer can still be produced and meet the defined specification limits. Those skilled in the art to which the present invention pertains will understand that it is generally desirable to improve (that is, increase) the size of the process tolerance. The continuous reduction in the size of integrated circuits, coupled with new patterning techniques (such as double patterning) has made accurate overlap control more difficult and more critical than ever. In addition, the process tolerance of the drastically reduced integrated circuit becomes quite narrow, which may lead to device degradation and/or failure. For at least some conventional processes, for forming such contacts to the metal gate layer, and between the metal gate layer and the adjacent source, drain, and/or body regions, the semiconductor manufacturing process The process tolerance has become too narrow, and there is no way to meet the process tolerance requirement for a longer period of time. In addition, in some current processes, during the formation of the contact to the metal gate layer, oxidation of the source and/or drain may occur, and after the contact is formed to the metal gate layer, the source and/or drain are usually formed. The silicide process of the electrode and the drain electrode. Therefore, the existing methods are no longer completely satisfactory in all aspects.

為了進一步澄清一些現存製程的缺點,根據至少 一些傳統製程,參閱第2圖說明形成直接的接觸件在金屬閘極與相鄰的源極、汲極、和/或本體區之間的方法200。參閱第3至6圖更詳細地描述方法200如下。方法200在區塊202開始,於此提供具有閘極結構的基底。參閱第3圖,且在區塊202的一實施例中,提供裝置300,其具有基底302且包含閘極結構304、306、308。在一些實施例中,基底302可以與前述之基底102或152大抵上相同。基底302的一區上形成有閘極結構304、306、308,且此區包含基底302的一些區域在相鄰的閘極結構304、306、308之間,此區可包含基底302的主動區。在各種實施例中,每一個閘極結構304、306、308可包含界面層形成於基底302上,閘極介電層形成於界面層上,以及金屬閘極(metal gate,MG)層310形成於閘極介電層上。在一些實施例中,閘極結構304、306、308的每一個界面層、閘極介電層和金屬閘極層310可以與前述之電晶體100和FinFET 150的那些層大抵上相同。此外,每一個閘極結構304、306、308可包含側壁間隔物層312、314。在一些例子中,每一個側壁間隔物層312、314包含的材料具有不同的介電常數值(例如k值)。 In order to further clarify the shortcomings of some existing processes, according to at least For some conventional manufacturing processes, refer to FIG. 2 to illustrate the method 200 of forming direct contacts between the metal gate and the adjacent source, drain, and/or body regions. The method 200 is described in more detail with reference to FIGS. 3 to 6 as follows. The method 200 starts at block 202, where a substrate with a gate structure is provided. Referring to FIG. 3, in an embodiment of block 202, a device 300 is provided, which has a substrate 302 and includes gate structures 304, 306, and 308. In some embodiments, the substrate 302 may be substantially the same as the aforementioned substrate 102 or 152. Gate structures 304, 306, and 308 are formed on a region of the substrate 302, and this region includes some regions of the substrate 302 between adjacent gate structures 304, 306, and 308. This region may include the active region of the substrate 302 . In various embodiments, each gate structure 304, 306, 308 may include an interface layer formed on the substrate 302, a gate dielectric layer formed on the interface layer, and a metal gate (MG) layer 310 is formed On the gate dielectric layer. In some embodiments, each interface layer, gate dielectric layer, and metal gate layer 310 of the gate structures 304, 306, and 308 may be substantially the same as those of the aforementioned transistor 100 and FinFET 150. In addition, each gate structure 304, 306, 308 may include sidewall spacer layers 312, 314. In some examples, the materials included in each sidewall spacer layer 312, 314 have different dielectric constant values (for example, k values).

方法200進行至區塊204,在此沉積介電層於基底上。仍參閱第3圖,且在區塊204的一實施例中,形成介電層316於基底302之上,且在每一個閘極結構304、306、308之上。藉由示範的方式,介電層316可包含層間介電(inter-layer dielectric,ILD)層,其可包含的材料像是四乙氧基矽烷(tetraethylorthosilicate,TEOS)氧化物、未摻雜的矽酸鹽玻璃、或摻雜的氧化矽,像是硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、熔融矽石玻璃(fused silica glass,FSG)、磷矽酸鹽玻璃(phosphosilicate glass,PSG)、摻雜硼的矽玻璃(boron doped silicon glass BSG)、及/或其他合適的介電材料。介電層316可藉由低於大氣壓的化學氣相沉積(subatmospheric CVD,SACVD)製程、可流動的化學氣相沉積(flowable CVD)製程、或其他合適的沉積技術沉積。 The method 200 proceeds to block 204, where a dielectric layer is deposited on the substrate. Still referring to FIG. 3, and in an embodiment of the block 204, a dielectric layer 316 is formed on the substrate 302 and on each of the gate structures 304, 306, and 308. By way of example, the dielectric layer 316 may include an inter-layer dielectric (ILD) layer, which may include materials such as tetraethylorthosilicate (TEOS) oxide, undoped silicon Salt glass, or doped silica, such as borophosphosilicate glass (borophosphosilicate glass, BPSG), fused silica glass (FSG), phosphosilicate glass (PSG), boron doped silicon glass (BSG), and/or other suitable media Electric materials. The dielectric layer 316 may be deposited by a subatmospheric CVD (SACVD) process, a flowable CVD process, or other suitable deposition techniques.

方法200進行至區塊206,在此形成第一圖案於介電層中。參閱第3和4圖,且在區塊206的一實施例中,包含開口318、320的第一圖案形成於介電層316中。在一些例子中,開口318、320提供到相鄰的源極、汲極、或本體接觸區的入口。藉由示範的方式,開口318、320可藉由微影圖案化和蝕刻(例如濕蝕刻或乾蝕刻)製程的適當組合形成。 The method 200 proceeds to block 206, where a first pattern is formed in the dielectric layer. Referring to FIGS. 3 and 4, and in an embodiment of the block 206, a first pattern including openings 318 and 320 is formed in the dielectric layer 316. In some examples, the openings 318, 320 provide access to adjacent source, drain, or body contact regions. By way of example, the openings 318 and 320 can be formed by an appropriate combination of lithography patterning and etching (for example, wet etching or dry etching) processes.

方法200進行至區塊208,在此形成第二圖案於介電層中。參閱第4和5圖,且在區塊208的一實施例中,包含開口322的第二圖案形成於介電層316中。開口322也可藉由微影圖案化和蝕刻(例如濕蝕刻或乾蝕刻)製程的適當組合形成。在一些例子中,開口322提供到閘極結構306之金屬閘極層310的入口。此外,如第5圖繪示說明,開口322可與開口318合併形成複合開口324。在沉積一或多層金屬層之後,如以下所述,複合開口324因此而提供金屬閘極層與相鄰的源極、汲極、和/或本體區之間的直接接觸件(direct contact)。 The method 200 proceeds to block 208, where a second pattern is formed in the dielectric layer. Referring to FIGS. 4 and 5, and in an embodiment of the block 208, the second pattern including the opening 322 is formed in the dielectric layer 316. The opening 322 can also be formed by an appropriate combination of lithography patterning and etching (for example, wet etching or dry etching) processes. In some examples, the opening 322 provides an entrance to the metal gate layer 310 of the gate structure 306. In addition, as illustrated in FIG. 5, the opening 322 can be combined with the opening 318 to form a composite opening 324. After depositing one or more metal layers, as described below, the composite opening 324 thus provides direct contact between the metal gate layer and adjacent source, drain, and/or body regions.

第5圖也說明各種主要的部件之距離,其對於決定製程容許度是關鍵的。舉例而言,標示A的雙箭頭提供開口322(例如包含後續設置在其中的沉積金屬)與閘極結構304的金 屬閘極層310之間的距離A。在至少一些目前的製程中,距離A太小可能會造成無法接受的漏電流量。標示B的雙箭頭提供開口322(例如包含後續設置在其中的沉積金屬)與閘極結構306的金屬閘極層310重疊的距離B,此重疊可稱為“著陸窗口(landing window)”。在至少一些目前的製程中,距離B和著陸窗口太小可能直接影響到與閘極結構306之金屬閘極層310的連接之品質和可靠度。標示C的雙箭頭提供開口322(例如包含後續設置在其中的沉積金屬)與開口320(例如包含後續設置在其中的沉積金屬)之間的距離C。在至少一些目前的製程中,距離C太小也可能會造成無法接受的漏電流量。因此,對於至少一些傳統的製程而言,用於形成接觸件至金屬閘極層,且位於金屬閘極層與相鄰的源極、汲極、和/或本體區之間的半導體製造製程的製程容許度已經變得太窄,且無法長久滿足製程容許度的需求。 Figure 5 also illustrates the distances of various main components, which are critical for determining process tolerances. For example, the double arrow marked A provides the opening 322 (for example, including the deposited metal subsequently disposed therein) and the gold of the gate structure 304 It belongs to the distance A between the gate layers 310. In at least some current manufacturing processes, a too small distance A may cause an unacceptable amount of leakage current. The double arrow marked B provides a distance B at which the opening 322 (for example, including the deposited metal subsequently disposed therein) overlaps the metal gate layer 310 of the gate structure 306, and this overlap may be referred to as a "landing window." In at least some current manufacturing processes, the distance B and the too small landing window may directly affect the quality and reliability of the connection with the metal gate layer 310 of the gate structure 306. The double arrow marked C provides the distance C between the opening 322 (for example, including the deposited metal subsequently disposed therein) and the opening 320 (for example, including the deposited metal subsequently disposed therein). In at least some current manufacturing processes, too small a distance C may also result in an unacceptable amount of leakage current. Therefore, for at least some conventional processes, the semiconductor manufacturing process used to form contacts to the metal gate layer and located between the metal gate layer and the adjacent source, drain, and/or body regions The process tolerance has become too narrow and cannot meet the requirement of process tolerance for a long time.

方法200進行至區塊210,在此進行金屬化(metallization)和化學機械研磨製程。參閱第5和6圖,且在區塊210的一實施例中,最初可進行金屬矽化(silicidation)製程,以形成矽化物層於基底302露出的部分上(例如藉由複合開口324和開口320露出的部分),藉此提供低電阻接觸件。在一些例子中,且在區塊210的另一實施例中,可在每個複合開口324和開口320內形成膠層或阻障層326。在一些例子中,膠層或阻障層326可包含Ti、TiN、Ta、TaN、W或其他適當材料。另外,在區塊210的一實施例中,可在每個複合開口324和開口320內形成金屬層328於膠層或阻障層326上。在一些例子中,金屬層328 可包含W、Cu、Co、Ru、Al、Rh、Mo、Ta、Ti或其他適當材料。在沉積金屬層328之後,且在區塊210的一實施例中,可進行化學機械平坦化(chemical mechanical planarization,CMP)製程,以移除多餘的材料,並且將裝置300的頂面平坦化。因此,在沉積金屬層328之後,提供直接的接觸件於金屬閘極層與相鄰的源極、汲極、和/或本體區之間。如上所述,因為在至少一些現存製程中的窄的製程容許度,裝置300可能承受無法接受的漏電流量(例如在金屬層328與閘極結構304的金屬閘極層310之間,及/或在沉積於每個複合開口324和開口320內的金屬層328之間)。此外,金屬層328接觸於閘極結構306的金屬閘極層310上的著陸窗口可能太小,其負面地影響閘極結構306之金屬閘極層310的電性連接之品質和可靠度。因此,這證明現存的技術已經無法在全方位完全令人滿意。 The method 200 proceeds to block 210, where metallization and chemical mechanical polishing processes are performed. Referring to FIGS. 5 and 6, and in an embodiment of block 210, a silicidation process can be initially performed to form a silicide layer on the exposed portion of the substrate 302 (for example, by combining the opening 324 and the opening 320 The exposed part), thereby providing a low-resistance contact. In some examples, and in another embodiment of the block 210, a glue layer or barrier layer 326 may be formed in each of the composite opening 324 and the opening 320. In some examples, the glue layer or barrier layer 326 may include Ti, TiN, Ta, TaN, W, or other suitable materials. In addition, in an embodiment of the block 210, a metal layer 328 may be formed on the glue layer or the barrier layer 326 in each of the composite opening 324 and the opening 320. In some examples, the metal layer 328 It may contain W, Cu, Co, Ru, Al, Rh, Mo, Ta, Ti or other suitable materials. After the metal layer 328 is deposited, and in an embodiment of the block 210, a chemical mechanical planarization (CMP) process may be performed to remove excess material and planarize the top surface of the device 300. Therefore, after the metal layer 328 is deposited, a direct contact is provided between the metal gate layer and the adjacent source, drain, and/or body regions. As described above, because of the narrow process tolerances in at least some existing processes, the device 300 may withstand an unacceptable amount of leakage current (for example, between the metal layer 328 and the metal gate layer 310 of the gate structure 304, and/or Between the metal layer 328 deposited in each composite opening 324 and opening 320). In addition, the landing window of the metal layer 328 in contact with the metal gate layer 310 of the gate structure 306 may be too small, which negatively affects the quality and reliability of the electrical connection of the metal gate layer 310 of the gate structure 306. Therefore, this proves that the existing technology is no longer completely satisfactory in all aspects.

本發明實施例提供超越現存技術的優點,然而可以理解的是,其他實施例也可能提供不同的優點,並非全部優點都需要在此討論,且對於全部實施例而言並不需要特定優點。舉例而言,在所討論的實施例包含關於導孔先製金屬閘極接觸件製造製程的方法和結構。在至少一些實施例中,提供導孔先製金屬閘極接觸件製程,其中閘極導孔先形成在金屬閘極上,之後形成金屬接觸層在閘極導孔上,而不是像在至少一些傳統製程中讓金屬閘極直接接觸金屬接觸層。在各種例子中,金屬接觸層還可連接至相鄰的源極、汲極、和/或本體區。在一些實施例中,閘極導孔集中在金屬閘極上,且可對金屬接觸層提供較大的著陸窗口(例如相較於讓金屬閘極直接接觸於金 屬接觸層)。作為增加閘極導孔於金屬閘極與金屬接觸層之間的結果,其改善了(例如增加)製程容許度。此外,使用在此所述之閘極導孔使得金屬接觸層(例如金屬接觸層接觸於閘極導孔)在垂直於基底的方向上設置為增加的距離‘Z’(例如相較於至少一些傳統製程),因此提供金屬接觸層與相鄰的金屬閘極之間較大的隔離,其中金屬接觸層未連接至相鄰的金屬閘極。如此,降低了金屬接觸層與一或多個相鄰的金屬閘極之間的漏電流,其中金屬接觸層未連接至相鄰的金屬閘極。提供本發明實施例的其他細節如下,並且本發明所屬技術領域中具有通常知識者可以從本發明實施例的好處看見額外的好處及/或其他好處。 The embodiments of the present invention provide advantages over existing technologies. However, it is understood that other embodiments may also provide different advantages. Not all advantages need to be discussed here, and specific advantages are not required for all embodiments. For example, the embodiments discussed include methods and structures related to the manufacturing process of via-hole prefabricated metal gate contacts. In at least some embodiments, a via hole pre-made metal gate contact process is provided, in which the gate via hole is first formed on the metal gate, and then the metal contact layer is formed on the gate via hole, instead of as in at least some traditional During the manufacturing process, the metal gate directly contacts the metal contact layer. In various examples, the metal contact layer may also be connected to adjacent source, drain, and/or body regions. In some embodiments, the gate vias are concentrated on the metal gate, and a larger landing window can be provided for the metal contact layer (for example, compared to allowing the metal gate to directly contact the metal Belongs to the contact layer). As a result of increasing the gate vias between the metal gate and the metal contact layer, it improves (eg increases) the process tolerance. In addition, the use of the gate vias described herein allows the metal contact layer (for example, the metal contact layer to contact the gate vias) to be set at an increased distance'Z' in the direction perpendicular to the substrate (for example, compared to at least some Traditional manufacturing process), thus providing greater isolation between the metal contact layer and the adjacent metal gate, wherein the metal contact layer is not connected to the adjacent metal gate. In this way, the leakage current between the metal contact layer and one or more adjacent metal gates is reduced, wherein the metal contact layer is not connected to the adjacent metal gates. Other details of the embodiments of the present invention are provided as follows, and those skilled in the art to which the present invention pertains can see additional benefits and/or other benefits from the benefits of the embodiments of the present invention.

現在參閱第7圖,說明根據一些實施例,形成導孔先製金屬閘極接觸件的方法700。參閱第8至14圖更詳細描述方法700如下。方法700可在單閘極平面裝置上實行,像是參閱第1A圖之上述示範的電晶體100,也可在多閘極裝置上實行,像是參閱第1B圖之上述的FinFET裝置150。因此,參閱電晶體100及/或FinFET 150之上述討論的一或多個觀點也可應用於方法700。無可否認,在各種實施例中,方法700可在其他裝置上實行,像是閘極全環繞(GAA)裝置、Ω形閘極裝置、或Π形閘極裝置,以及應變半導體裝置、絕緣體上的矽(SOI)裝置、部份空乏SOI(PD-SOI)裝置、全空乏SOI(FD-SOI)裝置、或其他已知的裝置。 Referring now to FIG. 7, a method 700 of forming a via hole prefabricated metal gate contact according to some embodiments is described. The method 700 is described in more detail with reference to FIGS. 8 to 14 as follows. The method 700 can be implemented on a single-gate planar device, such as the exemplary transistor 100 described above in Figure 1A, or on a multi-gate device, such as the FinFET device 150 described above in Figure 1B. Therefore, one or more of the points discussed above with reference to transistor 100 and/or FinFET 150 can also be applied to method 700. Undeniably, in various embodiments, the method 700 can be implemented on other devices, such as gate all-around (GAA) devices, Ω-shaped gate devices, or Π-shaped gate devices, as well as strained semiconductor devices and insulators. Silicon (SOI) devices, partially depleted SOI (PD-SOI) devices, fully depleted SOI (FD-SOI) devices, or other known devices.

可以理解的是,方法700的一部分及/或參照方法700所討論的任何示範電晶體裝置,可以藉由已知的互補金屬 氧化物半導體(CMOS)技術之製程流程製造,因此一些製程僅在此簡略地描述。為了清楚起見,方法700的某些與方法200共用的觀點可能僅簡略討論。此外,可以理解的是,任何在此討論的示範電晶體裝置可包含各種其他裝置和部件,像是額外的電晶體、雙極性接面電晶體、電阻器、電容器、二極體、熔絲元件等,但為了更容易理解本發明實施例的概念而簡化。此外,在一些實施例中,在此揭露的示範電晶體裝置可包含複數個半導體裝置(例如電晶體),這些半導體裝置可互相連接。另外,在一些實施例中,本發明實施例的各個方面可應用於閘極後製的製程或閘極先製的製程。 It is understood that part of the method 700 and/or any exemplary transistor device discussed with reference to the method 700 can be made of a known complementary metal The process flow of the oxide semiconductor (CMOS) technology is manufactured, so some processes are only briefly described here. For clarity, some points of method 700 that are shared with method 200 may only be briefly discussed. In addition, it is understood that any of the exemplary transistor devices discussed herein may include various other devices and components, such as additional transistors, bipolar junction transistors, resistors, capacitors, diodes, and fuse elements. Etc., but simplified in order to make it easier to understand the concept of the embodiments of the present invention. In addition, in some embodiments, the exemplary transistor devices disclosed herein may include a plurality of semiconductor devices (such as transistors), and these semiconductor devices may be connected to each other. In addition, in some embodiments, various aspects of the embodiments of the present invention can be applied to a post-gate manufacturing process or a gate-first manufacturing process.

此外,在一些實施例中,在此說明的示範電晶體裝置可包含在製程的中間階段之裝置的描述,可能是在積體電路的製程期間製造,或者是積體電路的一部分,其可包含靜態隨機存取記憶體(static random access memory,SRAM)及/或其他邏輯電路;被動元件,像是電阻器、電容器和電感器;以及主動元件,像是P通道場效電晶體(PFETs)、N通道場效電晶體(NFETs)、金屬氧化物半導體場效電晶體(MOSFETs)、互補式金屬氧化物半導體(CMOS)電晶體、雙極性電晶體、高壓電晶體、高頻電晶體、其他記憶體單元胞、及/或前述之組合。 In addition, in some embodiments, the exemplary transistor device described herein may include a description of the device in an intermediate stage of the manufacturing process, may be manufactured during the manufacturing process of an integrated circuit, or may be part of an integrated circuit, which may include Static random access memory (SRAM) and/or other logic circuits; passive components, such as resistors, capacitors, and inductors; and active components, such as P-channel field effect transistors (PFETs), N-channel field effect transistors (NFETs), metal oxide semiconductor field effect transistors (MOSFETs), complementary metal oxide semiconductor (CMOS) transistors, bipolar transistors, high voltage transistors, high frequency transistors, etc. Memory cell, and/or a combination of the foregoing.

方法700在區塊702開始,在此提供具有閘極結構的基底。參閱第8圖,且在區塊702的一實施例中,提供裝置800,其具有基底802且包含閘極結構804、806、808。在一些實施例中,基底802可以與前述之基底102、152大抵上相同。基底802的一區上形成有閘極結構804、806、808,且此區包含 基底802的一些區域在相鄰的閘極結構804、806、808之間,此區可包含基底802的主動區。可以理解的是,裝置800僅作為繪示說明,且提供用於後續形成導孔先製金屬閘極接觸件之清楚的討論。舉例而言,在一些例子中,裝置800可包含平面裝置,像是電晶體100。另外,在一些例子中,裝置800可包含多閘極裝置,像是FinFET裝置150。此外,在一些例子中,裝置800可包含閘極全環繞(GAA)裝置、Ω形閘極裝置、Π形閘極裝置、應變半導體裝置、絕緣體上的矽(SOI)裝置、部份空乏SOI(PD-SOI)裝置、全空乏SOI(FD-SOI)裝置、或其他已知的裝置。在一些實施例中,裝置800包含區域810、812,其相鄰於閘極結構804、806、808,在區域810、812中可包含源極區、汲極區、或本體接觸區(body contact region)。在各種實施例中,每個閘極結構804、806、808可包含界面層形成於基底802上,閘極介電層形成於界面層上,以及金屬閘極(MG)層814形成於閘極介電層上。在一些實施例中,閘極結構804、806、808的每個界面層、閘極介電層和金屬閘極層814可以與前述關於電晶體100和FinFET裝置150的那些層大抵上相同。此外,每個閘極結構804、806、808可包含側壁間隔物層816、818。在一些例子中,每個側壁間隔物層816、818包含的材料具有不同的介電常數值(例如k值)。在各種實施例中,側壁間隔物層816、818包含SiOx、SiN、SiOxNy、SiCxNy、SiOxCyNz、AlOx、AlOxNy、AlN、HfO、ZrO、HfZrO、CN、多晶矽(poly-Si)、前述之組合、或其他合適的介電材料。在一些實施例中,側壁間隔物層816、818包含多層,像是主要間隔物牆、內襯層、和類似層。藉由 示範的方式,側壁間隔物層816、818可由沉積介電材料於裝置800上,以及異向性地回蝕刻介電材料而形成。在一些實施例中,回蝕刻製程(例如用於形成間隔物)可包含多步驟蝕刻製程,以改善蝕刻選擇性和提供過蝕刻控制。 The method 700 starts at block 702, where a substrate with a gate structure is provided. Refer to FIG. 8 and in an embodiment of block 702, a device 800 is provided, which has a substrate 802 and includes gate structures 804, 806, and 808. In some embodiments, the substrate 802 may be substantially the same as the aforementioned substrates 102 and 152. Gate structures 804, 806, and 808 are formed on a region of the substrate 802, and this region includes some regions of the substrate 802 between adjacent gate structures 804, 806, and 808. This region may include the active region of the substrate 802 . It is understandable that the device 800 is only for illustration and provides a clear discussion of the pre-made metal gate contacts used for the subsequent formation of via holes. For example, in some examples, the device 800 may include a planar device, such as the transistor 100. In addition, in some examples, the device 800 may include a multi-gate device, such as the FinFET device 150. In addition, in some examples, the device 800 may include a gate-all-around (GAA) device, an Ω-shaped gate device, a Π-shaped gate device, a strained semiconductor device, a silicon-on-insulator (SOI) device, and a partially depleted SOI ( PD-SOI) device, fully depleted SOI (FD-SOI) device, or other known devices. In some embodiments, the device 800 includes regions 810 and 812 adjacent to the gate structures 804, 806, and 808. The regions 810 and 812 may include source regions, drain regions, or body contact regions (body contact regions). region). In various embodiments, each gate structure 804, 806, 808 may include an interface layer formed on the substrate 802, a gate dielectric layer formed on the interface layer, and a metal gate (MG) layer 814 formed on the gate On the dielectric layer. In some embodiments, each interface layer, gate dielectric layer, and metal gate layer 814 of the gate structures 804, 806, and 808 may be substantially the same as those previously described with respect to the transistor 100 and the FinFET device 150. In addition, each gate structure 804, 806, 808 may include sidewall spacer layers 816, 818. In some examples, the materials included in each sidewall spacer layer 816, 818 have different dielectric constant values (for example, k values). In various embodiments, the sidewall spacer layers 816, 818 include SiO x , SiN, SiO x N y , SiC x N y , SiO x C y N z , AlO x , AlO x N y , AlN, HfO, ZrO, HfZrO, CN, poly-Si, a combination of the foregoing, or other suitable dielectric materials. In some embodiments, the sidewall spacer layers 816, 818 include multiple layers, such as main spacer walls, lining layers, and the like. By way of example, the sidewall spacer layers 816 and 818 can be formed by depositing a dielectric material on the device 800 and anisotropically etching the dielectric material back. In some embodiments, the etch-back process (for example, for forming spacers) may include a multi-step etch process to improve etch selectivity and provide over-etch control.

方法700進行到區塊704,在此沉積第一介電層於基底上。仍參閱第8圖,且在區塊704的一實施例中,形成介電層820於基底802之上,且在每個閘極結構804、806、808之上。藉由示範的方式,介電層820可包含層間介電(ILD)層,其可包含的材料像是四乙氧基矽烷(TEOS)氧化物、未摻雜的矽酸鹽玻璃、或摻雜的氧化矽,像是硼磷矽酸鹽玻璃(BPSG)、熔融矽石玻璃(FSG)、磷矽酸鹽玻璃(PSG)、摻雜硼的矽玻璃(BSG)、及/或其他合適的介電材料。介電層820可藉由低於大氣壓的化學氣相沉積(SACVD)製程、可流動的化學氣相沉積製程、或其他合適的沉積技術沉積。在一些實施例中,介電層820的厚度為大約5-40nm。 The method 700 proceeds to block 704, where a first dielectric layer is deposited on the substrate. Still referring to FIG. 8, and in an embodiment of block 704, a dielectric layer 820 is formed on the substrate 802 and on each of the gate structures 804, 806, and 808. By way of example, the dielectric layer 820 may include an interlayer dielectric (ILD) layer, which may include materials such as tetraethoxysilane (TEOS) oxide, undoped silicate glass, or doped Silica, such as borophosphosilicate glass (BPSG), fused silica glass (FSG), phosphosilicate glass (PSG), boron-doped silica glass (BSG), and/or other suitable media Electric materials. The dielectric layer 820 can be deposited by a sub-atmospheric chemical vapor deposition (SACVD) process, a flowable chemical vapor deposition process, or other suitable deposition techniques. In some embodiments, the thickness of the dielectric layer 820 is about 5-40 nm.

方法700進行到區塊706,在此形成圖案於介電層中。參閱第8和9圖,且在區塊706的一實施例中,包含開口822、824的圖案形成在介電層820中。在一些例子中,開口822、824提供到區域810、812之入口,區域810、812相鄰於閘極結構804、806、808,在區域810、812中可包含源極區、汲極區、或本體接觸區。藉由示範的方式,開口822、824可藉由微影圖案化和蝕刻(例如濕蝕刻或乾蝕刻)製程的合適組合形成。在一些實施例中,開口822、824的寬度為大約12-25nm。 The method 700 proceeds to block 706, where a pattern is formed in the dielectric layer. Referring to FIGS. 8 and 9, and in an embodiment of the block 706, a pattern including openings 822 and 824 is formed in the dielectric layer 820. In some examples, the openings 822 and 824 provide entrances to the regions 810 and 812. The regions 810 and 812 are adjacent to the gate structures 804, 806 and 808. The regions 810 and 812 may include source regions, drain regions, Or body contact area. By way of example, the openings 822 and 824 can be formed by a suitable combination of lithography patterning and etching (such as wet etching or dry etching) processes. In some embodiments, the width of the openings 822, 824 is about 12-25 nm.

方法700進行至區塊708,在此進行金屬化 (metallization)和化學機械研磨製程。參閱第9和10圖,且在區塊708的一實施例中,最初可進行金屬矽化(silicidation)製程,以在區域810、812中形成矽化物層於基底802露出的部分上(例如藉由開口822、824露出的部分),因此而提供低電阻接觸件到此處。在一些例子中,且在區塊708的另一實施例中,可形成膠層或阻障層826於每個開口822、824內。在一些例子中,膠層或阻障層826可包含Ti、TiN、Ta、TaN、W、或其他適當材料。在一些實施例中,膠層或阻障層826的厚度為大約1-4nm。另外,在區塊708的一實施例中,可在每個開口822、824內形成金屬層828、829於膠層或阻障層826上。在一些例子中,金屬層828、829可包含W、Cu、Co、Ru、Al、Rh、Mo、Ta、Ti、TiN、TaN、WN、金屬矽化物、或其他合適導電材料。在一些例子中,金屬層828和829可包含相同的材料,且可一起沉積作為單一沉積製程的一部分。在一些實施例中,金屬層828、829可具有寬度在大約10-20nm,以及高度在大約30-60nm。在沉積金屬層828、829之後,且在區塊708的一實施例中,可進行化學機械平坦化(CMP)製程,以移除多餘的材料,並且將裝置800的頂面平坦化。 Method 700 proceeds to block 708, where metalization is performed (metallization) and chemical mechanical polishing process. Refer to Figures 9 and 10, and in an embodiment of block 708, a metal silicidation process can be initially performed to form a silicide layer in the regions 810 and 812 on the exposed portion of the substrate 802 (for example, by The exposed portions of the openings 822 and 824), therefore, low-resistance contacts are provided here. In some examples, and in another embodiment of the block 708, a glue layer or barrier layer 826 may be formed in each opening 822, 824. In some examples, the glue layer or barrier layer 826 may include Ti, TiN, Ta, TaN, W, or other suitable materials. In some embodiments, the thickness of the glue layer or barrier layer 826 is about 1-4 nm. In addition, in an embodiment of the block 708, a metal layer 828, 829 may be formed on the glue layer or the barrier layer 826 in each opening 822, 824. In some examples, the metal layers 828 and 829 may include W, Cu, Co, Ru, Al, Rh, Mo, Ta, Ti, TiN, TaN, WN, metal silicide, or other suitable conductive materials. In some examples, the metal layers 828 and 829 may comprise the same material, and may be deposited together as part of a single deposition process. In some embodiments, the metal layers 828, 829 may have a width of about 10-20 nm and a height of about 30-60 nm. After the metal layers 828 and 829 are deposited, and in one embodiment of the block 708, a chemical mechanical planarization (CMP) process may be performed to remove excess material and planarize the top surface of the device 800.

方法700進行到區塊710,在此沉積接觸蝕刻停止層和第二介電層於基底之上。參閱第10和11圖,且在區塊710的一實施例中,形成接觸蝕刻停止層(contact etch stop layer,CESL)830於基底802之上,以及形成介電層832於接觸蝕刻停止層830上。藉由示範的方式,接觸蝕刻停止層830可包含Ti、TiN、TiC、TiCN、Ta、TaN、TaC、TaCN、W、WN、WC、 WCN、TiAl、TiAlN、TiAlC、TiAlCN、或前述之組合。在一些實施例中,介電層832可包含層間介電(ILD)層,其可包含的材料像是四乙氧基矽烷(TEOS)氧化物、未摻雜的矽酸鹽玻璃、或摻雜的氧化矽,像是硼磷矽酸鹽玻璃(BPSG)、熔融矽石玻璃(FSG)、磷矽酸鹽玻璃(PSG)、摻雜硼的矽玻璃(BSG)、及/或其他合適的介電材料。因此,在一些例子中,介電層832可與介電層820大抵上相同。在各種實施例中,接觸蝕刻停止層830和介電層832可由低於大氣壓的化學氣相沉積(SACVD)製程、可流動的化學氣相沉積製程、原子層沉積(ALD)製程、物理氣相沉積(PVD)製程、或其他合適的沉積技術沉積。在一些例子中,接觸蝕刻停止層830的厚度為大約5-20nm,且介電層832的厚度為大約5-40nm。 The method 700 proceeds to block 710, where a contact etch stop layer and a second dielectric layer are deposited on the substrate. Referring to FIGS. 10 and 11, and in an embodiment of block 710, a contact etch stop layer (CESL) 830 is formed on the substrate 802, and a dielectric layer 832 is formed on the contact etch stop layer 830 on. By way of example, the contact etching stop layer 830 may include Ti, TiN, TiC, TiCN, Ta, TaN, TaC, TaCN, W, WN, WC, WCN, TiAl, TiAlN, TiAlC, TiAlCN, or a combination of the foregoing. In some embodiments, the dielectric layer 832 may include an interlayer dielectric (ILD) layer, which may include materials such as tetraethoxysilane (TEOS) oxide, undoped silicate glass, or doped Silica, such as borophosphosilicate glass (BPSG), fused silica glass (FSG), phosphosilicate glass (PSG), boron-doped silica glass (BSG), and/or other suitable media Electric materials. Therefore, in some examples, the dielectric layer 832 may be substantially the same as the dielectric layer 820. In various embodiments, the contact etch stop layer 830 and the dielectric layer 832 may be formed by a sub-atmospheric chemical vapor deposition (SACVD) process, a flowable chemical vapor deposition process, an atomic layer deposition (ALD) process, or a physical vapor deposition process. Deposition (PVD) process, or other suitable deposition technology deposition. In some examples, the thickness of the contact etch stop layer 830 is about 5-20 nm, and the thickness of the dielectric layer 832 is about 5-40 nm.

方法700進行到區塊712,在此形成閘極導孔的開口。參閱第11和12圖,且在區塊712的一實施例中,形成閘極導孔的開口834。藉由示範的方式,閘極導孔的開口834提供到閘極結構806的金屬閘極層814之入口。藉由示範的方式,閘極導孔的開口834可藉由微影圖案化和蝕刻(例如濕蝕刻或乾蝕刻)製程的合適組合形成。在一些例子中,閘極導孔的開口834具有寬度在大約12-25nm。在一些實施例中,可使用一或多個蝕刻製程,以依序蝕刻穿過介電層832、接觸蝕刻停止層830和介電層820中的每一個。在各種實施例中,閘極導孔的開口834大致上對齊(例如集中在)閘極結構806的金屬閘極層814。此外,應理解的是可形成類似的閘極導孔的開口,以提供到閘極結構804、808,或者到其他未顯示出的閘極結構的金屬閘極層 814之入口。 The method 700 proceeds to block 712, where an opening for the gate via is formed. Referring to FIGS. 11 and 12, in an embodiment of the block 712, an opening 834 of the gate via is formed. By way of example, the opening 834 of the gate via provides an entrance to the metal gate layer 814 of the gate structure 806. By way of example, the opening 834 of the gate via can be formed by a suitable combination of lithography patterning and etching (for example, wet etching or dry etching) processes. In some examples, the opening 834 of the gate via has a width of about 12-25 nm. In some embodiments, one or more etching processes may be used to sequentially etch through each of the dielectric layer 832, contact the etch stop layer 830, and the dielectric layer 820. In various embodiments, the openings 834 of the gate vias are substantially aligned with (eg, concentrated on) the metal gate layer 814 of the gate structure 806. In addition, it should be understood that similar openings for gate vias can be formed to provide gate structures 804, 808, or to other metal gate layers of gate structures not shown. The entrance of 814.

方法700進行到區塊714,在此形成接觸件開口(contact opening)。參閱第12和13圖,且在區塊714的一實施例中,形成接觸件開口836。接觸件開口836也可藉由微影圖案化和蝕刻(例如濕蝕刻或乾蝕刻)製程的合適組合形成。在一些例子中,接觸件開口836具有寬度在大約30-60nm。在一些實施例中,可使用一或多個蝕刻製程,依序蝕刻穿過介電層832和接觸蝕刻停止層830。在一些例子中,接觸件開口836提供到金屬層828的入口。此外,如第13圖所示,接觸件開口836可與閘極導孔的開口834合併或重疊,以形成複合開口838。在一些實施例中,接觸件開口836和閘極導孔的開口834互相重疊大約0-20nm。在沉積一或多層金屬層之後,如下所述,複合開口838藉此而提供金屬閘極層與相鄰的源極、汲極、和/或本體區之間的接觸件(contact)。然而,因為在此所述之導孔先製的製程,可以克服至少一些目前製程的缺點。 The method 700 proceeds to block 714 where a contact opening is formed. Referring to FIGS. 12 and 13, and in an embodiment of the block 714, a contact opening 836 is formed. The contact opening 836 can also be formed by a suitable combination of lithography patterning and etching (for example, wet etching or dry etching) processes. In some examples, the contact opening 836 has a width of about 30-60 nm. In some embodiments, one or more etching processes may be used to sequentially etch through the dielectric layer 832 and contact the etch stop layer 830. In some examples, the contact opening 836 provides access to the metal layer 828. In addition, as shown in FIG. 13, the contact opening 836 can be combined with or overlapped with the opening 834 of the gate via to form a composite opening 838. In some embodiments, the contact opening 836 and the gate via opening 834 overlap each other by approximately 0-20 nm. After depositing one or more metal layers, as described below, the composite opening 838 thereby provides a contact between the metal gate layer and adjacent source, drain, and/or body regions. However, because of the pilot hole pre-manufacturing process described here, at least some of the shortcomings of the current process can be overcome.

舉例而言,第13圖也說明各種主要部件之距離,其對於決定製程容許度是關鍵的。特別是,當相較於至少一些目前製程(例如第5圖所示)的部件之距離時,本發明實施例的好處很清楚。舉例而言,標示A’的雙箭頭提供接觸件開口836(例如包含設置在其中後續沉積的金屬)與閘極結構804的金屬閘極層814之間的距離。相較於一些目前的製程,且在一些實施例中,由標示A’的雙箭頭表示的距離(第13圖)大於由標示A的雙箭頭表示的距離(第5圖)。因此,在一些實施例中,因為在接觸件開口836內的金屬增加的距離‘Z’(例如在垂直於基板的方 向上),本發明實施例在接觸件開口836內的金屬與相鄰的金屬閘極之間提供較大的隔離,其中金屬接觸層未連接至相鄰的金屬閘極(例如像是閘極結構804的金屬閘極層814)。如此,降低了接觸件開口836內的金屬與閘極結構804的金屬閘極層814之間的漏電流。 For example, Figure 13 also illustrates the distances of various main components, which are critical for determining the process tolerance. In particular, when compared with the distances of at least some parts of the current manufacturing process (for example, as shown in FIG. 5), the advantages of the embodiments of the present invention are clear. For example, the double arrow labeled A'provides the distance between the contact opening 836 (e.g., including metal disposed therein for subsequent deposition) and the metal gate layer 814 of the gate structure 804. Compared to some current processes, and in some embodiments, the distance indicated by the double arrow labeled A'(Figure 13) is greater than the distance indicated by the double arrow labeled A (Figure 5). Therefore, in some embodiments, because of the increased distance'Z' of the metal in the contact opening 836 (for example, in the direction perpendicular to the substrate) Upward), the embodiment of the present invention provides greater isolation between the metal in the contact opening 836 and the adjacent metal gate, wherein the metal contact layer is not connected to the adjacent metal gate (such as a gate structure 804 of the metal gate layer 814). In this way, the leakage current between the metal in the contact opening 836 and the metal gate layer 814 of the gate structure 804 is reduced.

做為另一例子,標示B’的雙箭頭提供有效著陸窗口的距離,在有效著陸窗口內接觸件開口836(例如包含設置在其中後續沉積的金屬)可與閘極導孔的開口834(例如包含設置在其中後續沉積的金屬)重疊。相較於一些目前的製程,且在一些實施例中,由標示B’的雙箭頭表示的距離(第13圖)大於由標示B的雙箭頭表示的距離(第5圖)。因此,在一些實施例中,因為由在此揭露的導孔先製的製程所提供的增加的著陸窗口,本發明實施例提供更高品質和更堅固的閘極連接。 As another example, the double arrow marked B'provides the distance of the effective landing window. In the effective landing window, the contact opening 836 (for example, including the metal deposited later) can be connected to the gate via opening 834 (for example, Contains the metal disposed in it that is subsequently deposited) overlap. Compared to some current processes, and in some embodiments, the distance indicated by the double arrow labeled B'(Figure 13) is greater than the distance indicated by the double arrow labeled B (Figure 5). Therefore, in some embodiments, because of the increased landing window provided by the via-hole pre-manufacturing process disclosed herein, embodiments of the present invention provide higher quality and stronger gate connections.

做為又另一例子,標示C’的雙箭頭提供接觸件開口836(例如包含設置在其中後續沉積的金屬)與金屬層829之間的距離。相較於一些目前的製程,且在一些實施例中,由標示C’的雙箭頭表示的距離(第13圖)大於由標示C的雙箭頭表示的距離(第5圖)。因此,在一些實施例中,因為在接觸件開口836內的金屬增加的距離‘Z’(例如在垂直於基板的方向上),本發明實施例在接觸件開口836內的金屬與金屬層829之間提供較大的隔離。如此,降低了接觸件開口836內的金屬與金屬層829之間的漏電流。 As yet another example, the double arrow labeled C'provides the distance between the contact opening 836 (e.g., including the metal disposed therein for subsequent deposition) and the metal layer 829. Compared to some current processes, and in some embodiments, the distance indicated by the double arrow labeled C'(Figure 13) is greater than the distance indicated by the double arrow labeled C (Figure 5). Therefore, in some embodiments, because of the increased distance'Z' of the metal in the contact opening 836 (for example, in a direction perpendicular to the substrate), the metal and the metal layer 829 in the contact opening 836 are Provide greater isolation between. In this way, the leakage current between the metal in the contact opening 836 and the metal layer 829 is reduced.

因此,本發明實施例提供改善的(亦即增加的)製程容許度,用於形成接觸件到金屬閘極層,且位於金屬閘極層與 相鄰的源極、汲極、和/或本體區之間。在一些例子中,製程容許度可改善10nm(例如關於由標示A’的雙箭頭表示的主要部件之距離)。在一些實施例中,製程容許度可改善至少3nm(例如關於由標示B’和C’的雙箭頭表示的主要部件之距離)。 Therefore, the embodiments of the present invention provide improved (that is, increased) process tolerance for forming contacts to the metal gate layer, and located between the metal gate layer and the metal gate layer. Between adjacent source, drain, and/or body regions. In some examples, the process tolerance can be improved by 10 nm (for example, regarding the distance between the main components indicated by the double arrow marked A'). In some embodiments, the process tolerance can be improved by at least 3 nm (for example, regarding the distance between the main components indicated by the double arrows marked B'and C').

方法700進行到區塊716,在此進行金屬化和化學機械研磨製程。參閱第13和14圖,且在區塊716的一實施例中,可在複合開口838內形成膠層或阻障層840。在一些例子中,膠層或阻障層840可包含Ti、TiN、Ta、TaN、W或其他適當材料。在一些實施例中,膠層或阻障層840的厚度為大約1-4nm。另外,在區塊716的一實施例中,可在複合開口838內形成金屬層842於膠層或阻障層840上。在一些例子中,金屬層842可包含W、Cu、Co、Ru、Al、Rh、Mo、Ta、Ti或其他導電材料。應注意的是,在複合開口838內的金屬層842可以與形成在每一個接觸件開口836和閘極導孔的開口834內的金屬層842相等地描述,在此接觸件開口836和閘極導孔的開口834如前所述合併及/或重疊。因此,在一些實施例中,且在接觸件開口836的區域內,金屬層842可具有寬度在大約30-60nm,以及高度在大約10-30nm。另外,在一些實施例中,且在閘極導孔的開口834的區域內,金屬層842可具有寬度在大約10-25nm,以及高度在大約20-45nm。在一些例子中,金屬層842的寬度橫跨複合開口838的長度,其包含接觸件開口836和閘極導孔的開口834兩者,可大約為30-85nm。在沉積金屬層842之後,且在區塊716的一實施例中,可進行化學機械平坦化(CMP)製程,以移除多餘的材料,並將裝置800的頂面平坦化。因此,在沉積金屬層 842之後,經由金屬閘極導孔製成接觸件,且位於金屬閘極層與相鄰的源極、汲極、和/或本體區之間。如前所述,且因為藉由在此揭露的實施例所提供的改善的(例如增加的)製程容許度,裝置800更加堅固(例如相較於至少一些目前的裝置)。 The method 700 proceeds to block 716, where the metallization and chemical mechanical polishing processes are performed. Refer to FIGS. 13 and 14, and in an embodiment of block 716, a glue layer or barrier layer 840 may be formed in the composite opening 838. In some examples, the glue layer or barrier layer 840 may include Ti, TiN, Ta, TaN, W, or other suitable materials. In some embodiments, the thickness of the glue layer or barrier layer 840 is about 1-4 nm. In addition, in an embodiment of the block 716, a metal layer 842 may be formed on the glue layer or the barrier layer 840 in the composite opening 838. In some examples, the metal layer 842 may include W, Cu, Co, Ru, Al, Rh, Mo, Ta, Ti, or other conductive materials. It should be noted that the metal layer 842 in the composite opening 838 can be described as equivalent to the metal layer 842 formed in each of the contact openings 836 and the openings 834 of the gate vias, where the contact openings 836 and the gate The openings 834 of the vias are merged and/or overlapped as described above. Therefore, in some embodiments, and in the area of the contact opening 836, the metal layer 842 may have a width of about 30-60 nm and a height of about 10-30 nm. In addition, in some embodiments, and in the region of the opening 834 of the gate via, the metal layer 842 may have a width of about 10-25 nm and a height of about 20-45 nm. In some examples, the width of the metal layer 842 spans the length of the composite opening 838, which includes both the contact opening 836 and the gate via opening 834, and may be approximately 30-85 nm. After the metal layer 842 is deposited, and in an embodiment of the block 716, a chemical mechanical planarization (CMP) process may be performed to remove excess material and planarize the top surface of the device 800. Therefore, when depositing the metal layer After 842, a contact is made through the metal gate via hole and is located between the metal gate layer and the adjacent source, drain, and/or body regions. As mentioned above, and because of the improved (eg increased) process tolerance provided by the embodiments disclosed herein, the device 800 is more robust (eg, compared to at least some current devices).

參閱第15圖,在此說明布局設計900,其有效地提供前述討論的裝置800的上視圖。在一些實施例中,第8至14圖所示之裝置800的剖面圖係沿著大抵上平行於第15圖中繪示的線X-X’之平面而提供。第15圖的布局設計900進一步繪示說明金屬閘極層914,其可以是前述之金屬閘極層814;金屬層928和929,其可以是前述之金屬層828和829;金屬層942,其可以是前述之金屬層842;以及閘極導孔934,其可以是前述之形成在閘極導孔的開口834內的閘極導孔。藉由示範的方式,且在一些實施例中,金屬層942沿著X軸可具有長度在大約30-60nm,以及沿著Y軸可具有寬度在大約10-30nm。在一些例子中,閘極導孔934沿著X軸可具有長度在大約10-25nm,以及沿著Y軸可具有寬度在大約10-25nm。此外,在一些實施例中,金屬閘極層914沿著X軸可具有寬度在大約4-10nm,且金屬層928和928沿著X軸可具有寬度在大約10-30nm。 Referring to Figure 15, the layout design 900 is illustrated here, which effectively provides a top view of the device 800 discussed above. In some embodiments, the cross-sectional views of the device 800 shown in Figures 8 to 14 are provided along a plane substantially parallel to the line X-X' drawn in Figure 15. The layout design 900 of FIG. 15 further illustrates the metal gate layer 914, which can be the aforementioned metal gate layer 814; the metal layers 928 and 929, which can be the aforementioned metal layers 828 and 829; and the metal layer 942, which It can be the aforementioned metal layer 842; and the gate via 934, which can be the aforementioned gate via formed in the opening 834 of the gate via. By way of example, and in some embodiments, the metal layer 942 may have a length of about 30-60 nm along the X axis and a width of about 10-30 nm along the Y axis. In some examples, the gate via 934 may have a length of about 10-25 nm along the X axis and a width of about 10-25 nm along the Y axis. In addition, in some embodiments, the metal gate layer 914 may have a width of about 4-10 nm along the X axis, and the metal layers 928 and 928 may have a width of about 10-30 nm along the X axis.

現在參閱第16圖,說明根據一些實施例形成導孔先製金屬閘極接觸件的另一方法1600。一般而言,當方法700描述導孔先製的製程包含導孔在閘極結構上,方法1600顯示導孔先製的製程包含導孔在閘極結構上,以及導孔在金屬接觸件上,金屬接觸件到相鄰的源極區、汲極區、或本體接觸區。參閱第17至23圖詳細描述方法1600如下,方法1600可在單閘極平 面裝置上實行,像是參閱第1A圖之上述示範的電晶體100,也可在多閘極裝置上實行,像是參閱第1B圖之上述的FinFET裝置150。因此,關於電晶體100及/或FinFET裝置150之上述討論的一或多個觀點也可應用於方法1600。無可否認,在各種實施例中,方法1600可在其他裝置上實行,像是閘極全環繞(GAA)裝置、Ω形閘極裝置、或Π形閘極裝置,以及應變半導體裝置、絕緣體上的矽(SOI)裝置、部份空乏SOI(PD-SOI)裝置、全空乏SOI(FD-SOI)裝置、或其他已知的裝置。 Referring now to FIG. 16, another method 1600 for forming via hole pre-fabricated metal gate contacts according to some embodiments is described. Generally speaking, when the method 700 describes the via-hole pre-manufacturing process including the via on the gate structure, the method 1600 shows that the via-hole pre-manufacturing process includes the via on the gate structure and the via on the metal contact. The metal contact is to the adjacent source region, drain region, or body contact region. Refer to Figures 17 to 23 to describe in detail the method 1600 as follows. The method 1600 can be used in a single gate flat It can be implemented on a surface device, such as the above-described exemplary transistor 100 in FIG. 1A, and it can also be implemented on a multi-gate device, such as the FinFET device 150 in FIG. 1B. Therefore, one or more of the points discussed above regarding the transistor 100 and/or the FinFET device 150 can also be applied to the method 1600. Undeniably, in various embodiments, the method 1600 can be implemented on other devices, such as gate all-around (GAA) devices, Ω-shaped gate devices, or Π-shaped gate devices, as well as strained semiconductor devices and insulators. Silicon (SOI) devices, partially depleted SOI (PD-SOI) devices, fully depleted SOI (FD-SOI) devices, or other known devices.

可以理解的是,方法1600的一部分及/或參照方法1600所討論的任何示範電晶體裝置,可以藉由已知的互補金屬氧化物半導體(CMOS)技術之製程流程製造,因此一些製程僅在此簡略地描述。為了清楚起見,方法1600的某些與方法200或方法700共用的觀點可能僅簡略討論。此外,可以理解的是,在此討論的任何示範電晶體裝置可包含各種其他裝置和部件,像是額外的電晶體、雙極性接面電晶體、電阻器、電容器、二極體、熔絲元件等,但為了更容易理解本發明實施例的發明概念而簡化。此外,在一些實施例中,在此揭露的示範電晶體裝置可包含複數個半導體裝置(例如電晶體),這些半導體裝置可能互相連接。另外,在一些實施例中,本發明實施例的各個方面可應用於閘極後製的製程或閘極先製的製程。 It is understandable that part of the method 1600 and/or any exemplary transistor devices discussed with reference to the method 1600 can be manufactured by the known complementary metal oxide semiconductor (CMOS) technology process flow, so some of the processes are only here. Briefly describe. For the sake of clarity, some points of method 1600 that are shared with method 200 or method 700 may only be briefly discussed. In addition, it is understood that any of the exemplary transistor devices discussed herein may include various other devices and components, such as additional transistors, bipolar junction transistors, resistors, capacitors, diodes, and fuse elements. Etc., but simplified in order to make it easier to understand the inventive concept of the embodiments of the present invention. In addition, in some embodiments, the exemplary transistor devices disclosed herein may include a plurality of semiconductor devices (such as transistors), and these semiconductor devices may be connected to each other. In addition, in some embodiments, various aspects of the embodiments of the present invention can be applied to a post-gate manufacturing process or a gate-first manufacturing process.

此外,在一些實施例中,在此說明的示範電晶體裝置可包含在製程的中間階段之裝置的描述,其可能是在積體電路或積體電路的一部分之製程期間製造,其可包含靜態隨機存取記憶體(SRAM)及/或其他邏輯電路;被動元件,像是電阻 器、電容器和電感器;以及主動元件,像是P通道場效電晶體(PFETs)、N通道場效電晶體(NFETs)、金屬氧化物半導體場效電晶體(MOSFETs)、互補式金屬氧化物半導體(CMOS)電晶體、雙極性電晶體、高壓電晶體、高頻電晶體、其他記憶體單元胞、及/或前述之組合。 In addition, in some embodiments, the exemplary transistor device described herein may include a description of the device at an intermediate stage of the manufacturing process, which may be manufactured during the manufacturing process of an integrated circuit or a part of the integrated circuit, which may include static Random access memory (SRAM) and/or other logic circuits; passive components, such as resistors Devices, capacitors and inductors; and active components, such as P-channel field-effect transistors (PFETs), N-channel field-effect transistors (NFETs), metal oxide semiconductor field-effect transistors (MOSFETs), and complementary metal oxides Semiconductor (CMOS) transistors, bipolar transistors, high-voltage transistors, high-frequency transistors, other memory cells, and/or combinations of the foregoing.

方法1600在區塊1602開始,在此提供具有閘極結構的基底。參閱第17圖,且在區塊1602的一實施例中,提供裝置1700,其具有基底1702且包含閘極結構1704、1706、1708。在一些實施例中,基底1702可以與前述之基底102、152大抵上相同。基底1702的一區上形成有閘極結構1704、1706、1708,且此區包含基底1702的一些區域位於相鄰的閘極結構1704、1706、1708之間,此區可包含基底1702的主動區。可以理解的是,裝置1700僅作為繪示說明,且提供用於清楚的討論。此外,在一些例子中,裝置1700可包含前述之平面裝置、多閘極裝置或其他裝置。在一些實施例中,裝置1700包含區域1710、1712,其相鄰於閘極結構1704、1706、1708,在區域1710、1712中可包含源極區、汲極區、或本體接觸區。在各種實施例中,每個閘極結構1704、1706、1708可包含界面層形成於基底1702上,閘極介電層形成於界面層上,以及金屬閘極(MG)層1714形成於閘極介電層上。在一些實施例中,閘極結構1704、1706、1708的每個界面層、閘極介電層和金屬閘極層1714可以與前述關於電晶體100和FinFET裝置150的那些層大抵上相同。此外,每個閘極結構1704、1706、1708可包含側壁間隔物層1716、1718。在一些例子中,每個側壁間隔物層1716、1718包含的材料具有 不同的介電常數值(例如k值),其可包含一或多種前述之材料,且可由前述之方法形成。 The method 1600 starts at block 1602, where a substrate with a gate structure is provided. Refer to FIG. 17 and in an embodiment of block 1602, a device 1700 is provided, which has a substrate 1702 and includes gate structures 1704, 1706, and 1708. In some embodiments, the substrate 1702 may be substantially the same as the aforementioned substrates 102 and 152. Gate structures 1704, 1706, 1708 are formed on a region of the substrate 1702, and this region includes some regions of the substrate 1702 located between adjacent gate structures 1704, 1706, 1708, and this region may include the active region of the substrate 1702 . It is understandable that the device 1700 is only for illustration and provided for clear discussion. In addition, in some examples, the device 1700 may include the aforementioned planar device, a multi-gate device, or other devices. In some embodiments, the device 1700 includes regions 1710, 1712 adjacent to the gate structures 1704, 1706, 1708, and the regions 1710, 1712 may include a source region, a drain region, or a body contact region. In various embodiments, each gate structure 1704, 1706, 1708 may include an interface layer formed on the substrate 1702, a gate dielectric layer formed on the interface layer, and a metal gate (MG) layer 1714 formed on the gate On the dielectric layer. In some embodiments, each interface layer, gate dielectric layer, and metal gate layer 1714 of the gate structures 1704, 1706, 1708 may be substantially the same as those previously described with respect to the transistor 100 and the FinFET device 150. In addition, each gate structure 1704, 1706, 1708 may include sidewall spacer layers 1716, 1718. In some examples, the material contained in each sidewall spacer layer 1716, 1718 has Different dielectric constant values (such as k value) can include one or more of the aforementioned materials, and can be formed by the aforementioned methods.

方法1600進行到區塊1604,在此沉積第一介電層於基底之上。仍參閱第17圖,且在區塊1604的一實施例中,形成介電層1720於基底1702之上,且在每個閘極結構1704、1706、1708之上。藉由示範的方式,介電層1720可包含層間介電(ILD)層,其可包含一或多種前述之材料,且可由前述之一或多種方法形成。在一些實施例中,介電層1720的厚度為大約5-40nm。 The method 1600 proceeds to block 1604, where a first dielectric layer is deposited on the substrate. Still referring to FIG. 17, and in an embodiment of block 1604, a dielectric layer 1720 is formed on the substrate 1702 and on each of the gate structures 1704, 1706, 1708. By way of example, the dielectric layer 1720 can include an interlayer dielectric (ILD) layer, which can include one or more of the aforementioned materials, and can be formed by one or more of the aforementioned methods. In some embodiments, the thickness of the dielectric layer 1720 is about 5-40 nm.

方法1600進行到區塊1606,在此形成圖案於介電層中。參閱第17和18圖,且在區塊1606的一實施例中,形成包含開口1722、1724的圖案於介電層1720中。在一些例子中,開口1722、1724提供到區域1710、1712的入口,區域1710、1712相鄰於閘極結構1704、1706、1708,在區域1710、1712中可包含源極區、汲極區、或本體接觸區。開口1722、1724可由微影圖案化和蝕刻(例如濕蝕刻或乾蝕刻)製程之合適組合形成。在一些實施例中,開口1722、1724的寬度為大約12-25nm。 The method 1600 proceeds to block 1606, where a pattern is formed in the dielectric layer. Refer to FIGS. 17 and 18, and in an embodiment of the block 1606, a pattern including openings 1722, 1724 is formed in the dielectric layer 1720. In some examples, the openings 1722, 1724 provide entrances to the regions 1710, 1712, the regions 1710, 1712 are adjacent to the gate structures 1704, 1706, 1708, and the regions 1710, 1712 may include source regions, drain regions, Or body contact area. The openings 1722, 1724 may be formed by a suitable combination of lithography patterning and etching (for example, wet etching or dry etching) processes. In some embodiments, the width of the openings 1722, 1724 is about 12-25 nm.

方法1600進行至區塊1608,在此進行金屬化和化學機械研磨製程。參閱第18和19圖,且在區塊1608的一實施例中,最初可進行金屬矽化製程,以在區域1710、1712中形成矽化物層於基底1702露出的部分上(例如藉由開口1722、1724露出),因此而提供低電阻接觸件到此處。在一些例子中,且在區塊1608的另一實施例中,可形成膠層或阻障層1726於每個開口1722、1724內。在一些例子中,膠層或阻障層1726可包含Ti、 TiN、Ta、TaN、W、或其他適當材料。在一些實施例中,膠層或阻障層1726的厚度為大約1-4nm。另外,在區塊1608的一實施例中,可在每個開口1722、1724內形成金屬層1728、1729於膠層或阻障層1726上。在一些例子中,金屬層1728、1729可包含W、Cu、Co、Ru、Al、Rh、Mo、Ta、Ti、TiN、TaN、WN、金屬矽化物、或其他合適導電材料。在一些例子中,金屬層1728和1729可包含相同的材料,且可作為單一沉積製程的一部分一起沉積。在一些實施例中,金屬層1728、1729可具有寬度在大約10-20nm,以及高度在大約30-60nm。在沉積金屬層1728、1729之後,且在區塊1608的一實施例中,可進行化學機械平坦化(CMP)製程,以移除多餘的材料,並且將裝置1700的頂面平坦化。相比方法700的區塊708,其介電層820的一部分在CMP製程之後保留;區塊1608的CMP製程可向下研磨至金屬閘極層1714的頂面(例如停止在其上),因此移除大抵上全部的介電層1720。 The method 1600 proceeds to block 1608, where the metallization and chemical mechanical polishing processes are performed. Refer to Figures 18 and 19, and in an embodiment of block 1608, a metal silicide process can be initially performed to form a silicide layer in the regions 1710 and 1712 on the exposed part of the substrate 1702 (for example, through the opening 1722 1724 is exposed), so low-resistance contacts are provided here. In some examples, and in another embodiment of block 1608, a glue layer or barrier layer 1726 may be formed in each opening 1722, 1724. In some examples, the glue layer or barrier layer 1726 may include Ti, TiN, Ta, TaN, W, or other suitable materials. In some embodiments, the thickness of the glue layer or barrier layer 1726 is about 1-4 nm. In addition, in an embodiment of the block 1608, a metal layer 1728, 1729 may be formed on the glue layer or barrier layer 1726 in each opening 1722, 1724. In some examples, the metal layers 1728, 1729 may include W, Cu, Co, Ru, Al, Rh, Mo, Ta, Ti, TiN, TaN, WN, metal silicide, or other suitable conductive materials. In some examples, the metal layers 1728 and 1729 may comprise the same material, and may be deposited together as part of a single deposition process. In some embodiments, the metal layers 1728, 1729 may have a width of about 10-20 nm and a height of about 30-60 nm. After the metal layers 1728 and 1729 are deposited, and in an embodiment of the block 1608, a chemical mechanical planarization (CMP) process may be performed to remove excess material and planarize the top surface of the device 1700. Compared with the block 708 of the method 700, a part of the dielectric layer 820 remains after the CMP process; the CMP process of the block 1608 can be ground down to the top surface of the metal gate layer 1714 (for example, stop on it), so Remove substantially all of the dielectric layer 1720.

方法1600進行到區塊1610,在此沉積接觸蝕刻停止層和第二介電層於基底之上。參閱第19和20圖,且在區塊1610的一實施例中,形成接觸蝕刻停止層(CESL)1730於基底1702之上,以及形成介電層1732於接觸蝕刻停止層1730上。藉由示範的方式,接觸蝕刻停止層1730可包含Ti、TiN、TiC、TiCN、Ta、TaN、TaC、TaCN、W、WN、WC、WCN、TiAl、TiAlN、TiAlC、TiAlCN、或前述之組合。在一些實施例中,介電層1732可包含層間介電(ILD)層,其可包含一或多種前述之材料,且可由一或多種前述之方法形成。在一些例子中,接 觸蝕刻停止層1730的厚度為大約5-20nm,且介電層1732的厚度為大約5-40nm。 The method 1600 proceeds to block 1610, where a contact etch stop layer and a second dielectric layer are deposited on the substrate. Referring to FIGS. 19 and 20, and in an embodiment of block 1610, a contact etch stop layer (CESL) 1730 is formed on the substrate 1702, and a dielectric layer 1732 is formed on the contact etch stop layer 1730. By way of example, the contact etch stop layer 1730 may include Ti, TiN, TiC, TiCN, Ta, TaN, TaC, TaCN, W, WN, WC, WCN, TiAl, TiAlN, TiAlC, TiAlCN, or a combination of the foregoing. In some embodiments, the dielectric layer 1732 may include an interlayer dielectric (ILD) layer, which may include one or more of the aforementioned materials, and can be formed by one or more of the aforementioned methods. In some cases, connect The thickness of the contact etch stop layer 1730 is about 5-20 nm, and the thickness of the dielectric layer 1732 is about 5-40 nm.

方法1600進行到區塊1612,在此形成閘極導孔的開口和接觸件導孔的開口。參閱第20和21圖,且在區塊1612的一實施例中,形成閘極導孔的開口1734和接觸件導孔的開口1736。藉由範例的方式,閘極導孔的開口1734提供到閘極結構1706的金屬閘極層1714的入口,且接觸件導孔的開口1736提供到金屬層1728的入口。藉由示範的方式,閘極導孔的開口1734和接觸件導孔的開口1736可藉由微影圖案化和蝕刻(例如濕蝕刻或乾蝕刻)製程之合適組合形成。在一些例子中,閘極導孔的開口1734和接觸件導孔的開口1736中的每一個具有寬度在大約12-25nm。在一些實施例中,可使用一或多個蝕刻製程,依序蝕刻穿過介電層1732和接觸蝕刻停止層1730中的每一個。如前所述,在各種實施例中,閘極導孔的開口1734大致上對齊(例如集中在)閘極結構1706的金屬閘極層1714。類似地,在一些實施例中,接觸件導孔的開口1736大致上對齊(例如集中在)金屬層1728。 The method 1600 proceeds to block 1612, where openings for gate vias and contact vias are formed. Referring to FIGS. 20 and 21, and in an embodiment of the block 1612, an opening 1734 of a gate via and an opening 1736 of a contact via are formed. By way of example, the opening 1734 of the gate via provides access to the metal gate layer 1714 of the gate structure 1706, and the opening 1736 of the contact via provides access to the metal layer 1728. By way of example, the openings 1734 of the gate vias and the openings 1736 of the contact vias can be formed by a suitable combination of lithography patterning and etching (such as wet etching or dry etching) processes. In some examples, each of the openings 1734 of the gate vias and the openings 1736 of the contact vias has a width of about 12-25 nm. In some embodiments, one or more etching processes may be used to sequentially etch through each of the dielectric layer 1732 and contact the etch stop layer 1730. As mentioned above, in various embodiments, the openings 1734 of the gate vias are substantially aligned with (eg, concentrated on) the metal gate layer 1714 of the gate structure 1706. Similarly, in some embodiments, the openings 1736 of the contact vias are substantially aligned with (eg, concentrated on) the metal layer 1728.

方法1600進行到區塊1614,在此形成接觸件開口。參閱第21和22圖,且在區塊1614的一實施例中,形成接觸件開口1738。接觸件開口1738也可藉由微影圖案化和蝕刻(例如濕蝕刻或乾蝕刻)製程的合適組合形成。在一些例子中,接觸件開口1738具有寬度在大約30-60nm。在一些實施例中,蝕刻製程可蝕刻介電層1732且停止在接觸蝕刻停止層1730上。在一些例子中,接觸件開口1738可與閘極導孔的開口1734和接觸 件導孔的開口1736合併及/或重疊,以形成複合開口1740。在一些實施例中,接觸件開口1738與閘極導孔的開口1734和接觸件導孔的開口1736的每一個重疊大約0-20nm。在沉積一或多層金屬層之後,如下所述,複合開口1740因此而提供金屬閘極層與相鄰的源極、汲極、和/或本體區之間的接觸件。 Method 1600 proceeds to block 1614, where contact openings are formed. Refer to FIGS. 21 and 22, and in an embodiment of the block 1614, a contact opening 1738 is formed. The contact opening 1738 can also be formed by a suitable combination of lithography patterning and etching (for example, wet etching or dry etching) processes. In some examples, the contact opening 1738 has a width of about 30-60 nm. In some embodiments, the etching process may etch the dielectric layer 1732 and stop on the contact etch stop layer 1730. In some examples, the contact opening 1738 may be in contact with the opening 1734 of the gate via The openings 1736 of the component guide holes merge and/or overlap to form a composite opening 1740. In some embodiments, the contact opening 1738 overlaps each of the gate via opening 1734 and the contact via opening 1736 by about 0-20 nm. After depositing one or more metal layers, as described below, the composite opening 1740 thus provides contacts between the metal gate layer and adjacent source, drain, and/or body regions.

應注意的是,在此所述關於方法1600的實施例也提供了在接觸件開口1738內的金屬之增加的距離‘Z’(例如在垂直於基板的方向上),藉此在接觸件開口1738內的金屬與相鄰的金屬閘極或其他金屬接觸件之間提供較大的隔離,其中金屬接觸層未連接至相鄰的金屬閘極或其他金屬接觸件(例如像是閘極結構1704的金屬閘極層1714、或金屬層1729)。如此,可降低漏電流。此外,關於方法1600所描述的實施例也提供了增加的著陸窗口,確保較高品質和更堅固的連接。 It should be noted that the embodiment of the method 1600 described herein also provides an increased distance'Z' (for example, in the direction perpendicular to the substrate) of the metal in the contact opening 1738, thereby 1738 provides greater isolation between the metal and the adjacent metal gate or other metal contacts, where the metal contact layer is not connected to the adjacent metal gate or other metal contacts (such as the gate structure 1704 The metal gate layer 1714, or the metal layer 1729). In this way, leakage current can be reduced. In addition, the embodiment described with respect to the method 1600 also provides an increased landing window, ensuring a higher quality and stronger connection.

方法1600進行到區塊1616,在此進行金屬化和化學機械研磨製程。參閱第22和23圖,且在區塊1616的一實施例中,可在複合開口1740內形成膠層或阻障層1742。在一些例子中,膠層或阻障層1742可包含Ti、TiN、Ta、TaN、W或其他適當材料。在一些實施例中,膠層或阻障層1742的厚度為大約1-4nm。另外,在區塊1616的一實施例中,可在複合開口1740內形成金屬層1744於膠層或阻障層1742上。在一些例子中,金屬層1744可包含W、Cu、Co、Ru、Al、Rh、Mo、Ta、Ti或其他導電材料。應注意的是,在複合開口1740內的金屬層1744可以與形成在每一個接觸件開口1738、閘極導孔的開口1734和接觸件導孔的開口1736內的金屬層1744相等地描述,如前所述之接觸 件開口1738與閘極導孔的開口1734和接觸件導孔的開口1736中的每一個重疊。因此,在一些實施例中,橫跨複合開口1740的長度之金屬層1744的寬度在大約30-60nm,且金屬層1744的高度在大約10-30nm。在沉積金屬層1744之後,且在區塊1616的一實施例中,可進行化學機械平坦化(CMP)製程,以移除多餘的材料,並將裝置1700的頂面平坦化。因此,在沉積金屬層1744之後,經由金屬閘極導孔和接觸件導孔製成接觸件,且接觸件位於金屬閘極層與相鄰的源極、汲極、和/或本體區之間。如前所述,因為藉由在此揭露的實施例所提供的改善的(例如增加的)製程容許度,裝置1700更加堅固(例如相較於至少一些目前的裝置)。 The method 1600 proceeds to block 1616, where the metallization and chemical mechanical polishing processes are performed. Refer to FIGS. 22 and 23, and in an embodiment of the block 1616, a glue layer or barrier layer 1742 may be formed in the composite opening 1740. In some examples, the glue layer or barrier layer 1742 may include Ti, TiN, Ta, TaN, W, or other suitable materials. In some embodiments, the thickness of the glue layer or barrier layer 1742 is about 1-4 nm. In addition, in an embodiment of the block 1616, a metal layer 1744 may be formed on the glue layer or barrier layer 1742 in the composite opening 1740. In some examples, the metal layer 1744 may include W, Cu, Co, Ru, Al, Rh, Mo, Ta, Ti, or other conductive materials. It should be noted that the metal layer 1744 in the composite opening 1740 can be described as equivalent to the metal layer 1744 formed in each contact opening 1738, gate via opening 1734, and contact via opening 1736, such as The aforementioned contact The element opening 1738 overlaps each of the opening 1734 of the gate via and the opening 1736 of the contact via. Therefore, in some embodiments, the width of the metal layer 1744 across the length of the composite opening 1740 is about 30-60 nm, and the height of the metal layer 1744 is about 10-30 nm. After the metal layer 1744 is deposited, and in one embodiment of the block 1616, a chemical mechanical planarization (CMP) process may be performed to remove excess material and planarize the top surface of the device 1700. Therefore, after the metal layer 1744 is deposited, the contact is made through the metal gate via and the contact via, and the contact is located between the metal gate layer and the adjacent source, drain, and/or body regions . As mentioned above, because of the improved (eg increased) process tolerance provided by the embodiments disclosed herein, the device 1700 is more robust (eg, compared to at least some current devices).

參閱第24圖,在此說明布局設計1800,其有效地提供前述討論的裝置1700的上視圖。在一些實施例中,第17至23圖所示之裝置1700的剖面圖係沿著大抵上平行於第24圖中繪示的線Y-Y’之平面而提供。第24圖的布局設計1800進一步繪示說明金屬閘極層1814,其可以是前述之金屬閘極層1714;金屬層1828和1829,其可以是前述之金屬層1728和1729;金屬層1844,其可以是前述之金屬層1744;閘極導孔1834,其可以是前述形成在閘極導孔的開口1734內的閘極導孔;以及接觸件導孔1836,其可以是前述形成在接觸件導孔的開口1736內的接觸件導孔。藉由示範的方式,且在一些實施例中,金屬層1844沿著X軸可具有長度在大約30-60nm,且沿著Y軸可具有寬度在大約10-30nm。在一些例子中,閘極導孔1834沿著X軸可具有長度在大約10-25nm,且沿著Y軸可具有寬度在大約10-25nm。在一 些例子中,接觸件導孔1836沿著X軸可具有長度在大約10-25nm,且沿著Y軸可具有寬度在大約10-25nm。此外,在一些實施例中,金屬閘極層1814沿著X軸可具有寬度在大約4-10nm,金屬層1828和1829沿著X軸可具有寬度在大約10-30nm。 Referring to Figure 24, the layout design 1800 is illustrated here, which effectively provides a top view of the device 1700 discussed previously. In some embodiments, the cross-sectional view of the device 1700 shown in Figures 17 to 23 is provided along a plane substantially parallel to the line Y-Y' drawn in Figure 24. The layout design 1800 of FIG. 24 further illustrates the metal gate layer 1814, which can be the aforementioned metal gate layer 1714; the metal layers 1828 and 1829, which can be the aforementioned metal layers 1728 and 1729; the metal layer 1844, which It can be the aforementioned metal layer 1744; the gate via 1834, which can be the aforementioned gate via formed in the opening 1734 of the gate via; and the contact via 1836, which can be the aforementioned formed in the contact guide. The contact guide hole in the opening 1736 of the hole. By way of example, and in some embodiments, the metal layer 1844 may have a length of about 30-60 nm along the X axis, and a width of about 10-30 nm along the Y axis. In some examples, the gate via 1834 may have a length of about 10-25 nm along the X axis, and a width of about 10-25 nm along the Y axis. In a In some examples, the contact via 1836 may have a length of about 10-25 nm along the X axis, and a width of about 10-25 nm along the Y axis. In addition, in some embodiments, the metal gate layer 1814 may have a width of about 4-10 nm along the X axis, and the metal layers 1828 and 1829 may have a width of about 10-30 nm along the X axis.

在此所述之各種實施例提供超越現存技術的數個優點,應理解的是,並非全部優點都需要在此描述,對於全部實施例而言並不需要特定優點,且其他實施例可能提供不同優點。作為一範例,在此討論的實施例包含導孔先製金屬閘極接觸件之製造製程的方法及結構。在至少一些實施例中,提供導孔先製金屬閘極接觸件製程,閘極導孔先形成在金屬閘極上,之後形成金屬接觸層在閘極導孔上,而不是如同在至少一些傳統製程中讓金屬閘極直接接觸於金屬接觸層。在各種例子中,金屬接觸層還可連接至相鄰的源極、汲極、和/或本體區。在一些實施例中,閘極導孔集中在金屬閘極上,且可對於金屬接觸層提供較大的著陸窗口(例如相較於金屬閘極直接接觸於金屬接觸層)。作為增加閘極導孔於金屬閘極與金屬接觸層之間的結果,其改善了(例如增加)製程容許度。此外,使用在此所述之閘極導孔,使得金屬接觸層(例如其接觸於閘極導孔)在垂直於基底的方向上設置成增加的距離‘Z’(例如相較於至少一些傳統製程),因此在金屬接觸層與相鄰的金屬閘極之間提供較大的隔離,其中金屬接觸層未連接至相鄰的金屬閘極。如此,降低了金屬接觸層與一或多個相鄰的金屬閘極之間的漏電流,其中金屬接觸層未連接至相鄰的金屬閘極。因此,在此揭露的各種實施例提供更高品質和更堅固的閘極連接,其進一步 提供改善的裝置和電路效能。 The various embodiments described herein provide several advantages over existing technologies. It should be understood that not all of the advantages need to be described here, for all embodiments, specific advantages are not required, and other embodiments may provide different advantage. As an example, the embodiment discussed here includes the method and structure of the manufacturing process of the via-hole prefabricated metal gate contact. In at least some embodiments, a via hole pre-made metal gate contact process is provided. The gate via is first formed on the metal gate, and then the metal contact layer is formed on the gate via, instead of as in at least some traditional processes Let the metal gate directly contact the metal contact layer. In various examples, the metal contact layer may also be connected to adjacent source, drain, and/or body regions. In some embodiments, the gate vias are concentrated on the metal gate, and a larger landing window can be provided for the metal contact layer (for example, compared to the metal gate directly contacting the metal contact layer). As a result of increasing the gate vias between the metal gate and the metal contact layer, it improves (eg increases) the process tolerance. In addition, the gate vias described herein are used so that the metal contact layer (for example, which is in contact with the gate vias) is arranged at an increased distance'Z' in the direction perpendicular to the substrate (for example, compared to at least some conventional Process), therefore, a greater isolation is provided between the metal contact layer and the adjacent metal gate, wherein the metal contact layer is not connected to the adjacent metal gate. In this way, the leakage current between the metal contact layer and one or more adjacent metal gates is reduced, wherein the metal contact layer is not connected to the adjacent metal gates. Therefore, the various embodiments disclosed herein provide higher quality and stronger gate connections, which further Provides improved device and circuit performance.

因此,本發明實施例之一描述半導體裝置的製造方法,其包含沉積第一介電層於基底之上。在一些實施例中,基底包含閘極結構,閘極結構具有金屬閘極層。在一些例子中,形成開口於第一介電層中,以露出相鄰於閘極結構之基底的一部分,以及沉積第一金屬層於開口內。在各種實施例中,沉積第二介電層於第一介電層上,且位於第一金屬層上。之後,在一些實施例中,蝕刻第一介電層和第二介電層,以形成閘極導孔的開口,在此閘極導孔的開口露出閘極結構的金屬閘極層。在一些例子中,移除第二介電層的一部分,以形成接觸件開口,其露出第一金屬層,在此閘極導孔的開口和接觸件開口合併以形成複合開口。在一些實施例中,沉積第二金屬層於複合開口內,在此第二金屬層經由第二金屬層的閘極導孔部分將閘極結構的金屬閘極層電性連接至第一金屬層。 Therefore, one of the embodiments of the present invention describes a method of manufacturing a semiconductor device, which includes depositing a first dielectric layer on a substrate. In some embodiments, the substrate includes a gate structure, and the gate structure has a metal gate layer. In some examples, an opening is formed in the first dielectric layer to expose a portion of the substrate adjacent to the gate structure, and the first metal layer is deposited in the opening. In various embodiments, the second dielectric layer is deposited on the first dielectric layer and on the first metal layer. Afterwards, in some embodiments, the first dielectric layer and the second dielectric layer are etched to form the opening of the gate via, where the opening of the gate via exposes the metal gate layer of the gate structure. In some examples, a part of the second dielectric layer is removed to form a contact opening, which exposes the first metal layer, where the gate via opening and the contact opening merge to form a composite opening. In some embodiments, a second metal layer is deposited in the composite opening, where the second metal layer electrically connects the metal gate layer of the gate structure to the first metal layer through the gate via hole portion of the second metal layer .

在一實施例中,上述方法更包含在沉積第一金屬層之後和沉積第二介電層之前,沉積接觸蝕刻停止層於基底之上,且沉積第二介電層於接觸蝕刻停止層上。 In one embodiment, the above method further includes depositing a contact etch stop layer on the substrate after depositing the first metal layer and before depositing the second dielectric layer, and depositing a second dielectric layer on the contact etch stop layer.

在一實施例中,上述方法更包含蝕刻第一介電層、接觸蝕刻停止層和第二介電層,以形成閘極導孔的開口。 In one embodiment, the above method further includes etching the first dielectric layer, contacting the etch stop layer and the second dielectric layer to form the opening of the gate via.

在一實施例中,上述方法更包含移除第二介電層的一部分和接觸蝕刻停止層的一部分,以形成接觸件開口,其露出第一金屬層。 In one embodiment, the above method further includes removing a part of the second dielectric layer and a part of the contact etch stop layer to form a contact opening, which exposes the first metal layer.

在一實施例中,上述方法更包含在形成開口於第一介電層中之後和沉積第一金屬層之前,形成矽化物層於基底 之露出的部分上,露出的部分相鄰於閘極結構;以及沉積第一金屬層於矽化物層之上。 In one embodiment, the above method further includes forming a silicide layer on the substrate after forming the opening in the first dielectric layer and before depositing the first metal layer On the exposed part, the exposed part is adjacent to the gate structure; and the first metal layer is deposited on the silicide layer.

在一實施例中,上述方法更包含在沉積第一金屬層之後,進行化學機械研磨製程,其中化學機械研磨製程將半導體裝置的頂面平坦化,且其中第一介電層的一部分在進行化學機械研磨製程之後保留。 In one embodiment, the above method further includes performing a chemical mechanical polishing process after depositing the first metal layer, wherein the chemical mechanical polishing process planarizes the top surface of the semiconductor device, and wherein a part of the first dielectric layer is subjected to chemical mechanical polishing. Retained after the mechanical grinding process.

在一實施例中,第一介電層和第二介電層包含層間介電層。 In one embodiment, the first dielectric layer and the second dielectric layer include interlayer dielectric layers.

在一實施例中,相鄰於閘極結構之基底的露出部分包含源極區、汲極區或本體接觸區。 In one embodiment, the exposed portion of the substrate adjacent to the gate structure includes a source region, a drain region or a body contact region.

在一實施例中,閘極導孔的開口對齊閘極結構的金屬閘極層。 In one embodiment, the opening of the gate via is aligned with the metal gate layer of the gate structure.

在一實施例中,第二金屬層電性連接閘極結構的金屬閘極層至第一金屬層,且第一金屬層電性連接至源極區、汲極區或本體接觸區。 In one embodiment, the second metal layer is electrically connected to the metal gate layer of the gate structure to the first metal layer, and the first metal layer is electrically connected to the source region, the drain region or the body contact region.

在另一實施例中所討論的是方法,在此形成第一金屬層,其鄰接於閘極結構的側壁。在一些實施例中,第一金屬層接觸在第一金屬層下方之基底的一區,且閘極結構包含金屬閘極。在一些例子中,第一介電層沉積於基底之上。在一些實施例中,且在閘極結構之上的一區中,蝕刻第一介電層以形成閘極導孔的開口,在此閘極導孔的開口露出閘極結構的金屬閘極。在各種例子中,且在第一金屬層之上的一區中,蝕刻第一介電層以形成接觸件導孔的開口,在此接觸件導孔的開口露出第一金屬層。在一些實施例中,且從閘極導孔的開口與接觸 件導孔的開口之間的一區,移除第一介電層以形成接觸件開口,在此接觸件開口、閘極導孔的開口和接觸件導孔的開口合併以形成複合開口。之後,在一些實施例中,形成第二金屬層於複合開口內,經由閘極導孔部分和第二金屬層的接觸件導孔部分,將閘極結構的金屬閘極電性連接至第一金屬層。 In another embodiment, a method is discussed, in which a first metal layer is formed, which is adjacent to the sidewall of the gate structure. In some embodiments, the first metal layer is in contact with a region of the substrate under the first metal layer, and the gate structure includes a metal gate. In some examples, the first dielectric layer is deposited on the substrate. In some embodiments, and in a region above the gate structure, the first dielectric layer is etched to form an opening of the gate via, where the opening of the gate via exposes the metal gate of the gate structure. In various examples, and in a region above the first metal layer, the first dielectric layer is etched to form the opening of the contact via hole, where the opening of the contact via hole exposes the first metal layer. In some embodiments, and from the opening of the gate via and contact In a region between the openings of the via holes, the first dielectric layer is removed to form a contact opening, where the contact opening, the gate via opening and the contact via opening are combined to form a composite opening. Afterwards, in some embodiments, a second metal layer is formed in the composite opening, and the metal gate of the gate structure is electrically connected to the first through the gate via portion and the contact via portion of the second metal layer. Metal layer.

在一實施例中,上述方法更包含在沉積第一介電層之前,沉積接觸蝕刻停止層於基底之上,以及沉積第一介電層於接觸蝕刻停止層上。 In one embodiment, the above method further includes depositing a contact etch stop layer on the substrate before depositing the first dielectric layer, and depositing a first dielectric layer on the contact etch stop layer.

在一實施例中,上述方法更包含蝕刻在閘極結構之上的一區中的接觸蝕刻停止層和第一介電層,以形成閘極導孔的開口。 In one embodiment, the above method further includes etching the contact etch stop layer and the first dielectric layer in a region above the gate structure to form the opening of the gate via.

在一實施例中,上述方法更包含蝕刻在第一金屬層之上的一區中的接觸蝕刻停止層和第一介電層,以形成接觸件導孔的開口。 In one embodiment, the above method further includes etching the contact etch stop layer and the first dielectric layer in a region above the first metal layer to form the opening of the contact via hole.

在一實施例中,上述方法更包含在形成第一金屬層之前,沉積第二介電層於基底之上;形成開口於第二介電層中,以露出在第一金屬層下方之基底的一區;以及形成第一金屬層於開口內。 In one embodiment, the above method further includes depositing a second dielectric layer on the substrate before forming the first metal layer; forming an opening in the second dielectric layer to expose the substrate under the first metal layer A region; and forming a first metal layer in the opening.

在一實施例中,上述方法更包含在形成第一金屬層於開口內之後和沉積第一介電層之前,進行化學機械研磨製程,將半導體裝置的頂面平坦化,其中化學機械研磨製程移除第二介電層且停止在金屬閘極的頂面上。 In one embodiment, the above method further includes performing a chemical mechanical polishing process to planarize the top surface of the semiconductor device after forming the first metal layer in the opening and before depositing the first dielectric layer, wherein the chemical mechanical polishing process is moved Remove the second dielectric layer and stop on the top surface of the metal gate.

在一實施例中,在第一金屬層下方之基底的一區包含源極區、汲極區或本體接觸區。 In one embodiment, a region of the substrate under the first metal layer includes a source region, a drain region, or a body contact region.

在一實施例中,閘極導孔的開口對齊閘極結構的金屬閘極,且接觸件導孔的開口對齊第一金屬層。 In one embodiment, the opening of the gate via is aligned with the metal gate of the gate structure, and the opening of the contact via is aligned with the first metal layer.

在又另一實施例中討論半導體裝置,其包含的基底具有閘極結構,閘極結構包含金屬閘極。在一些例子中,第一金屬層鄰接於設置在閘極結構的側壁上之側壁間隔物,在此第一金屬層接觸第一金屬層下方之基底的一區。在一些實施例中,介電層設置於基底之上,在此介電層包含填充第二金屬層之複合開口。在各種例子中,第二金屬層包含定義在複合開口的閘極導孔部分內的閘極導孔,在此閘極導孔接觸金屬閘極,且閘極導孔大抵上對齊金屬閘極。在一些實施例中,第二金屬層接觸在複合開口的接觸件部份內的第一金屬層。 In yet another embodiment, a semiconductor device is discussed, which includes a substrate having a gate structure, and the gate structure includes a metal gate. In some examples, the first metal layer is adjacent to the sidewall spacers disposed on the sidewalls of the gate structure, where the first metal layer contacts a region of the substrate below the first metal layer. In some embodiments, the dielectric layer is disposed on the substrate, where the dielectric layer includes a composite opening filled with the second metal layer. In various examples, the second metal layer includes a gate via defined in the gate via portion of the composite opening, where the gate via contacts the metal gate, and the gate via is substantially aligned with the metal gate. In some embodiments, the second metal layer contacts the first metal layer in the contact portion of the composite opening.

在一實施例中,第一金屬層下方之基底的一區包含源極區、汲極區或本體接觸區。 In one embodiment, a region of the substrate under the first metal layer includes a source region, a drain region, or a body contact region.

以上概述了數個實施例的部件,使得在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的概念。在本發明所屬技術領域中具有通常知識者應該理解,可以使用本發明實施例作為基礎,來設計或修改其他製程和結構,以實現與在此所介紹的實施例相同的目的及/或達到相同的好處。在本發明所屬技術領域中具有通常知識者也應該理解,這些等效的結構並不背離本發明的精神和範圍,並且在不背離本發明的精神和範圍的情況下,在此可以做出各種改變、取代和其他選擇。因此,本發明之保護範圍當視後附之申請專利範圍所界定為準。 The components of several embodiments are summarized above, so that those with ordinary knowledge in the technical field of the present invention can better understand the concept of the embodiments of the present invention. Those with ordinary knowledge in the technical field of the present invention should understand that the embodiments of the present invention can be used as a basis to design or modify other processes and structures to achieve the same purpose and/or the same as the embodiments described herein. the benefits of. Those with ordinary knowledge in the technical field to which the present invention belongs should also understand that these equivalent structures do not depart from the spirit and scope of the present invention, and various modifications can be made here without departing from the spirit and scope of the present invention. Changes, substitutions and other choices. Therefore, the scope of protection of the present invention shall be subject to the definition of the attached patent scope.

800‧‧‧裝置 800‧‧‧device

802‧‧‧基底 802‧‧‧Base

810、812‧‧‧區域 810, 812‧‧‧ area

828、829‧‧‧金屬層 828、829‧‧‧Metal layer

830‧‧‧接觸蝕刻停止層 830‧‧‧Contact etching stop layer

832‧‧‧介電層 832‧‧‧Dielectric layer

834‧‧‧閘極導孔的開口 834‧‧‧The opening of the gate via

836‧‧‧接觸件開口 836‧‧‧Contact opening

838‧‧‧複合開口 838‧‧‧Composite opening

A’、B’、C’‧‧‧距離 A’, B’, C’‧‧‧distance

Z‧‧‧增加的距離 Z‧‧‧ Increased distance

Claims (14)

一種半導體裝置的製造方法,包括:沉積一第一介電層於一基底之上,其中該基底包含一閘極結構具有一金屬閘極層;形成一開口於該第一介電層中,以露出相鄰於該閘極結構之該基底的一部分,並且沉積一第一金屬層於該開口內;沉積一第二介電層於該第一介電層之上和該第一金屬層之上;蝕刻該第一介電層和該第二介電層,以形成一閘極導孔的開口,其中該閘極導孔的開口露出該閘極結構的該金屬閘極層;移除該第二介電層的一部分,以形成一接觸件開口,該接觸件開口露出該第一金屬層和該金屬閘極層,其中該閘極導孔的開口和該接觸件開口合併以形成一複合開口;以及沉積一第二金屬層於該複合開口內,其中該第二金屬層經由該第二金屬層的一閘極導孔部分,電性連接該閘極結構的該金屬閘極層至該第一金屬層。 A method for manufacturing a semiconductor device includes: depositing a first dielectric layer on a substrate, wherein the substrate includes a gate structure with a metal gate layer; forming an opening in the first dielectric layer to Expose a portion of the substrate adjacent to the gate structure, and deposit a first metal layer in the opening; deposit a second dielectric layer on the first dielectric layer and on the first metal layer Etching the first dielectric layer and the second dielectric layer to form a gate via opening, wherein the gate via opening exposes the metal gate layer of the gate structure; removing the first A part of the two dielectric layers to form a contact opening exposing the first metal layer and the metal gate layer, wherein the opening of the gate via and the contact opening merge to form a composite opening And depositing a second metal layer in the composite opening, wherein the second metal layer is electrically connected to the metal gate layer of the gate structure through a gate via hole portion of the second metal layer A metal layer. 如申請專利範圍第1項所述之半導體裝置的製造方法,更包括:在沉積該第一金屬層之後和沉積該第二介電層之前,沉積一接觸蝕刻停止層於該基底之上,且沉積該第二介電層於該接觸蝕刻停止層上。 The method for manufacturing a semiconductor device as described in claim 1 further includes: after depositing the first metal layer and before depositing the second dielectric layer, depositing a contact etch stop layer on the substrate, and Depositing the second dielectric layer on the contact etch stop layer. 如申請專利範圍第2項所述之半導體裝置的製造方法,更包括: 在沉積該第一金屬層之後,蝕刻該第一介電層、該接觸蝕刻停止層和該第二介電層,以形成該閘極導孔的開口。 The method of manufacturing a semiconductor device as described in item 2 of the scope of the patent application further includes: After depositing the first metal layer, the first dielectric layer, the contact etch stop layer and the second dielectric layer are etched to form the opening of the gate via. 如申請專利範圍第2項所述之半導體裝置的製造方法,更包括:移除該第二介電層的該部分和該接觸蝕刻停止層的一部分,以形成該接觸件開口,該接觸件開口露出該第一金屬層。 The method for manufacturing a semiconductor device as described in claim 2 further includes: removing the part of the second dielectric layer and a part of the contact etching stop layer to form the contact opening, the contact opening The first metal layer is exposed. 如申請專利範圍第1至4項中任一項所述之半導體裝置的製造方法,其中相鄰於該閘極結構之該基底的該露出部分包含一源極區、一汲極區或一本體接觸區。 The method for manufacturing a semiconductor device as described in any one of claims 1 to 4, wherein the exposed portion of the substrate adjacent to the gate structure includes a source region, a drain region or a body Contact area. 一種半導體裝置的製造方法,包括:形成一第一金屬層,鄰接於一閘極結構的一側壁,其中該第一金屬層接觸位於該第一金屬層下方之一基底的一區,且其中該閘極結構包含一金屬閘極;沉積一第一介電層於該基底之上;蝕刻在該閘極結構之上的一區中的該第一介電層,以形成一閘極導孔的開口,其中該閘極導孔的開口露出該閘極結構的該金屬閘極;蝕刻在該第一金屬層之上的一區中的該第一介電層,以形成一接觸件導孔的開口,其中該接觸件導孔的開口露出該第一金屬層;從該閘極導孔的開口與該接觸件導孔的開口之間的一區移除該第一介電層,以形成一接觸件開口,其中該接觸件開口、該閘極導孔的開口和該接觸件導孔的開口合併,以形 成一複合開口,該複合開口露出該第一金屬層和該金屬閘極;以及形成一第二金屬層於該複合開口內,經由該第二金屬層的一閘極導孔部分和一接觸件導孔部分,電性連接該閘極結構的該金屬閘極至該第一金屬層。 A method for manufacturing a semiconductor device includes: forming a first metal layer adjacent to a sidewall of a gate structure, wherein the first metal layer contacts a region of a substrate located below the first metal layer, and wherein the The gate structure includes a metal gate; depositing a first dielectric layer on the substrate; etching the first dielectric layer in a region above the gate structure to form a gate via Opening, wherein the opening of the gate via hole exposes the metal gate of the gate structure; the first dielectric layer in a region above the first metal layer is etched to form a contact via hole Opening, wherein the opening of the contact via hole exposes the first metal layer; the first dielectric layer is removed from a region between the opening of the gate via and the opening of the contact via to form a Contact opening, wherein the contact opening, the opening of the gate guide hole and the opening of the contact guide hole are combined to form Forming a composite opening, the composite opening exposing the first metal layer and the metal gate; and forming a second metal layer in the composite opening through a gate via hole portion of the second metal layer and a contact guide The hole portion electrically connects the metal gate of the gate structure to the first metal layer. 如申請專利範圍第6項所述之半導體裝置的製造方法,更包括:在沉積該第一介電層之前,沉積一接觸蝕刻停止層於該基底之上,並且沉積該第一介電層於該接觸蝕刻停止層上。 The method for manufacturing a semiconductor device as described in claim 6 further includes: before depositing the first dielectric layer, depositing a contact etch stop layer on the substrate, and depositing the first dielectric layer on the substrate. The contact etch stop layer. 如申請專利範圍第7項所述之半導體裝置的製造方法,更包括:蝕刻在該閘極結構之上的該區中的該接觸蝕刻停止層和該第一介電層,以形成該閘極導孔的開口。 The method for manufacturing a semiconductor device as described in claim 7 further comprises: etching the contact etching stop layer and the first dielectric layer in the region above the gate structure to form the gate The opening of the pilot hole. 如申請專利範圍第7項所述之半導體裝置的製造方法,更包括:蝕刻在該第一金屬層之上的該區中的該接觸蝕刻停止層和該第一介電層,以形成該接觸件導孔的開口。 The method for manufacturing a semiconductor device as described in claim 7 further comprises: etching the contact etch stop layer and the first dielectric layer in the region above the first metal layer to form the contact The opening of the guide hole of the piece. 如申請專利範圍第6至9項中任一項所述之半導體裝置的製造方法,更包括:在形成該第一金屬層之前,沉積一第二介電層於該基底之上;形成一開口於該第二介電層中,以露出在該第一金屬層下方之該基底的該區;以及形成該第一金屬層於該開口內。 The method for manufacturing a semiconductor device as described in any one of claims 6 to 9 of the scope of the patent application further includes: before forming the first metal layer, depositing a second dielectric layer on the substrate; forming an opening In the second dielectric layer to expose the region of the substrate under the first metal layer; and forming the first metal layer in the opening. 如申請專利範圍第10項所述之半導體裝置的製造方法,更包括:在形成該第一金屬層於該開口內之後和沉積該第一介電層之前,進行一化學機械研磨製程,將該半導體裝置的頂面平坦化,其中該化學機械研磨製程移除該第二介電層且停止在該金屬閘極的頂面上。 The method for manufacturing a semiconductor device as described in claim 10 further includes: after forming the first metal layer in the opening and before depositing the first dielectric layer, performing a chemical mechanical polishing process to The top surface of the semiconductor device is planarized, wherein the chemical mechanical polishing process removes the second dielectric layer and stops on the top surface of the metal gate. 如申請專利範圍第6至9項中任一項所述之半導體裝置的製造方法,其中該閘極導孔的開口對齊該閘極結構的該金屬閘極,且其中該接觸件導孔的開口的側壁延伸超過該第一金屬層的側壁。 The method for manufacturing a semiconductor device as described in any one of claims 6 to 9, wherein the opening of the gate via is aligned with the metal gate of the gate structure, and wherein the opening of the contact via The sidewalls of the first metal layer extend beyond the sidewalls of the first metal layer. 一種半導體裝置,包括:一基底,包含一閘極結構具有一金屬閘極;一第一金屬層,鄰接於設置在該閘極結構的一側壁上的一側壁間隔物,其中該第一金屬層接觸在該第一金屬層下方之該基底的一區;以及一介電層,位於該基底之上,其中該介電層包含用一第二金屬層填充的一複合開口;其中該第二金屬層包含一閘極導孔定義於該複合開口的一閘極導孔部分內,其中該閘極導孔接觸該金屬閘極,且其中該閘極導孔對齊該金屬閘極,且該閘極導孔的頂表面高於該第一金屬層的頂表面;且其中該第一金屬層接觸該複合開口的一接觸件部分內的該第二金屬層。 A semiconductor device includes: a substrate including a gate structure with a metal gate; a first metal layer adjacent to a sidewall spacer arranged on a sidewall of the gate structure, wherein the first metal layer Contacting a region of the substrate under the first metal layer; and a dielectric layer on the substrate, wherein the dielectric layer includes a composite opening filled with a second metal layer; wherein the second metal The layer includes a gate via hole defined in a gate via hole portion of the composite opening, wherein the gate via hole contacts the metal gate, and wherein the gate via hole is aligned with the metal gate, and the gate The top surface of the via hole is higher than the top surface of the first metal layer; and wherein the first metal layer contacts the second metal layer in a contact part of the composite opening. 如申請專利範圍第13項所述之半導體裝置,其中該第一金 屬層接觸該側壁間隔物。 The semiconductor device described in item 13 of the scope of patent application, wherein the first gold The attribute layer contacts the sidewall spacer.
TW107127426A 2017-11-30 2018-08-07 Semiconductor devices and methods of fabricating the same TWI730247B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762592763P 2017-11-30 2017-11-30
US62/592,763 2017-11-30
US15/884,012 US10636697B2 (en) 2017-11-30 2018-01-30 Contact formation method and related structure
US15/884,012 2018-01-30

Publications (2)

Publication Number Publication Date
TW201926505A TW201926505A (en) 2019-07-01
TWI730247B true TWI730247B (en) 2021-06-11

Family

ID=66632708

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127426A TWI730247B (en) 2017-11-30 2018-08-07 Semiconductor devices and methods of fabricating the same

Country Status (3)

Country Link
US (1) US10636697B2 (en)
KR (1) KR102058566B1 (en)
TW (1) TWI730247B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153483B2 (en) * 2013-10-30 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Method of semiconductor integrated circuit fabrication
US10868185B2 (en) * 2018-11-27 2020-12-15 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method of forming the same
US11189727B2 (en) * 2019-08-23 2021-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET contacts and method forming same
DE102020110480B4 (en) 2019-09-30 2024-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Middle-of-line interconnect structure and manufacturing process
US11462471B2 (en) * 2019-09-30 2022-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Middle-of-line interconnect structure and manufacturing method
US11393718B2 (en) * 2020-01-30 2022-07-19 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure and method for forming the same
US11189525B2 (en) 2020-02-21 2021-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. Via-first process for connecting a contact and a gate electrode
US11444018B2 (en) 2020-02-27 2022-09-13 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device including recessed interconnect structure
DE102020126070A1 (en) * 2020-03-31 2021-09-30 Taiwan Semiconductor Manufacturing Co., Ltd. CONTACT EDUCATION PROCEDURE AND CORRESPONDING STRUCTURE
US11972983B2 (en) 2020-06-24 2024-04-30 Etron Technology, Inc. Miniaturized transistor structure with controlled dimensions of source/drain and contact-opening and related manufacture method
US11973120B2 (en) 2020-06-24 2024-04-30 Etron Technology, Inc. Miniaturized transistor structure with controlled dimensions of source/drain and contact-opening and related manufacture method
US11652149B2 (en) * 2020-08-13 2023-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Common rail contact
US11855218B2 (en) * 2020-09-09 2023-12-26 Etron Technology, Inc. Transistor structure with metal interconnection directly connecting gate and drain/source regions
US20220093757A1 (en) * 2020-09-22 2022-03-24 Taiwan Semiconductor Manufacturing Co., Ltd. Middle-of-line interconnect structure and manufacturing method
US11894435B2 (en) * 2020-10-15 2024-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. Contact plug structure of semiconductor device and method of forming same
US20220238373A1 (en) 2021-01-27 2022-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Gate contact structure
US11652049B2 (en) * 2021-03-10 2023-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of forming thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100308380A1 (en) * 2009-06-05 2010-12-09 International Business Machines Corporation Dual damascene processing for gate conductor and active area to first metal level interconnect structures
US20160379925A1 (en) * 2015-06-29 2016-12-29 International Business Machines Corporation Stable contact on one-sided gate tie-down structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339029B1 (en) 2000-01-19 2002-01-15 Taiwan Semiconductor Manufacturing Company Method to form copper interconnects
US6440847B1 (en) 2001-04-30 2002-08-27 Taiwan Semiconductor Manufacturing Company Method for forming a via and interconnect in dual damascene
US6940108B2 (en) 2002-12-05 2005-09-06 Taiwan Semiconductor Manufacturing Co., Ltd. Slot design for metal interconnects
US8446012B2 (en) 2007-05-11 2013-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structures
US8952547B2 (en) 2007-07-09 2015-02-10 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with contact structure with first/second contacts formed in first/second dielectric layers and method of forming same
JP2010171291A (en) 2009-01-26 2010-08-05 Renesas Electronics Corp Semiconductor device and method of manufacturing the semiconductor device
US9553028B2 (en) 2014-03-19 2017-01-24 Globalfoundries Inc. Methods of forming reduced resistance local interconnect structures and the resulting devices
US9640625B2 (en) 2014-04-25 2017-05-02 Globalfoundries Inc. Self-aligned gate contact formation
US9431297B2 (en) 2014-10-01 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming an interconnect structure for a semiconductor device
US9455254B2 (en) * 2014-11-07 2016-09-27 Globalfoundries Inc. Methods of forming a combined gate and source/drain contact structure and the resulting device
CN111524889B (en) 2015-06-09 2023-07-04 联华电子股份有限公司 Static random access memory
US10427179B2 (en) 2015-09-17 2019-10-01 Cnh Industrial America Llc Low flow metering system
US11088030B2 (en) 2015-12-30 2021-08-10 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and a method for fabricating the same
US9947657B2 (en) 2016-01-29 2018-04-17 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and a method for fabricating the same
US20180116052A1 (en) * 2016-10-20 2018-04-26 Northrop Grumman Systems Corporation Electronic tile packaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100308380A1 (en) * 2009-06-05 2010-12-09 International Business Machines Corporation Dual damascene processing for gate conductor and active area to first metal level interconnect structures
US20160379925A1 (en) * 2015-06-29 2016-12-29 International Business Machines Corporation Stable contact on one-sided gate tie-down structure

Also Published As

Publication number Publication date
TW201926505A (en) 2019-07-01
KR20190064376A (en) 2019-06-10
US20190164813A1 (en) 2019-05-30
KR102058566B1 (en) 2019-12-24
US10636697B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
TWI730247B (en) Semiconductor devices and methods of fabricating the same
US10985261B2 (en) Dummy gate structure and methods thereof
US11915971B2 (en) Contact formation method and related structure
US20220130757A1 (en) Interconnect structure and methods thereof
US11171053B2 (en) Transistor device and related methods
US12131942B2 (en) Source/drain isolation structure and methods thereof
US12074063B2 (en) Contact formation method and related structure
US11177212B2 (en) Contact formation method and related structure
KR102544402B1 (en) Contact formation method and related structure
CN113053853B (en) Semiconductor device and method of manufacturing the same
US20240332374A1 (en) Contact Formation Method and Related Structure
US20240379408A1 (en) Source/drain isolation structure and methods thereof