TWI726455B - Penetration test case suggestion method and system - Google Patents
Penetration test case suggestion method and system Download PDFInfo
- Publication number
- TWI726455B TWI726455B TW108138229A TW108138229A TWI726455B TW I726455 B TWI726455 B TW I726455B TW 108138229 A TW108138229 A TW 108138229A TW 108138229 A TW108138229 A TW 108138229A TW I726455 B TWI726455 B TW I726455B
- Authority
- TW
- Taiwan
- Prior art keywords
- filtered
- attack
- log file
- attack information
- module
- Prior art date
Links
Images
Landscapes
- Debugging And Monitoring (AREA)
Abstract
一種滲透測試個案建議系統,一網路資訊收集模組從至少一伺服端獲得並儲存多筆線上攻擊資訊,一資料預處理模組將多筆記錄檔進行濾除處理,以獲得多筆濾除後記錄檔,且該資料預處理模組將該等線上攻擊資訊進行濾除處理,以獲得多筆濾除後線上攻擊資訊,一資料分析模組利用資料探勘演算法分析該等濾除後記錄檔的關聯性,獲得並儲存一記錄檔分析結果,一推薦模組根據該記錄檔分析結果、該等預定攻擊資訊、該等濾除後記錄檔,及該等濾除後線上攻擊資訊,產生一推薦測試攻擊資訊。此外,本發明還提供一種滲透測試個案建議方法。A penetration test case suggestion system. A network information collection module obtains and stores multiple online attack information from at least one server, and a data preprocessing module filters multiple log files to obtain multiple filters. After the log file, and the data preprocessing module filters the online attack information to obtain multiple filtered online attack information. A data analysis module analyzes the filtered records using a data mining algorithm The relevance of files, obtain and store a log file analysis result, a recommendation module generates based on the log file analysis result, the predetermined attack information, the filtered log files, and the filtered online attack information A recommended test attack information. In addition, the present invention also provides a penetration test case suggestion method.
Description
本發明是有關於一種滲透測試服務,特別是指一種滲透測試個案建議方法及系統。 The present invention relates to a penetration testing service, in particular to a penetration testing case suggestion method and system.
伴隨著網際網路系統的蓬勃發展,網路安全機制逐漸成為重要一環,不論大型或小型企業,都願意花費時間及金錢建立完善的網路安全機制,以防止企業本身的資訊遭到他人的侵害。影響資訊安全的因素包含:未經授權侵入系統,竊取或更改資料甚至更動原系統設定;資料在傳輸過程中被攔截或變更內容;散播惡意程式等。面對各種影響資訊安全的因素,網站管理者通常會採取滲透測試(Penetration Test)。 With the vigorous development of Internet systems, network security mechanisms have gradually become an important part. Both large and small companies are willing to spend time and money to establish a complete network security mechanism to prevent the company’s own information from being infringed by others. . Factors affecting information security include: unauthorized intrusion into the system, stealing or changing data or even changing the original system settings; data being intercepted or changed during transmission; spreading malicious programs, etc. Faced with various factors that affect information security, website administrators usually adopt a penetration test (Penetration Test).
滲透測試是指一個具備資安知識與經驗、技術人員受僱主所託,為僱主的網路裝置、主機,類比駭客的手法對網路或主機進行攻擊測試,為的是發掘系統漏洞、並提出改善方法。 Penetration testing refers to a technical staff with information security knowledge and experience entrusted by the employer to perform attack tests on the network or the host for the employer’s network devices and hosts, analogous to hackers, in order to discover system vulnerabilities and Propose ways to improve.
然而,滲透測試的測試過程耗費人力及時間,目前,執行一次標準的滲透測試專案大約需要1個月,包括收集需求、進行 測試與報告撰寫,有些大型專案可能需要2~3個月的時間,非常耗時且需要大量的人力成本。 However, the testing process of penetration testing consumes manpower and time. At present, it takes about 1 month to execute a standard penetration testing project, including collecting requirements and conducting Testing and report writing, some large projects may take 2 to 3 months, which is very time-consuming and requires a lot of labor costs.
因此,本發明的目的,即在提供一種縮短滲透測試時間降低人力成本的滲透測試個案建議方法。 Therefore, the purpose of the present invention is to provide a penetration test case suggestion method that shortens the penetration test time and reduces the labor cost.
於是,本發明滲透測試個案建議方法,由一滲透測試個案建議系統來實施,該滲透測試個案建議系統儲存多筆相關於多個攻擊事件的預定攻擊資訊及多筆相關於在執行網頁所發生事件的記錄檔,該滲透測試個案建議方法包含一步驟(A)、一步驟(B)、一步驟(C)、一步驟(D),及一步驟(E)。 Therefore, the penetration test case suggestion method of the present invention is implemented by a penetration test case suggestion system. The penetration test case suggestion system stores multiple predetermined attack information related to multiple attack events and multiple events related to the execution of the webpage. The log file of the penetration test case suggestion method includes one step (A), one step (B), one step (C), one step (D), and one step (E).
在該步驟(A)中,該滲透測試個案建議系統經由一通訊網路從至少一對應至少一紀錄攻擊行為的網站的伺服端獲得並儲存多筆相關於多個攻擊行為的線上攻擊資訊。 In the step (A), the penetration test case suggestion system obtains and stores multiple pieces of online attack information related to multiple attack actions from at least one server corresponding to at least one website that records attack actions via a communication network.
在該步驟(B)中,該滲透測試個案建議系統將該等記錄檔進行濾除處理,以獲得多筆濾除後記錄檔,每一濾除後記錄檔至少包括多個具有多個存取點的存取路徑及多個語法參數。 In this step (B), the penetration test case suggests that the system filter these log files to obtain multiple filtered log files. Each filtered log file includes at least multiple files with multiple accesses. Point's access path and multiple syntax parameters.
在該步驟(C)中,該滲透測試個案建議系統將該等線上攻擊資訊進行濾除處理,以獲得多筆濾除後線上攻擊資訊。 In this step (C), the penetration test case suggests that the system filter out the online attack information to obtain multiple filtered online attack information.
在該步驟(D)中,該滲透測試個案建議系統利用資料探勘 演算法分析該等濾除後記錄檔的關聯性,對於每一濾除後記錄檔,獲得並儲存一包括該濾除後記錄檔所包括的存取點的關聯性及多個相關於該濾除後記錄檔所包括的語法參數的攻擊特徵語法的關聯性的記錄檔分析結果。 In this step (D), the penetration test case suggests that the system use data exploration The algorithm analyzes the relevance of the filtered log files, and for each filtered log file, obtains and stores a relevance including the access points included in the filtered log file and multiple related to the filtered log file. The log file analysis result of the relevance of the attack feature grammar of the grammatical parameters included in the log file is removed.
在該步驟(E)中,該滲透測試個案建議系統根據該記錄檔分析結果、該等預定攻擊資訊、該等濾除後記錄檔,及該等濾除後線上攻擊資訊,產生一包括該等預定攻擊資訊及該等濾除後線上攻擊資訊之其中至少一者的推薦測試攻擊資訊。 In this step (E), the penetration test case proposal system generates a report that includes the analysis results of the log file, the predetermined attack information, the filtered log files, and the filtered online attack information. The predetermined attack information and the recommended test attack information of at least one of the filtered online attack information.
本發明的另一目的,即在提供一種縮短滲透測試時間降低人力成本的滲透測試個案建議系統。 Another object of the present invention is to provide a penetration test case suggestion system that shortens the penetration test time and reduces labor costs.
於是,本發明滲透測試個案建議系統包含一儲存模組、一網路資訊收集模組、一資料預處理模組、一資料分析模組,及一推薦模組。 Therefore, the penetration test case suggestion system of the present invention includes a storage module, a network information collection module, a data preprocessing module, a data analysis module, and a recommendation module.
該儲存模組儲存多筆相關於多個攻擊事件的預定攻擊資訊及多筆相關於在執行網頁所發生事件的記錄檔。 The storage module stores a plurality of predetermined attack information related to a plurality of attack events and a plurality of log files related to an event occurring in the execution of the webpage.
該網路資訊收集模組電連接該儲存模組,用以經由一通訊網路從至少一對應至少一紀錄攻擊行為的網站的伺服端獲得並儲存多筆相關於多個攻擊行為的線上攻擊資訊至該儲存模組。 The network information collection module is electrically connected to the storage module to obtain and store a plurality of online attack information related to a plurality of attack behaviors from at least one server corresponding to at least one website that records attack behaviors via a communication network The storage module.
該資料預處理模組電連接該儲存模組,用以將該等記錄檔進行濾除處理,以獲得多筆濾除後記錄檔,每一濾除後記錄檔至 少包括多個具有多個存取點的存取路徑及多個分別對應該等存取路徑的語法參數,且將該等線上攻擊資訊進行濾除處理,多筆濾除後線上攻擊資訊。 The data preprocessing module is electrically connected to the storage module for filtering the log files to obtain multiple filtered log files, and each filtered log file is sent to At least include multiple access paths with multiple access points and multiple grammatical parameters corresponding to the access paths, and filter the online attack information. After filtering, multiple pieces of online attack information are filtered.
該資料分析模組電連接該儲存模組,用以利用資料探勘演算法分析該等濾除後記錄檔的關聯性,對於每一濾除後記錄檔,獲得並儲存一包括該濾除後記錄檔所包括的存取點的關聯性及多個相關於該濾除後記錄檔所包括的語法參數的攻擊特徵語法的關聯性的記錄檔分析結果至該儲存模組。 The data analysis module is electrically connected to the storage module to analyze the relevance of the filtered log files using data mining algorithms, and for each filtered log file, obtain and store a log file that includes the filtered log file The relevance of the access points included in the file and a plurality of log file analysis results related to the relevance of the attack feature grammar of the grammatical parameters included in the filtered log file are sent to the storage module.
該推薦模組電連接該儲存模組,用以根據該記錄檔分析結果、該等預定攻擊資訊、該等濾除後記錄檔,及該等濾除後線上攻擊資訊,產生一包括該等預定攻擊資訊及該等濾除後線上攻擊資訊之其中至少一者的推薦測試攻擊資訊。 The recommendation module is electrically connected to the storage module to generate a report including the predetermined attack information based on the log file analysis result, the predetermined attack information, the filtered log files, and the filtered online attack information Attack information and recommended test attack information for at least one of the filtered online attack information.
本發明之功效在於:該資料分析模組利用資料探勘演算法分析該等濾除後記錄檔的關聯性,使該推薦模組推薦具有關聯性的該推薦測試攻擊資訊,以提高滲透測試的效率。 The effect of the present invention is that the data analysis module uses a data mining algorithm to analyze the relevance of the filtered log files, so that the recommendation module recommends the relevance of the recommended test attack information, so as to improve the efficiency of penetration testing .
11:資料輸入模組 11: Data input module
12:儲存模組 12: Storage module
13:網路資訊收集模組 13: Network information collection module
14:資料預處理模組 14: Data preprocessing module
15:資料分析模組 15: Data analysis module
16:推薦模組 16: recommended module
17:回饋模組 17: Feedback module
100:通訊網路 100: Communication network
101:伺服端 101: server
21~28:步驟 21~28: Steps
221~225:步驟 221~225: Steps
241~244:步驟 241~244: Steps
271~273:步驟 271~273: Steps
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一方塊圖,說明本發明滲透測試個案建議系統的一實施
例;圖2是一流程圖,說明是本發明滲透測試個案建議方法的一實施例;圖3是一流程圖,輔助說明圖2步驟23的子步驟;圖4是一流程圖,輔助說明圖2步驟25的子步驟;及圖5是一流程圖,輔助說明圖2步驟28的子步驟。
The other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: Figure 1 is a block diagram illustrating an implementation of the penetration test case suggestion system of the present invention
Example; Figure 2 is a flowchart illustrating an embodiment of the penetration test case suggestion method of the present invention; Figure 3 is a flowchart to assist in explaining the sub-steps of
參閱圖1,本發明滲透測試個案建議系統的一實施例,包含一資料輸入模組11、一儲存模組12、一網路資訊收集模組13、一資料預處理模組14、一資料分析模組15、一推薦模組16,及一回饋模組17。
Referring to Figure 1, an embodiment of the penetration test case suggestion system of the present invention includes a
該資料輸入模組11電連接該儲存模組12及該回饋模組17。
The
該儲存模組12電連接該網路資訊收集模組13、該資料預處理模組14、該資料分析模組15、該推薦模組16,及該回饋模組17,該儲存模組12儲存多個網站路徑、多筆相關於多個攻擊事件的預定攻擊資訊,及多筆相關於在執行網頁所發生事件的記錄檔。值得注意的是,在本實施例中,該等預定攻擊資訊及該等記錄檔係由一使用者經由該資料輸入模組11輸入,每一預定攻擊資訊包括一
日期時間、多個語法參數、一使用的工具,及一攻擊所屬類別,每一記錄檔包括一使用者名稱、一通信期(Session)、一交易(Transaction)、多個具有多個存取點的存取路徑、多個語法參數、多個分別對應該等存取路徑的來源位址、多個分別對應該等存取路徑的目的位址,及多個分別對應該等存取路徑的日期時間。
The
該網路資訊收集模組13經由一通訊網路100連接一對應一紀錄攻擊行為的網站的伺服端101。值得注意的是,該通訊網路100例如為網際網路(Internet),在其他實施方式中,該網路資訊收集模組13亦可連接多個伺服端。
The network
參閱圖1、2,本發明滲透測試個案建議方法的一實施例是由圖1所示的本發明滲透測試個案建議系統的該實施例來實現。以下詳述該滲透測試個案建議方法的該實施例的各個步驟。 Referring to FIGS. 1 and 2, an embodiment of the penetration test case suggestion method of the present invention is implemented by the embodiment of the penetration test case suggestion system of the present invention shown in FIG. 1. The steps of this embodiment of the proposed method of the penetration test case are described in detail below.
在步驟21中,該網路資訊收集模組13經由該通訊網路從該伺服端獲得並儲存多筆相關於多個攻擊行為的線上攻擊資訊至該儲存模組12。值得注意的是,該網路資訊收集模組13係利用例如網路爬蟲(Web Crawler)或應用程式介面(Application Programming Interface,API)技術從該伺服端獲得該等線上攻擊資訊,每一線上攻擊資訊包括一資料來源位址、一日期時間、多個語法參數、一擷圖、一攻擊所屬類別、一修補建議,及一事件敘述。
In
在步驟22中,該資料預處理模組14將該等記錄檔進行濾
除處理,以獲得多筆濾除後記錄檔。搭配參閱圖3,步驟22包括子步驟221~224,以下說明步驟22所包括的子步驟。
In
在步驟221中,該資料預處理模組14從該等記錄檔中,去除符合一預定條件的記錄檔,以獲得多筆候選記錄檔。值得注意的是,在本實施例中,該預定條件例如為所包括的存取路徑具有以多媒體檔案(例如.jpg、.gif、.png)為結尾的存取點。
In
在步驟222中,該資料預處理模組14根據該等候選記錄檔所包括的使用者名稱、通信期,交易進行分群,將同一使用者的候選記錄檔分成同一群。
In
在步驟223中,該資料預處理模組14根據該等候選記錄檔及該等網站路徑,從該等候選記錄檔中,獲得多筆目標記錄檔。值得注意的是,在本實施例中,該等目標記錄檔的存取路徑與該等網站路徑存在一匹配。
In
在步驟224中,對於每一目標記錄檔,該資料預處理模組14從該目標記錄檔擷取多個具有多個存取點的存取路徑、多個語法參數、多個分別對應該等存取路徑的來源位址、多個分別對應該等存取路徑的目的位址,及多個分別對應該等存取路徑的日期時間,以獲得一截取後目標記錄檔。
In
在步驟225中,該資料預處理模組14將該等截取後目標記錄檔的存取路徑進行編碼轉換,以獲得該等濾除後記錄檔。值得
注意的是,在本實施例中,該資料預處理模組14係將存取路徑中屬於統一資源定位符(Uniform Resource Locator,URL)編碼百分比表示的部分轉換為ASCII編碼。
In
在步驟23中,該資料預處理模組14將該等線上攻擊資訊進行濾除處理,以獲得多筆濾除後線上攻擊資訊。值得注意的是,在本實施例中,對於每一線上攻擊資訊,該資料預處理模組14係從該線上攻擊資訊擷取一資料來源位址、一日期時間、多個語法參數、一擷圖,及一攻擊所屬類別,以進行濾除處理。
In
在步驟24中,該資料分析模組15利用資料探勘(Data Mining)演算法分析該等濾除後記錄檔的關聯性,對於每一濾除後記錄檔,該資料分析模組15獲得並儲存一包括該濾除後記錄檔所包括的存取點的關聯性及多個相關於該濾除後記錄檔所包括的語法參數的攻擊特徵語法的關聯性的記錄檔分析結果至該儲存模組12。搭配參閱圖4,步驟24包括子步驟241~244,以下說明步驟24所包括的子步驟。
In
在步驟241中,對於每一濾除後記錄檔,該資料分析模組15根據該濾除後記錄檔所包括的存取點,利用一關聯規則探勘(association-rule-miming-based)演算法,獲得該濾除後記錄檔所包括的存取點的關聯性。值得注意的是,在本實施例中,該資料分析模組15係將每一存取點給予不重複的編碼,例如product給予
代碼A,car為代碼B,則/product/car得到代碼AB。接著,該資料分析模組15利用該關聯規則探勘演算法找出符合最小支持度(min support)與最小可信度(min confidance)要求的關聯性。舉例來說,由於在步驟22中獲得分成多群的濾除後記錄檔,每一群的濾除後記錄檔對應一使用者,從該等濾除後記錄檔例如可分析出60%使用者的記錄檔存取/product(代碼A)也會存取/product/car(代碼AB)。
In
在步驟242中,對於每一濾除後記錄檔,該資料分析模組15根據該濾除後記錄檔所包括的語法參數,利用一循序樣本探勘(Sequential-pattern-miming-based)演算法,獲得多個相關於該濾除後記錄檔所包括的語法參數的攻擊特徵語法。舉例來說,對於apache平臺的記錄檔分析出<(a),(c)>字串,a代表select,c代表@ @ version,表示select之後會出現@ @ version的攻擊特徵語法。
In
在步驟243中,該資料分析模組15根據該等攻擊特徵語法,利用該關聯規則探勘演算法,獲得該等攻擊特徵語法的關聯性。舉例來說,「../」語法後會出現「select,@ @ version」語法。
In
在步驟244中,該資料分析模組15產生該記錄檔分析結果。
In
在步驟25中,該回饋模組17在接收到經由該使用者的利用該資料輸入模組11所產生的一相關於該等預定攻擊資訊及該等
濾除後線上攻擊資訊的初始評分的初始評分訊號後,產生並儲存多個對應該等預定攻擊資訊及該等濾除後線上攻擊資訊的初始分數至該儲存模組12。值得注意的是,在本實施例中,該使用者係參考最新版本的OWASP十大網站安全風險排名(OWASP TOP TEN)、CVSS弱點風險等級進行評分。
In
在步驟26中,對於每一濾除後記錄檔,該推薦模組16根據該濾除後記錄檔的語法參數、該等預定攻擊資訊的語法參數、該等濾除後線上攻擊資訊的語法參數,及該等初始分數至少進行關鍵字分析,獲得一對應該濾除後記錄檔對應的攻擊所屬類別。舉例來說,含有alert、<script>關鍵字者在該等預定攻擊資訊的語法參數及該等濾除後線上攻擊資訊的語法參數中屬於A3.XSS類別。值得注意的是,在本實施例中,若該推薦模組16無法以進行關鍵字分析出該濾除後記錄檔對應的攻擊所屬類別,則會進行相似度計算,該濾除後記錄檔的語法參數與該等預定攻擊資訊的語法參數及該等濾除後線上攻擊資訊的語法參數相似度高於一預定門檻值時(例如70%),則決定出該濾除後記錄檔對應的攻擊所屬類別,相似度不高於該預定門檻值時,則該濾除後記錄檔對應的攻擊所屬類別為空值(null)。要再注意的是,在本實施例中,該推薦模組16根據該等初始分數決定所對應的該等預定攻擊資訊的語法參數及該等濾除後線上攻擊資訊的語法參數關鍵字分析及相似度計算的優先順
序。
In
在步驟27中,該推薦模組16根據該記錄檔分析結果、該等預定攻擊資訊、該等濾除後記錄檔、該等濾除後記錄檔對應的攻擊所屬類別,及該等濾除後線上攻擊資訊,產生一包括該等預定攻擊資訊及該等濾除後線上攻擊資訊之其中至少一者的推薦測試攻擊資訊。搭配參閱圖5,步驟27包括子步驟271~273,以下說明步驟28所包括的子步驟。
In
在步驟271中,該推薦模組16根據該等濾除後記錄檔、該等濾除後記錄檔對應的攻擊所屬類別、該記錄檔分析結果的該等濾除後記錄檔所包括的存取點的關聯性及一篩選條件,獲得多個推薦存取路徑。該篩選條件例如為時間區間、網站、平臺、語言類型,及需要的資料筆數。
In
在步驟272中,該推薦模組16對該等推薦存取路徑對應的語法參數進行關鍵字分析及相似度計算,並根據該記錄檔分析結果的該等攻擊特徵語法的關聯性,以獲得多個對應該等推薦存取路徑的歷史攻擊特徵語法。舉例來說,一推薦存取路徑對應的語法參數「../../../../etc/passwd」,由關鍵字分析及相似度計算可知屬於「../」類的攻擊,再由該記錄檔分析結果的該等攻擊特徵語法的關聯性可知歷史攻擊特徵語法為「../」及「select @ @ version」。
In
在步驟273中,該推薦模組16根據該等歷史攻擊特徵語
法、該等預定攻擊資訊,及該等濾除後線上攻擊資訊,產生該推薦測試攻擊資訊。舉例來說,若歷史攻擊特徵語法為「../」及「select @ @ version」,則該推薦模組16從該等預定攻擊資訊及該等濾除後線上攻擊資訊找出符合「../」及「select @ @ version」的資訊。
In
在步驟28中,該回饋模組17在接收到經由該使用者的利用該資料輸入模組11所產生的一相關該推薦測試攻擊資訊的回饋分數的回饋評分訊號後,根據該回饋評分訊號更新該等初始分數。值得注意的是,在本實施例中,更新後的初始分數為初始分數與回饋分數的平均,在其他實施方式中,可以依據權重調整,不以此為限。
In
綜上所述,本發明滲透測試個案建議方法及系統,藉由該網路資訊收集模組13從該伺服端獲得該等線上攻擊資訊,以自動蒐集資料,該資料預處理模組14該等預定攻擊資訊、該等記錄檔,及該等線上攻擊資訊進行濾除處理,以濾除非必要的內容,該資料分析模組15利用資料探勘演算法分析該等濾除後記錄檔的關聯性,使該推薦模組16推薦具有關聯性的該推薦測試攻擊資訊,以提高滲透測試的效率,此外,該回饋模組17根據該使用者的回饋更新該等初始分數,使該推薦模組16提高產生該推薦測試攻擊資訊的效率,故確實能達成本發明的目的。
In summary, the penetration test case suggestion method and system of the present invention uses the network
惟以上所述者,僅為本發明的實施例而已,當不能以此 限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 However, the above are only examples of the present invention. To limit the scope of implementation of the present invention, all simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the patent of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108138229A TWI726455B (en) | 2019-10-23 | 2019-10-23 | Penetration test case suggestion method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108138229A TWI726455B (en) | 2019-10-23 | 2019-10-23 | Penetration test case suggestion method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI726455B true TWI726455B (en) | 2021-05-01 |
TW202117620A TW202117620A (en) | 2021-05-01 |
Family
ID=77020574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108138229A TWI726455B (en) | 2019-10-23 | 2019-10-23 | Penetration test case suggestion method and system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI726455B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102136051A (en) * | 2011-05-06 | 2011-07-27 | 南开大学 | Method for driving web application penetration testing by applying SGM-SQL (sage grant management-structured query language) injection model |
US8356353B2 (en) * | 2007-06-26 | 2013-01-15 | Core Sdi, Incorporated | System and method for simulating computer network attacks |
US8464346B2 (en) * | 2007-05-24 | 2013-06-11 | Iviz Techno Solutions Pvt. Ltd | Method and system simulating a hacking attack on a network |
TW201426578A (en) * | 2012-12-27 | 2014-07-01 | Ind Tech Res Inst | Generation method and device and risk assessment method and device for anonymous dataset |
US9298913B2 (en) * | 2013-11-12 | 2016-03-29 | Macau University Of Science And Technology | Method of detecting intrusion based on improved support vector machine |
TW201627906A (en) * | 2015-01-27 | 2016-08-01 | 中華電信股份有限公司 | Auxiliary devices and methods for information security tests |
WO2019079621A1 (en) * | 2017-10-19 | 2019-04-25 | Circadence Corporation | Method and system for penetration testing classification based on captured log data |
EP3331210B1 (en) * | 2016-12-05 | 2019-07-17 | Institute for Imformation Industry | Apparatus, method, and non-transitory computer-readable storage medium for network attack pattern determination |
TW201931189A (en) * | 2018-01-12 | 2019-08-01 | 日商三菱電機股份有限公司 | Countermeasure formulation assistance device, countermeasure formulation assistance method, and countermeasure formulation assistance program |
US10387657B2 (en) * | 2016-11-22 | 2019-08-20 | Aon Global Operations Ltd (Singapore Branch) | Systems and methods for cybersecurity risk assessment |
-
2019
- 2019-10-23 TW TW108138229A patent/TWI726455B/en active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8464346B2 (en) * | 2007-05-24 | 2013-06-11 | Iviz Techno Solutions Pvt. Ltd | Method and system simulating a hacking attack on a network |
US8356353B2 (en) * | 2007-06-26 | 2013-01-15 | Core Sdi, Incorporated | System and method for simulating computer network attacks |
CN102136051A (en) * | 2011-05-06 | 2011-07-27 | 南开大学 | Method for driving web application penetration testing by applying SGM-SQL (sage grant management-structured query language) injection model |
TW201426578A (en) * | 2012-12-27 | 2014-07-01 | Ind Tech Res Inst | Generation method and device and risk assessment method and device for anonymous dataset |
US9298913B2 (en) * | 2013-11-12 | 2016-03-29 | Macau University Of Science And Technology | Method of detecting intrusion based on improved support vector machine |
TW201627906A (en) * | 2015-01-27 | 2016-08-01 | 中華電信股份有限公司 | Auxiliary devices and methods for information security tests |
US10387657B2 (en) * | 2016-11-22 | 2019-08-20 | Aon Global Operations Ltd (Singapore Branch) | Systems and methods for cybersecurity risk assessment |
EP3331210B1 (en) * | 2016-12-05 | 2019-07-17 | Institute for Imformation Industry | Apparatus, method, and non-transitory computer-readable storage medium for network attack pattern determination |
WO2019079621A1 (en) * | 2017-10-19 | 2019-04-25 | Circadence Corporation | Method and system for penetration testing classification based on captured log data |
TW201931189A (en) * | 2018-01-12 | 2019-08-01 | 日商三菱電機股份有限公司 | Countermeasure formulation assistance device, countermeasure formulation assistance method, and countermeasure formulation assistance program |
Also Published As
Publication number | Publication date |
---|---|
TW202117620A (en) | 2021-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11012472B2 (en) | Security rule generation based on cognitive and industry analysis | |
JP7073343B2 (en) | Security vulnerabilities and intrusion detection and repair in obfuscated website content | |
JP6397932B2 (en) | A system for identifying machines infected with malware that applies language analysis to network requests from endpoints | |
CN109905276B (en) | Cloud service quality monitoring method and system | |
CN111104579A (en) | Identification method and device for public network assets and storage medium | |
CN108156131A (en) | Webshell detection methods, electronic equipment and computer storage media | |
Feng et al. | Automated detection of password leakage from public github repositories | |
CN112887341B (en) | External threat monitoring method | |
CN107547490B (en) | Scanner identification method, device and system | |
US11297091B2 (en) | HTTP log integration to web application testing | |
CN114915479A (en) | Web attack phase analysis method and system based on Web log | |
US12072946B2 (en) | Optimizing scraping requests through browsing profiles | |
CN113987504A (en) | Vulnerability detection method for network asset management | |
Burda et al. | Characterizing the redundancy of DarkWeb. onion services | |
JP2016192185A (en) | Spoofing detection system and spoofing detection method | |
CN113704328A (en) | User behavior big data mining method and system based on artificial intelligence | |
CN114844689B (en) | Website logic vulnerability detection method and system based on finite state machine | |
Roy et al. | A large-scale analysis of phishing websites hosted on free web hosting domains | |
Alghamdi | Effective penetration testing report writing | |
CN108804501B (en) | Method and device for detecting effective information | |
CN110598397A (en) | Deep learning-based Unix system user malicious operation detection method | |
TWI726455B (en) | Penetration test case suggestion method and system | |
Mihailescu et al. | Unveiling Threats: Leveraging User Behavior Analysis for Enhanced Cybersecurity | |
CN112199573B (en) | Illegal transaction active detection method and system | |
Lazarine et al. | Exploring the propagation of vulnerabilities from GitHub repositories hosted by major technology organizations |